Publications

Independent research at Johns Hopkins University

2022

77. Hallas, N. B. Vilas, L. Anderegg, P. Robichaud, A. Winnicki, C. Zhang, L. Cheng, J. M. Doyle “Optical Trapping of a Polyatomic Molecule in an -Type Parity Doublet State” submitted (2022) arXiv:2208.13762.

76. Zhang, L. Cheng “A Route to Chemical Accuracy for Computational Uranium Thermochemistry” J. Chem. Theory Comput. in press (2022).

75. J. Schnabel, L. Cheng, A. Köhn “Towards High-Accuracy Rb2+ Interaction Potentials Based on Coupled Cluster Calculations” Phys. Rev. A 106, 032804 (2022).

74. L. Cheng “Relativistic Exact Two-Component Coupled-Cluster Calculations of Electronic g-factors for Heavy-Atom-Containing Molecules Pertinent to Search of New Physics” Mol. Phys. e2113567 (2022).

73. Lasner, A. Lunstad, C. Zhang, L. Cheng, J. M. Doyle “Vibronic Branching Ratios for Nearly-Closed Rapid Photon Cycling of SrOH” Phys. Rev. A. 106, L020801 (2022).

72. M. C. Babin, M. Dewitt, J. Lau, M. L. Weichman, J. B. Kim, L. Cheng, D. M. Neumark “Photoelectron spectrum of cryogenically cooled NiO2¯ via slow photoelectron velocity-map imaging” Phys. Chem. Chem. Phys. 24, 17496-17503 (2022).

71. Zhang, L. Cheng “An Atomic Mean-Field Approach Within Exact Two-Component Theory Based on the Dirac-Coulomb-Breit Hamiltonian” J. Phys. Chem. A. 126, 4537-4553 (2022).

70. Zheng, C. Zhang, Z. Jin, S. H. Southworth, L. Cheng “Benchmark Relativistic Delta-Coupled-Cluster Calculations of K-Edge Core-Ionization Energies for Third-Row Elements” Phys. Chem. Chem. Phys. 24, 13587-13596 (2022).

69. Zheng, C. Zhang, J. Liu, L. Cheng “Geometry Optimizations with Spinor-Based Relativistic Coupled-Cluster Theory” J. Chem. Phys. 156, 151101 (2022) [Communication].

68. Zhang, C. Zhang, L. Cheng, T. C. Steimle, M. R. Tarbutt “Inner-Shell Excitation in the YbF Molecule and its Impact on Laser Cooling” J. Mol. Spectrosc. 386, 111625 (2022).

67. Liu, D. Matthews, L. Cheng “Quadratic Unitary Coupled-Cluster Singles and Doubles Scheme: Efficient Implementation, Benchmark Calculations, and Formulation of an Extended Version.” J. Chem. Theory Comput. 18, 2281-2291 (2022).

66. K. B. Ng, Y. Zhou, L. Cheng, N. Schlossberger, S. Y. Park, T. S. Roussy, Y. Shagam, A. J. Vigil, E. A. Cornell, J. Ye “Spectroscopy on the eEDM-sensitive states on ThF+.” Phys. Rev. A 105, 022823 (2022) [Editors’ suggestion].

2021

65. R. P. Brady, C. Zhang, J. R. DeFrancisco, B. J. Barrett, L. Cheng, A. E. Bragg, “Multiphoton Control of 6𝜋 Photocyclization via State-Dependent Reactant-Product Correlations.” J. Phys. Chem. Lett. in press (2021).

64. M. C. Babin, M. Dewitt, J. A. Devine, D. C. McDonald II, S. G. Ard, N. S. Shuman, A. A. Viggiano, L. Cheng, D. M. Neumark, “Electronic Structure of NdO via slow photoelectron velocity-map imaging spectroscopy of NdO.” J. Chem. Phys. 155, 114305 (2021).

63. J. Liu and L. Cheng, “Unitary Coupled-Cluster Based Self-Consistent Polarization Propagator Theory: A Quadratic Unitary Coupled-Cluster Singles and Doubles Scheme.” J. Chem. Phys. in revision (2021).

62. J. Schnabel, L. Cheng, and A. Köhn, “Limitations of coupled cluster approximations for highly accurate investigations of Rb2+.” J. Chem. Phys. 155, 124101 (2021) arXiv:2107.00103.

61. C. Zhang, B. L. Augenbraun, Z. D. Lasner, N. B. Vilas, J. M. Doyle, and L. Cheng “Accurate prediction and measurement of vibronic branching ratios for laser cooling polyatomic molecules.” J. Chem. Phys. 155, 091101 (2021) arXiv:2105.10760.

