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[1] The highest concentrations of anthropogenic carbon (Cant) are found in the upper 
layers of the world ocean. However, this is where seasonal variability of inorganic carbon 
and related parameters due to thermal and biological effects complicates use of 
back-calculation approaches for Cant. Tracer based approaches to Cant estimation are 
unaffected by biological variability and have found wide application. However, 
slow-down, even reversal, of the atmospheric growth of chlorofluorocarbons (CFCs) 
restricts use of these tracers for Cant estimation for waters ventilated since the mid 1990s. 
Here we apply SF6, a tracer that continues to increase in the atmosphere, as a basis 
for the Cant estimation, using samples collected in the midlatitude North Atlantic 
in 2004. Cant estimates derived from water mass transit time distributions (TTDs) 
calculated with SF6 are compared to those based on CFC-12. For recently ventilated 
waters (pCFC-12 > 450 ppt), the uncertainty of SF6 based estimates of Cant is 
6 mmol kg 1 less than that of CFC-12 based estimates. CFC-12 based estimates remain 

more reliable for older (deeper) water masses, as a result of the longer input history and 
more readily detectable concentrations of CFC-12. Historical data suggest that the 
near-surface saturation of CFC-12 has increased over time, in inverse proportion to its 
atmospheric growth rate. Use of a time-dependent saturation of CFC-12 in TTD 
calculations appears to provide more reliable estimation of Cant. 
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1. Introduction 

[2] The World Ocean contains approximately 60 times as 
much inorganic carbon as the atmosphere, and the anthro-
pogenic perturbation of oceanic dissolved inorganic carbon 
(DIC) in relation to pre-industrial levels range from approx-
imately 3% (surface waters) to 0% (poorly ventilated deep 
water). Detection of this small anthropogenic change in DIC 
against a large and variable natural background represents a 
formidable analytical and conceptual challenge. A number 
of inference methods to estimate the oceanic Cant concen-
tration from field data have been developed; including so-
called ‘‘pre-formed’’ approaches based on measurements of 
hydrochemical data such as inorganic carbon, alkalinity, 
nutrients and oxygen [e.g., Brewer, 1978; Chen and Millero, 
1979; Gruber et al., 1996; Touratier and Goyet, 2004; Friis 
et al., 2005] or, alternatively, tracer-based approaches [e.g., 
Thomas and Ittekkot, 2001; Hall et al., 2002; Waugh et al., 
2004]. These different approaches to estimate Cant have 
various advantages and weaknesses [e.g., Wallace, 2001; Lo 
Monaco et al., 2005; Matsumoto and Gruber, 2005; Tanhua 
et al., 2007; Vázquez-Rodrı́guez et al., 2008]. Determination 
of Cant in recently ventilated waters is particularly important 
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as this is where the highest concentrations of Cant are found. 
However, it is in the upper water column that the seasonal 
variability of carbon related hydrochemical parameters 
arising from thermal and biological effects is the largest. 
[3] Several Cant inference methods involve the use of 

transient tracer data, either to estimate the air-sea disequi-
librium for carbon measurement based methods (e.g., the 
DC* method of Gruber et al. [1996]) or as a basis for 
transfer functions between transient tracers and Cant. The 
most commonly used transient tracers for Cant inference are 
chlorofluorocarbons (CFCs; CFC-11 or CFC-12). However, 
the determination of Cant using CFCs is problematic, 
especially for recently ventilated waters surveyed after the 
late 1990s, because the atmospheric concentrations of the 
CFCs are no longer increasing. The atmospheric concentra-
tion of CFC-11 has declined and that of CFC-12 has 
remained nearly constant since the late 1990s (Figure 1). 
The decrease in the atmospheric growth rate of CFC-12 is in 
sharp contrast to the rapidly increasing atmospheric con-
centration of CO2 (Figure 1, right hand panels) and limits 
the usefulness of CFC-12 as a proxy for Cant. In contrast, the 
atmospheric concentration of another tracer, SF6, increases 
(Figure 1), and an increasing number of ocean measurements 
of SF6 are becoming available [i.e., Law and Watson, 2001; 
Watanabe et al., 2003; Vollmer and Weiss, 2002; Tanhua et 
al., 2004, 2005; Bullister et al., 2006]. This raises the 
possibility of using SF6 measurements as a proxy for Cant 

for recently ventilated waters. The short atmospheric history 
Copyright 2008 by the American Geophysical Union. 
0148-0227/08/2007JC004416$09.00 

C04037 1 of 11  

https://0148-0227/08/2007JC004416$09.00


C04037 TANHUA ET AL.: USE OF SF6 TO ESTIMATE ANTHROPOGENIC CO2 C04037 

Figure 1. Comparison of atmospheric histories and increase rates of CFC-12, SF6 and CO2. Panel A; 
the atmospheric mixing ratio of CFC-12 (solid lines) and SF6 *100 (dashed line). Panel C; the growth rate 
of the two tracers in the atmosphere (SF6*100), the trends are smoothed through a 3-year running mean 
filter. The atmospheric histories for CFC-12 are from Walker et al. [2000] updated from http:// 
gaslab.ucsd.edu/pub/cfchist; for SF6 from Maiss and Brenninkmeijer [1998] updated and normalized to 
data from NOAA/ESRL Global Monitoring Division http://www.cmdl.noaa.gov/infodata/ftpdata.html. 
Panels B and D shows the atmospheric history and growth rate CO2 (from the Mauna Loa and Law Dome 
records). The projections for the future (i.e., after year 2006) concentrations and growth rates for CFC-12, 
SF6 and CO2 used in this study are included in the figures as gray lines. 

