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ABSTRACT 

The three-dimensional structure of wave propagation and breaking on the edge of polar vortices is examined 
using a multilayer quasigeostrophic model, with piecewise constant potential vorticity (PV) in each layer. The 
linear propagation of waves up the edge of a vortex is found to be sensitive to vertical variations in the vortex 
structure, with reduced propagation if the PV or area of the vortex increases with height; this reduction is 
dramatic for a cylindrical vortex with increasing PV. The characteristics of the nonlinear evolution and wave 
breaking is examined using high-resolution contour dynamics simulations and is also found to be sensitive to 
the vertical structure of the vortex. The amplitude of the forcing required for wave breaking to occur is larger 
for baroclinic vortices (with PV or area increasing with height) than for barotropic vortices. For cylindrical 
vortices with PV increasing with height the variation of wave breaking with forcing amplitude is qualitatively 
different from that of a barotropic vortex. Wave breaking occurs in the upper layers for only a limited, intermediate 
range of forcing amplitudes: there is no wave breaking in upper layers for weak forcing and for large forcing 
there is only wave breaking at the bottom of the vortex (i.e., the wave breaking is more vertically confined than 
for a barotropic vortex). For vortices with both PV and area increasing with height there is again a regime with 
wave breaking in the upper layers for weak amplitude forcing. However, the characteristics of the filaments 
produced by the wave breaking in upper layers is different from that in the barotropic case, with the filaments 
rolling up into a series of small vortices. 

1. Introduction 

Understanding the dynamics and transport across the 
edge of stratospheric polar vortices is important for un-
derstanding both ozone depletion and the large-scale 
circulation within the stratosphere (e.g., Schoeberl and 
Hartmann 1991; McIntyre 1992). The polar vortices are 
disturbed by planetary-scale Rossby waves that prop-
agate up from the troposphere. The amplitude of these 
waves is such that they are strongly nonlinear, and this 
nonlinearity results in Rossby wave ‘‘breaking’’ (Mc-
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Intyre and Palmer 1983, 1984). During this wave-break-
ing process, tongues of air are drawn from the vortex 
and transported into middle latitudes. 

The first high-resolution view of this wave breaking 
was obtained by Juckes and McIntyre (1987), who per-
formed simulations of a forced polar vortex in a hemi-
spheric barotropic model. These simulations showed 
erosion of the vortex through the mixing of finescale 
filamentary structures into the midlatitude ‘‘surf zone.’’ 
This evolution is consistent with that observed in po-
tential vorticity (PV) fields from meteorological analy-
ses (McIntyre and Palmer 1983, 1984) or in satellite 
measurements of long-lived tracers (Leovy et al. 1985), 
although the scale of features, such as the filaments 
surrounding the vortex and the gradients at the vortex 
edge, produced in the simulations are much smaller than 
those resolvable in the satellite-based data. Hence, the 
reality of these small-scale features cannot be verified 
by satellite data. However, more recent high-resolution 
in situ trace gas measurements and trajectory calcula-
tions driven by analyzed winds show finescale features 
very similar to those produced in model simulations 
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(e.g., Plumb et al. 1994; Waugh et al. 1994), suggesting 
that filamentary structures are produced during Rossby 
wave breaking in the stratosphere. 

Numerous modeling studies have examined further 
the two-dimensional (latitude–longitude) structure of 
Rossby wave breaking at the edge of polar vortices 
(e.g., Juckes 1989; Salby et al. 1990a,b,c; Polvani and 
Plumb 1992; Waugh 1993; Yoden and Ishioka 1993; 
Norton 1994), but there have been very few studies 
that have examined the three-dimensional (3D) struc-
ture of Rossby wave breaking. Initial 3D nonlinear 
models of the stratospheric polar vortices lacked the 
horizontal resolution to resolve the finescale features 
produced during wave breaking (e.g., Butchart et al. 
1982; Rose 1985), while subsequent studies using 
higher-resolution simulations that resolved, at least 
partially, these features generally focused on repro-
ducing the observed features of the real atmosphere 
rather than the 3D structure of the wave breaking (e.g., 
Mahlman and Umscheid 1987; O’Neill and Pope 1988; 
Manney et al. 1994; Boville 1995; Beck 1996). Two 
exceptions are the studies of Haynes (1990) and Drit-
schel and Saravanan (1994). 

Haynes (1990) examined the structure of the vortex 
and wave breaking in two idealized simulations of a 
forced stratospheric polar vortex in a high-resolution 
3D (primitive equation) model and found qualitatively 
the same features as in the above single-layer simu-
lations (i.e., wave breaking producing vortex erosion 
and filamentary structure surrounding the vortex). Drit-
schel and Saravanan (1994) (hereafter DS94) per-
formed a series of simulations using a multilayer qua-
sigeostrophic (QG) contour dynamics model. They ex-
amined the response of a barotropic vortex (represented 
as a patch of constant PV in each layer) to topographic 
forcing and again found behavior very similar to that 
in single-layer models. However, the vertical structure 
was qualitatively different for different forcing ampli-
tudes: for weak forcing, wave breaking occurred only 
in the upper layers of the vortex, while for strong forc-
ing there was vigorous wave breaking in the lower 
layers. They referred to the weak amplitude case as 
‘‘remote’’ wave breaking and to the strong amplitude 
case as ‘‘local’’ wave breaking. (However, it is im-
portant to note that in the so-called local breaking re-
gime there is still wave breaking in the upper layers, 
but this breaking is much weaker than that in the lower 
layers.) DS94 also noted that the filamentary structures 
produced during the wave breaking have a nearly bar-
otropic structure. 

As well as these studies using dynamical models, 
there have been several studies that have used transport 
calculations driven by analyzed winds to examine the 
3D structure of filaments produced during wave-break-
ing events (e.g., Orsolini 1995; Orsolini et al. 1997; 
Schoeberl and Newman 1995; Mariotti et al. 1997). 

sects) have vertical coherence and are in fact slices 
through vertically sloping sheets of anomalous air. Fur-
thermore, Schoeberl and Newman (1995) showed evi-
dence for the existence of the local and remote wave-
breaking regimes noted by DS94. 

In this study we extend the analysis of DS94 to con-
sider baroclinic vortices, that is, vortices in which the 
PV and/or area varies with height. We use the same 
multilayer QG model as in DS94 and also consider only 
vortices that are represented by a single patch of con-
stant PV in each layer. The dependence of both the linear 
and nonlinear response on the structure of the vortex is 
examined. In particular, we examine the effect of the 
initial vortex structure on the vertical wave propagation, 
the vertical extent of the wave breaking, and the struc-
ture of the vortex and filaments produced during these 
breaking events. The vortex erosion and structure of the 
vortex is quantified using the elliptical diagnostics of 
Waugh (1997) [see also Legras and Dritschel (1993) 
and Dritschel (1993)]. 

In section 2 we describe the QG contour dynamics 
model used in this study. The different initial vortices 
considered are then discussed in section 3. The linear 
dispersion relation and related linear propagation of vor-
tex-edge waves are examined in section 4. Then in sec-
tion 5 we examine, via high-resolution contour dynam-
ics simulations, the nonlinear response, with particular 
attention paid to the vertical extent of wave breaking, 
the slope of the vortex core with height, and filamentary 
structure and stability. We conclude in section 6. 

