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ABSTRACT 

The relationship between two commonly used diagnostics of stirring in ocean and atmospheric flows, the 
finite-time Lyapunov exponents l and relative dispersion R2, is examined for a simple uniform strain flow and 
ocean flow inferred from altimetry. Although both diagnostics are based on the separation of initially close 
particles, the two diagnostics measure different aspects of the flow and, in general, there is not a one-to-one 
relationship between the diagnostics. For a two-dimensional flow with time-independent uniform strain, there 
is a single time-independent l, but there is a wide range of values of R2 for individual particle pairs. However, 
it is shown that the upper and lower limits of R2 for individual pairs, the mean value over a large ensemble of 
pairs, and the probability distribution function (PDF) of R2 have simple relationships with l. Furthermore, 
these analytical expressions provide a reasonable approximation for the R2–l relationship in the surface 
ocean flow based on geostrophic velocities derived from satellite altimeter measurements. In particular, the 
bimodal distribution, upper and lower bounds, and mean values from the ocean flow are similar to the an-

alytical expressions for a uniform strain flow. How well, as well as over what integration time scale, this holds 
depends on the spatial and temporal variations within the ocean region being considered. 

1. Introduction 

Understanding horizontal dispersal and stirring in the 
oceans is important for a wide range of problems, and 
a variety of diagnostics have been used to quantify these 
processes in oceanic (and other) flows. These include the 
mean-square separation (‘‘relative dispersion’’) of par-

ticles and finite-size Lyapunov exponents (FSLEs; e.g., 
Lacorata et al. 2001; Haza et al. 2008; LaCasce 2008), 
finite-time Lyapunov exponents (FTLEs; e.g., Abraham 
and Bowen 2002; Waugh et al. 2006; Beron-Vera et al. 
2008; Waugh and Abraham 2008), and effective diffu-

sivity (e.g., Marshall et al. 2006), which have all been 
calculated using velocities from numerical simulations 
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or derived from altimetry. Some of these diagnostics 
can also be applied to direct tracer observations.  
Relative dispersion and finite-size Lyapunov expo-

nents can be calculated from the spreading of surface 
drifters or floats (see LaCasce 2008, and references 
therein), whereas finite-time Lyapunov exponents 
have been inferred from the elongation of a tracer 
patch following its release (e.g., Abraham et al. 2000; 
Coale et al. 2004; Law et al. 2006). Even though these 
diagnostics have been applied in numerous studies, 
there are still many uncertainties about dispersion and 
stirring in the surface ocean. Some of this is because 
the relationships between different diagnostics of 
stirring are not well known. This makes it difficult to 
compare and combine different studies, which typically 
use different diagnostics and consider different regions 
and time periods. 

Two diagnostics that are often considered together are 
relative dispersion R2 and FSLEs. The relative dispersion 
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is calculated from the squared separation of particle pairs, 
whereas the FSLE is based on the time for particles 
pairs to increase their separation from d to ad (where 
a . 1). Dimensional analysis provides a simple re-

lationship between the temporal dependence of the 
ensemble-mean relative dispersion hR2i and the spa-

tial dependence of the FSLE lS, and these relation-

ships have been used to identify different dispersion 
regimes within ocean flows (e.g., Lacorata et al. 2001; 
Haza et al. 2008; LaCasce 2008). These studies have 
generally shown exponential spreading for small times 
and spatial scales (lS ; constant and hR2i ; exp2lSt) 
and slower algebraic growth for larger times and 
spatial scales (lS ; d2b and hR2i ; t2/b, with  b in the 
range of 1–2), although there is not universally con-

sistent results. 
The FTLE is also related to the rate of separation of 

initially close particles, has been applied in several 
different studies to velocities calculated from model 
simulations, and can be calculated from direct tracer 
observations. However, there has been less attention 
paid to the relationship between FTLEs and other the 
diagnostics. In this study, we examine the relationship 
between FTLEs and R2. We focus on the comparison 
with R2 rather than FSLE because there are several 
different approaches to calculating the FSLE with no 
consensus on best approach and results can be sensi-

tive to method used (e.g., LaCasce 2008; Lumpkin and 
Elipot 2010). Also, observational estimates of both 
the FTLE and R2 are being made during the Diapycnal 
and Isopycnal Mixing Experiment in the Southern 
Ocean (DIMES) experiment (Gille et al. 2007). Al-

though both the FTLE and R2 depend on the spread-

ing of particle pairs, an important difference is that the 
R2 (and FSLE) depends on the mean of an ensemble 
of particle pairs, whereas the FTLE depends only on 
the maximum spreading rate (see further discussion 
below). 