of SF6 on the other hand makes SF6 less suitable as a proxy 
for Cant for ‘‘older’’ waters. 
[4] In this paper we evaluate the relative magnitudes and 

sources of uncertainty that influence Cant estimation using 
CFC-12 and SF6. Specifically, we compare estimates of Cant 

using the transit time distribution (TTD) approach [Hall et 
al., 2002] based on measurements of CFC-12 and SF6, and 
we also compare those measurements with independent 
estimates calculated with the recently developed eMLR 
method [Friis et al., 2005; Tanhua et al., 2007]. 

2. Methods 
2.1. Tracer Measurements 
[5] The data presented here was collected from the mid-

latitude North Atlantic during the spring of 2004 [Tanhua 
et al., 2006]. The cruise track of Meteor cruise 60 Leg 5 was 
from Martinique to Lisbon, with a northernmost station at 
42�N, and the cruise therefore included sampling of both the 
subtropical and subpolar gyres, as well as the western and 
eastern basins (Figure 2). The data are archived at the 
Carbon Dioxide Information Analysis Center, Oak Ridge 
National Laboratory, USA, (http://cdiac.esd.ornl.gov/). The 
anthropogenic carbon content from this data set has been 

eMLRestimated using an empirical approach (Cant ), using meas-
urements made 23 years earlier. The resulting Cant estimates 
were compared to Cant estimates calculated from TTDs 
based on CFC-12 data [see Tanhua et al., 2007]. The latter 
study considered the full water column, but had a special 
emphasis on the problems of Cant detection in deep and 
intermediate water masses, in this paper we focus on the 
upper water column only (0–2000 m). 
[6] The determination of SF6 was performed by purge-

and-trap gas chromatography with electron capture detection 
[see Tanhua et al., 2005]. The analytical precision was 1.5%, 

�1the detection limit was estimated to be 0.05 fmol kg 
(�0.15 ppt). A sampling blank (determined from analyses 

of deep water samples in the Eastern Basin) of the same 
magnitude has been subtracted from the data. The SF6 data 
were calibrated against an air standard prepared at CMDL, 
Boulder, CO, and are reported on to the GMD2000 scale 
(http://www.cmdl.noaa.gov/hats/standard/SF6_scale.htm). 
[7] The CFC measurements were made on an analytical 

system similar to that described by Bullister and Weiss 
[1988] and are reported on the SIO98 scale [Prinn et al., 
2000]. The analytical precision was 0.7% for CFC-12, and a 

�1sampling blank of 0.007 pmol kg (determined as the 
median value of 18 deep water samples in the eastern basin) 
has been subtracted from the data. 
[8] To eliminate the effects of variable temperature and 

salinity on the tracer solubility, we report tracer concen-
trations as the equivalent dry air mole fraction for a gas 
phase in equilibrium with the seawater sample, pCFC or 
pSF6, i.e.: 

CCFC
pCFC ¼ : 

Fðq; SÞ 

Figure 2. Map of the stations occupied during the M60/5 
cruise in 2004 (black dots). The light gray line marks the 
position of the sections shown in Figure 6, where crosses 
marks every 1000 km distance. The dark gray line marks the 
sections shown in Figure 7. 
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[9] The salinity and temperature dependent solubility of 
the tracers, F(q, S), are calculated from their respective 
solubilities [Bullister et al., 2002; Warner and Weiss, 1985], 
and we have assumed an atmospheric pressure of 1 atmo-
sphere. In this way, tracer concentrations can be compared 
directly to their time-varying atmospheric histories [Maiss 
and Brenninkmeijer, 1998; Walker et al., 2000] so that 
‘‘tracer ages’’ and TTDs of the samples can be determined. 
We will use the term ‘‘tracer age’’ (t) for the age derived by 
simple matching of the tracer concentration (in ppt) to the 
atmospheric history of the tracer. 

2.2. The TTD Method to Determine Cant 

[10] In principle, the concentration, c, of a passive tracer 
in the ocean can be determined at any point, r, and time, t, 
with knowledge of the transit time distribution, TTD, and 
the input function of the tracer at the sea-surface, c0(t), 
according to 

Z1 

cðr; tÞ ¼  c0ðt t ÞGðr; t Þdt  

0 

where G(r,t) is the TTD. To use this equation to calculate 
Cant it is necessary to know the TTD at each interior ocean 
location as well as the surface history of Cant. Several 
different approaches have been used to estimate TTDs. For 
example, Thomas et al. [2001] used TTDs obtained from an 
ocean circulation model, whereas Hall et al. [2002, 2004] 
and Waugh et al. [2004, 2006] estimated TTDs from 
observations of the concentrations of CFCs and other 
transient tracers. 
[11] Here we use the implementation of Waugh et al. 