2. Model equations 

The equations of motion for dissipative-free QG flow 
are 

Dq ]q
[ 1 u · = hq 5 0, (1a)

Dt ]t 

1 ] f 02 ]c 
¹ h 

2c 1 r0 5 q, (1b) 
r0 ]z1 N2

0 ]z2 
]c 

5 0 at  z 5 0 and z 5 D, (1c)
]z 

]c ]c 
u 5 2  and y 5 , (1d)

]y ]x 

where q(x, y, z, t) is the PV, c the geostrophic stream-
function, u 5 (u, y) the geostrophic velocity, = h the 
horizontal Laplacian operator, r0 the density, D the do-
main height, f 0 the Coriolis parameter, and N0 the 
Brunt–Vaı̈sälä frequency. Following DS94, the stream-
function c can be written as 

c(x, t) 5 dx9r0(z9)G(x9; x)q(x9, t), (2a)EEE 
These studies have shown that the filaments observed 
in single-layer calculations (or horizontal aircraft tran- where 
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1 ` 

G(x9; x) 5 2  O xn(z9)xn (z)K0(gnr), (2b)
2p n50 

r2 5 x2 1 y2, K0 is the modified Bessel function of zero 
order, xn (z) is the vertical structure function, and gn the 
internal radius of deformation of the nth mode. Here 
xn (z) and gn are the eigenvectors and eigenvalues of 

d f 2 dx dx0 n n2r 1 g r x  5 0 with 5 0 at  z 5 0, D.0 n 0 n1 2 2dz N0 dz dz 
(3) 

Here we consider the ‘‘compressible’’ case (r0 5 
r̂ 0e2z/H; f 0 and N0 constant), which is the relevant case 
for stratospheric flow. Following Dritschel and de la 
Torre Juárez (1996), we have (for n . 0) 

xn(z) 5 r2 
0 

1/2(z)x n(z), 

npz 2npH npz 
x n(z) 5 x̂n sin 2 cos , (4a)[ 1 2  1 2]D D D 

and 

f 2 np 2 1 
2gn 5 0 1 , (4b)[1 2  ]N2

0 D 4H2 

where the functions x n are orthonormal, x̂n are con-
stants; the first mode x0 is independent of z and g0 5 
0. Note that in the Boussinesq case (r0 constant) the 
structure functions are xn (z) 5 x̂n cos(npz/D) and gn 

5 npf 0/(N0D). 
We now consider the discretized version (the domain 

z 5 0 to  D is divided into L layers of equal depth, Dz 
5 D/L) of the case where the PV is piecewise uniform 
at every height z. The velocity at each midlayer zj 5 
( j 2 ½)Dz is then (see DS94 for details) 

L n, 

u 5 2  r q̃ G (r)(dx9, dy9), (5a)O O  R j,j , ,k 
,51 k51 kC , 

where 

1 L21 

G (r) 5 2  O x x  K (g r), (5b)j, jn ,n 0 n2p n50 

q̃ ,k is the PV discontinuity on contour Ck 
, in layer ,, 

and x 5 {x , x , . . . ,  x } is the discretized version 
of (4a), that is, x 5 x (z ). 

n 0n 1n L21n 

,n n , 

3. Initial conditions 

In this study we consider the case where there is a 
single contour of PV discontinuity in each layer, and 
the contour is initially circular. Both the potential vor-
ticity q inside the contour and the initial area A of the 
contour can vary with height. 

We restrict our attention to vortices in which the ver-
tical variations of q and A are given by the first baro-
clinic structure function x1(z), that is, 

FIG. 1. Vertical variation of q/q̂ 0 as given by Eq. (8a) for q̂1/ f 0 5 
0, 0.025, 0.05, 0.075, and 1.0 (with q̂ 0 5 0.8 f 0). 

and 

ˆ ˆA(z) 5 A0 1 A1x1(z). (6b) 

As x1(z), given by (4), is monotonically increasing, q(z)
ˆand A(z) increase with z for positive q̂1 and A1. Also, 

as x1 is only weakly dependent on z for small z, the 
vortices are nearly barotropic in the lower part of the 
domain. This can be seen in Fig. 1, which shows q(z)/q̂ 0 

ˆ ˆ[or equivalently A(z)/A0] for several values of q̂1(A1). 
The initial vortex is further constrained so that it has 

the same total circulation G as a barotropic vortex with 
ˆq 5 q̂ b and A 5 Ab, that is, 

D D 

ˆG [  dz r0(z)q(z)a(z) 5 q̂ A  dz  r0(z) (7)E b b E 
0 0 

ˆ[a(z) is the area enclosed by the contour]. If A 5 Ab, 
then (7) is satisfied for q̂ 0 5 q̂b and arbitrary q̂1 [this follows 
from the fact that #D 

0 dz r0(z)x1(z) 5 0]. Similarly, (7) is 
ˆ ˆ ˆsatisfied for q 5 q̂ b , A0 5 Ab , and arbitrary A1. 

Considering only vortices with the same total circu-
lation and weak vertical variations in the lowest layers 
enables a clean analysis of the dependence of wave 
propagation and breaking on the vertical structure of the 
vortex. For a given disturbance amplitude the evolution 
in the lowest layers will be very similar for all vortices 
satisfying (6) and (7), and differences in the upper layers 
will be because of changes in the vertical structure of 
the vortices (rather than, say, changes in the amplitude 
of the forcing relative to the vortex circulation). 

To examine the relative effects of vertical variations 
in q and A we consider three different families of vor-
tices: family A in which A is constant (independent of 
z), family B in which q is constant, and family C in 
which both A and q vary with z. Specifically, the vortex 

q(z) 5 q̂ 0 1 q̂1x1(z) (6a) area and PV within each family are 
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TABLE 1. Parameter values of vortices shown in paper ; see text for definitions of parameters. 

Vortex q̂ 0 /ƒ0 q̂1/ƒ0 Â 
0/pL2 

R Â 
1/pL2 

R uB (m s21) uT (m s21) Family 

V1 0.8 0.0 3.0 0.0 58 58 A, B 
V2 0.8 0.05 3.0 0.0 56 81 A 
V3 0.8 0.10 3.0 0.0 55 105 A, C1 
V4 0.8 0.0 3.0 1.0 59 55 B 
V5 0.8 0.0 3.0 3.0 58 43 B 
V6 0.794 0.10 3.0 0.5 56 105 C1 
V7 0.786 0.11 3.0 1.0 56 106 C1 

ˆ ˆ ˆ(A) A0 5 Ab, A1 5 0, q̂0 5 q̂ b, and q̂1 $ 0; 

ˆ ˆ ˆ(B) A 5 A , A $ 0, q̂ 5 q̂ , and q̂ 5 0;0 b 1 0 b 1 

ˆ ˆ ˆ(C ) A0 5 Ab, A1 $ 0, q̂0 # q̂ b, and q̂1 $ 0. 