60. C. Zhang, X. Zheng, and L. Cheng “Calculations of Time-Reversal Symmetry Violation Sensitivity Parameters Based on Relativistic Coupled-Cluster Analytic-Gradient Theory.” Phys. Rev. A 104, 012814 (2021) arXiv:2105.10763.

59. M. Marshall, Z. Zhu, J. Liu, K. H. Bowen, and L. Cheng “Anion Photoelectron Spectroscopic and Relativistic Coupled-Cluster Studies of the Uranyl Dichloride Anion, UO2Cl2.” J. Mol. Spectrosc. 379,111496 (2021).

58. J. Liu and L. Cheng “Relativistic Coupled-Cluster and Equation-of-Motion Coupled-Cluster Methods.” WIRES Mol. Sci. e1536, https://doi.org/10.1002/wcms.1536 (2021).

57. M. Marshall, Z. Zhu, J. Liu, L. Cheng, and K. H. Bowen “Photoelectron Spectroscopic and ab initio Computational Studies of the Anion, HThO.” J. Phys. Chem. A 125, 1903-1909 (2021).

56. Junzi Liu, Xuechen Zheng, Ayush Asthana, C. Zhang, and L. Cheng “Analytic Evaluation of Energy First Derivatives for Spin-Orbit Coupled-Cluster Singles and Doubles Augmented with Noniterative Triples Method.” J. Chem. Phys. 154, 064110 (2020).

2021

65. R. P. Brady, C. Zhang, J. R. DeFrancisco, B. J. Barrett, L. Cheng, A. E. Bragg, “Multiphoton Control of 6𝜋 Photocyclization via State-Dependent Reactant-Product Correlations.” J. Phys. Chem. Lett. in press (2021).

64. M. C. Babin, M. Dewitt, J. A. Devine, D. C. McDonald II, S. G. Ard, N. S. Shuman, A. A. Viggiano, L. Cheng, D. M. Neumark, “Electronic Structure of NdO via slow photoelectron velocity-map imaging spectroscopy of NdO.” J. Chem. Phys. 155, 114305 (2021).

63. J. Liu and L. Cheng, “Unitary Coupled-Cluster Based Self-Consistent Polarization Propagator Theory: A Quadratic Unitary Coupled-Cluster Singles and Doubles Scheme.” J. Chem. Phys. in revision (2021).

62. J. Schnabel, L. Cheng, and A. Köhn, “Limitations of coupled cluster approximations for highly accurate investigations of Rb2+.” J. Chem. Phys. 155, 124101 (2021) arXiv:2107.00103.

61. C. Zhang, B. L. Augenbraun, Z. D. Lasner, N. B. Vilas, J. M. Doyle, and L. Cheng “Accurate prediction and measurement of vibronic branching ratios for laser cooling polyatomic molecules.” J. Chem. Phys. 155, 091101 (2021) arXiv:2105.10760.

60. C. Zhang, X. Zheng, and L. Cheng “Calculations of Time-Reversal Symmetry Violation Sensitivity Parameters Based on Relativistic Coupled-Cluster Analytic-Gradient Theory.” Phys. Rev. A 104, 012814 (2021) arXiv:2105.10763.

59. M. Marshall, Z. Zhu, J. Liu, K. H. Bowen, and L. Cheng “Anion Photoelectron Spectroscopic and Relativistic Coupled-Cluster Studies of the Uranyl Dichloride Anion, UO2Cl2.” J. Mol. Spectrosc. 379,111496 (2021).

58. J. Liu and L. Cheng “Relativistic Coupled-Cluster and Equation-of-Motion Coupled-Cluster Methods.” WIRES Mol. Sci. e1536, https://doi.org/10.1002/wcms.1536 (2021).

57. M. Marshall, Z. Zhu, J. Liu, L. Cheng, and K. H. Bowen “Photoelectron Spectroscopic and ab initio Computational Studies of the Anion, HThO.” J. Phys. Chem. A 125, 1903-1909 (2021).

56. Junzi Liu, Xuechen Zheng, Ayush Asthana, C. Zhang, and L. Cheng “Analytic Evaluation of Energy First Derivatives for Spin-Orbit Coupled-Cluster Singles and Doubles Augmented with Noniterative Triples Method.” J. Chem. Phys. 154, 064110 (2020).