[2004, 2006], and we refer the reader to these papers for 
more details. In this implementation, the TTD at each 
interior location is assumed to be an inverse Gaussian 
function [Waugh et al., 2003], with the mean age (G) being 
equal to the width of the TTD (D). Waugh et al. [2004] 
demonstrated that TTDs with D = G is consistent with 
simultaneous observations of several different transient 
tracers. With the assumption of a fixed relation between G 
and D, the TTD can be defined by the observation of a 
single transient tracer (e.g., CFC-12 or SF6). The method 
thus allows for the effects of ocean mixing (D) to be  
considered in establishing the transfer function between 
the measured tracer concentration and Cant. 
[12] The atmospheric history of CO2 is well documented, 

and by treating concentrations in excess of 280 ppm as the 
anthropogenic perturbation, Cant can be viewed as a passive 
transient tracer. The transfer of inorganic carbon from the 
atmosphere to the ocean is dependent on the buffer-capacity 
of seawater at the time when the water was in contact with 
the atmosphere. By using the empirical relations between 
surface salinity and alkalinity [e.g., Brewer et al., 1986] this 
can be determined from inorganic carbon chemistry and a 
knowledge of salinity and temperature alone, and hence the 
oceanic Cant input function for each water sample can be 
determined. The TTD of each sample is determined from 
measurements of transient tracers, and the Cant can then be 
estimated using the above equation. The TTD method as 
used here implicitly assumes time-invariable air-sea equi-

librium of CO2, and any temporal changes in the CO2 

saturation state will cause systematic biases in the method. 

3. Uncertainties in the TTD Method of Cant 
Estimation 
3.1. Sources of Uncertainty and Error 
[13] In order to calculate the TTD of a water-sample, the 

measured tracer concentration has to be compared with the 
atmospheric history of the tracer. Errors can arise due to: 
analytical errors in the tracer measurements; uncertainties in 
the atmospheric history; uncertainties in the D=G ratio; and 
uncertainties in the initial degree of saturation of the tracers. 
We will discuss each of these error sources below. 
[14] The uncertainties in the historical atmospheric 

mixing ratios of the transient tracers CFC-11, CFC-12, 
CFC-113 and CCl4, as estimated from instrumental records 
as well as (for earlier periods) industrial production and 
emission data, are discussed and documented by Walker 
et al. [2000]. For the CFCs these uncertainties are less than 
4% for most of the period before reliable atmospheric 
measurements started, and are considerably less since then. 
The error in the instrumental record for SF6 atmospheric 
concentration is also relatively small, (  1%) (http:// 
www.cmdl.noaa.gov/infodata/ftpdata.html), but again, 
uncertainties of atmospheric levels are higher for periods 
where estimates need to reconstructed based on reported 
global sales, estimated emissions, atmospheric lifetimes, etc. 
[15] The concentration of tracers in seawater can be 

determined to high accuracy and precision. Realistic numb-
ers for combined calibration and analytical uncertainties are 
about 2% for CFC-12 and 4% for SF6 [e.g., Bullister et al., 
2006; Tanhua et al., 2004]. For samples with low concen-
trations, the relative error is generally higher so that the 
error is better represented by an absolute concentration. 
[16] A further potential source for bias in SF6 measure-

ments is contamination from any deliberate SF6 injections to 
the interior of the oceans. These have been conducted since 
the mid 1980s, and the tracer quantity and position of the 
releases are well documented [e.g., Watson and Ledwell, 
2000; Tanhua et al., 2004; Schmitt et al., 2005]. Obviously, 
care should be taken to avoid influence of any deliberately 
released SF6 on the Cant calculations. With this problem in 
mind, a community agreement was reached at the AGU 
Ocean Science Meeting in 2006 to avoid future use of SF6 
in large-scale sub-surface ocean releases. 
[17] Most often the surface tracer concentration is not 

fully in equilibrium with the atmosphere, particularly during 
winter time convection. Hence further uncertainty arises 
from the need to assume or estimate a degree of air-water 
equilibration (saturation) for the tracer at the time of water 
mass formation. This uncertainty in the assumed saturation 
is usually larger than the analytical error. It is known that the 
depth of the seasonal mixed layer as well as the rate of 
atmospheric increase influence the surface saturation of the 
tracers [e.g., Haine and Richards, 1995]. For instance, water 
masses that are formed during very deep convection have 
been reported to have CFC saturations as low as 60% 
[Wallace and Lazier, 1988]. Similarly, DeGrandpre et al. 
[2006] found under-saturated conditions in the Labrador 
Sea through the whole year with respect to CO2. Comparing 
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Figure 3. Errors in Cant calculations using the TTD 
method (in mmol kg 1). For these calculations, we have 
assumed 6% error in correctly assuming the saturation of 
the tracer and an analytical error of 4% or 0.1 ppt for SF6 
and 2% or 5 ppt for CFC-12, whichever of these two errors 
are the largest. These errors are color-contoured as a 
function of sampling year and tracer age (t) for the 
respective tracer. Panel A; calculated with CFC-12 data; and 
Panel B with SF6 data. The areas to the right of the black 
line are future projections of the error assuming a trend for 
the tracers as in Figure 1, as well as exponentially increasing 
Cant concentration. 