Family C can be divided into subfamilies within which 
all vortices have approximately the same (vertically 
varying) velocity at the vortex edge; that is, within a 
subfamily the velocity at the vortex edge in the bottom 
layer uB and in the top layer uT are approximately the 
same for all vortices. Here we consider one such sub-
family (C1): the subfamily with uB ø 56 m s21 and uT 

ø 106 m s21. (Note that there are many possible par-
titions of family C , and another physically meaningful 
partition could be to form subfamilies with the same 
angular velocity at the vortex edge.) 

ˆIn the barotropic vortex case, q 5 q̂ b and A 5 Ab [ 
pR̂ 

b 
2, we use the same parameters as DS94, that is, den-

sity-scale height H 5 6.14 km, vortex height D 5 5.86H 
5 36 km, reference Rossby radius LR 5 902 km, vortex 

ˆradius Rb 5 3LR , zero-wind radius rz 5 6LR , PV inside 
the vortex q̂ bi 5 1.3 f 0, and PV outside the vortex q̂ bo 5 
0.9 f 0 (hence q̃ b 5 0.4 f 0). With this setting the maxi-

ˆmum wind speed, which occurs at Rb ø 2700 km (lat-
itude ø 658), is around 60 m s21, and the zero-wind 
line occurs at around rz ø 5400 km (latitude ø 408); 
this flow is the same as in the single-layer simulations 
of Polvani and Plumb (1992). 

Many simulations have been performed for vortices 
within each of the three families (A–C ) but results are 
shown for only two or three vortices from each family. 
These vortices are listed in Table 1, and the correspond-
ing flow fields are shown in Fig. 2 (the thick dashed 
curve corresponds to the vortex edge and the thick solid 
curve to the zero-wind line). The top row corresponds 
to vortices in family A, the middle row to family B, and 
the bottom row to subfamily C1. As discussed above, 
the flow in the lower part of domain is very similar for 
all vortices and is approximately that of the barotropic 
vortex. However, there are large differences in the flow 
in the upper half of the domain. 

For vortices in family A the maximum wind speed 
increases with height (for q̂1 . 0) and occurs at the 

ˆsame location (vortex edge, Rb ); see Figs. 2a,b. For 
increased q̂1 there is an increase in the difference be-
tween the maximum wind speed at the top and bottom 
of the vortex (the velocity at the bottom decreases slight-

ly, while the velocity at the top increases substantially). 
Note that away from the vortex edge the flow is rela-
tively unchanged from that of the barotropic vortex (i.e., 
the contours are nearly vertical). 

The variation of the flow for vortices in family B is 
very different from that for those vortices in family A; 

ˆsee Figs. 2c,d. For increasing A1 the maximum velocity 
at the top of the vortex decreases, but the velocity dif-
ference is small even when there is a large variation in 

ˆA(z). For example, with A1 5 3pLR 
2 (Fig. 2d) the radius 

of the vortex increases from 2500 to 4700 km, but the 
maximum velocity only decreases from 58 to 43 m s21 

(note, however, that the angular velocity decreases from 
2.3 3 1025 to 0.9 3 1025 s21). 

By definition, the initial flow for all vortices in the 
subfamily C1 is very similar; see Figs. 2b,e,f. (Note 
again that there a change in the angular velocity, with 
the value at the top of the vortex decreasing from 3.8 
3 1025 to 3.0 3 1025 s21 for the three vortices shown.) 

ˆAs A1 increases, the size of the vortex in the upper half 
of the domain increases but the maximum wind speed 
and location of zero-wind radius is relatively un-
changed. Note that, as the location of the zero-wind line 
does not vary significantly and the radius of the vortex 
edge increases, there is a decrease with height in the 
separation of the vortex edge and the zero-wind line. 

The vertical variations in location and magnitude of 
maximum velocity in the above idealized vortices are 
comparable with that of the observed stratospheric polar 
vortices. For example, climatological observations of the 
Antarctic polar jet (e.g., Randel 1992) show that in mid-
winter (June–July) the maximum wind speed increases 
from around 40 m s21 at 20 km to around 95 m s21 at 
50 km, and the latitude of jet maximum varies from 608S 
(ø3300 km) at 20 km to 458S (ø4800 km) at 50 km. 
In late winter to early spring (September–October) the 
jet is more vertically aligned (around 608S) and the max-
imum wind speed is weaker and located in the middle 
stratosphere, while in late spring (November) the vortex 
has broken down in the upper stratosphere and the jet 
weakens and tilts poleward with height. The structure 
and seasonal evolution of the Arctic vortex is similar to 
the Antarctic jet, although the jet speed and vertical var-
iation are much weaker for the Arctic polar vortex. Com-
paring the idealized vortices discussed above with the ob-
served vortices, the flow field shown in Fig. 2f is probably 
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FIG. 2. Altitude–radius plots of the initial velocity for vortices (a) V2, (b) V3, (c) V4, (d) V5, (e) 
V6, and (f ) V7 (see Table 1 for details). The thick solid curve is the zero-wind line, and the thick dash– 
dotted curve is the vortex radius. Contour interval is 10 m s21 and negative values are shown as dashed 
curves. 

the most realistic for early winter and midwinter condi-
tions, while the barotropic vortex is probably the most 
realistic for late winter (at least for the Antarctic vortex). 
Note that as the size of the Antarctic vortex generally 
decreases with height in late spring (e.g., Mechoso 1990; 
Lahoz et al. 1996), vortices with q or A decreasing with 
height may be more realistic representations of the strato-
spheric vortices during late spring; however, due to space 
constraints, we do not consider these vortices here. 

4. Linear response 

We examine in this section the linear propagation of 
waves on the edge of the vortices described in the pre-
vious section. The dispersion relation, and hence the 
linear propagation of waves, for the L-layer QG system 
is determined in the same manner as the stability anal-
ysis of single-layer PV strips by Dritschel (1989) and 
Waugh and Dritschel (1991). 
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a. Linear dispersion relation 

We consider azimuthal wavenumber m disturbances 
to each contour; that is, the contour position at layer j 
is rj(u, t) 5 Rj 1 hj(u, t), where 

i(mu2s t)hj(u, t) 5 ĥ je . (8) 

Let uj 5 (u , u )j 5 u j 1 u9 1 O(h2) and u9 5 
û jei(mu2s t); then from (5) we have u rj 5 0: 

r u j j 

L 

uu j 5 2  rX1 
jl(R ,, r), (9a)O 

,51 

and 
L 

mûrj [ im Xjl (R ,, r), (9b)O 
,51 

where 

r1 
L21 Km(gnr1)Im(gnr2), (r1 . r2)

Xm (r , r ) [ r q O x x n 5j, 1 2 , ,  jn ,r n50 I (g r )K (g r ), (r , r ),2 m n 1 m n 2 1 2 

and Im and Km are the modified Bessel functions of the 
mth order. 

Using the linearized kinematic condition 

1 ] 

]

]

u21 V  h 5 u9r ,]t 

where V [ u u/r, in each layer j, together with Eqs. (8) 
and (9), we obtain the L coupled equations 

L 

m(c 2 V )ĥ 1 X ĥ 5 0, (10)Oj j j, ,  
,51 

where 
L 

V 5 1O Xj j, 
,51 

and c 5 s/m. Solvability of (10) requires determining 
c as an eigenvalue of an L 3 L eigensystem for each 
zonal wavenumber m. In general there are L solutions 
for c (eigenvalues c ,, , 5 1,  2,  . . . ,  L), each with a 
distinct vertical structure [eigenvectors e , 5 (e1,, e ,, 
. . . ,  eL,)]. 

