Curriculum vitae of Lan Cheng

Lan Cheng

Department of Chemistry,                                                   Phone: (1)-410 516-5611

The Johns Hopkins University,                                            Email: lcheng24@jhu.edu

Baltimore, Maryland, USA.

Working experience

  • Assistant Professor, The Johns Hopkins University (since Jan. 2016)
  • Postdoc researcher, University of Texas at Austin (Nov. 2011 – Dec. 2015)  Advisor: Professor John F. Stanton
  • Postdoc researcher, University of Mainz (Oct. 2009 – Oct. 2011)      Advisor: Professor Jürgen Gauss
  • Research assistant, Tsinghua University (Sept. 2001 – Jun. 2004)        Advisor: Professor Yadong Li

Education

  • Ph.D. in Theoretical Chemistry, Peking University (Jul. 2009)                  Thesis: Four-component relativistic theory for NMR parameters              Adviser: Professor Wenjian Liu
  • B.S. in Chemistry, Tsinghua University (Jul. 2001)

Research interests

– – Relativistic quantum chemistry

– – Unitary Coupled-Cluster-Based Excited-state theories

– – Heavy-element chemistry and spectroscopy

– – X-ray spectroscopy and dynamics

Awards and external funding

“Development of Novel Relativistic Electronic Structure Methods for Actinide-Containing Compounds”, Department of Energy Early Career Award [under contract No. DE-SC0020317, (2019-2024).

“Atomic and Molecular Physics at Argonne National Laboratory”, Department of Energy [under contract No. DE-AC02-06CH11357, as a subcontractor to Argonne National Laboratory (2020-2023)].

“Accurate Electronic and Vibrational Structure Calculations of Metal-Containing Small Molecules of Importance to Precision Measurement and Laser Cooling”, National Science Foundation [under contract No. PHY-2011794, (2020-2023]].

“Laser Cooling of Asymmetric Top Molecules for Quantum Science”, Air Force Office of Scientific Research [under contract No. FA9550-22-1-0288, as a subcontractor to Harvard University, (2022-2027)].

Publications:

Independent research at JHU

2022

77. Hallas, N. B. Vilas, L. Anderegg, P. Robichaud, A. Winnicki, C. Zhang, L. Cheng, J. M. Doyle “Optical Trapping of a Polyatomic Molecule in an -Type Parity Doublet State” submitted (2022) arXiv:2208.13762.

76. Zhang, L. Cheng “A Route to Chemical Accuracy for Computational Uranium Thermochemistry” J. Chem. Theory Comput. in press (2022).

75. J. Schnabel, L. Cheng, A. Köhn “Towards High-Accuracy Rb2+ Interaction Potentials Based on Coupled Cluster Calculations” Phys. Rev. A 106, 032804 (2022).

74. L. Cheng “Relativistic Exact Two-Component Coupled-Cluster Calculations of Electronic g-factors for Heavy-Atom-Containing Molecules Pertinent to Search of New Physics” Mol. Phys. e2113567 (2022).

73. Lasner, A. Lunstad, C. Zhang, L. Cheng, J. M. Doyle “Vibronic Branching Ratios for Nearly-Closed Rapid Photon Cycling of SrOH” Phys. Rev. A. 106, L020801 (2022).

72. M. C. Babin, M. Dewitt, J. Lau, M. L. Weichman, J. B. Kim, L. Cheng, D. M. Neumark “Photoelectron spectrum of cryogenically cooled NiO2¯ via slow photoelectron velocity-map imaging” Phys. Chem. Chem. Phys. 24, 17496-17503 (2022).

71. Zhang, L. Cheng “An Atomic Mean-Field Approach Within Exact Two-Component Theory Based on the Dirac-Coulomb-Breit Hamiltonian” J. Phys. Chem. A. 126, 4537-4553 (2022).

70. Zheng, C. Zhang, Z. Jin, S. H. Southworth, L. Cheng “Benchmark Relativistic Delta-Coupled-Cluster Calculations of K-Edge Core-Ionization Energies for Third-Row Elements” Phys. Chem. Chem. Phys. 24, 13587-13596 (2022).

69. Zheng, C. Zhang, J. Liu, L. Cheng “Geometry Optimizations with Spinor-Based Relativistic Coupled-Cluster Theory” J. Chem. Phys. 156, 151101 (2022) [Communication].