In the next section, we calculate analytic expres-

sions for the FTLEs and relative dispersion in two-

dimensional flow with uniform strain and show that, 
even in this extremely simple case, there is not a one-

to-one relationship between the two diagnostics: in 
particular, there can be a wide range of values of R2 

for each value of l. Nonetheless, the mean, the upper 
and lower limits, and the probability distribution 
function (PDF) of R2 have simple relationships with 
l. In section 3, we test whether the relationships be-

tween R2 and l for uniform strain hold for ocean cur-

rents derived from satellite altimetry and hence 
whether the uniform strain flow is a useful model of 
the local flow in the surface oceans. Concluding re-

marks are in section 4. 

2. Local strain flow 

a. Steady strain 

Before considering FTLEs and relative dispersion in 
ocean flows, we illustrate their relationship in a simple 
two-dimensional flow with uniform, time-independent 
strain, 

u 5 (gx, 2gy). (1) 

The trajectory of a particle initially at (x0, y0) is  
gt 2gtgiven by x(t) 5 x0e , y(t) 5 y0e . The squared sep-

aration of two particles initially separated by a dis-

tance d0 is 

2 2gt 22gtdr 2(t) 5 d0
2 cos u e 1 d0

2 sin2 u e , (2)0 0 

where u0 5 tan21(dy0/dx0) is the orientation relative to 
the x axis of the line connecting the particles’ initial lo-

cations. Note that this expression does not depend on 
the position of the center of mass of the particles or on 
the presence of a background spatially uniform 
(‘‘sweeping’’) flow. The maximum spreading of particles 
occurs if the particles are aligned with the x axis (dy0 5 
0), with dr(t) 5 d0egt (see triangles in Fig. 1). In contrast, 
if initially aligned with the y axis (dx0 5 0), the separa-

tion decreases as dr(t) 5 d0e 2gt (diamonds in Fig. 1). For 
other orientations, the spreading rate varies between 
these two limits. Thus, an ensemble of particles initially 
arranged in a circle of radius d0 will be stretched into an 
ellipse, with major axis increasing as d0egt and minor axis 

2gtdecreasing as d0e , as shown in Fig. 1. The figure shows 
the case of a circle centered at the origin, in which case 
the center of the particles remains at the origin. For 
a circle initially centered away from the origin the center 
of the particles moves with the flow, but the trajectories 
of the particles relative to the center is the same as in this 
example. 

The FTLE at location x0 can be defined as 

1 dr(t)
l(x0, t) 5 log , (3)

t dr(0) 

where dr is the separation of a pair of particles that were 
initially close together and centered at x0 and the initial 
orientation of the particles is chosen so that l is maxi-

mal. For the uniform strain flow, the maximum 
stretching rate of two particles occurs when the pair is 
aligned with the x axis: that is, dr(t) 5 d0egt . Hence, in 
this flow there is a single, time-independent FTLE that 
equals the strain rate of the flow: that is, l 5 g. 

In contrast, the normalized relative dispersion of a pair 
of particles, 
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FIG. 1. Evolution of an initial circle in a strain flow. Curves show 
ellipse at gt 5 0, 0.25, 0.5, 0.75, and 1 (e.g., days 0, 2.5, 5, 7.5, and 
10 for g 5 0.1 day21). Symbols show evolution of a pair of particles 
aligned with the expansion (triangles) or compression (diamond) 
axes of the strain, and black dashed curves show streamlines. 

R2(x0, t) 5 dr 2(t)/dr 2(0), (4) 

varies both with the initial alignment of the particles 
and with time. From (2), we see that the minimum and 

22gt 2gtmaximum values of R2 are e and e , which cor-

respond to the pairs being aligned with the x and y 
axis, respectively. As l 5 g for this flow, it then fol-

lows that 

R22 lt# R2 # R2 
l, with R 5 e . (5)l l 

This means that the upper and lower limits of the relative 
dispersion of individual pairs of particles can be calcu-

lated from l. Alternatively, this can be expressed as 

2l # l # l, with l 5 
1 

log(R2). (6)R R 2t 

The above considers the relative dispersion of in-

dividual particles. However, it is more common to con-

sider the mean relative dispersion of an ensemble of N 
particles that have the same initial separation d0 but 
random orientations, 