The vertical structure of an initial disturbance can be 
expressed as a linear combination of these eigenvectors, 
that is, 

L 

ĥ 5 a e .Oj , j, 
,51 

Then, from (8), the linear evolution of this disturbance is 
L 

im(u2c t),hj(u, t) 5 O a e e  ,, j, (11) 
,51 

where c , and e , are the eigenvalues and eigenvectors of 
(10). In other words, given the eigenvalues and eigen-
vectors of (10), the linear evolution of any wave-m dis-
turbance is given by Eq. (11). 

Note that if any of the cl are complex, then expo-
nential growth occurs and the vortex is linearly unstable. 
However, the PV profiles chosen here exclude this pos-
sibility, and, in fact, all are stable in a nonlinear sense 
(Dritschel 1988). 

For the case of a barotropic vortex (qj 5 q̂ b and Rj
ˆ5 Rb for all j) the dispersion relationship can be greatly 

simplified. Rewriting (10) in terms of the amplitude of 
the vertical modes rather than the disturbance to each 
contour, the equations become uncoupled and the phase 
speed of the nth vertical mode is given by 

1 ˆ ˆcn 5 q̂b 2 Km(gnRb)Im(gnRb) .[ ]2 

Although we have considered only a single contour 
per layer, the above analysis can easily be extended to 
consider multiple contours in each layer and hence can 
be used to examine wave propagation (and stability) for 
more smoothly varying PV distributions. Furthermore, 
this analysis could also be used to examine the propa-
gation of waves on the tropopause (e.g., Saravanan 
1994). 

Using the above analysis, we next examine the linear 
propagation of waves up the edge of vortices within 
each family. The wave propagation is quantified by cal-
culating the wave activity W of the flow. The wave 
activity quantifies the mean-square amplitude of dis-
turbances relative to the (circular) basic state (Dritschel 
1988), and, in the absence of forcing, it is conserved. 
The wave activity for the L-layer QG system is defined 
as (see appendix B of DS94) 

D D 

ˆW 5 W(z) dz 5 r0(z)q̃ (z)ŵ (z) dz,E E 
0 0 

where 

1 2 
2 2 2ŵ (z) 5 (x 1 y )(x dy  2 y dx) 2 a (z) ,1R 24 C(z) p 

ˆand a is the area of the contour. Here W is the wave 
activity density at given z and includes the effect of 
vertical variations in density and PV, whereas ŵ does 
not include these effects and is dependent only on the 
mean-square displacement of the contour, at each level, 
from circular symmetry. 

b. Results 

We examine here the response to an initial wave-
number m disturbance applied only to the bottom layer 
of the vortex, that is, ĥj 5 0 for j . 1. Note that this 
is not the most appropriate initial disturbance when con-
sidering the linear response to the topographic forcing 
considered in the next section: as discussed in section 
6 of DS94, the flow induced by this topography has a 
deep vertical structure, and so it would be more appro-
priate to consider an initial disturbance with some ver-
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FIG. 3. Temporal variation of ŵ for a barotropic vortex with an initial wave-m disturbance; (a) m 5 1, (b) m 5 
3, (c) m 5 5. The thick solid curve is the bottom layer, the thin solid curve the top layer, and dashed curves are the 
intermediate layers. 

tical extent. Also, a steady forcing, rather than a single 
initial pulse, is considered in the next section. However, 
we consider here a localized initial disturbance as we 
wish to examine the general propagation characteristics 
of linear waves on the edge of the vortex (and not just 
the linear version of the nonlinear simulations discussed 
in the next section). 

Figure 3 shows the temporal evolution of ŵ in each 
layer for a 10-layer barotropic vortex with initial m 5 
1, 3, and 5 disturbances (the thick solid curve is the 
bottom layer and the thin solid curve the top layer). For 
all three wavenumbers, there is a general increase in ŵ 
with z, and the values in the upper layers are much larger 
than in the bottom layers. This implies that the depar-
tures away from circular symmetry are largest in the 
upper layer. There is a large difference in the temporal 
variation of ŵ for the different wavenumbers (note the 
different timescales shown in the three plots in Fig. 3), 
with the growth rate of ŵ in upper layers decreasing 
and the time lag between maxima in upper and lower 
layers increasing for larger m. Note that because of the 
rapid decrease in density with height, the vertical varia-

ˆtion of the wave activity density W is the opposite to 
ˆthat of ŵ (i.e., largest values of W are in the bottom 

layers), and the total wave activity W is dominated by 
the wave activity in the bottom layers (see Fig. 9 of 
DS94). 

Note that the initial disturbance of a single pulse to 
the bottom layer projects onto all vertical modes, and 
the vertical waves are highly dispersive. Hence, the ini-
tial pulse does not simply propagate up the vortex as a 
single packet (i.e., there is not a single peak in wave 
activity at each level of the vortex). Also, as there is 
no dissipation, the waves will reflect off the upper 
boundary, and the reflection of the fast waves produces 
the oscillatory response in Fig. 3. 

The temporal evolution of ŵ in the top layer for sev-
eral vortices within families A (left column), B (middle 
column), and C1 (right column), for m 5 1 (top) and 
3 (bottom), is shown in Fig. 4 (note different time-

scales). These plots show that the wave activity in the 
upper layer varies dramatically with changes to the vor-
tex structure, particular for m 5 3. 

Consider first family A (fixed A, variable q). As q1 

increases (i.e., increasing vertical PV gradient) there is 
only a small change in the time for vertical propagation 
(i.e., the maxima in wave activity occur at roughly the 
same time) but the amplitude of the waves decrease. 
The decrease in amplitude in the upper layers with in-
creasing q̂1 becomes more pronounced with m [the de-
crease for m 5 5 is even larger than for m 5 3; e.g., 
for q̂1 5 0.05 f 0 (vortex V2 in Table 1) the value of ŵ 
in the top layer when m 5 5 is three orders of magnitude 
less than for the barotropic vortex]. Note that for large 
q̂1, ŵ in the top level for m 5 3 is less than that in the 
bottom layer (in contrast to the barotropic case; see Fig. 
3), and hence the upper layer is less disturbed than the 
lower layers. These results indicate that an increase in 
the vertical gradient of PV of a cylindrical vortex in-
hibits the vertical propagation of waves on the vortex, 
and the effect is larger for smaller-scale waves. 