CFC measurements from the ocean interior with data 
simulated in an advection-diffusion model, Mecking et al. 
[2004] estimated initial saturations of CFC-12 ranging from 
80–100%, with the initial saturation being correlated with 
density. Similarly, by comparing the saturation of all surface 
water samples from a cruise in the Southern Ocean, Tanhua 
et al. [2004] found uncertainties in saturation of 5%. The 
combined error in determination of the tracer equilibrium 
concentration can thus be in the order of 10%, or larger for 
lower concentration samples. These errors will lead to errors 
in estimated Cant, particularly for time periods when the 
tracer concentration in the atmosphere has increased slowly 
(see below). 
[18] The TTD-method is dependent on an assumed shape 

for the TTD. In the case of the inverse Gaussian distribution 
that has been assumed here, the relation between the mean 
age and the width of the TTD, i.e., the D/G ratio, is critical. 
The effect of varying this ratio on Cant estimation has been 
demonstrated by Waugh et al. [2004], Figure 7. Although 
there are large differences in Cant for D/G ratio that vary 
from 0 to 1 (i.e., between a ‘‘no mixing’’ case and ‘‘more 
realistic’’ mixing), the difference between, for instance, 
ratios of 1.25 or 0.75 versus unity are relatively small (on 
the order of 1 mmol kg 1). 
[19] There are additional sources of uncertainty in the 

TTD approach to Cant estimation, including not accounting 
for possible anthropogenic effects on the biological or 
physical transport of carbon within the ocean interior, and 

the assumption of time-independent air-sea disequilibrium 
for CO2. Even though the saturation of Cant and CFC tracers 
have fundamentally different response to changes in tem-
perature [Thomas and England, 2002], a general warming 
(or cooling) of the oceans will not directly influence Cant 

estimates using the TTD method since temperature is 
accounted for. A potentially significant error could be 
introduced by changes in the air-sea equilibrium of CO2 

and tracers (a method allowing for time-variant air-sea 
disequilibrium of CO2 is demonstrated by Hall et al. 
[2004]). These uncertainties apply equally to the Cant 

estimates independent of the tracer (e.g., SF6 or CFC-12) 
used to calculate the TTD, and are not discussed further 
here. 

3.2. Time and Age-Dependence of Uncertainties 
[20] Due to variability in historical atmospheric growth 

rates, the magnitude of errors associated with most of the 
sources of uncertainty listed above will differ depending on 
which tracer is used (e.g., SF6 or CFC-12). Errors will also 
vary with the ‘‘age’’ of the water mass, and the time of 
sampling. The uncertainties in Cant estimates for the two 
tracers are plotted as a function of tracer age and year of 
sampling in Figure 3. The plot is based on an assumed 6% 
uncertainty in the saturation of the tracer. The analytical 
uncertainties is assumed to be 4% or 0.1 ppt for SF6 and 2% 
or 5 ppt for CFC-12 (whichever of the absolute or percent-
age error is the largest). 
[21] For this analysis we have also included uncertainty in 

the atmospheric history as given by Walker et al. [2000] for 
CFC-12, and an assumed error for SF6 of 0.005 ppt. We 
applied projections for the atmospheric concentrations of 
CO2 and the tracers as shown in Figure 1 in order to assess 
possibly future uncertainties. 
[22] Figure 3, top panel, shows that errors in Cant calcu-

lated from TTDs based on CFC-12 (Cant
F12) are high for 

‘‘young’’ samples that have been sampled recently (or will 
be sampled in the future). This is due to the reduced (or 
negative) atmospheric growth rate of CFC-12 since the mid 
1990s. There is also a band of larger errors for the ‘‘oldest’’ 
measurable tracer ages. These errors mainly arise from 
analytical uncertainty, in this case assumed to be 5 ppt 
which corresponds to a blank of roughly 0.03 pmol kg 1. 
This may be a worst-case scenario. 
[23] The situation for the error in Cant calculated with 

SF6TTDs based on SF6 (Cant ) is different (Figure 3, lower 
panel), with relatively low errors for ‘‘younger’’ waters but 
with analytical errors being more significant for ‘‘older’’ 
samples due to lower concentrations and lower analytical 
precision for SF6 compared to CFC-12. The reason for the 
absence of a band of high errors for old samples is due to 
the different way in which we have treated very low SF6 
concentrations: for CFC-12 it is often assumed (also for our 
analysis) that zero CFC-12 concentration equals zero Cant, 
whereas for SF6 we assigned samples with zero SF6 
concentration to ‘‘not available’’. The reason for the differ-
ent treatment is the significantly different length of the 
atmospheric histories of the two tracers. However, since 
the anthropogenic emissions of CO2 started over 150 years 
before emissions of CFC-12, Cant can potentially be present 
also in CFC-12 samples below the detection limit. In fact, 
the surface ocean imprint of Cant around 1940 (i.e., before 
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Table 1. List of Cruises From the Preliminary Release of the CARINA Database That Have Been Used for Our Analysis 

of Historical Saturation of CFC-12, See http://cdiac.ornl.gov/oceans/CARINA/Carina_inv.html; Carbon Dioxidea 