1 hR2(t)i 5 � R2 
ij(t), (7)

N(N 2 1) i 6¼j 

where R2 
ij is the relative dispersion of particles i and j 

(e.g., LaCasce 2008). Because the initial location of 
particles does not matter for relative dispersion in the 
uniform strain flow, this is equivalent to calculating the 
squared separation from the origin of an ensemble of 
particle initially evenly spread around a circle of radius 
d0 centered on the origin. Integrating (2) for the sepa-

ration of each these particles from the origin and nor-

malizing by d2 yields0 

1 1 hR2i(t) 5 (e 2gt 1 e 22gt) 5 (Rl 
2 1 R22) 5 cosh(2lt).l2 2 

(8) 

Figure 2 shows the temporal evolution of the hR2i 
together with that of minimum and maximum values 
of R2. Also shown (dotted–dashed lines) is (1/2)R2 

l. 
This figure shows that the mean relative dispersion of 
an ensemble of particles is always less than R2 andl 
that hR2i’ (1/2)R2 for gt . 1. In other words, after l 
a time scale of 1/g the mean relative dispersion in 
uniform strain increases exponentially at a rate given 
by l (5g). 

It is also possible to calculate the probability dis-

tribution function of R2 for the ensemble of parti-

cles. If u0 is a random variable between 2p and p 
with uniform distribution P(u0) 5 1/2p, then we can  
make a change of variable from u0 to : that  is,  R2 

P(R2) 5 P(u )jdu /dR2j5 P(u )/[sin2u (R2 2 R22)]. Us-0 0 0 0 l l 
ing (2) to eliminate u0 then yields 

1 
P(R2) 5 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi . (9) 

p (R2 2 R22)(R2 2 R2)l l 

This corresponds to an arcsine distribution, which is 
a special case of a beta distribution. Figure 3 shows 
P(R2) for g 5 0.1 day21 and t 5 2.5, 5, 7.5, and 10 days 
(these are the same times shown in Fig. 1). The PDFs are 
bimodal, with peaks at the minimum and maximum 
values (R2 5 R22 and R2). The breadth of the PDFs in-l l 
creases with time, with larger change in the upper limit 
than in the lower limit (as shown in Fig. 2). For in-

creasing time the percentage of particle pairs with R2 

close to the mean value (dashed vertical lines in Fig. 3) 
decreases, and for t 5 10 days there is only a very small 
percentage of particle pairs with R2 ’ hR2i. 

The breadth of the PDFs and limited number of pairs 
with R2 near the ensemble mean raises the question of 
how sensitive the ensemble-mean R2 is to number of 
particle pairs. Monte Carlo simulations (not shown) in-

dicate that greater than 100 pairs are needed to yield 
a robust estimate of the true hR2i. For example, for 5 
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FIG. 2. Temporal evolution of mean (solid curves), minimum (lower dashed), and maximum (upper dashed) values of 
R2. Also shown (dotted–dashed lines) is (1/2)R2 

l. (a) A linear scale and (b) a logarithmic scale for R2. 

pairs the probability that the mean of these pairs is 
within 10% of the true hR2i is only 20%, for 10 pairs 
the probability increases to 40%, but over 150 pairs 
are needed to have a 95% probability. 

b. Time-varying strain 

A more realistic model of a turbulent flow is the local 
gradient flow model, 

u(x, t) 5 A(t)x, (10) 

where A(t) is the strain tensor. Here, A(t) can be de-

composed into symmetric and antisymmetric parts, 

a(t) b(t) 0 v(t)
S 5 , V 5 . (11)

b(t) 2a(t) 2v(t) 0 

Incompressibility implies that S is traceless with eigen-pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
values 6g, where g 5 a2 1 b2 $ 0. It can be shown 
(e.g., Lapeyre 2002) that the normalized relative dis-

persion for this flow satisfies 

l (t) 5 
1 

lnR2 5 g cos2f, (12)R 2t 

where f is the orientation of a particle pair relative toÐ t
the orientation of the strain axes and J 5 t21 ( ) dt is0 