For vortices with increasing A but fixed q (family B), 
both the timing and amplitude of vertical propagation 
differ from the barotropic vortex. For an m 5 1 dis-

ˆturbance, as A1 increases the vertical propagation is 
slower; that is, the maximum in ŵ occurs later for larger 
Â1. There is also a change in the amplitude in the upper 
layer, but whether the amplitude increases or decreases 
varies between local maxima. The amplitude of the first 

ˆmaximum (around 3–5 days) increases with A1, but this 
is not the case for later maxima (e.g., the second max-
imum for Â 

1 5 3pLR 
2 is less than 0.1, not shown). How-

ever, the change in amplitude is much smaller than for 
increasing q (family A), while, for all the vortices con-
sidered, the amplitude of ŵ in the upper layer for m 5 
1 is similar. This, however, is not the case for m 5 3. 
The magnitude of ŵ in the upper layer is much less than 
for the barotropic vortex and, as in the case of increasing 
q, ŵ in the top layer is less than ŵ in the bottom layer 
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FIG. 4. Temporal evolution of ŵ in the top layer for several vortices within families (a), (d) A; (b), (e) B ; and 
(c), (f ) C1, for m 5 1 (top) and 3 (bottom) disturbances. Vortices shown in each family are given in the legends. 

ˆfor large A1. Hence, the vertical propagation of m 5 3 
waves is greatly inhibited by increasing A (for fixed q). 

For vortices with approximately the same edge ve-
locity but varying q and A (i.e., family C1) there is only 
a small variation in ŵ in the top layer when m 5 1 but 
there is a large variation when m 5 3. In particular, 
comparing with family B we see that the variation in ŵ 
(in layer 10) for increasing A and q is very different 
than for increasing A alone. In the latter case there is a 
dramatic decrease in vertical propagation with increas-

ˆing A1, but this is not the case when both A and q vary 
(e.g., vortex V7). 

The above results show that the vertical propagation 
of waves is sensitive to the vortex structure (with in-
creased sensitivity for smaller-scale waves). The exact 
details of the propagation depend on both q and A, and 
there does not appear to be a simple rule, although, in 
general, increasing q or A inhibits vertical propagation. 

The linear results can be used to obtain a first-order 
estimate for the forcing amplitude necessary to bring 
about a nonlinear response (i.e., wave breaking). If we 
assume that wave breaking occurs when ŵ exceeds some 
critical value, then Fig. 4 indicates that the amplitude 
of an initial disturbance required to produce wave break-
ing will vary for different initial vortices. For example, 
for an m 5 1 disturbance, the critical amplitude (for 
wave breaking within 12 days) for vortices V3 and V7 
would be around 3 and 2.5 times that of vortex V1, 

respectively (as the maximum ŵ for V1 is 3.0 and 2.5 
times that of V3 and V7). Nonlinear (contour dynamics) 
numerical simulations confirm that the actual critical 
amplitude required agrees well with these linear esti-
mates (not shown). Note that for m 5 3 disturbances, 
the difference in critical amplitudes is much larger. As 
wave breaking (filamentation) occurs when contours 
cross stagnation points (e.g., Polvani and Plumb 1992), 
the critical amplitude for wave breaking may not only 
depend on the disturbance amplitude but also on the 
initial distance between the vortex edge and the zero-
wind line. For smaller distances, we may expect wave 
breaking for smaller disturbance amplitudes. 

5. Nonlinear response 

a. Contour dynamics calculations 

We now consider the nonlinear evolution of the vor-
tices. The contour dynamics numerical method is used 
to solve Eq. (5) and simulate the nonlinear evolution. 
The multilayer QG contour surgery algorithm is that 
used in DS94. We use the spatial resolution parameter 
m 5 0.1 (which corresponds to initially 72 nodes per 
contour) and surgery parameter d 5 m2/8 (which cor-
responds to a filament-removal scale of around 3 km). 

As in DS94, the vortices are forced with bottom to-
pography given by 
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FIG. 5. PV contours at t 5 12 on (a) layer 10 (upper) and (b) layer 1 (lower) for barotropic vortex (V1) with h0 5 
0.15, 0.175, 0.20, and 0.25 (left to right). 

ˆh(x, y) 5 h0HJ1(1.6r/Rb)R(r) cosu, 

where h0 is the nondimensional amplitude, J1 is the first-
order Bessel function, and 

⎧1, r , 5,⎪ 
R (r) 5 ⎨cos(p(r 2 5)/5) 5 $ r $ 7.5,

⎪ 
⎩0, r . 7.5. 

This form of h is very similar to that used in the single-
layer planar simulations of Polvani and Plumb (1992) 
(and also Waugh 1993). The topography is switched on 
at t 5 0 and is constant with time. 

An extensive series of 10-layer simulations have been 
performed for several vortices within each family and 
a range of forcing amplitudes (0.05 # h0 # 0.25). We 
have repeated several calculations using 20 layers and 
the results discussed below hold whether 10 or 20 layers 
are used (e.g., compare the 10-layer simulations for a 
barotropic vortex shown below with the 20-layer sim-
ulations shown in DS94). 

As the contour dynamics simulations performed do 
not contain explicit diffusion or diabatic processes (the 
only nonconservative effects are those caused by the 
surgery algorithm, which operates on horizontal scales 
around 3 km), we restrict our integration period to 12 
days. This is about the timescale when nonconservative 
processes are thought to start playing a role in the real 
stratosphere (e.g., Haynes and Ward 1993; Waugh et al. 
1997; Haynes and Anglade 1997). 

Figure 5 shows the PV on the bottom and top layers 
of the barotropic vortex after 12 days for several values 
of h0 (h0 5 0.15, 0.175, 0.20, 0.25; left to right). These 
simulations are the 10-layer versions of the (case C ) 20-
layer simulations of DS94, and they produce very sim-
ilar results (cf. Fig. 4 of DS94). As the forcing amplitude 
increases, the disruption to the vortex increases, partic-

ularly at the bottom of the vortex. For small amplitude 
(h0 # 0.15) there is no wave breaking or filamentation 
in the bottom layer (at this resolution; using a smaller 
m may produce some small filamentation for h0 ø 0.15), 
but wave breaking (producing a tongue of PV) occurs 
in the upper layer. This is the ‘‘remote breaking’’ regime 
discussed by DS94. On the other hand, for large am-
plitude (h0 . 0.2) the vortex is very distorted in the 
lower layers. This is the ‘‘local breaking’’ regime of 
DS94. As discussed in section 1 there is still wave break-
ing in upper layers in the local breaking regime, but this 
wave breaking is much weaker than in the lower layers. 
Note that for intermediate amplitude forcing (h0 ø 
0.175) there is wave breaking with similar character-
istics throughout the height of the vortex, and this break-
ing cannot be classified into either the remote or local 
breaking regime. 

For all h0, the wave breaking near the top of the vortex 
occurs first in the top layer then moves down the vortex, 
and hence there is a possibility that this wave breaking 
is artificially caused by the top of the model. However, 
20-layer simulations have been performed with the 
height of the vortex doubled, and the evolution in the 
lower half of this vortex (which corresponds to the do-
main of the 10-layer simulations) is almost identical to 
that in the above 10-layer simulations (not shown). This 
indicates that the wave breaking in the upper layers of 
the 10-layer simulations is not an artifact of the upper 
boundary. [Fyfe and Wang (1997) have recently ex-
amined the effect of the upper-boundary condition in 
multilayer contour dynamics simulations, and although 
they found that this boundary condition influenced the 
results in constant density (Boussinesq) simulations, 
there was not a significant effect for simulations with 
exponentially decreasing density as considered here.] 