Expocode Chief Scientist CFC PI 

34AR19970805 H. Gronvall & J. Launiainen T. Tanhua 
74DI19970807 A. F. Rios D. Smythe-Wright 
32EV19910529 ? ? 
58GS20030922 T. Johannessen K.A. Olsson & E. Jeansson 
18HU19820228 R. Clarke, JL Reid, J Swift R. Weiss & D. Wallace 
18HU19920527 J. Lazier P. Jones 
18HU19930617 J. Lazier P. Jones 
18HU19931115 A. Clarke P. Jones 
18HU19940524 J. Lazier P. Jones 
18HU19941012 A. Clarke P. Jones 
18HU19970509 A. Clarke P.Jones & R. Gershey 
58JH19911106 J. Blindheim J. Bullister 
58JH19931107 J. Blindheim & F.Rey J. Bullister 
58JH19940723 J. Blindheim E. Fogelqvist & T.Tanhua 
58JH19941029 J. Blindheim & F. Rey J. Bullister 
58JH19951108 F. Rey J. Bullister 
58JH19961030 J. Blindheim & F. Rey J. Bullister 
58JH19970425 J. Blindheim & F. Rey J. Bullister 
58JH19990616 J. Blindheim & F. Rey J. Bullister 
06MT19941012 P. Koltermann & J. Meincke W. Roether 
06MT19941115 J. Meincke W. Roether & M. Rhein 
06MT19970517 W. Zenk & T. Mueller O. Plöhn  
06MT19970707 F. Schott M. Rhein 
06MT20040311 D. Wallace T. Tanhua 

aInformation Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, for data and more 
details. The year of sampling can be as characters 5–8 in the expocode. 

the use of CFCs) was in excess of 10 mmol kg 1. However, 
applying the TTD method to contemporary CFC data with a 
detection limit of 0.005 pmol kg 1, this error will only be 
about 2 mmol kg 1 Cant, due to the effects of mixing. 
[24] The uncertainty in the atmospheric history is of 

second order importance in comparison to analytical errors 
for the low concentration range of both tracers. For the 
recently ventilated samples, the estimate is dependent more 
on atmospheric history as determined by instrumental 
measured records of CFC-12/SF6, and these are very 
accurate (see above). 

4. Results From the North Atlantic 
4.1. Initial Saturation of the Tracers 
[25] We start our analysis with the uncertainty in Cant 

associated with uncertainty in the initial surface saturation 
of the tracer. During the M60/5 cruise, the average surface 
saturation for CFC-12 was 100% (standard deviation 3.8%), 
whereas for SF6 it was only 88% (standard deviation 7.5%). 
The difference is possibly associated with the difference in 
the contemporary atmospheric growth rates of the two 
tracers. To test this hypothesis we analyzed the mean 
saturation of CFC-12 for all the North Atlantic cruises in 
the GLODAP database [Key et al., 2004] as well as a 
preliminary version of the CARINA database (see Table 1 
for details). Even though the data were collected from 
cruises from various regions of the North Atlantic (includ-
ing the Nordic Seas and the Labrador Sea), and were 
sampled during various seasons, there is a tendency for 
CFC-12 to have been under-saturated during earlier cruises, 
and to be close to saturation for later cruises (Figure 4a). 
In fact, a 2nd order polynomial fit to the data resembles 
the shape of the atmospheric concentration over time for 

CFC-12 with a time-lag of 5 years (Figure 1a). To test 
this we plotted the best fit of the CFC-12 saturation from 
Figure 4a versus the atmospheric growth rate of CFC-12 
(Figure 1c) in Figure 4b. 
[26] The apparent inverse correlation between atmospheric 

growth rate and surface saturation for CFC-12 is presum-
able typical for other CFCs and SF6 as well. Typical gas-
exchange velocities can equilibrate shallow surface mixed 
layers with the atmosphere on timescales of weeks to 
months. In comparison, atmospheric growth (e-folding) 
timescales for these compounds were never less than 
several years which implies that the rate of gas transfer 
into shallow mixed layers is not the reason for this inverse 
correlation. The correlation is more likely associated with 
temporal trends in subsurface vertical gradients of the 
tracers in the context of deep mixing and/or mixing with 
sub-surface water. Specifically, it implies that the subsur-
face gradients of CFC-12 have become less steep as its 
atmospheric growth rates has decreased. In a deep-mixing 
scenario, this implies less dilution of surface CFC-12 levels 
by sub-surface waters entrained during convection. In an 
upwelling scenario, the surface layer CFC-12 is diluted to a 
lesser extent by upwelled water. 
[27] Figure 1 shows that the SF6 atmospheric growth rate 

has remained relatively constant over the last 20 years 
whereas the CFC-12 growth rate has decreased steadily over 
the same time period; this implies that SF6 surface satu-
rations are likely to have remained more constant than CFC-
12 saturations over the same period. We therefore calculated 
TTDs with SF6 data from M60/5 for a time-invariant surface 
saturation of 86%. Note that this value is very similar to the 
best fit CFC-12 saturation around 1990 at a time when the 
CFC-12 atmospheric growth rate was similar to the present-
day SF6 atmospheric growth rate. The TTDs based on SF6 
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Figure 4. Panel A: The per cruise mean saturation of CFC-12 from each of the North Atlantic cruises in 
the GLODAP [Key et al., 2004] and a preliminary version of the CARINA (http://cdiac.ornl.gov/oceans/ 
CARINA/Carina_inv.html, Table 1) databases. The combined data set consists of 57 independent cruises 
with CFC-12 data to the North Atlantic. The black line is a 2nd order polynomial fit to the data between 
1985 and 2000, constant saturation is assumed before and after these times (gray line). Panel B: The 
CFC-12 saturation as determined from the fit in panel A plotted versus the atmospheric annual growth 
rate of CFC-12 (Figure 1c) as black dots (gray dots for the time outside of the fit, where the saturation is 
set). Panel C: The SF6 ventilation year in each data point from the M60/5 cruise, assuming 86% 
saturation versus the saturation of CFC-12 determined by the best fit with the SF6 mean ages. Panel D: 
The CFC-12 saturation as determined from the fit in panel C plotted versus the atmospheric annual 
growth rate of CFC-12 (Figure 1c) as black dots (gray dots for the time outside of the fit, where the 
saturation is set). 