68. Zhang, C. Zhang, L. Cheng, T. C. Steimle, M. R. Tarbutt “Inner-Shell Excitation in the YbF Molecule and its Impact on Laser Cooling” J. Mol. Spectrosc. 386, 111625 (2022).

67. Liu, D. Matthews, L. Cheng “Quadratic Unitary Coupled-Cluster Singles and Doubles Scheme: Efficient Implementation, Benchmark Calculations, and Formulation of an Extended Version.” J. Chem. Theory Comput. 18, 2281-2291 (2022).

66. K. B. Ng, Y. Zhou, L. Cheng, N. Schlossberger, S. Y. Park, T. S. Roussy, Y. Shagam, A. J. Vigil, E. A. Cornell, J. Ye “Spectroscopy on the eEDM-sensitive states on ThF+.” Phys. Rev. A 105, 022823 (2022) [Editors’ suggestion].

2021

65. R. P. Brady, C. Zhang, J. R. DeFrancisco, B. J. Barrett, L. Cheng, A. E. Bragg, “Multiphoton Control of 6𝜋 Photocyclization via State-Dependent Reactant-Product Correlations.” J. Phys. Chem. Lett. in press (2021).

64. M. C. Babin, M. Dewitt, J. A. Devine, D. C. McDonald II, S. G. Ard, N. S. Shuman, A. A. Viggiano, L. Cheng, D. M. Neumark, “Electronic Structure of NdO via slow photoelectron velocity-map imaging spectroscopy of NdO.” J. Chem. Phys. 155, 114305 (2021).

63. J. Liu and L. Cheng, “Unitary Coupled-Cluster Based Self-Consistent Polarization Propagator Theory: A Quadratic Unitary Coupled-Cluster Singles and Doubles Scheme.” J. Chem. Phys. in revision (2021).

62. J. Schnabel, L. Cheng, and A. Köhn, “Limitations of coupled cluster approximations for highly accurate investigations of Rb2+.” J. Chem. Phys. 155, 124101 (2021) arXiv:2107.00103.

61. C. Zhang, B. L. Augenbraun, Z. D. Lasner, N. B. Vilas, J. M. Doyle, and L. Cheng “Accurate prediction and measurement of vibronic branching ratios for laser cooling polyatomic molecules.” J. Chem. Phys. 155, 091101 (2021) arXiv:2105.10760.

60. C. Zhang, X. Zheng, and L. Cheng “Calculations of Time-Reversal Symmetry Violation Sensitivity Parameters Based on Relativistic Coupled-Cluster Analytic-Gradient Theory.” Phys. Rev. A 104, 012814 (2021) arXiv:2105.10763.

59. M. Marshall, Z. Zhu, J. Liu, K. H. Bowen, and L. Cheng “Anion Photoelectron Spectroscopic and Relativistic Coupled-Cluster Studies of the Uranyl Dichloride Anion, UO2Cl2.” J. Mol. Spectrosc. 379,111496 (2021).

58. J. Liu and L. Cheng “Relativistic Coupled-Cluster and Equation-of-Motion Coupled-Cluster Methods.” WIRES Mol. Sci. e1536, https://doi.org/10.1002/wcms.1536 (2021).

57. M. Marshall, Z. Zhu, J. Liu, L. Cheng, and K. H. Bowen “Photoelectron Spectroscopic and ab initio Computational Studies of the Anion, HThO.” J. Phys. Chem. A 125, 1903-1909 (2021).

56. Junzi Liu, Xuechen Zheng, Ayush Asthana, C. Zhang, and L. Cheng “Analytic Evaluation of Energy First Derivatives for Spin-Orbit Coupled-Cluster Singles and Doubles Augmented with Noniterative Triples Method.” J. Chem. Phys. 154, 064110 (2020).

2020

55. Zhang, H. Korslund, S. Ding, L. Cheng “Towards Accurate Predictions for Laser-Coolable Molecules: Relativistic Coupled-Cluster Calculations for Yttrium Monoxide and Prospects for Improving its Laser Cooling Efficiencies.” Phys. Chem. Chem. Phys. 22, 26167-26177 (2020).