2020

55. Zhang, H. Korslund, S. Ding, L. Cheng “Towards Accurate Predictions for Laser-Coolable Molecules: Relativistic Coupled-Cluster Calculations for Yttrium Monoxide and Prospects for Improving its Laser Cooling Efficiencies.” Phys. Chem. Chem. Phys. 22, 26167-26177 (2020).

54. S. L. Sorensen, X. Zheng, S. H. Southworth, M. Patanen, E. Kokkonen, B. Oostenrijk, O. Travnikova, T. Marchenko, M. Simon, C. Bostedt, G. Doumy, L. Cheng, L. Young “From Synchrotrons for XFELs: the soft x-ray near-edge spectrum of the ESCA molecule.” J. Phys. B 24, 244011 (2020).

53. Liu, C. Zhang, S. Ciborowski, A. Asthana, L. Cheng, and K. Bowen “Mapping the Electronic Structure of Uranium (VI) Dinitride (UN2) Molecule.” J. Phys. Chem. A 1246486-6492 (2020).

52. C. Zhang and L. Cheng “Performance of an atomic mean-field spin-orbit approach within exact two-component theory for perturbative treatment of spin-orbit coupling” Mol. Phys. 118, e1768313 (2020).

51. D. A. Matthews, L. Cheng, M. E. Harding, F. Lipparini, S. Stopkowicz, T.-D. Jagua, P. G. Szalay, J. Gauss, and J. F. Stanton “Coupled cluster techniques for computational chemistry: the CFOUR program package.” J. Chem. Phys. 152, 214108 (2020).

50. X. Zheng, J. Liu, G. Doumy, L, Young, and L. Cheng “Hetero-site double core ionization energies with sub-eV accuracy from delta-coupled-cluster calculations.” J. Phys. Chem. A 124, 4413-4426 (2020).

49. E. T. Mengesha, A. T. Le, T. C. Steimle, C. Zhang, L. Cheng, B. L. Augenbraum, Z. Lansner, and J. Doyle “Branching ratios, radiative lifetimes and transition dipole moments for YbOH.” J. Phys. Chem. A 124, 4413-4426 (2020).

2019

48. L. Cheng, “A study of non-iterative triples contributions in relativistic equation-of-motion coupled-cluster calculations using an exact two-component Hamiltonian with atomic mean-field spin-orbit integrals: Application to uranyl and other heavy-element compounds.” J. Chem. Phys. 151, 104103 (2019).

47. X. Zheng, L. Cheng, “Performance of delta-coupled-cluster methods for calculations of core ionization energies of first-row elements.” J. Chem. Theory Comp. 15, 4945 (2019).

46. S. H. Southworth, R. W. Dunford, D. Ray, E. P. Kanter, G. Doumy, A. M. March, P. J. Ho, B. Krassig, Y. Gao, C. S. Lehmann, A. Picon, L. Young, D. A. Walko, L. Cheng, “Observing pre-edge K-shell resonances in Kr, Xe, and XeF2.” Phys. Rev. A 100, 022507 (2019).

45. F. Frati, F. de Groot, J. Cerezo, F. Santoro, L. Cheng, R. Faber, S. Coriani “Coupled cluster study of the K-edge X-ray absorption spectra of small molecules.” J. Chem. Phys. 151, 064107 (2019).

44. J. P. Carbone, L. Cheng, R. H. Myhre, D. Matthews, H. Koch, S. Coriani “An analysis of the performance of coupled cluster methods for K-edge core excitations and ionizations using standard basis sets.” Adv. Quantum Chem. 79, 241 (2019).

43. Y. Zhou, K. B. Kg, L. Cheng, D. N. Gresh, R. W. Field, J. Ye, E. A. Cornell “Visible and ultraviolet laser spectroscopy of ThF.” J. Mol. Spect. 358, 1-16 (2019).

42. D.-T. Nguyen, T. Steimle, C. Linton, and L. Cheng “Optical Stark and Zeeman spectroscopy of thorium fluoride, ThF, Thorium Chloride, ThCl.” J. Phys. Chem. A 123, 1423-1433 (2019).

41. J. Liu, D. Matthews, S. Coriani, and L. Cheng “Benchmark calculations of K-edge ionization energies for first-row elements using scalar-relativistic core-valence-separated equation-of-motion coupled-cluster methods.” J. Chem. Theory Comp. 15, 1642-1651 (2019).

40. A. Asthana, J. Liu, and L. Cheng “Exact two-component equation-of-motion coupled-cluster singles and doubles method using atomic mean-field spin-orbit integrals.” J. Chem. Phys. 150, 074102 (2019).

