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ABSTRACT 

The evolution of the polar vortex in a shallow-water model with time-independent topographic forcing and 
relaxation to a constant equilibrium state is investigated for a range of topographic forcing amplitudes. For small 
forcing amplitudes there are only weak disturbances on the edge of the polar vortex and the vortex area remains 
constant, whereas for large amplitudes there are cycles where the vortex breaks down and then reforms (and 
zonal winds vacillate between westerlies and easterlies). Analysis of the mass within potential vorticity (PV) 
contours shows that these vacillations are due to out-of-phase variations in the mass fluxes across PV contours 
due to the relaxation and to hyperdiffusion. During the strong vortex stages Rossby wave breaking produces a 
cascade of PV to small scales, and these small-scale features are eventually eliminated by hyperdiffusion. This 
causes a decrease in the mass within the high PV contours and ultimately the destruction of the vortex. In 
contrast, during stages with no vortex there are very weak PV gradients, weak Rossby wave activity, and little 
cascade of PV to small scales. The vortex, and PV gradients, are then reestablished by the mass fluxes due to 
the diabatic relaxation term. These results suggest that the horizontal PV structure may play an important role 
in the vortex breakdown and recovery in three-dimensional models and in the real stratosphere. 

1. Introduction 

In recent years there has been a great deal of interest 
in the variability in the stratosphere–troposphere system, 
and the possibility that the stratosphere may influence 
the modes of variability in the troposphere. In particular, 
several studies have shown a link between the strength 
of stratospheric wintertime polar vortices and surface 
climate and weather (e.g., Thompson and Wallace 1998; 
Baldwin and Dunkerton 1999, 2001; Thompson et al. 
2002). This has renewed interest in internal modes of 
variability within the stratosphere and the possibility 
that the cycles in the breakdown and recovery of the 
polar vortices, which influence the troposphere, could 
be due to processes internal to the stratosphere. 
There is a long history of modeling studies showing 

that the stratosphere has its own modes of internal var-
iability (e.g., Holton and Mass 1976; Schoeberl and 
Strobel 1980; Yoden 1987; Christiansen 1999; Scott and 
Haynes 2000). In these studies it was shown that var-
iability in the stratosphere, in particular vacillations be-
tween westerlies and easterlies, can occur even when 
the wave forcing at the bottom of the model is time 
independent. In these models (and in the real strato-
sphere) the breakup of the polar vortex, and the tran-
sition of westerlies to easterlies, occurs first in upper 
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levels and then migrates down through stratosphere. The 
interpretation of the vacillations in the majority of the 
above studies was in terms of the transition to easterlies 
leading to the formation of critical lines, which prevent 
further upward propagation of the planetary waves and 
allow the upper levels of the vortex to redevelop via 
thermal processes. 
Here we examine the internal variability within a sin-

gle-layer shallow-water model of the stratosphere with 
time-independent topographic forcing. Although pre-
vious studies have used single layer models to examine 
a variety of aspects of stratospheric dynamics (e.g., 
Juckes and McIntyre 1987; Juckes 1989; Salby et al. 
1990; O’Sullivan and Salby 1990; Waugh 1993; Yoden 
and Ishioka 1993; Norton 1994; Polvani et al. 1995; 
Sobel and Plumb 1999; Thuburn and Lagneau 1999), 
we are unaware of any studies documenting and ex-
amining the internal variability in such models. Our 
calculations show that for large amplitude topographic 
forcing there are cycles in which the vortex breaks down 
and then rebuilds, and correspondingly the winds at high 
latitudes vacillate between westerlies and easterlies. The 
existence of vacillations in a single layer model means 
that deep vertical structure and the above vertical shield-
ing mechanism are not necessary for breakdown and 
recovery cycles of polar vortices and that horizontal 
aspects of the flow may also be important. 
The shallow water model and diagnostics used are 

described in the next section. The main results are pre-
sented and discussed in section 3, while sensitivity ex-

q 2004 American Meteorological Society 

mailto:waugh@jhu.edu


15 MAY 2004 R O N G  A N D  W A U G H  1175 

FIG. 1. Latitudinal variation of (a) height and (b) zonal winds for 
initial conditions (solid curves). The variation of the equilibrium 
height field hE is also shown in (a) (dot-dashed curve). 

periments are briefly discussed in section 4. Concluding 
remarks are in section 5. 