54. S. L. Sorensen, X. Zheng, S. H. Southworth, M. Patanen, E. Kokkonen, B. Oostenrijk, O. Travnikova, T. Marchenko, M. Simon, C. Bostedt, G. Doumy, L. Cheng, L. Young “From Synchrotrons for XFELs: the soft x-ray near-edge spectrum of the ESCA molecule.” J. Phys. B accepted (2020).

53. Liu, C. Zhang, S. Ciborowski, A. Asthana, L. Cheng, and K. Bowen “Mapping the Electronic Structure of Uranium (VI) Dinitride (UN2) Molecule.” J. Phys. Chem. A 124, 6486-6492 (2020).

52. C. Zhang and L. Cheng “Performance of an atomic mean-field spin-orbit approach within exact two-component theory for perturbative treatment of spin-orbit coupling” Mol. Phys. e1768313 (2020).

51. D. A. Matthews, L. Cheng, M. E. Harding, F. Lipparini, S. Stopkowicz, T.-D. Jagua, P. G. Szalay, J. Gauss, and J. F. Stanton “Coupled cluster techniques for computational chemistry: the CFOUR program package.” J. Chem. Phys. 152, 214108 (2020).

50. X. Zheng, J. Liu, G. Doumy, L, Young, and L. Cheng “Hetero-site double core ionization energies with sub-eV accuracy from delta-coupled-cluster calculations.” J. Phys. Chem. A submitted (2020).

49. E. T. Mengesha, A. T. Le, T. C. Steimle, C. Zhang, L. Cheng, B. L. Augenbraum, Z. Lansner, and J. Doyle “Branching ratios, radiative lifetimes and transition dipole moments for YbOH.” J. Phys. Chem. A 124, 4413-4426 (2020).

2019

48. L. Cheng, “A study of non-iterative triples contributions in relativistic equation-of-motion coupled-cluster calculations using an exact two-component Hamiltonian with atomic mean-field spin-orbit integrals: Application to uranyl and other heavy-element compounds.” J. Chem. Phys. 151, 104103 (2019).

47. X. Zheng, L. Cheng, “Performance of delta-coupled-cluster methods for calculations of core ionization energies of first-row elements.” J. Chem. Theory Comp. 15, 4945 (2019).

46. S. H. Southworth, R. W. Dunford, D. Ray, E. P. Kanter, G. Doumy, A. M. March, P. J. Ho, B. Krassig, Y. Gao, C. S. Lehmann, A. Picon, L. Young, D. A. Walko, L. Cheng, “Observing pre-edge K-shell resonances in Kr, Xe, and XeF2.Phys. Rev. A 100, 022507 (2019).

45. F. Frati, F. de Groot, J. Cerezo, F. Santoro, L. Cheng, R. Faber, S. Coriani “Coupled cluster study of the K-edge X-ray absorption spectra of small molecules.” J. Chem. Phys. 151, 064107 (2019).

44. J. P. Carbone, L. Cheng, R. H. Myhre, D. Matthews, H. Koch, S. Coriani “An analysis of the performance of coupled cluster methods for K-edge core excitations and ionizations using standard basis sets.” Adv. Quantum Chem. 79, 241 (2019).

43. Y. Zhou, K. B. Kg, L. Cheng, D. N. Gresh, R. W. Field, J. Ye, E. A. Cornell “Visible and ultraviolet laser spectroscopy of ThF.” J. Mol. Spect. 358, 1-16 (2019).

42. D.-T. Nguyen, T. Steimle, C. Linton, and L. Cheng “Optical Stark and Zeeman spectroscopy of thorium fluoride, ThF, Thorium Chloride, ThCl.” J. Phys. Chem. A 123, 1423-1433 (2019).

41. J. Liu, D. Matthews, S. Coriani, and L. Cheng “Benchmark calculations of K-edge ionization energies for first-row elements using scalar-relativistic core-valence-separated equation-of-motion coupled-cluster methods.” J. Chem. Theory Comp. 15, 1642-1651 (2019).

40. A. Asthana, J. Liu, and L. Cheng “Exact two-component equation-of-motion coupled-cluster singles and doubles method using atomic mean-field spin-orbit integrals.” J. Chem. Phys. 150, 074102 (2019).