data were used to predict CFC-12 concentrations for the same 
water samples based on an assumption of time-invariant 
100% initial saturation, and the predicted CFC-12 concen-
trations were compared to measured values. Figure 4c shows 
the corresponding ratios of measured/predicted CFC-12 
versus the mean age of the water sample, and this ratio is 
also plotted versus the atmospheric growth rate in Figure 4d. 
If the SF6 based TTDs are accurate, then the measured/ 
predicted ratio of CFC-12 is an indication of the initial 
surface saturation of CFC-12. 
[28] These two lines of evidence, i.e., the historical 

CFC-12 data and the comparison of SF6 and CFC-12 data 
from the M60/5 cruise, suggest that the surface saturation of 
these tracers are inversely correlated with the atmospheric 
growth rate. Time-dependent saturation of CFC-12 and 
CFC-11 has been observed in the Labrador Sea [Azetsu-Scott 
et al., 2003, 2005], where the variations in saturation were 
correlated to different convection regimes in the Labrador 
Sea. A similar time-dependence for the saturation of CFC-11 
was found by Zhao et al. [2006, Figure 13] for the Labrador 
Sea from an ocean circulation model. 
[29] Hence for the calculations below we have assumed a 

time-varying saturation of CFC-12 which follows the solid 
line shown in Figure 4a, where the saturation for recent 

samples is set to 100% and for older samples to 86%. There 
are too few data to constrain the surface saturation with 
growth rate further back in time. We also use a time-
invariant saturation of 86% for SF6 since this is close to 
the measured saturation during 2004 and because the 
contemporary atmospheric growth rate of SF6 is similar to 
that of CFC-12 during the 1970s and 1980s. The assumed 
constant saturation of SF6 regardless of tracer age, is 
necessary due to a lack of historic data and justified by 
the almost linear increase of SF6 since about 1990. The 
influence of other, potentially important, factors including 
temporal variation in the depth of convection is not consid-
ered. However, as we will see below, even such a simple 
treatment of time-variable saturation improves the agree-
ment between Cant estimates calculated using CFC-12 and 
SF6. 

4.2. Distribution of Tracers and Cant 

[30] The TTD method as described above was used to 
estimate Cant from SF6 and CFC-12 measurements from the 
2004 North Atlantic cruise M60/5. In the Cant calculations 
shown below we use D/G = 1 and the above-described 
treatment of initial saturations of the tracers. Inevitable 
some samples will be ‘‘supersaturated’’ (i.e., will have a 
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Figure 5. Difference in anthropogenic carbon content from the M60/5 cruise calculated using the TTD 
method, based either on SF6 or CFC-12 measurements, plotted versus pCFC-12. The gray lines mark the 
mean difference in the range 100 to 450 ppt CFC-12. The right hand scale of the panels shows the CFC-12 
tracer age (t) corresponding to the pCFC-12 on the left hand scale. In panel Awe have assumed a constant 
saturation of 86% for both tracers, whereas in panel B we have assumed a time-dependent saturation for 
CFC-12 (the line in Figure 4a), and 86% saturation for SF6. 

saturation in excess of 86% for SF6, resulting in ‘‘negative [31] Figure 5 compares estimates of Cant calculated from 
SF6 F12ages’’), primarily close to the surface. Samples with dry air the SF6 (Cant ) and CFC-12 (Cant ) measurements. Panel (a) 

mole fraction equivalent for the tracer that are in excess of shows results calculated for the time-invariant saturation for 
contemporary values were therefore set to be ‘‘recent’’ (i.e., both tracers of 86%, whereas panel (b) presents results 
age = 0 y) and the Cant concentration was calculated from calculated with the time-dependent surface saturation of 

F12 SF6the contemporary atmospheric pCO2 of 2004. CFC-12. The difference between the Cant and Cant tends 
to zero in the surface waters because our approach forces 

Figure 6. West-east sections of the top 2000 m depth across the midlatitude North Atlantic (Figure 2, 
light gray line). Panel A shows the measured pSF6 concentration [ppt]; Panel B the measured 

SF6 �1pCFC-12 concentration [ppt]; Panel C the Cant concentration [mmol kg ]; Panel D shows the difference 
SF6 �1Cant [mmol kg ].F12 � Cant 
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Figure 7. South-north sections of the top 2000 meters depth across the midlatitude North Atlantic 
(Figure 2, dark gray line). Panel A shows the measured pSF6 concentration [ppt]; Panel B the measured 