2. Model and diagnostics 
a. Model equations 
The shallow-water model used is the same as in Pol-

vani et al. (1995) and Sobel and Plumb (1999). The 
model equations are 

zt 5 2= · (vza) 1 G, (1) 

1 
d 5 2  ¹2(v · v) 1 k · = 3 (vz ) 2 g¹2(h 1 h ), (2)t a B2 

ht 5 2= · (hv) 1 H, (3) 
where relative vorticity z, divergence d, and thickness 
h are the prognostic variables: z 5 z 1 f is the absolute a 

vorticity ( f is the Coriolis parameter); v 5 (u, y) is the 
velocity; hB is the height of the bottom topography; H 
represents a mass source; and G dissipation of vorticity. 
The mass source is given by 

H 5 (hE 2 h)/tE, (4) 
where hE(f) is a prescribed zonally symmetric equilib-
rium height field (dot-dashed curve in Fig. 1a). This 

relaxation is used as a crude model of radiative relax-
ation, and hE represents the radiative equilibrium state. 
The spectral transform method is used to numerically 

solve the equations, and the dissipation term is scale-
selective sixth-order hyperdiffusion; that is, 

G 5 n¹6z, (5) 

where n is the hyperdiffusion coefficient. The majority 
of calculations presented here use T42 truncation with 
n 5 5 3 1026 m6 s21, which corresponds to damping 
time of around 5 h for total wavenumber 42. However, 
calculations have been performed at T85 truncation with 
n 50 times smaller (1 3 1025 m6 s21). 
The topography hB used is of the form 

2t /t [(f2f ) /Df]2B 0hB 5 HB(1 2 e ) cos(l)e , (6) 
where HB is the amplitude of the topography, tB 5 5 
days, and the topography is confined latitudinally within 
a channel of Df 5 14.148 (half-amplitude width of 2760 
km) centered at f0 5 458. These values are approxi-
mately the same as used by Polvani et al. (1995). In the 
calculations presented below, HB varies between 1000 
and 3000 m (undisturbed thickness h0 5 8000 m). 
All simulations use the same zonally symmetric initial 

conditions (Fig. 1). This initial flow is the same as used 
in Polvani et al. (1995) and is characteristic of the winter 
middle stratosphere. There is a westerly jet of 50 m s21 

at 558N, a zero wind line around 238N, and weak east-
erlies at the equator and in the Southern Hemisphere. 

b. Diagnostics 
The simulations are examined in terms of zonal mean 

quantities and budgets as well as potential vorticity (PV) 
based Lagrangian diagnostics. 
The zonal mean zonal momentum equation of the 

shallow-water system may be written as (Thuburn and 
Lagneau 1999) 

1 ghhBl 1 
u 2 y z* 5 = · F 2 2 (h9u9)t a th cosf ah cosf h 

1 * 1 u9H9 1 X , (7)
h 

where = ·F 5 [1/(a cosf)](F (f) cosf)f and F (f) 5 
2(hy)9u9 cosf is the shallow-water version of the Elias-
sen–Palm flux. Here an overbar represents zonal mean, 
a prime departure from the zonal mean, and asterisk and 
overbar the mass-weighted zonal mean: hBl is the de-
rivative of bottom topography along the zonal direction, 
and X represents the nonconservative forcing contrib-
uted by the hyperdiffusion. 
In the calculations examined below the last three 

terms on the right-hand side of Eq. (7) are small com-
pared with the others, and the zonal wind tendency is 
a balance between the advection of absolute vorticity 
by the mean meridional flow and the net convergence 
of the eddy transport of momentum [where, following 
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Thuburn and Lagneau (1999), the topographic term is 
interpreted as the convergence of the vertical eddy trans-
port]. As pointed out by Thuburn and Lagneau (1999), 
Eq. (7) is the shallow water analog of the transformed 
Eulerian mean zonal momentum equation in isentropic 
coordinates for a three-dimensional atmosphere (An-
drews et al. 1987). 
As the flow is often far from zonal symmetry, the 