2018

39. J. Liu, A. Asthana, L. Cheng, D. Mukherjee “Unitary coupled-cluster based self-consistent polarization propagator theory: A third-order formulation and pilot applications.” J. Chem. Phys. 148, 244110 (2018).

38. J. Liu, L. Cheng “An atomic mean-field spin-orbit approach within exact two-component theory for a non-perturbative treatment of spin-orbit.” J. Chem. Phys. 148, 144108 (2018).

37. R. H. Myhre, T. J. A. Wolf, L. Cheng, S. Nandi, S. Coriani, M. Gühr, and H. Koch “A theoretical and experimental benchmark study of core-excited states in nitrogen.” J. Chem. Phys. 148, 064106 (2018).

36. J. Liu, Y. Shen, A. Asthana, L. Cheng “Two-component relativistic coupled-cluster methods using mean-field spin-orbit integrals.” J. Chem. Phys. 148, 034106 (2018).

35. M. Gawrilow, H. Beckers, S. Riedel, and L. Cheng “Matrix-Isolation and quantum-chemical analysis of the C3v conformer of XeF6, XeOF4, and their acetonitrile adducts.” J. Phys. Chem. A 122, 119-129 (2018).

2016-2017

34. T. C. Steimle, D. L. Kokkin, C. Linton, and L. Cheng “Characterization of the [18.28] 0a3D1 (0,0) Band of Tantalum Nitride, TaN.” J. Chem. Phys. 147, 154304 (2017).

33. R. Zhang, Y. Yu, T. C. Steimle, and L. Cheng “The electric dipole moments in the ground states of gold oxide, AuO, and gold sulfide, AuS.” J. Chem. Phys. 146, 064307 (2017).

Graduate and postdoctoral research

32. L. Cheng, F. Wang, J. F. Stanton, J. Gauss “Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods.” J. Chem. Phys. 148, 044108 (2018).

31. M. L. Weichman, L. Cheng, J. B. Kim, J. F. Stanton, and D. M. Neumark “Low-lying vibronic level structure of the ground state of the methoxy radical: Slow electron velocity-map imaging (SEVI) spectra and Köppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations.” J. Chem. Phys. 146, 224309 (2017).

30. L. Cheng, J. Gauss, B. Ruscic, P. B. Armentrout, and J. F. Stanton “Bond dissociation energies for diatomic molecules containing 3d transition metals: Benchmark scalar-relativistic coupled-cluster calculations for twenty molecules.” J. Chem. Theory Comp. 13, 1044-1056 (2017).

29. X. Zhang, S. P. Sander, L. Cheng, V. S. Thimmakondu, and J. F. Stanton “Matrix-isolated infrared absorption spectrum of CH2IOO radical.” J. Phys. Chem. A 120, 260 (2016).

28. X. Zhang, S. P. Sander, L. Cheng, V. S. Thimmakondu, and J. F. Stanton “Matrix-isolated infrared absorption spectrum of CH2BrOO radical.” Chem. Phys. Lett. 657, 131 (2016).

27. L. Cheng “Benchmark calculations on the nuclear quadrupole-coupling parameters for open-shell molecules using non-relativistic and relativistic coupled-cluster methods.” J. Chem. Phys. 143, 064301 (2015).

26. L. Cheng, J. Gauss, and J. F. Stanton “Relativistic coupled-cluster calculations on XeF6: Delicate interplay between electron-correlation and basis-set effects.” J. Chem. Phys. 142, 224309 (2015).

25. S. H. Southworth, R. Wehlitz, A. Picon, C. S. Lehmann, L. Cheng and J. F. Stanton “Inner-shell photoionization and core-hole decay of Xe and XeF2.” J. Chem. Phys. 142, 224302 (2015).

24. R. Zhang, T. C. Steimle, L. Cheng and J. F. Stanton “Permanent electric dipole moment of gold chloride, AuCl.” Mol. Phys., 113, 2073 (2015).

23. L. Cheng and J. Gauss “Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory.” J. Chem. Phys. 141, 164107 (2014).

22. L. Cheng, S. Stopkowicz, and J. Gauss “Review: Analytic energy derivatives in relativistic quantum chemistry.” Int. J. Quant. Chem. 114,1108 (2014).