SF6 �1pCFC-12 concentration [ppt]; Panel C the Cant concentration [mmol kg ]; Panel D shows the difference 
SF6 �1Cant [mmol kg ].F12 � Cant 

‘‘supersaturated’’ samples to have Cant values that are in 
equilibrium with contemporary atmospheric pCO2. For  
samples with pCFC-12 > 450 ppt, Cant

F12 is generally greater 
SF6than Cant , particularly for the time-invariant initial satura-

tion case (panel a). The tendency for Cant
F12 to be greater than 

SF6Cant for high pCFC-12 samples is significantly reduced 
when the time-dependent initial saturation of CFC-12 is 
considered (panel b). For samples with pCFC-12 values 
between 100 and 450 ppt, there is generally good agreement 

F12 SF6between Cant and Cant , with the mean difference being
�10.8 ± 3.4 and 0.4 ± 3.4 mmol kg for cases a) and b), 

respectively. The depth of the upper horizon where the two 
estimates agree closely (i.e., the pCFC-12 = 450 ppt 
isoline) is dependent on the local hydrography and corre-

�1sponds to Cant concentrations of about 40 mmol kg in 
2004. For older samples, i.e., samples with pCFC-12 < 

SF6 F12100 ppt, Cant is generally higher than Cant . The reason for 
this is two-fold; measurement uncertainties associated with 
very low pSF6 values; as well as the short atmospheric 
history of SF6. The difference between the Cant history and 
SF6 history is larger than that between Cant and CFC-12, 
making SF6 a poor proxy for Cant in older waters. 
[32] Figures 6 and 7 shows sections of pSF6, pCFC-12, 
SF6Cant , and the difference between the two Cant estimates 

SF6(Cant
F12 � Cant ), using the time-dependent initial saturation 

for CFC-12. As discussed above there is generally good 
agreement between the two estimates in the surface and 
below about 800 m, but there are larger differences in a 

subsurface layer. For the western basin CF
ant 
12 is up to 

�1 SF610 mmol kg higher than Cant in a subsurface layer 
between 200-500 m depth. However, for the Eastern Basin 
and in the northern part of section 2, the two Cant estimates 
are more consistent. The column inventory based on CFC-12 
data for the upper 800 m during the M60/5 cruise is generally 
larger than the SF6 based inventory (average �1 mol m�2), 
although at individual stations this difference can be as large

�2 as 6 mol m , i.e., up to roughly 6% of the total column 
inventory. The exception is the northernmost station (at 
42�N) where the SF6 based column inventory is larger by

�2about 3 mol m (Figure 7d). 

4.3. Uncertainty Arising From the D/G Ratio 
[33] We now explore the uncertainty associated with 

assuming a D/G ratio of 1 in the TTD calculations. We 
first compare the measured pSF6 versus pCFC-12 from the 
M60/5 cruise in Figure 8. The dashed-dotted gray line is 
the SF6/CFC-12 relation of the atmospheric history of these 
tracers, with selected time-markers indicated. All data 
points from the ocean would fall on this line in the 
extreme case of no mixing of waters with different ages 
(i.e., if D/G = 0). Clearly, the observations fall closer to a 
line that can be represented by assuming strong mixing 
within the ocean (i.e., D/G = 1), which is an indication that 
this ratio of mean age over the width of the TTD is realistic. 
The atmospheric histories of the two tracers are however not 
sufficiently different to allow exclusion of even stronger 
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Figure 8. The dry air mole fraction of SF6 versus the dry 
air mole fraction of CFC-12 for the M60/5 data set from 
year 2004 plotted as black dots. The gray dash-doted line 
is the atmospheric concentration of the two tracers over 
time, where a cross marks every 10-year. This line is equal 
to the expected relation between the two tracers in the 
ocean with assumption of no mixing (D G 
line is the oceanic relation if D G 

= 
= 

presented by Tanhua et al. [2007]. More information on the 
approach as well as a comparison between the TTD method 
(CFC-12) and the eMLR method using the same data set but 
focusing more on deeper layers are presented by Tanhua et 
al. [2007]. Importantly, the resulting estimates from the 
eMLR method are completely independent of transient 
tracer data. 
[36] This comparison reveals larger differences of Cant 

estimates between the two methods (eMLR versus TTD) 
than between the TTD method using the two tracers. 
Figure 10a show the difference between the eMLR and 
TTD derived estimates of Cant, and Panels B and C show 
box and whisker plots for all samples from M60/5. It is 
notable that there are a number of shallow samples for 
which there are large (�20 umol kg�1) discrepancies 
between the TTD and eMLR based methods, and that the 
spread of Cant estimates for the shallower samples is smaller 
for the TTD method (panel B), than for the eMLR method 
(panel C). This is most likely due to seasonal variations in 

= 0), the dashed carbon related properties such as oxygen, nutrients and DIC. 
= 0.5 (i.e., moderate These variations can affect estimates of Cant from the eMLR 

mixing) and the solid line is for the D G= = 1 (i.e., strong method, but are not directly effecting the TTD method. The 
mixing) case. For this plot we have assumed time-
dependent saturation of CFC-12, and constant 86% 
saturation of SF6. 

mixing, although a ratio of D/G = 1 was shown by Waugh et 
al. [2004] to be consistent with relations between several 
tracers. 
[34] The dependence of the calculated TTDs to variation 

of the assumed D/G ratio is different for SF6 and CFC-12, 
and this translates into differences in the resulting Cant 

estimates. Figure 9 shows the difference in Cant estimates 
based on SF6 and CFC-12 for different assumed values of 
the D/G ratio. The gray lines in the panels indicate the 
averaged difference in the tracer age interval for which there 
is good agreement between SF6 and CFC-12 based Cant 

estimates. The difference in Cant is generally relatively small 
for the three cases, indicating that the sensitivity to the D/G 
ratio for the Cant calculation is relatively small. The good fit 
for estimates based on D/G ratio of 1 is another indication 
that this indeed might be a reasonable approximation of 
ocean mixing. 