above Eulerian diagnostics can be hard to interpret. It 
is therefore advantageous to use Lagrangian diagnostics. 
We consider here several diagnostics that are based on 
the PV distribution. The PV of the system (1)–(3) is 
q 5 za /h, with governing equation 

dq G 2 Hq
5 , (8)

dt h 

where G and H are defined in Eqs. (5) and (4). 
A common way to diagnose the evolution of polar 

vortices, both from meteorological analyses and nu-
merical simulations, is to calculate the area enclosed by 
PV contours. This area is usually expressed as an equiv-
alent latitude fE(q) 5 sin21[1 2 A(q)/(2pa2)], where 
A(q) is the area of the PV contour and a the radius of 
the earth. Together with the equivalent latitude, we use 
a measure of the strength of the jet surrounding the 
vortex to describe the vortex evolution. The horizontal 
wind speed is averaged along each PV contour, and the 
maximum value is defined as the jet strength ujet . 
We also use PV contours to calculate modified La-

grangian mean (MLM) diagnostics of the flow (Sobel 
and Plumb 1999; Thuburn and Lagneau 1999; Neu 
2002). The mass within the PV 5 q contour is given by 

M(q, t) 5 h(q, t) dA, (9)E 
PV.q 

where dA is the area element in the spherical coordi-
nates. Combining this with Eq. (8) the mass tendency 
can be expressed as (Sobel and Plumb 1999; Thuburn 
and Lagneau 1999; Neu 2002) 

]M G H 
5 dl 2 q  dl  1 H dA.  (10)

]t E |=q| E |=q| EE  
PV.q 

The first term on the right-hand side corresponds to the 
mass flux across the contour due to hyperdiffusion, the 
second to the mass flux across the contour due to dia-
batic processes, and the final term to the mass source/ 
sink within (north of ) the contour. In the calculations 
examined below the area integral of mass sink over the 
vortex is small compared to the other two terms, and 
the change in mass is a balance between the diabatic 
and hyperdiffusion mass fluxes. 

3. Results 

We examine here a series of calculations with relax-
ation time tE 5 10 days and topographic forcing am-

plitude HB between 1000 and 3000 m. Figure 2 shows 
the temporal evolution of the equivalent latitudes of PV 
contours, fE (q), together with the jet strength, ujet , for 
six different HB . The thick solid curves show the equiv-
alent latitude of the PV 5 2.2 3 1028 m21 s21 contour, 
which lies within the vortex edge region. Comparison 
of the different panels shows that the general charac-
teristics of the flow varies as HB is increased, with a 
dramatic change around HB 5 2000 m. For HB , 2000 
m the vortex area and the ujet remain roughly steady 
after the initial (50 day) adjustment period. However, 
for HB $ 2000 m there are periods when the vortex is 
severely disrupted and decreases in size. For HB 5 2000 
to 2500 m this vortex disruption occurs intermittently, 
but for HB 5 3000 m there are roughly periodic cycles 
of high PV loss and deceleration of ujet followed by 
recovery of high PV and acceleration of ujet . 
Although the vortex area is roughly constant for HB 

, 2000 m, there are still large-scale disturbances along 
the vortex edge (see Fig. 3a). For larger amplitude the 
disruption of the vortex is more severe, and the vortex 
core breaks up and reforms (Figs. 3b,c). For HB 5 3000 
m, the high PV remnants are completely destroyed be-
fore a new vortex core rebuilds. 
We now examine in more detail the HB 5 3000 m 