21. M. C. McCarthy, L. Cheng, K. N. Crabtree, O. Martinez, Jr., T. L. Nguyen, C.C. Womack, and J. F. Stanton “The simplest Criegee Intermediate (H2C=O-O): Isotopic spectroscopy, equilibrium structure, and possible formation from atmospheric lightning.” J. Phys. Chem. Lett. 4, 4133 (2013).

20. L. Cheng, S. Stopkowicz, and J. Gauss “Spin-free Dirac-Coulomb calculations augmented with a perturbative treatment of spin-orbit effects at the Hartree-Fock level.” J. Chem. Phys. 139, 214114 (2013).

19. F. Wang, T. Steimle, A. Adam, L. Cheng, and J. F. Stanton “The pure rotational spectrum of ruthenium monocarbide, RuC, and relativistic ab initio predictions.” J. Chem. Phys. 139, 174318 (2013).

18. L. Cheng, J. Gauss, and J. F. Stanton “Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach.” J. Chem. Phys. 139, 054105 (2013).

17. A. Le, T. C. Steimle, M. D. Morse, M. A. Garcia, L. Cheng, and J. F. Stanton “Hyperfine interactions and electric dipole moments in the [16.0] 1.5(v=6), [16.0]3.5(v=7) and X2Δ5/2 states of iridium monosilicide, IrSi.” J. Phys. Chem. A, 117, 13292 (2013).

16. R. Haunschild, L. Cheng, D. Mukherjee, and W. Klopper “Communication: Extension of a universal explicit electron correlation correction to general complete active spaces.” J. Chem. Phys. 138, 211101 (2013).

15. S. Stopkowicz, L. Cheng, M. E. Harding, C. Puzzarini, and J. Gauss “The bromine nuclear quadrupole moment revisited.” Mol. Phys. 111, 1382 (2013).

14. L. Cheng, S. Stopkowicz, and J. F. Stanton, and J. Gauss “The route to high accuracy in ab initio calculations of Cu quadrupole-coupling constants.” J. Chem. Phys. 137, 224302 (2012).

13. C. Puzzarini, G. Cazzoli, J. C. Lopez, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss “Rotational spectra of rare isotopic species of fluoroiodomethane: Determination of the equilibrium structure from rotational spectroscopy and quantum-chemical calculations.” J. Chem. Phys. 137, 024310 (2012).

12. S. Mao, L. Cheng, W. Liu, and D. Mukherjee “A spin-adapted size-extensive state-specific multi-reference perturbation theory with various partitioning schemes. II. Molecular applications.” J. Chem. Phys. 136, 024106 (2012).

11. S. Mao, L. Cheng, W. Liu, and D. Mukherjee “A spin-adapted size-extensive state-specific multi-reference perturbation theory. I. Formal developments.” J. Chem. Phys. 136, 024105 (2012).

10. L. Cheng and J. Gauss “Analytic second derivatives for the spin-free exact two-component theory.” J. Chem. Phys. 135, 244104 (2011).

9. W. Schwalbach, S. Stopkowicz, L. Cheng, and J. Gauss “Direct perturbation theory in terms of energy derivatives: Scalar-relativistic treatment up to sixth order.” J. Chem. Phys. 135, 194114 (2011).

8. L. Cheng and J. Gauss “Analytical energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian.” J. Chem. Phys. 135, 084114 (2011).

7. L. Cheng and J. Gauss “Analytical evaluation of first-order electrical properties based on the spin-free Dirac-Coulomb Hamiltonian.” J. Chem. Phys. 134, 244112 (2011).

6. C. Puzzarini, G. Cazzoli, J. C. Lopez, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss “Fourier-transform microwave and millimeter-wave spectroscopic investigation of CH2FI guided by quantum-chemical calculations.” J. Chem. Phys. 134, 174312 (2011).

5. L. Cheng, Y. Xiao, and W. Liu “Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.” J. Chem. Phys. 131, 244113 (2009).

4. Q. Sun, W. Liu, Y. Xiao, and L. Cheng “Exact two-component relativistic theory for nuclear magnetic resonance parameters.” J. Chem. Phys. 131, 081101 (2009).