4.4. Comparison to eMLR Based Estimates 
[35] The so-called ‘‘extended Multiple Linear Regres-

sion’’ (eMLR) method for Cant estimates of Friis et al. 
[2005] uses multiple linear regressions of dissolved inor-
ganic carbon on repeated measurements of inorganic carbon 
and related hydrochemical properties. The coefficients of 
the two regressions are subtracted resulting in a new 
multivariate equation that predicts the differences in DIC 
between the two data sets that are not correlated with 
temporal changes of the underlying hydrochemical param-
eters. The interpretation is that natural variability of DIC 
between the two dats sets are compensated via the regres-
sion on hydrochemical parameters that are known to influ-
ence DIC (e.g., oxygen and temperature changes) whereas 
the remaining ‘‘unexplained’’ differences relate to changes 
in Cant (DCant) between the two surveys. The total Cant can 
then be estimated from DCant via an extrapolation method 

spread and the absolute values of the two Cant estimates are 
quite similar for deeper samples. It seems that the tracer-
based TTD method may be preferable to the eMLR method 

Figure 9. Difference in anthropogenic carbon content 
based either on SF6 or CFC-12 measurements (calculated 
using the TTD method) plotted versus depth for different 
assumptions on mixing. The data are from the M60/5 
cruise in 2004. The gray lines mark the mean difference in 
the CFC-12 concentration range of 100 to 450 ppt (see 
Figure 5). Panel A assumes a D/G ratio of 1.5; panel B 1.0; 
and panel C 0.5. 
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Figure 10. Comparison of Cant estimates using either the TTD method applied on SF6 data or the 
SF6 eMLR 1eMLR method. Panel A: The difference between Cant and Cant (mmol kg ) versus depth for all the 

data from the M60/5 cruise above 2000 m. Note the larger scale for the x axis compared to Figures 5 
SF6 eMLRand 9. Panels B and C are box and whisker plots of Cant and Cant , respectively, where the Cant 

concentrations (in mmol kg 1) are interpolated to standard depths (10 50 100:100:2000 m depth). Each 
box defines the lower and upper quartile of the data, the whiskers shows the extent of the rest of the 
data, with outliers marked with red crosses. 

in the upper part of the ocean that is strongly affected by 
seasonal variations. 

5. Conclusion 

[37] SF6 and CFC-12 based estimates of Cant using the 
TTD method have different sensitivities to uncertainties in 
the measurement of the tracer and to assumptions regarding 
the initial saturation of the tracer at the time of water mass 
formation. We have shown that the post-1980s reduction of 
the atmospheric growth rate of CFC-12 increases the 
uncertainty of Cant estimations based on CFC-12 for sam-
ples ventilated recently, although the effect on older waters 
is small. For data collected before the end of the 1990s (e.g., 
WOCE data and the GLODAP synthesis), the CFC-12 
growth rate was still sufficiently high to allow accurate 
determination of TTDs, and thus Cant. However, for more 
recent data, i.e., for pCFC-12 > 450 ppt, the uncertainty 
associated with the TTD estimation is rapidly increasing. 
[38] We have demonstrated an empirical relationship 

between atmospheric growth rate of CFC-12 and its mean 
surface saturation. Applying this time-dependency in the 
TTD calculation improves the agreement between SF6 and 
CFC-12 based estimates of Cant. 
[39] Data from a cruise in the midlatitude North Atlantic 

F12 SF6show generally positive values of Cant -Cant for recently 
ventilated samples, i.e., samples with higher Cant concen-
trations. This is most likely due to errors in the assumption 
of initial saturation, which will affect Cant

F12 estimates con-
SF6 SF6siderable more than Cant estimates, Figure 3. As Cant is less 

sensitive to uncertainties in the assumed initial saturation, 
this estimate is likely a better basis for Cant estimation in the 
upper water column. For older samples, i.e., with pCFC-12 

SF6 F12< 100 ppt, Cant is systematically higher than Cant . This 
likely relates to difficulties associated with making accurate 
measurements of very low SF6 concentrations in the deep 
ocean, as well as a larger difference between the Cant and 
SF6 histories than between the Cant and CFC-12 histories. 

[40] Since the CFC-12 can to date be determined with 
higher precision and accuracy, it tends to produce more 
precise Cant estimates for samples with pCFC < 450 ppt. As 
the atmospheric concentration of CFC-12 is now decreas-
ing, and is predicted to continue to do so, we have 
demonstrated that CFC measurements benefit from comple-
mentary SF6 measurements, and that the SF6 data provide a 
better basis for tracer based Cant estimations in recently 
ventilated waters. 
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