FIG. 3. PDFs of R2 for gt 5 0.25, 0.5, 0.75, and 1 (same values as in Fig. 1). Vertical dashed lines show mean R2. (a) A 
linear scale and (b) a logarithmic scale for R2. 
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a temporal average. Using the Cauchy–Schwarz in-

equality, we can bound this quantity from above, 

jl (t)j# jgjjcos2fj. (13)R 

Lapeyre (2002) demonstrates that particle pairs will 
align along the unstable Lyapunov direction f1 very 
quickly (exponentially fast in time), unless the pair is 
initially oriented along the stable Lyapunov direction. 
These latter pairs will make a negligible contribution to 
(13), so that we can assume that particle pairs are pri-

marily distributed along f1, and  so  

2l(t) # l (t) # l(t), l(t) 5 gjcos2f j. (14)R 1 

Thus, we recover the upper and lower bounds (6) and (7) 
with time-dependent Lyapunov exponent l(t). Note that 
both upper and lower bounds are sharp in the sense that 
there exist initial pair orientations that saturate the 
bounds: specifically, pairs orientated along the stable 
Lyapunov direction f2 5 f1 6 p/2 will have lR 5 2l, 
whereas all other pairs will ultimately saturate the 
upper bound lR 5 l. 

In the special case where the rotation of the flow 
equals the rotation of the axes (e.g., irrotational flow 
with stationary strain axes) the equations for the en-

semble mean and PDF of R2 are the same as for constant 
uniform strain [i.e., (8) and (9)]. In the more general 
case, this also holds for sufficiently short times, of order 
t ’ jg 2 2 v 2j21/2. After this time, the alignment process 
described above will increasingly weight the PDF to-

ward the upper bound R2 
l. Thus, the ensemble average 

relative dispersion will grow as hR2i’ Rl 
2 : that is, twice 

that in the case of the uniform strain flow. 

3. Ocean flows 

a. Data and methods 

The flow considered in the previous section is very 
idealized, and we now consider more realistic ocean flows 
in which the strain varies with both space and time. We 
examine whether the relationships between R2 and l 
described above carry over and hence whether the 
uniform strain flow is a useful model of the local flow in 
the surface oceans. 

Particle trajectories, and the above stirring diagnostics, 
are calculated using gridded absolute geostrophic sur-

face velocities obtained from the Archiving, Valida-

tion, and Interpretation of Satellite Oceanographic 
data (AVISO). These geostrophic velocities are cal-

culated from absolute sea level height that is the sum 
of merged altimeter measurements of anomalous sea 

level and the mean dynamic topography of Rio and 
Hernandez (2004) and were used by Waugh and 
Abraham (2008) to examine the global variations in 
FTLEs. The gridded AVISO data are available on a 1/38 
Mercator grid every 7 days. However, it is important to 
note that the original gridded sea level anomalies are 
formed from the altimeter measurements using a map-

ping procedure with space and time correlation scales of 
around 150 km and 15 days, respectively (Ducet et al. 
2000), so the effective resolution is lower than that of 
the gridded data. This means the velocities used in our 
calculations do not capture the stirring due to sub-

mesoscale features (Poje et al. 2010; Keating et al. 
2011). In the discussions below ‘‘ocean flow’’ refers to 
the flow resolved by the above geostrophic currents. 

We calculate FTLEs as in Waugh et al. (2006) and 
Waugh and Abraham (2008). This does not involve 
tracking the actual separate of a pair of particles, but 
instead l is calculated from the logarithm of the largest 
eigenvalue of M, where M is the integrated de-MT 

formation obtained by integrating the Jacobian of the 
flow along a trajectory (for details, see Abraham and 
Bowen 2002). The trajectories are initialized on a regu-

lar 0.18 longitude by 0.18 latitude grid, covering the do-

main of interest. 
To calculate the relative dispersion a second set of 

trajectories are calculated for particles on a second grid 
of the same size but displaced 1 km from the original 
grid. Combining the two sets of particles results in a grid 
of particle pairs that are 1 km apart that can be used to 
calculate the relative dispersion. Calculations have been 
repeated for grids displaced to the north, south, east, and 
west of the original grid and, although the values at 
specific locations depends on the orientation of the pair, 
the statistics over all pairs are the same in all cases. 