calculation, which shows the clearest and most dramatic 
vortex breakdown–recovery cycles. We first examine 
the relative roles of the topographic forcing and relax-
ation during these cycles using a zonal mean framework. 
Figure 4 shows the zonal mean zonal wind u and the 
dominant terms in the zonal momentum equation (7). 
As expected from the plot of fE (q) and ujet (Fig. 2f ), 
u shows four distinct cycles of westerlies and easterlies 
at high latitudes, corresponding to the vortex formation 
and breakdown. The cycles are not as clear in wind 
tendency u t (Fig. 4b). However cycles of deceleration 
and acceleration can be seen, with the periods of ac-
celeration coincident with the vortex rebuilding states, 
and there is a phase shift of between 20 and 40 days 
between periods of acceleration and those with strongest 
westerly winds. 
The bottom three panels of Fig. 4 show y z* , thea 

divergence of the horizontal momentum flux = ·F/ 
(h cosf), and the topographic forcing term 2ghhBl / 
(ah cosf). The sum of these three terms matches u t 
very closely (not shown). In midlatitudes, the topog-
raphy term and horizontal momentum flux oppose each 
other, and it is the small residual of these two terms, 
which approximately equals the horizontal PV eddy flux 
h ŷ q̂ * (Thuburn and Lagneau 1999), that acts to reduce 
the zonal wind. Although the topographic forcing ini-
tiates the deceleration of u this is largely compensated 
by y z* (Coriolis torque) and the horizontal momentum a 

flux (which is approximately the relative vorticity flux). 
Each term is relatively constant with time, and the 

cycles in u t (and hence in u) are due to subtle changes 
in the balance between these terms. Careful examination 
of Figs. 4c–e shows that there are similar cycles in the 
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FIG. 2. Temporal evolution of equivalent latitudes fE(q) (black curves) and ujet (gray curves) for calculations with t 5 10 days andE 

HB 5 (a) 1000, (b) 1500, (c) 2000, (d) 2250, (e) 2500, and (f ) 3000 m. Equivalent latitudes fE are shown for PV at intervals of 0.25 3 
8 m21 s2 8 m21 s21102 1 with bold curves corresponding to q 5 2.5 3 102 . 

magnitude of all three terms around 608N. The mag-
nitude of the horizontal momentum flux and topography 
term are at a minimum, and y z* a at a maximum around 
the periods with easterlies at high latitudes (weak vor-
tex), for example, around days 60, 170, and 280. 
We now examine this calculation using the MLM 

framework. Figure 5a shows the temporal evolution of 
mass within PV contours. As in the equivalent latitude 
plot (Fig. 2f ), the mass within contours shows four cy-
cles of vortex breakdown and recovery. (Note, for easier 
comparison with Fig. 2, the mass in Fig. 5a is plotted 
with decreasing values on the y axis.) The contributions 
to the change in mass of a PV contour in the vortex 
edge (thick curve in Fig. 5a) from the each of the terms 

on the right-hand side of Eq. (10) are shown in Fig. 5b, 
and the sum of the three terms is shown in Fig. 5c. 
Figure 5b shows that the mass source/sink within the 
vortex makes only a minor contribution, and the major 
balance is between the mass flux across the contour due 
to diabatic forcing (which increases the mass) and that 
due to the hyperdiffusion (which decreases the mass). 
These two mass fluxes are roughly out of phase; that 
is, when the mass flux due to diabatic forcing is large, 
the flux due to hyperdiffusion is small. The shaded re-
gions in Fig. 5c show the stages when hyperdiffusion 
exceeds the diabatic forcing, and match the stages in 
the upper panel when there is rapid decrease in the mass, 
that is, stages when the vortex breaks up. Similarly, the 
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FIG. 3. Polar stereographic maps of PV for calculations with HB 5 (a) 1500, (b) 2250, and (c) 3000 m at times shown. The darkest shade 
inside the vortex corresponds to q 5 3 3 1028 m21 s21, lightest shading in the surf zone to q 5 1.5 3 1028 m21 s21, and exterior contour 
is q 5 0.5 3 1028 m21 s21. 
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FIG. 4. Time–latitude variations of (a) u , (b) u t, (c) y z* a , (d) = ·F/(h cosf), and (e) 2ghhBl / 
(ah cosf). Contour interval is (a) 5 m s21, and (b)–(c) 2 m s22, with positive values shaded. 
Contours for winds less than 260 m s21 are not plotted in (a). A 15-day smoothing has been 
applied to fields in (b)–(e). 
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FIG. 5. Mass budget for the HB 5 3000 m calculation. (a) Temporal evolution of the mass 
enclosed by PV contours, for q 5 0, 0.1, . . . , 4.9, and 5.0 3 1028 m21 s21. The thick curve 
corresponds to the q 5 2.2 3 1028 m21 s21 contour. (b) Terms on the right-hand side of Eq. (10) 
for q 5 2.2 3 1028 m21 s21 contour: diabatic flux (thick light curve), hyderdiffusive flux (thick 
dark curve), and source within contour (thin curve). (c) Total cross-PV contour mass flux. A 15-
day smoothing has been applied to fields in (b) and (c). 