Figures 6a and 6b show the PV in the upper layer at 
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FIG. 6. PV contours at t 5 12 in upper layer (layer 10) with h0 5 0.15, 0.175, 0.20, and 0.25 (left to 
right) for vortices (a) V2 and (b) V3 (family A); (c) V4 and (d) V5 (family B ); and (e) V6 and (f ) V7 (family 
C1). 

day 12 for two vortices from family A, for the same 
values of h0 as in Fig. 5. For both vortices the PV in 
the bottom layer is essentially the same as for the bar-
otropic vortex (see Fig. 5b) and is not shown; this is 
also true for all other vortices considered. The lack of 
significant variation in the evolution in the lower layers 
for different initial vortices is related to the choice of 
initial vortices: all vortices have the same total circu-
lation and, as shown in Figs. 1 and 2, have very similar, 
nearly barotropic structure in lower layers. There is, 
however, a dramatic difference in the evolution in the 
upper layers for different values of q̂1. For small q̂1 there 

is always wave breaking at the top of the domain (for 
this range of h0), but for q̂1 $ 0.1 f 0 there is wave 
breaking in the upper layer only for an intermediate 
range of h0. Note that there are large differences in the 
characteristics of the wave breaking even for values of 
q̂1 for which wave breaking always occurs in the upper 
layer; for example, compare Figs. 5a and 6a. The above 
simulations indicate that cylindrical vortices with PV 
increasing with height are more resilient than barotropic 
vortices. 

The suppression of wave breaking in upper levels 
with increased q̂1 is consistent with the linear wave anal-
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FIG. 7. Side view at t 5 12 for vortices V3 (left) and V7 (right) with h0 5 0.15, 
0.175, and 0.25 (top to bottom). 

ysis. As q̂1 increases (for constant A) the amplitude of 
linear waves in the upper layers reduces for fixed dis-
turbance amplitude at the bottom of the vortex; see Fig. 
4. This reduced disturbance amplitude then implies that 
the critical amplitude for the onset of wave breaking 
will increase with q̂1, consistent with the contour dy-
namics simulations. 

Figures 6c and 6d show the PV in the upper layer for 
two vortices from family B (again the evolution in the 
bottom layer is very similar to Fig. 5b and is not shown).

ˆFor both vortices (and for vortices with larger A1) the 
evolution in the upper layer is qualitatively the same as 
for the barotropic case; that is, wave breaking occurs 
throughout the range of h0 considered. There are, how-
ever, quantitative differences; in particular, the width of 

ˆthe filaments in the upper layers increases with A1. How-
ever, these differences are much smaller than those for 
vortices within family A, and broadly speaking the wave 
breaking at the edge of a vortex with constant PV is 
relatively insensitive to vertical variations in the area of 
the vortex. 

The PV in the upper layer for two vortices from fam-

ily C1 are shown in Figs. 6e and 6f. These plots should 
also be compared with Fig. 6b, which shows a third 
vortex from this family (see Fig. 2). Although the initial 
flows for these three vortices are very similar, there is 
a surprisingly large variation in the nonlinear evolution 
of the upper layers of the vortices. As the slope of the

ˆvortex edge with height increases (i.e., A1 increases), 
the amount of wave breaking in the upper layers in-

ˆcreases. As discussed above, for a cylindrical vortex (A1 

5 0) there is no wave breaking in the upper layers for
ˆsmall or large forcing amplitude. But for A1 $ 0.5p 

there is wave breaking in upper layers for all amplitudes 
shown, and there is breaking in lower layers for large

ˆamplitudes. Another noticeable difference for large A1 

is that the filaments produced in the upper layers are 
unstable and roll up into small vortices; this is discussed 
further below. The dramatic changes in the evolution of 
the vortices within family C1 are clearly shown in Fig. 
7, which shows side views of vortices V3 and V7 for 
three different forcing amplitudes. 

The simulations for vortices in family C1 show that 
there can be a dramatic difference in the nonlinear evo-
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lution of waves on the edge of a vortex for vortices with 
only small changes in A(z). Note, however, that these 
dramatic changes do not occur for the same variations 
in A(z) if  q is independent of z, that is, family B. Hence, 
the variation of the evolution of vortex-edge waves to 
variations in either q or A cannot be considered in iso-
lation. 

b. Vortex structure 

We now examine in more detail the vertical structure 
and temporal evolution of the vortex ‘‘core.’’ The vortex 
core is determined by applying the coarse-graining tech-
nique of Waugh (1992) (see also Polvani et al. 1995); 
that is, the surgery algorithm is applied to the results 
of the contour dynamics simulations with a sufficiently 
large surgery scale (d ) to disconnect filaments from the 

ˆvortex core (d 5 0.1Rb, approximately 300 km, is used 
here). The structure of the vortex core is then quantified 
using the elliptical diagnostics (EDs) of Waugh (1997) 
(see also Legras and Dritschel 1993; Dritschel 1993). 
The EDs define the area (a), center (xc, yc), elongation 
(aspect ratio, l), and orientation (u) of the vortex in 
each layer. The EDs can be used not only to diagnose 
the variation of the vortex core for different initial vor-
tices and forcing amplitudes, but also to compare the 
simulations with observed stratospheric polar vortices 
(e.g., Waugh and Randel 1999). 

Figure 8 shows the temporal and vertical variation of 
the equivalent radius RE (the radius of circle with same 
area as the contour, RE 5 Ïa/p), distance of center of 
vortex from the origin rc, and aspect ratio l of the 
vortex, for the barotropic vortex with h0 5 0.175 (see 
Fig. 5 for plots of the vortex in the upper and lower 
layers at t 5 12). 

The vortex area RE is constant until between days 8 
and 9, at which time the area decreases suddenly. This 
sudden decrease is because the width of the filament 
being drawn from the vortex decreases below the sur-
gery cutoff scale, and the surgery removes the filament 
from the vortex core. If a larger (smaller) cutoff value 
is used, this decrease in area occurs slightly later (ear-
lier). The vortex erosion (decrease in area) occurs first 
in the lower layers, but the magnitude of the erosion is 
largest in the upper layers. Note that for h0 5 0.175 the 
wave breaking is in the intermediate breaking regime 
where it occurs throughout the domain (see Fig. 5). 

There is a large temporal variation in the distance of 
the vortex center from the origin, rc(z) (see Fig. 8b). 
There is a local maxima around days 3–5, with the max-
ima in the upper layer lagging that in the lower layer 
by around 1 day. During this period rc increases with z 
(i.e., the vortex tilts equatorward with height). Between 
days 5 and 7 the vortex moves back toward the origin, 
and there is a local minima in rc around day 7.5 (at 
which time the vortex is centered near the pole at all 
but the upper levels). Over the last part of the simulation 

FIG. 8. Altitude–time contour plots of (a) RE, (b) rc, and (c) l for 
vortex V1 with h0 5 0.175. 

(during which filaments are drawn from the vortex) the 
vortex moves away from the origin at all levels. 