We focus mainly on the flow within the Southern Ocean 
(508–658S, 2408–2608E) for December 2001–January 
2002. (This is the general location of DIMES.) The ro-

bustness of the results obtained for this region is exam-

ined by repeating these calculations for several other 
regions of the ocean with differing mean strain. 

b. R2–l relationship 

We first consider the spatial variations of l and R2. 
Figure 4 shows maps of l (Fig. 4a) and l 5 (1/2t) log(R2)R 
(Fig. 4b) for 10-day integrations (we use lR rather than R2 

so it can be more easily compared with l), plotted at the 
initial particle release locations. (The relative disper-

sion is calculated for particle pairs oriented east–west 
and 1 km apart; see above.) As shown in previous studies, 
there is wide range of values and finescale structure in 
the l field, with low values inside coherent vortices and 
high values in filaments surrounding these vortices 
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FIG. 4. Maps of (a) l and (b) R2 (expressed as lR to ease so

compared with l) for Southern Ocean region and integration time

t 5 10 days. Units are day21 for both fields.

(e.g., Abraham and Bowen 2002; Waugh et al. 2006).

The distribution of lR displays some similar features,

with coherent regions of low values and filaments of

high values. However, there are some significant dif-

ferences: although l is always positive, there are large

regions with negative lR (which correspond to regions

where particle pairs are converging), and there are

many high-l filaments where there are low values of lR.

Thus, it is clear there is not a one-to-one relationship

between the two fields.

To examine the R2–l relationship in more detail, Fig. 5

shows scatterplots of R2 versus l for integration times

t 5 5, 10, 15, and 20 days. Each point in the scatterplots

corresponds to particle initialized on the 0.18 by 0.18 grid,

whereas the thick white curves show the mean R2 for

each value of l. These plots clearly show that, for a given

value of l (and t), there is a large range of R2, including

values greater than and smaller than unity (i.e., particles

diverging and converging).

The analysis of uniform strain flow in the previous

section can be used to help understand these varia-

tions. For given value of l in the ocean flow, we can

estimate the lower and upper limits and mean value of

R2 by assuming there is locally a uniform strain flow

with g 5 l. This assumption is made only locally, and

neighboring locations with different l are assumed to

have different local strain rates. The solid lines show

the bounds on R2 [(5)] and the dashed curves show the

mean values [(8)], using this assumption. Overall,

there is good agreement for the mean as well as lower

and upper bounds of . The agreement startsR2

breaking down for longer integration, and there is an

increase in particle pairs where R2 exceeds the upper

limit and very few cases near the lower limit. These

differences at long times are related to differences in

the spatial scales over which the two diagnostics

measure the stretching/dispersion. The FTLE mea-

sures the maximum integrated stretching in the vi-

cinity of a single trajectory, whereas R2 measures the

spreading of actual pairs of particles and at long in-

tegration time a pair could be separated enough to be

sampling different strain environments. These differ-

ent environments could include regions with much larger

strain and hence stretching than along the trajectory

used for the FTLE calculation, which would result in

individual values of R2 exceeding the upper limit based

on the l. Smaller differences between lR and FTLE

may occur if the FTLE was estimated from the actual

separate of a pair of particles, rather than the method

used here, which is not dependent in infinitesimal

separations.

The similarities between the theoretical results for

a uniform strain flow and the calculations using the

ocean flow can also be seen by examining the PDFs of R2

conditioned on the value of l: that is, the conditional

PDFs P(R2 j l). Figure 6 compares P(R2 j l) from the

ocean flow with the analytical PDFs for uniform strain

(Fig. 3), for t 5 10 days and l 5 0.025, 0.05, 0.075, and

0.1 day21. Even though the strain rate varies with space

and time in the ocean flow, the PDFs for the ocean flow

display many of the same characteristics of the PDFs for

uniform strain flow. The P(R2 j l) are generally bimodal

with peaks near the upper and lower limits given by (5),

the breath of the PDFs increase with integration time,

and the percentage of pairs with R2 near the mean value

decreases with integration time. The peaks of the PDFs
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FIG. 5. Scatterplots of R2 vs l, for t 5 5, 10, 15, and 20 days. White curve is mean R2 for given l, and black curves show 
mean (dashed) and bounds (solid) of R2 for uniform strain flow (with strain rate 5 l). 

in the ocean flow are broader than for uniform strain 
flow, and for large l there is not a clear peak for large R2. 