3. L. Cheng, Y. Xiao, and W. Liu “Four-component relativistic theory for NMR parameters: Unified formulation and numerical assessments of different approaches.” J. Chem. Phys. 130, 144102 (2009).

2. D. Peng, W. Liu, Y. Xiao, and L. Cheng “Making four- and two-component relativistic density functional methods fully equivalent based on the idea of ‘from atoms to molecule’.” J. Chem. Phys. 127, 104106 (2007).

1. Y. Xiao, W. Liu, L. Cheng, and D. Peng “Four-component relativistic theory for nuclear magnetic shielding constants: Critical assessments of different approaches.” J. Chem. Phys. 126, 214101 (2007)

Book chapter(s)

  1. A. Sen, L. Cheng, and D. Mukherjee, “Benchmark studies of spectroscopic parameters for hydrogen halide series via scalar-relativistic state-specific multireference perturbation theory”, in Concepts and Methods in Modern Theoretical Chemistry: Electronic Structure and Reactivity, Edited by S. K. Ghosh and P. K. Chattaraj, CRC Press (2012).

Presentations since JHU:

Invited talks in conferences and workshops

(Upcoming) In “2nd International Workshop on Theory Frontiers in Actinide Sciences: Chemistry and Materials”, Santa Fe, NM (Mar. 2023).

(Upcoming) In “28th Austin Symposium on Molecular Structure and Dynamics at Dallas”, Dallas, TX (Feb. 2023).

“Vibronic-Structure Calculations for laser-coolable polyatomic molecules” ITAMP workshop in laser cooling of molecules, Institute of Theoretical Atomic Molecular and Optical Physics at Harvard, Boston, MA (Oct. 2022).

“Analytic-Gradient Techniques for Spinor-Based Relativistic Coupled-Cluster Methods” in the 13th International Conference on Relativistic Effects in Heavy-Element Chemistry and Physics (REHE-2020/2022)”, Assisi, Italy (2022).

“Analytic Gradients for Spinor-Based Relativistic Coupled-Cluster Methods” OPERA2022, Operators, Perturbations, Electrons, Relativity, and Multi-Scale Applications Symposium, Mainz, Germany (2022).

“Unitary Coupled-Cluster Based Excited State Methods” Quantum Chemistry: Current and Future Frontiers Symposium, Fall 2022 ACS National Meeting, Chicago, IL, USA (2022).

“Approaching Heavy-Element Spectroscopy Using Spinor Representation” International Conference in Chemical Bonding, Kauai, HI, USA (2022).

“Calculations of Vibronic Branching Ratios for Laser-Coolable Linear Polyatomic Molecules” The Spectroscopy and Dynamics on Multiple Potential Energy Surfaces Workshop, Telluride, CO, USA (2022).

“Spinor-Based Relativistic Coupled-Cluster Studies of Lanthanide Spectroscopy” 29th Rare Earth Research Conference, Philadelphia, PA (2022).

“Extending Accurate Quantum Chemistry to Heavy Elements” The Benchmarking in Spectroscopy mini-symposium, 75th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL (2022).

“Relativistic coupled-cluster techniques with applications to heavy-element spectroscopy” Spring 2022 ACS National Meeting, San Diego, CA, USA (2022).

“Analytic gradients for relativistic coupled-cluster methods” 61st Sanibel Symposium, St. Simons, GA, USA (2022).

“Unitary coupled-cluster based excited-state methods”, New Developments in Coupled-Cluster Theory workshop, Telluride, CO, USA (2021).

“Advances in relativistic coupled-cluster techniques”, New Frontiers in Electron Correlation workshop, Telluride, CO, USA (2021).

“Mean-field spin-orbit approaches for exact two-component theory: Two paradigms”, on the way of 13th International Conference on Relativistic Effects in Heavy-Element Chemistry and Physics (REHE-2020/2022), virtual (2021).

“Exact two-component coupled-cluster methods using atomic mean-field spin-orbit integrals”, Molecular Quantum Mechanics, Heidelberg, Germany (2019).

“Exact two-component coupled-cluster methods using atomic mean-field spin-orbit integrals”, New Frontiers in Electron Correlation, Telluride, CO, USA (2019).

“Accurate calculations of spin-orbit coupling in metal-containing molecules”, Spectroscopy and Dynamics on Multiple Potential Energy Surfaces, Telluride, CO, USA (2018).