The elongation (aspect ratio l) of the vortex increases 
during the first half of the simulation, and maximum 
elongation occurs between days 5 and 7 (with a time 
lag of around 2 days between the top and bottom layers). 
The maximum l occurs after the maximum in rc but 
around the same time as the onset of wave breaking, 
and is larger in the upper and lower layers than in the 
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FIG. 9. Vertical variation of equivalent radius RE and distance from origin rc at t 5 12 for vortices (a), 
(b) V1; (c), (d) V3; and (e), (f ) V7; and several different values of h0 (see legends). Thin solid curves 
show the initial values. 

middle layers. Over the last few days of the simulation 
the vortex core is nearly circular at all levels. Note that 
as l is calculated from spatial moments of the contour, 
the value of l for an elongated vortex with a connected 
filament can be very different from that of the vortex 
core alone (Waugh 1997); hence, care should be taken 
when interpreting l during the onset of wave breaking 
(before the surgery algorithm has removed any filaments 
from the vortex core). 

The vertical and temporal variations of the vortex core 
structure varies with h0 and between vortices. However, 
for a given vortex, the timing and vertical variation of 
the maxima and minima of rc and the timing of the 
maxima in l are qualitatively similar for all h0, with 
the amplitude of the maxima increasing with h0. Sim-
ilarly, the decrease in RE (i.e., vortex erosion) increases 
with h0. The variations in RE(z) and rc(z) at day 12 with 
h0 for three different initial vortices (V1, barotropic; 

V3, R constant, q increasing with z; V7, R and q in-
creasing with z) are shown in Fig. 9. 

The variation of RE(z) clearly shows the differences 
in the vertical extent of the wave breaking (and sub-
sequent vortex erosion). For vortices V1 and V7, RE at 
t 5 12 for weak forcing (h0 # 0.15) is less than its 
original value only in the upper layers, and the smaller 
h0, the more vertically confined the region where RE 

differs from its original value; that is, erosion occurs 
only in the upper layers. However, wave breaking does 
not occur for vortex V3 when h0 # 0.15 (see Figs. 6, 
7) and there is no change in RE for these values of h0. 
For moderate forcing (h0 5 0.175 to 0.20) there is wave 
breaking at all levels of the vortex for all vortices (see 
Fig. 6) and RE is less than its original value for all z. 
For V1 and V7 the erosion is larger in the upper layers 
than in the bottom layers, but for V3 the erosion is 
largest in the middle of the vortex. For large forcing 
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FIG. 10. PV contours in all 10 layers at t 5 12 for vortices (a) V1, (b) V3, (c) V5, and (d) V7. 

(h0 5 0.25) there is again erosion at all levels for vor-
tices V1 and V7 with the largest erosion at the bottom 
and top of the vortex, but for V3 there is erosion only 
at the bottom of the vortex. 

The erosion of vortex V7 for h0 around 0.15 to 0.175 
is intriguing. As shown in Fig. 9e, in this case the area 
at day 12 is roughly constant with height and hence the 
structure is very similar to that of vortex V3. As shown 
above there is very little erosion of V3 for these forcing 
amplitudes, and hence this raises the possibility that if 
the simulation for vortex V7 was continued a time may 
be reached where wave breaking (or vortex erosion) 
stops. However, as diabatic processes cannot be ignored 
over a longer timescale these processes need to be in-
cluded if this is to be examined further. 

The variation of rc at day 12 with z and h0 is similar 
for all vortices; see Fig. 9. In nearly all cases rc increases 
with z, and both rc at the bottom of the vortex and ]rc/]z 
increase with h0. In other words, the vortices tilt away 
from the origin with increasing height, and the distance 
from the origin and slope increases with forcing am-
plitude. Note that, as shown in Fig. 8, there is a strong 

temporal variation in rc(z), and different results are ob-
tained if the above comparison is made at a different 
time. 

c. Filament structure 

DS94 noted that the filaments in their simulations 
were vertically aligned. However, this alignment could 
be because they considered only initially barotropic vor-
tices, and we now examine the slope of the filaments 
in simulations of baroclinic vortices. Note that Fig. 7 
shows that the filaments have vertical coherence, and 
hence it is more appropriate [as discussed by Schoeberl 
and Newman (1995)] to refer to the filaments in each 
layer as a single sheet of PV. However, as the term 
‘‘filament’’ is commonly used in the stratospheric dy-
namics literature we will continue to use this term when 
discussing the sheets of PV. (Furthermore, the term 
‘‘vortex sheet’’ has a very different meaning in the vor-
tex dynamics literature.) 

Figure 10 shows the PV in all layers after 12 days 
for simulations with h0 5 0.175 and for vortices V1, 
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V3, V5, and V7. This clearly shows that the character-
istics of the filaments produced during wave breaking 
varies with the initial vortex structure. There is a sig-
nificant slope to the filaments only for vortex V3, which 
has fixed radius and q increasing with z. Although the 
slope of filaments for vortex V5 (and to a much smaller 
degree, vortex V7) is sensitive to how the slope is de-
fined, there is no slope in the outside edge of the fila-
ments, but as the width of the filaments increases with 
height, the inside edge slopes poleward with height. The 
lack of significant slope for vortices V5 and V7 (and 
other vortices in families B and C1) indicates that even 
when the edge of the initial vortex varies with height 
the filaments are generally vertically aligned. (Note that 
even for vortex V3 the slope of the filament is only 40: 
1, which is much smaller than the inverse Prandtl’s ratio 
N0/ f 0 ; 200.) 

As noted earlier, for the vortices considered the lo-
cation of the zero-wind line does not vary significantly 
with z (see Fig. 2). This raises the possibility that the 
absense of large vertical variations in the filament struc-
ture is because of the almost barotropic background flow 
away from the vortex in all cases considered. This issue 
will be examined in a future study that considers vortices 
with differing meridonal structure (and vertically vary-
ing zero-wind lines). 

An interesting feature of the filaments produced in 
vortices with significant vertical variations in q and A 
is the roll-up of filaments. Filaments produced in bar-
otropic simulations are usually stable and do not roll up 
into coherent vortices; this stability has been attributed 
to the strain/shear flow produced by the polar vortex 
(e.g., Dritschel 1989; Dritschel et al. 1991; Waugh and 
Dritschel 1991; Dritschel and Polvani 1992). The roll-up 
seen in the above simulations indicates that the flow 
surrounding baroclinic vortices may no longer suppress 
filament instability at upper levels. We are currently 
investigating whether this is because of the three-di-
mensional structure of the filaments or because of ver-
tical variations in the (vortex induced) background 
strain/shear flow. 

6. Discussion 

Using a simple multilayer quasigeostrophic model we 
have examined the three-dimensional characteristics of 
wave propagation and breaking on the edge of polar 
vortices, and the dependence of these characteristics on 
the basic vortex structure. 

The linear propagation of waves up the edge of a 
vortex is sensitive to vertical variations in the PV and 
in the area of the vortex. There is reduced wave prop-
agation if the PV increases with height (while the area 
remains constant); this reduction becomes more pro-
nounced with increasing disturbance wavenumber. For 
vortices with both PV and area varying with height, the 
variation in propagation is more complicated, but there 
is generally reduced propagation for greater variations 

in PV or area. This reduction in upward propagation of 
edge waves for baroclinic vortices implies that increased 
forcing amplitudes are required for wave breaking to 
occur. 