unshaded periods correspond to stages when there is 
growth of the vortex. 
The hyperdiffusive mass flux is the result of sporadic 

transport of high PV out from the main vortex by Rossby 
wave breaking and the subsequent cascade to small 
scales by large-scale stirring. The filamentary structures 
produced by the wave breaking and stirring are even-
tually dissipated by the hyperdiffusion. Hence, during 
stages when the hyperdiffusive flux dominates the bal-
ance, there are fine-scale filamentary PV structures (see, 
e.g., day 75 in Fig. 6). In contrast, the diabatic mass 
flux is the result of the larger-scale height relaxation, 
which tends to increase the PV in polar regions and 
form zonally symmetric PV contours. During the stages 

when the diabatic forcing dominates, there are very few 
small-scale PV anomalies and large scaler features are 
building in polar region (see, e.g., day 90 in Fig. 6). 
The processes producing the two fluxes operate on 

different time scales. The filamentary transport out of 
the vortex occurs over a vortex turnover time (several 
days), whereas the radiative buildup occurs over the 
longer relaxation time scale. As a result the mass flux 
varies more rapidly during periods when the hyperdif-
fusive mass flux dominates; that is, compare the shaded 
region in Fig. 5c with nonshaded regions. 
The general features of each of the vortex break-

down–recovery cycles shown in Fig. 5 are similar, but 
there are differences in the duration of the weak/no vor-
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FIG. 6. As in Fig. 3c except for days 50 to 90: PV contours shown for q 5 1.5, 2.0, 2.2, 2.5, and 3.0 (31028 m21 s21) with 2.2 3 1028 

m21 s21 contour in bold. 

tex period. Examination of PV maps during these pe-
riods shows that these differences are related to the ex-
istence and evolution of small, coherent vortex rem-
nants. When the main vortex breaks up, the region of 
high PV is not totally destroyed; rather small coherent 
remnants survive, for example Fig. 6. These remnants 
are greatly disturbed by the forcing and also interact 
with each other, but can persist for over 30 days. The 
persistence of these remnants appears to delay the re-

covery of the vortex, with rapid rebuilding of the vortex 
(over 10–15 days) occurring when the remnants are 
sheared out and destroyed. 
Although vortex breakdown–recovery cycles occur 

regularly through the first 400 days of the HB 5 3000 
m calculation, this is not the case for longer times. As 
shown in Fig. 7, a strong, robust vortex with high central 
PV develops around days 400 to 500, and the vortex 
vacillations stop. The exact cause for this is not known, 
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FIG. 7. As in Fig. 2f except for 1100 days. 

but could be related to spurious effects due to the hy-
perdiffusion. Previous studies of two-dimensional vor-
tex flows have shown that hyperdiffusivity induces spu-
rious convergences near regions of high vorticity gra-
dients at the edge of a vortex, which pump vorticity 
across the edge and increase the peak vorticity values 
at the center of the vortex (Mariotti et al. 1994; Yao et 
al. 1995). A similar increase of PV at the center of the 
vortex is seen in our calculations, and this may be the 
cause of the development of a very strong vortex that 
can resist the wave forcing and does not break down. 