“Relativistic two-component coupled-cluster methods using mean-field spin-orbit integrals”, New Developments in Coupled-Cluster Theory, Telluride, CO, USA (2017).

“Scalar relativistic equation-of-motion coupled-cluster calculations of core ionized/excited states”, The 57th Sanibel Symposium, Simons Island, FL, USA (2017).

“Analytic derivative theory for spin-free exact two-component theory: Spin-orbit coupling and local approximation to block diagonalization”, The IXth Congress of the International Society of Theoretical Chemical Physics, ISTCP-IX, Grand Forks, ND, USA (2016).

Seminar presentations at academic institutions

“Accurate Electronic Structure Calculations for Heavy Elements” Physical Chemistry/Chemical Physics Colloquium, University of Colorado Boulder, Boulder, CO (November 2022).

“Extending Accurate Quantum Chemistry to Heavy Elements” Chemistry Seminar, University of Massachusetts, Amherst, MA (2022).

“Extending Accurate Quantum Chemistry to Heavy Elements”, Physical Chemistry Seminar, University of Wisconsin, Madison, WI (2022).

“Extending Accurate Quantum Chemistry to Heavy Elements”, Physical Chemistry Seminar, Emory University, Atlanta, GA (2022).

“Relativistic Quantum Chemistry with Applications to Heavy-Element Spectroscopy”, Chemistry Seminar, University of Florida, virtual (2021).

“Relativisty Throughout the Periodic Table: Scalar relativity, Spin-orbit Coupling and Spin-Vibronic Interations”, Physical Chemistry Seminar, UCLA, Los Angelas, CA (2021).

“Advances in Relativistic Quantum Chemistry with Applications to Heavy-Element Spectroscopy”, UC Berkeley Pitzer Theory Seminar, virtual (2021).

“Advances in Relativistic Quantum Chemistry with Applications to Heavy-Element Spectroscopy”, Chemistry Seminar, Duquesne University, Pittsburg, PA (2021).

“Relativisty Throughout the Periodic Table: Scalar relativity, Spin-orbit Coupling and Spin-Vibronic Interations”, Chemistry Seminar, University of Louisville, virtual, (2021).

“Exact two-component coupled-cluster methods using atomic mean-field spin-orbit integrals”, Theoretical chemistry seminar, University of Mainz, Mainz, Germany (2019).

“Towards accurate calculations for the electronic structure in core-ionized and excited states”, Argonne National Laboratory, Lemont, IL (2019).

“Recent advances in spin-orbit coupled-cluster methods”, University of Southern California, Los Angeles, CA (2019).

“Relativistic quantum chemistry and applications to actinide-containing molecules”, Physical Chemistry Seminar, Florida State University, Tallahassee, FL (2019).

“Relativistic quantum chemistry and applications to actinide-containing molecules”, Chemistry Seminar, Wesleyan University, Middletown, CT (2018).

“Relativity throughout the periodic table”, Physical Chemistry Seminar, Arizona State University, Tempe, AZ (2018).

“Relativity throughout the periodic table”, Seminar at Bowdoin College, Brunswick, ME (2016).

“Exact two-component coupled-cluster calculations of molecular properties”, Seminar at the Center for Computational Quantum Chemistry, University of Georgia, Athens, GA (2016).

Contributed presentations in meetings by Cheng group

“Relativistic coupled-cluster techniques for calculations of x-ray spectroscopy”, Molecular Quantum Mechanics 2022, poster presentation by Xuechen Zheng, Virginia Tech, Blacksburg, VA (2022).

“Accurate and efficient treatment of relativistic effects using an exact two-component approach with atomic-mean-field integrals”, Molecular Quantum Mechanics 2022, poster presentation by Chaoqun Zhang, Virginia Tech, Blacksburg, VA (2022).

“Relativistic delta-coupled-cluster calculations of K-edge core-ionization energies for third-row elements”, Contributed talk by Xuechen Zheng, 75th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL (2022).

“Accurate prediction of equilibrium structure for heavy element containing molecules”, Contributed talk by Chaoqun Zhang, 75th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL (2022).

“Calculations of actinide- and lanthanide-containing small molecules using spinor-based relativistic coupled-cluster methods”, Contributed talk by Tianxiang Chen, 75th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL (2022).