2018

39. J. Liu, A. Asthana, L. Cheng, D. Mukherjee “Unitary coupled-cluster based self-consistent polarization propagator theory: A third-order formulation and pilot applications.” J. Chem. Phys. 148, 244110 (2018).

38. J. Liu, L. Cheng “An atomic mean-field spin-orbit approach within exact two-component theory for a non-perturbative treatment of spin-orbit.” J. Chem. Phys148, 144108 (2018).

37. R. H. Myhre, T. J. A. Wolf, L. Cheng, S. Nandi, S. Coriani, M. Gühr, and H. Koch “A theoretical and experimental benchmark study of core-excited states in nitrogen.” J. Chem. Phys. 148, 064106 (2018).

36. J. Liu, Y. Shen, A. Asthana, L. Cheng “Two-component relativistic coupled-cluster methods using mean-field spin-orbit integrals.” J. Chem. Phys. 148, 034106 (2018).

35. M. Gawrilow, H. Beckers, S. Riedel, and L. Cheng “Matrix-Isolation and quantum-chemical analysis of the C3v conformer of XeF6, XeOF4, and their acetonitrile adducts.” J. Phys. Chem. A 122, 119-129 (2018).

2016-2017

34. T. C. Steimle, D. L. Kokkin, C. Linton, and L. Cheng “Characterization of the [18.28] 0 – a3D1 (0,0) Band of Tantalum Nitride, TaN.” J. Chem. Phys. 147, 154304 (2017).

33. R. Zhang, Y. Yu, T. C. Steimle, and L. Cheng “The electric dipole moments in the ground states of gold oxide, AuO, and gold sulfide, AuS.” J. Chem. Phys. 146, 064307 (2017).

Prior to Johns Hopkins

32. L. Cheng, F. Wang, J. F. Stanton, J. Gauss, “Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods”, J. Chem. Phys. 148, 044108 (2018).

31. M. L. Weichman, L. Cheng, J. B. Kim, J. F. Stanton, and D. M. Neumark, “Low-lying vibronic level structure of the ground state of the methoxy radical: Slow electron velocity-map imaging (SEVI) spectra and Köppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations”, J. Chem. Phys. 146, 224309 (2017).

30. L. Cheng, J. Gauss, B. Ruscic, P. B. Armentrout, and J. F. Stanton, “Bond dissociation energies for diatomic molecules containing 3d transition metals: Benchmark scalar-relativistic coupled-cluster calculations for twenty molecules”, Journal of Chemical Theory and Computation 13, 1044-1056 (2017).

29. Zhang, S. P. Sander, L. Cheng, V. S. Thimmakondu, and J. F. Stanton, “Matrix-isolated infrared absorption spectrum of CH2BrOO radical”, Chemical Physics Letters 657, 131 (2016).

28. X. Zhang, S. P. Sander, L. Cheng, V. S. Thimmakondu, and J. F. Stanton, “Matrix-isolated infrared absorption spectrum of CH2IOO radical”, J. Phys. Chem. A, 120, 260 (2016).

27. L. Cheng, “Benchmark calculations on the nuclear quadrupole-coupling parameters for open-shell molecules using non-relativistic and relativistic coupled-cluster methods”, J. Chem. Phys., 143, 064301 (2015).

26. L. Cheng, J. Gauss, and J. F. Stanton, “Relativistic coupled-cluster calculations on XeF6: Delicate interplay between electron-correlation and basis-set effects”, J. Chem. Phys., 142, 224309 (2015).

25. S. H. Southworth, R. Wehlitz, A. Picon, C. S. Lehmann, L. Cheng and J. F. Stanton, “Inner-shell photoionization and core-hole decay of Xe and XeF2”, J. Chem. Phys., 142, 224302 (2015).

24. R. Zhang, T. C. Steimle, L. Cheng and J. F. Stanton, “Permanent electric dipole moment of gold chloride, AuCl”, Mol. Phys., 113, 2073 (2015).

23. L. Cheng and J. Gauss, “Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory”, J. Chem. Phys., 141, 164107 (2014).

22. L. Cheng, S. Stopkowicz, and J. Gauss, “Review: Analytic energy derivatives in relativistic quantum chemistry”, Int. J. Quant. Chem. 114, 1108 (2014).

21. M. C. McCarthy, L. Cheng, K. N. Crabtree, O. Martinez, Jr., T. L. Nguyen, C.C. Womack, and J. F. Stanton, “The simplest Criegee Intermediate (H2C=O-O): Isotopic spectroscopy, equilibrium structure, and possible formation from atmospheric lightning”, J. Phys. Chem. Lett. 4, 4133 (2013).