4. Sensitivity experiments 
Above, we examined the vortex evolution for varying 

HB with tE 5 10 days and focused on the large amplitude 
limit for which polar vortex vacillations occur. We now 
briefly describe the sensitivity of the vortex evolution, 
in this large HB limit, to different aspects of the cal-
culations. In particular, we examine under what con-
ditions vortex breakdown–recovery vacillations occur. 
The sensitivity to the initial flow conditions is ex-

amined by performing calculations with HB 5 3000 m 
and tE 5 10 days, but different initial conditions. Al-
though the details of the flow vary with initial vortices, 
vacillations still occur for the different initial vortices. 
In particular, vacillations occur when the vortex is spun 
up from no initial flow (not shown). 
There is, however, larger sensitivity to the relaxation 

time tE . Although vacillations occur for HB 5 3000 m 
and tE 5 10 or 15 days (not shown), they do not occur 
for this amplitude forcing and tE 5 5 or 20 days. As 
shown in Figs. 8a and 8c, when tE 5 20 days the vortex 
is initially destroyed and does not rebuild, whereas when 
tE 5 5 days the vortex does not break up. These different 
vortex evolutions can be understood in terms of the 
change in the balance between the diabatic and hyper-
diffusive mass fluxes. While the time scale of variations 
in, and magnitude of, the hyperdiffusive fluxes are sim-

ilar for all values of tE , this is not the case for the 
diabatic mass flux. For longer tE the diabatic mass flux 
is smaller and varies less rapidly than for smaller tE 

(see Figs. 8b,d). As a result the variation in the mass 
fluxes is dominated by the diabatic flux for short tE, 
and the vortex does not break down. In the other limit 
the diabatic fluxes are weak and the vortex does not 
recover from the initial destruction of the vortex. 
Note that, although the vortex area is approximately 

constant in both the tE 5 5 days and HB 5 3000 m 
calculation and the tE 5 10 days and HB 5 1500 m 
calculation shown earlier, the MLM balance is very dif-
ferent in the two calculations. In the small HB, long tE 

case the vortex is approximately in steady state with 
only small deformations and is close to the equilibrium 
state, and the different mass flux terms are consistently 
small (not shown). This is in contrast to the large, rap-
idly varying fluxes shown in Fig. 8d. 
When HB 5 3000 m, vacillations occur for tE equal 

to 10 and 15 days but not for tE 5 5 or 20 days. We 
have performed several additional calculations to ex-
amine the range of tE for which vortex breakup–recov-
ery occur for smaller values of HB . As  HB 5 3000 m 
is insufficient to break up the vortex when tE 5 5 days, 
it follows that vortex breakup (and vacillations) do not 
occur for smaller values of HB and tE 5 5 days. (We 
have not examined whether the vortex breaks up for 
larger HB .) However it is possible that vortex breakup– 
recovery can occur for tE 5 20 days for smaller HB. 
This is indeed the case for HB 5 2500 m, where vortex 
breakup–recovery cycles occurs for 10 days # tE # 20 
days. For HB 5 2000 m the topographic forcing is too 
weak to break up for vortex, and vacillations occur only 
for HB . 2000 m. The above calculations indicate that 
there is only a limited region of HB –tE parameter space 
for which there is the right balance between relaxation 
and topographic forcing required for vortex breakdown– 
recovery cycles. 
Returning to the tE 5 10 calculations, we now examine 
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FIG. 8. Temporal evolution of the mass enclosed by PV contours and mass fluxes due to diabatic, hyperdiffusion for calculations with 
(a), (b) T42 resolution and tE 5 20 days; (c), (d) T42 resolution and tE 5 5 days; (e), (f ) T85 resolution and tE 5 10 days; HB 5 3000 
m in all calculations. Contour interval and line styles as in Fig. 5. 