Trajectory and FTLE calculations similar to the above 
have been performed for other ocean regions. The re-

sults for all regions are qualitatively similar to that for 
the Southern Ocean region considered above. For ex-

ample, Fig. 7 shows the R2–l relationship for regions in 
the western North Atlantic Ocean (258–408N, 2908– 
3058E) and eastern North Atlantic Ocean (158–308N, 
3208–3358E), for the same period as the Southern Ocean 
calculations. In all ocean regions, there is a wide range of 
values of R2 for locations with the same l, and the uni-

form strain flow provides reasonable approximation for 
mean and bounds for R2, at least for small integration 

times. There are, however, quantitative differences be-

tween regions. In particular, there is a smaller range of l 
and the uniform strain flow model fits for longer in-

tegration times in the eastern North Atlantic region than 
in the western North Atlantic or Southern Ocean re-

gions. Similarly, the conditional PDFs P(R2jl) are close 
to those for uniform strain flow for longer integration 
times in the eastern North Atlantic region. 

These differences between regions are related to dif-

ferences in the strain distribution within the regions. For 
spatially and temporally varying flows, the R2–l rela-

tionship from uniform strain flow still provide a reason-

able bound if the spatial variations of the strain are weak 
over the length scales of the particle separations. (The 
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FIG. 6. Conditional PDFs of R2 for 10-day integrations with l equal to (a) 0.025, (b) 0.05, (c) 0.075, and (d) 
0.1 day21, for Southern Ocean region (black curves) and a uniform straining flow (gray curves). Vertical dashed lines 
show mean R2. 

relevant spatial variations are those in a Lagrangian 
framework following the particle trajectory.) We there-

fore would expect the bound to be better and to hold for 
longer integration times, in flows with more uniform 
strain rates. There are smaller values and less spatial va-

riations of the strain rate within the eastern North At-

lantic than the other regions considered, and this results in 
similar differences in l (see Waugh and Abraham 2008). 
Consistent with the above expectations, the uniform strain 
bounds apply best and for longer in the eastern North 
Atlantic region. The difference in the R2–l relationship 
between the Southern Ocean and western North Atlantic 
are also consistent with differences in distribution of strain 
rates between these two regions. See below for further 
discussion of differences between regions. 

The comparisons above have considered the case 
where l and R2 are known for locations throughout 

a domain. Although this is possible for model calcula-

tions, this is not a likely scenario for estimates from ob-

servations. Estimates of l are only available from tracer 
releases at a few locations, and comparisons of l with R2 

will only be meaningful if there has also been a release of 
multiple floats at the same location (as done in DIMES). 
We have performed such calculations using the altimeter-

derived flow (i.e., simulated the evolution of a ring of 
particles a small distance from a central particle), and the 
resulting P(R2) are very similar to the conditional PDFs 
P(R2 j l) calculated above if l is that of the central loca-

tion of the cluster (not shown). In particular, we also find 
for these calculations that consideration of a uniform shear 
flow with strain rate equal to the local l provides a useful 
approximation of the distribution of R2 for a cluster of 
particles released around the initial location of the l 
calculation. 
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FIG. 7. As in Fig. 5, but for regions in the (a),(b) western and (c),(d) eastern North Atlantic Ocean, for t equal to 
(a),(c) 5 and (b),(d) 20 days. 

c. Regional distributions 

In the above analysis, we have considered the distri-

bution of R2 for locations with the same l; however, 
a more usual situation is to consider the distribution for 
all points within a given region: that is, the calculation of 
hR2i is normally done for all particles or drifters within 
a given domain. We therefore consider the distribution 
of l and R2 for all locations within a given domain. 

There is a wide range of l within the domains con-

sidered here (see Fig. 5), and the P(l) are broad with 
a single peak at low values (e.g., Fig. 8a) (see also Waugh 
et al. 2006; Waugh and Abraham 2008). The broadness 
of P(l) is related to the nonuniformity of the strain rate 

g within the ocean flow, and for short integration times 
the PDF of l is similar to the PDF of the strain rate g 
(e.g., Waugh et al. 2006). 

The PDFs of P(R2) for all locations within the Southern 
Ocean are also broad, with peaks at small R2 (see Fig. 8b). 
These PDFs are very different from the conditional PDFs 
P(R2 j l) shown above. The differences between the 
domain-wide P(R2) and the conditional P(R2 j l) can  
be understood by using Bayes’ theorem and writing the 
domain-wide PDF as 

ð 
P(R2) 5 P(R2 j l)P(l) dl. (15) 
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FIG. 8. PDFs of (a) FTLE and (b) log(R2) for Southern Ocean region and integration time of 2, 5, 10, and 20 days. The 
darkest curves correspond to t 5 2 days, and the lightest curves correspond to t 5 20 days. 