20. L. Cheng, S. Stopkowicz, and J. Gauss, “Spin-free Dirac-Coulomb calculations augmented with a perturbative treatment of spin-orbit effects at the Hartree-Fock level”, J. Chem. Phys. 139, 214114 (2013).

19. F. Wang, T. Steimle, A. Adam, L. Cheng, and J. F. Stanton, “The pure rotational spectrum of ruthenium monocarbide, RuC, and relativistic ab initio predictions”, J. Chem. Phys. 139, 174318 (2013).

18. L. Cheng, J. Gauss, and J. F. Stanton, “Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach”, J. Chem. Phys. 139, 054105 (2013).

17. A. Le, T. C. Steimle, M. D. Morse, M. A. Garcia, L. Cheng, and J. F. Stanton, “Hyperfine interactions and electric dipole moments in the [16.0] 1.5(v=6), [16.0]3.5(v=7) and X2Δ5/2 states of iridium monosilicide, IrSi”, J. Phys. Chem. A, 117, 13292 (2013).

16. R. Haunschild, L. Cheng, D. Mukherjee, and W. Klopper, “Communication: Extension of a universal explicit electron correlation correction to general complete active spaces”, J. Chem. Phys. 138, 211101 (2013).

15. S. Stopkowicz, L. Cheng, M. E. Harding, C. Puzzarini, and J. Gauss, “The bromine nuclear quadrupole moment revisited”, Mol. Phys. 111, 1382 (2013).

14. L. Cheng, S. Stopkowicz, and J. F. Stanton, and J. Gauss, “The route to high accuracy in ab initio calculations of Cu quadrupole-coupling constants”, J. Chem. Phys. 137, 224302 (2012).

13. C. Puzzarini, G. Cazzoli, J. C. Lopez, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss, “Rotational spectra of rare isotopic species of fluoroiodomethane: Determination of the equilibrium structure from rotational spectroscopy and quantum-chemical calculations”, J. Chem. Phys., 137, 024310 (2012).

12. S. Mao, L. Cheng, W. Liu, and D. Mukherjee, “A spin-adapted size-extensive state-specific multi-reference perturbation theory with various partitioning schemes. II. Molecular applications”, J. Chem. Phys. 136, 024106 (2012).

11. S. Mao, L. Cheng, W. Liu, and D. Mukherjee, “A spin-adapted size-extensive state-specific multi-reference perturbation theory. I. Formal developments”, J. Chem. Phys. 136, 024105 (2012).

10. L. Cheng and J. Gauss, “Analytic second derivatives for the spin-free exact two-component theory-”, J. Chem. Phys, 135, 244104 (2011).

9. W. Schwalbach, S. Stopkowicz, L. Cheng, and J. Gauss, “Direct perturbation theory in terms of energy derivatives: Scalar-relativistic treatment up to sixth order”, J. Chem. Phys. 135, 194114 (2011).

8. L. Cheng and J. Gauss, “Analytical energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian”, J. Chem. Phys. 135, 084114 (2011).

7. L. Cheng and J. Gauss, “Analytical evaluation of first-order electrical properties based on the spin-free Dirac-Coulomb Hamiltonian”, J. Chem. Phys., 134, 244112 (2011).

6. C. Puzzarini, G. Cazzoli, J. C. Lopez, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss, “Fourier-transform microwave and millimeter-wave spectroscopic investigation of CH2FI guided by quantum-chemical calculations”, J. Chem. Phys. 134, 174312 (2011).

5. L. Cheng, Y. Xiao, and W. Liu, “Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge- including atomic orbitals”, J. Chem. Phys. 131, 244113 (2009).

4. Q. Sun, W. Liu, Y. Xiao, and L. Cheng, “Exact two-component relativistic theory for nuclear magneticresonance parameters”, J. Chem. Phys. 131, 081101 (2009).

3. L. Cheng, Y. Xiao, and W. Liu, “Four-component relativistic theory for NMR parameters: Unified formulation and numerical assessments of different approaches”, J. Chem. Phys. 130, 144102 (2009).

2. D. Peng, W. Liu, Y. Xiao, and L. Cheng, “Making four- and two-component relativistic density functional methods fully equivalent based on the idea of ‘from atoms to molecule’”, J. Chem. Phys. 127, 104106 (2007).

1.  Y. Xiao, W. Liu, L. Cheng, and D. Peng, “Four component relativistic theory for nuclear magnetic shielding constants: Critical assessments of different approaches”, J. Chem. Phys. 126, 214101 (2007).