the impact of varying numerical resolution. The above 
calculations were performed at only modest spatial res-
olution (T42 and n 5 5 3 1026 m6 s21) and it is important 
to verify the robustness of the results for higher reso-
lutions. Figures 8e,f show the MLM budgets for a HB 5 
3000 m calculation at T85 resolution and 50 times smaller 
hyperdiffusion coefficient (n 5 1 3 1025 m6 s21). As in 
the T42 case (Fig. 5), cycles of vortex breakdown and 

recovery can be seen. However, the cycles are more ir-
regular and the complete shattering of the high PV is not 
seen. The details of the vortex cycles are therefore sen-
sitive to the resolution. 
Examination of PV maps (not shown) indicates that 

the weaker breakups and recovery in the higher-reso-
lution calculation are due to the existence of stronger 
and more persistent vortex remnants. With the smaller 
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hyperdiffusion coefficient the vortex remnants diffuse 
less and, as discussed earlier, strong vortex remnants 
prevent the rebuilding of a large vortex and lead to a 
longer weak vortex stage. This is the case after the first 
breakup where vortex remnants produced during the 
breakup persisted for over 50 days, and the large area 
of high PV did not fully recover until day 120. 

5. Concluding remarks 
The calculations above demonstrate that internal 

modes of variability exist in a shallow-water model of 
the stratosphere. For large amplitude topographic forc-
ing this internal variability is characterized by cycles of 
polar vortex destruction and recovery, with correspond-
ing cycles of high-latitude westerlies and easterlies. 
These wind vacillations are reminiscent of those in mod-
els with multiple vertical levels (e.g., Holton and Mass 
1976; Schoeberl and Strobel 1980; Yoden 1987; Chris-
tiansen 1999; Scott and Haynes 2000). 
The vacillations in the shallow-water model are 

caused by out of phase variations in the mass fluxes 
across polar PV contours due to hyperdiffusion and 
those due to diabatic relaxation. The mass flux due to 
hyperdiffusion is largest during the breakup of the vor-
tex, whereas the flux due to diabatic relaxation is largest 
during the vortex recovery. During the vortex breakup 
filamentary structures are produced and there is a cas-
cade of PV to small scales, where it is eventually elim-
inated by hyperdiffusion (resulting in a decrease in mass 
with vortex PV contours). In contrast, during the vortex 
recovery there are few filamentary structures, and the 
mass flux is dominated by the increasing flux due to the 
diabatic relaxation. 
These polar vortex vacillations can be understood in 

terms of variations in PV gradients and Rossby waves. 
When there is no vortex, there are weak gradients and 
hence weak Rossby waves, as PV gradients are required 
to sustain Rossby waves. As a result there is little dis-
ruption of the contours/flow, and the vortex strengthens 
under radiative effects. This strengthening leads to an 
increase in PV gradients, which allows Rossby waves 
to develop. When these Rossby waves reach sufficiently 
large amplitude, wave breaking occurs producing a cas-
cade of PV to small scales and increasing PV gradients 
at the vortex edge. The wave breaking leads to the even-
tual destruction of the vortex (and PV gradients). Rossby 
wave activity, and in particular wave breaking, then 
decreases and the vortex rebuilds. 
Although the discussion of vacillations in previous 

models with multiple vertical levels has focused on the 
transition from westerlies to easterlies and the devel-
opment of critical lines, it is possible that some of these 
simulations may also be interpreted in terms of PV gra-
dients. When there are strong westerlies, there are strong 
PV gradients at the edge of the polar vortex that favor 
upward propagation of Rossby waves. However, the for-
mation of easterlies (in upper levels) implies weak PV 

gradients and equatorward rather than upward wave 
propagation. The reduced wave activity in upper levels 
then allows the radiative recovery of the vortex. 
The existence of polar vortex vacillations in a shal-

low-water model shows that the shielding of vertical 
propagation by easterlies is not a necessary element for 
vacillations. It also suggests that the horizontal flow 
structure may play an important role in the vortex break-
down and recovery in three-dimensional models and in 
the real stratosphere. Analysis of the vortex breakup and 
recovery in three-dimensional models and meteorolog-
ical analyses from a PV perspective may provide insight 
into whether this is the case. 
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