“Relativistic coupled-cluster calculations of chlorine L-edge spectrum of CH2ICl”, Contributed talk by Zhe Lin, 75th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL (2022).

“Accurate prediction of equilibrium structure for heavy-element-containing molecules pertinent to laser cooling”, APS DAMOP meeting, poster presentation by Chaoqun Zhang, Orlando, FL (2022).

“Relativistic two-component calculations of electronic g-factors for heavy-atom-containing molecules”, APS DAMOP meeting, poster presentation by Lan Cheng, Orlando, FL (2022).

“Analytic energy derivatives for exact two-component coupled-cluster methods”, Contributed talk by Lan Cheng, Fall 2021 ACS national meeting, virtual (2021).

“Calculations of effective electric field using relativistic coupled-cluster analytic-gradient theory”, APS DAMOP meeting, Contributed talk by Lan Cheng, virtual (2021).

“High-accuracy calculations of x-ray spectra via relativistic coupled-cluster techniques”, APS DAMOP meeting, Contributed talk by Xuechen Zheng, virtual (2021).

“Accurate prediction of vibronic levels and branching ratios for laser-coolable polyatomic molecules”, Contributed talk by Chaoqun Zhang, APS DAMOP meeting, virtual (2021).

“Calculations of effective electric field using relativistic coupled-cluster analytic-gradient theory”, Contributed talk by Lan Cheng, 75th International Symposium on Molecular Spectroscopy, virtual (2021).

“An edge-specific scheme for equation-of-motion coupled-cluster calculations of x-ray absorption spectra”, Contributed talk by Xuechen Zheng,75th International Symposium on Molecular Spectroscopy, virtual (2021).

“Sub-eV accuracy delta-coupled-cluster calculations for hetoro-site double core-ionized states”, Contributed talk by Xuechen Zheng, 75th International Symposium on Molecular Spectroscopy, virtual (2021).

“Accurate prediction of vibronic levels and branching ratios for laser-coolable linear polyatomic molecules: Applications to CaOH, SrOH, and YbOH”, Contributed talk by Chaoqun Zhang, 75th International Symposium on Molecular Spectroscopy, virtual (2021).

“ Accurate prediction of vibronic levels and branching ratios for laser-coolable linear polyatomic molecules: Construction of quasidiabatic Hamiltonian”, Contributed talk by Chaoqun Zhang, 75th International Symposium on Molecular Spectroscopy, virtual (2021).

“New algorithmic development for relativistic equation-of-motion coupled-cluster method”, Poster presentation by Ayush Asthana, Fall 2020 ACS national meeting, virtual (2020).

“Towards accurate calculations of core ionization energies”, Contributed talk by Lan Cheng, The 60th Sanibel Symposium, Simons Island, FL (2020).

“Unitary coupled-cluster based polarization propagator theory”, Poster presentation by Junzi Liu, Molecular Quantum Mechanics, Heidelberg, Germany (2019).

“Delta-coupled-cluster methods for accurate calculations of core-ionization energies”, Contributed talk by Xuechen Zheng, 74th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL (2019).

“Accurate calculations of Franck-Condon factors for metal-containing diatomic molecules of interest to laser cooling using coupled-cluster techniques”, Contributed talk by Hannah Korslund, 74th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL (2019).

“Exact two-component coupled-cluster methods using atomic mean-field spin-orbit integrals”, Contributed talk by Lan Cheng, The 59th Sanibel Symposium, Simons Island, FL (2019).

“Ab initio calculations of low-lying electronic states in metal-containing molecules”, Contributed talk by Lan Cheng, 73th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL (2018).

“Benchmark calculations of K-edge ionization energies using exact two-component coupled-cluster methods”, Contributed talk by Junzi Liu, 73th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL (2018).

“Ab initio calculations of infrared spectra of XeF6: Isotope shifts and anharmonic contributions”, Contributed talk by Lan Cheng, 72th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL (2017).

“Ab initio equation-of-motion coupled-cluster calculations of core ionized/excited states”, Contributed talk by Lan Cheng, 72th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL (2017).

“Ab initio calculations of spin-orbit splittings for metal-containing radicals”, 71th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL (2016).