As shown above, the conditional PDFs P(R2 j l) are 
bimodal with peaks near extreme values of R2, with the 
extrema in R2 varying with l (see Fig. 6). Further, the in-

crease in maximum R2 with l is much larger than the 
decrease in the minimum R2. Combined together, the 
above means that the peaks at high R2 are averaged out 
in the integration in (15) because the locations of peaks 
vary a lot with l, whereas the peaks at low R2 tend to 
superimpose. The result of the integration is then 
a broad, unimodal P(R2) with  a  peak  at  low  R2. 

An approximation of P(R2) can be formed using the 
simple uniform strain flow together with the result from 
previous studies that P(l) are well approximated by 
Weibul distributions (Waugh et al. 2006; Waugh and 
Abraham 2008), 

b l b21 2lb 
P(l) 5 exp 

b . (16) 
a a a 

Combining this with (9) as a model for P(R2 j l) in (15) 
yields an estimate of P(R2). 

Although the domain-wide PDFs of R2 and l are both 
broad and unimodal, the variation with integration time 
differs between the two diagnostics. Here, P(l) becomes 
narrower and the mean value hli decreases with in-

tegration time (e.g., Abraham and Bowen 2002; Waugh 
et al. 2006; Waugh and Abraham 2008), whereas P(R2) 
becomes broader and mean value hR2i increases with 
longer integration time. These differences are due to 

the different quantities measured by the two diagnostics. 
The R2 measures the separation of particles and, as shown 
in previous sections, for longer integration there is gen-

erally larger separation between particles. In contrast, l 
measures the integrated strain along trajectories and, as 
particles remain in large strain regions only briefly, for 
longer integration times the particles spend more time in 
weak strain regions than regions with large strain and 
integrated strain decreases (Waugh et al. 2006). 

The variation with integration time also differs be-

tween regions, with more rapid changes for regions with 
larger mean strain rates. This can be seen for the three 
regions considered above in Fig. 9. The spatial mean 
strain decreases from the western North Atlantic to the 
Southern Ocean and to eastern North Atlantic regions, 
and there is a similar variation in the mean l shown in 
Fig. 9a (see also Waugh and Abraham 2008). For all 
regions, there is exponential growth of hR2i at early 
times and more algebraic growth at longer times (Fig. 
9b). This is qualitatively similar to that found in previous 
ocean and atmospheric studies using ocean drifters or 
balloons (e.g., LaCasce 2008, and references therein). 
The transition from exponential to algebraic growth of 
R2 occurs at earlier integration time for regions with 
larger strain rates; for example, the transition occurs at 
around 10 days for the western North Atlantic but after 
25 days for the eastern North Atlantic regions. 

The analysis above has focused on the distribution 
of R2. However, LaCasce (2010) recently examined 
the PDF and moments of the pair separation R, for  
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FIG. 9. Evolution of mean (a) FTLE and (b) R2 with integration time, for Southern Ocean (dotted curves), western 
North Atlantic (solid), and eastern North Atlantic (dotted–dashed) regions. 

several theoretical flows as well as ocean flows. He 
showed that within the enstrophy cascade range of two-

dimensional turbulence (where the energy spectrum 
falls off as k23) the PDF of R is lognormal (see also 
Lundgren 1981; Bennett 2006) and that separation 
moments are given by hRni5 R0 

n exp[n(n 1 2)t/T0] 
(where R0 and T0 are constants). For the above ocean 
flows, the separation moments are well fitted by these 
expressions, over the time where there is exponential 
growth in hR2i in Fig. 9b (i.e., 10–12 days in the 
western North Atlantic and Southern Ocean regions 
and over 25 days in the eastern North Atlantic re-

gion). This indicates that over these time periods the 
energy spectrum of the ocean flow falls off as (or 
faster than) k23. 

The variation between regions in time for which the 
separation moments are well fit by analytical expressions 
for the enstrophy cascade range of two-dimensional tur-

bulence is similar to variation in integration time for 
which the R2–l relationship is well modeled by a uniform 
strain flow (see Figs. 5, 7). 

4. Concluding remarks 

The relationship between two commonly used di-

agnostics of stirring in ocean and atmospheric flows, the 
finite-time Lyapunov exponent l and relative dispersion 
R2 , is examined for a simple uniform strain flow and 
ocean flow inferred from altimetry. Both diagnostics 
are based on the spreading of particles. However, the 
two diagnostics measure different aspects of the flow, 

and it is shown that in general there is not a one-to-one 
relationship between the diagnostics. 