The characteristics of the nonlinear evolution, in par-
ticular the wave breaking, are also sensitive to variations 
in the structure of the vortex. For vortices with PV 
increasing with height (with area constant), the wave 
breaking in the upper layers is much less than in the 
case of a barotropic vortex: there is no longer wave 
breaking for small amplitude forcing and the wave 
breaking is more vertically confined for large amplitude. 
When both the PV and area of the vortex increase with 
height, there is again wave breaking in upper layers for 
small and large amplitude forcing. However, there is a 
surprisingly large difference in the characteristics of the 
wave breaking for vortices with the same (vertically 
varying) velocity at the vortex edge but differing shape: 
not only does the vertical extent of the wave breaking 
vary, but so do the characteristics of the filaments pro-
duced by the wave breaking (when q and A both vary, 
the filaments in upper layers are unstable and roll up 
into a series of small vortices). 

The simulations presented have shown that the char-
acteristics of wave breaking at edge of vortex vary with 
the structure of the vortex, and that some vortex struc-
tures are more resilient than others (e.g., vortices with 
increasing PV are more resilient than barotropic vorti-
ces). This raises an interesting question; namely, does 
the polar vortex naturally develop in this way? That is, 
can the observed seasonal evolution of the vortex struc-
ture (see section 3) be related to this change in the 
characteristics of wave breaking? We may venture that 
the answer is yes, as one can argue that the shape and 
structure of the polar vortex are inherently connected 
with the mechanisms that force and dissipate it (e.g., 
Butchart and Remsburg 1986; O’Neill and Pope 1993; 
Peirce et al. 1993). However, the present model needs 
to be extended to include other processes, such as ra-
diative effects, to fully address this question. 

It will be of interest to see if the different character-
istics of the wave breaking (e.g, roll-up of filaments and 
the vertical extent of wave breaking–vortex erosion) are 
observed to occur in the real stratosphere. One approach 
to examine this could be to perform multilayer high-
resolution trajectory calculations (as in Schoeberl and 
Newman 1995) for different periods (when the vortex 
structure is different). Note that such calculations during 
January 1992 show some indication of filament roll-up 
in the middle and upper stratosphere [see, e.g., Fig. 15 
of Waugh et al. (1994)]. Another approach could be to 
compare the elliptical diagnostics from the contour dy-
namics simulations with those derived from analyzed 
PV (Waugh and Randel 1999), particularly during pe-
riods when the observed vortex is highly distorted (e.g., 
stratospheric warmings). 

The multilayer QG contour dynamics numerical mod-
el used in this study is computationally efficient [in fact, 
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the efficiency of contour dynamics calculations has in-
creased dramatically with the development of the con-
tour-advective semi-Lagrangian scheme (CASL) (Drit-
schel and Ambaum 1997), which is 1000 times faster 
than the standard contour dynamics method used here], 
and this enables a large area of parameter space to be 
covered. However, as there are several approximations 
in this model (e.g., piecewise constant PV and QG pla-
nar flow) it is not fully understood to what degree the 
results will carry over to the real stratosphere (or more 
realistic 3D models). But previous comparisons have 
shown excellent agreement between multicontour con-
tour dynamics and pseudospectral calculations with a 
continuous PV distribution (e.g., Legras and Dritschel 
1993; Waugh 1993), indicating that using piecewise 
constant PV does not significantly effect the results. 
Furthermore, there is good qualitative agreement be-
tween the results from the series of planar contour dy-
namics simulations of a forced vortex patch by Polvani 
and Plumb (1992) and those from the spherical pseu-
dospectral simulations of a polar vortex with smoothly 
varying PV by Yoden and Ishioka (1993). These studies 
therefore indicate that valuable insight into the dynamics 
of polar vortices can be gained from planar models that 
represent the vortex by patches of constant PV. How-
ever, it should be noted that the above comparisons were 
for single-layer calculations, and it is not clear what 
effect the approximations used in this model have on 
the three-dimensional flow considered here. Support, 
though, for the results presented here can be seen in the 
recent simulations of L. M. Polvani and R. Saravanan 
(1998, personal communication): in simulations using 
a spherical, primitive equation, pseudospectral model 
they find roll-up of filaments in the upper levels for 
baroclinic vortices and reduced wave breaking for vor-
tices with increased vertical shear. 

In this study we have considered only vortices rep-
resented by a single contour in each layer. The new fast 
CASL code will enable multiple contours to be used in 
each layer, and an analysis of the sensitivity of the wave 
propagation and breaking characteristics to meridional 
PV gradients (and location of the zero-wind line). Also, 
we have examined the nonlinear response only for 
steady wavenumber-1 forcing: it would be interesting 
to examine the response to forcing with different spatial 
structure and/or temporal variation. For example, ex-
amining the response to a pulse of localized forcing 
might provide insight into the connection between tro-
pospheric blocking events and stratospheric intrusion 
events (e.g., Plumb et al. 1994) or warming events (e.g., 
Quiroz 1986). Another area of interest is the interaction 
between the tropopause and the stratospheric polar vor-
tex, particularly in the subvortex region (e.g., Holton et 
al. 1995). This interaction could be examined by in-
cluding a freely evolving tropopause (as in Saravanan 
1994), as well as a stratospheric polar vortex, in the 
model. 

Acknowledgments. DWW was supported through the 
Australian Government Cooperative Research Center 
Program, and DGD by the U.K. Natural Environment 
Research Council. We thank L. Polvani and R. Sara-
vanan for helpful discussions and for sharing unpub-
lished results; and D. Fairlie, S. Pawson, and two other 
reviewers for their detailed and helpful comments. 

REFERENCES 

Beck, A., 1996: The stability of the northern stratospheric winter 
polar vortex in dependence on the horizontal resolution in a 
global model. Beitr. Phys. Atmos., 69, 449–460. 

Boville, B. A., 1995: Middle atmosphere version of the CCM2 
(MACCM2): Annual cycle and interannual variability. J. Geo-
phys. Res., 100, 9017–9039. 

Butchart, N., and E. E. Remsberg, 1986: The area of the stratospheric 
polar vortex as a diagnostic for tracer transport on an isentropic 
surface. J. Atmos. Sci., 43, 1319–1339. 
, S. A. Clough, T. N. Palmer, and P. J. Trevelyan, 1982: Simu-
lations of an observed stratospheric warming with quasigeo-
strophic refractive index as a model diagnostics. Quart. J. Roy. 
Meteor. Soc., 108, 475–502. 

Dritschel, D. G., 1988: Nonlinear stability bounds for inviscid, two-
dimensional, parallel or circular flows with monotonic vorticity, 
and analogous three-dimensional quasi-geostrophic flows. J. 
Fluid Mech., 191, 575–581. 
, 1989: On the stablization of a two-dimensional vortex strip by 
adverse shear. J. Fluid Mech., 206, 193–221. 
, 1993: A fast contour dynamics method for many-vortex cal-
culations in two-dimensional flows. Phys. Fluids, 5A, 173–186. 
, and L. M. Polvani, 1992: The roll-up of vorticity strips on the 
surface of a sphere. J. Fluid Mech., 234, 47–69. 
, and R. Saravanan, 1994: Three-dimensional quasi-geostrophic 
contour dynamics, with an application to stratospheric dynamics. 
Quart. J. Roy. Meteor. Soc., 120, 1267–1298. 
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