For the simple case of a two-dimensional flow with 
time-independent uniform strain, there is a single time-

independent l (which equals the strain rate), but there 
is  a wide range  of  values  of  R2 for individual particle 
pairs. This is because the FTLE is dependent on the 
maximum possible spreading rate, whereas relative 
dispersion is defined for any initial pair orientation. 
However, the distribution of R2, the upper and lower 
limits of R2 for individual pairs, and the mean value 
over a large ensemble of pairs hR2i have simple re-

lationships with l. Specifically, the distribution of R2 is 
an arcsine distribution that has peaks at upper and 
lower limits given by R2 and R22, respectively, wherel l 
Rl 5 e lt . Thus, the particle pairs are separated into two 
populations corresponding to the expanding and con-

tracting directions of the straining field. The ensemble 
average relative dispersion hR2i grows as (1/2)R2 onl 
times long compared with the inverse strain rate; 
however, because of the bimodality of the arcsine 
distribution, there are relatively few particle pairs with 
this value of R2. 

Temporal variability of the flow is straightforwardly 
incorporated into the uniform strain model by permit-

ting the components of the strain tensor to change in 
time. In this case, the FTLE still provides an upper and 
lower bound on R2 as before. These bounds are sharp in 
the sense that there exist initial pair orientations that 
saturate the bounds. When the strain axes are not 
constant in time, the distribution of R2 is not evenly 
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distributed between expanding and contracting di-

rections: as time increases, particle pairs align with the 
stretching direction and the PDF increasingly weights 
to the upper bound. Thus, on long times, hR2i grows at 
twice the rate of the steady case prediction. Even so, 
these observations suggest that certain elements of the 
simple, steady strain model might hold in more re-

alistic turbulent flows. 
In real-world ocean flows, the strain rate is spatially 

and temporally varying and there is a more complicated 
relationship between l and R2. Nevertheless, the uni-

form strain flow still provides a useful approximation for 
the distribution, upper and lower bounds, and mean 
value of R2 for locations in the ocean flow with the same 
l, if the local l is equated with the strain in the uniform-

strain flow. How well this holds and over what integration 
time scale varies between regions and depends on the 
spatial and temporal variations within the region (in 
particular, the spatial variations of the strain over the 
length scales of the particle separations). For example, 
the uniform strain approximation holds for longer in-

tegration times in the quiescent eastern North Atlantic 
than in the more active western North Atlantic and 
Southern Ocean regions. 

The relationships between l and R2 presented here 
could potentially be useful for the analysis and in-

terpretation of observed diagnostics, for example, in 
comparing calculations of R2 from drifters with esti-

mates of l from tracer release experiments. More 
generally, this analysis suggests that the uniform strain 
flow can be used as a useful conceptual model for un-

derstanding the dispersion and stirring in ocean flows. 
However, the limitations of the altimeter-derived flows 
are a potentially important restriction, and an out-

standing issue is how well the uniform strain flow is 
a model for flows where submesoscale characteristics 
are resolved. 

Indeed, it is possible that the limitations of the uni-

form strain model are being masked by the use of alti-

metric velocity fields, because the relatively low spatial 
resolution of the altimetry results in velocity fields that 
are smoother than they are in reality. However, in re-

gions of the ocean where the eddy kinetic energy (EKE) 
spectrum falls off faster than k23 for isotropic horizontal 
wavenumber k, it is actually the large-scale flow that 
governs the dispersion of particle pairs (Bennett 1984; 
Babiano et al. 1985). In these regions, R2 and l are rel-

atively insensitive to the spatial resolution of the ob-

servations as long as the bulk of the inverse cascade 
range is resolved, which is generally the case for alti-

metric velocity fields (Keating et al. 2011). This stands in 
contrast to the classical Richardson (1926) scenario in 
which the dispersion of particle pairs is controlled by 

eddies on the scale of the pair separation. Such a ‘‘spec-

trally local’’ picture of tracer mixing is appropriate for 
regions of the ocean with an EKE spectrum that falls 
off less sharply than k23, which is expected to occur 
when surface-trapped modes flatten the EKE spec-

trum at high wavenumbers (Klein et al. 2008). Un-

derstanding the mechanisms leading to such submesoscale 
energization, its geographical distribution, and its impact 
on stirring diagnostics such as Lyapunov exponents and 
relative dispersion are active areas of research (Keating 
et al. 2011; Tulloch et al. 2011). 
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