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[1] The stratospheric climate and variability from simulations of sixteen chemistry‐
climate models is evaluated. On average the polar night jet is well reproduced though 
its variability is less well reproduced with a large spread between models. Polar 
temperature biases are less than 5 K except in the Southern Hemisphere (SH) lower 
stratosphere in spring. The accumulated area of low temperatures responsible for polar 
stratospheric cloud formation is accurately reproduced for the Antarctic but underestimated 
for the Arctic. The shape and position of the polar vortex is well simulated, as is the 
tropical upwelling in the lower stratosphere. There is a wide model spread in the frequency 
of major sudden stratospheric warnings (SSWs), late biases in the breakup of the SH 
vortex, and a weak annual cycle in the zonal wind in the tropical upper stratosphere. 
Quantitatively, “metrics” indicate a wide spread in model performance for most 
diagnostics with systematic biases in many, and poorer performance in the SH than in the 
Northern Hemisphere (NH). Correlations were found in the SH between errors in the 
final warming, polar temperatures, the leading mode of variability, and jet strength, and in 
the NH between errors in polar temperatures, frequency of major SSWs, and jet 
strength. Models with a stronger QBO have stronger tropical upwelling and a colder 
NH vortex. Both the qualitative and quantitative analysis indicate a number of common 
and long‐standing model problems, particularly related to the simulation of the SH 
and stratospheric variability. 

Citation: Butchart, N., et al. (2011), Multimodel climate and variability of the stratosphere, J. Geophys. Res., 116, D05102, 
doi:10.1029/2010JD014995. 
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significant impact on the surface climate and its variability 
[e.g., Gillett and Thompson, 2003; Baldwin et al., 2007]. 
This study assesses and compares the abilities of a multi-
model ensemble of chemistry‐climate models (CCMs) to 
reproduce the climate, circulation, and associated variability 
of the stratosphere, over the period 1980–1999. The aim of 
the assessment is to describe in detail the current state‐of‐
the‐art in the modeling of stratospheric climate. For this 
study the focus is on the overall performance of the multi-
model ensemble, rather than on the performance of any 
individual model. In particular, the parts of the stratospheric 
climate system where the models suffer from common 
biases are highlighted while the spread in model behavior, 
relative to the sampling uncertainty of a given parameter, is 
used to diagnose differences in model performance across 
the ensemble. 
[3] Assessment of the current state‐of‐the‐art in strato-

spheric climate modeling is important for a number of rea-
sons. First, it is important to understand how deficiencies in 
the representation of stratospheric climate might influence 
projections of stratospheric ozone. Second, several authors 
[e.g., Baldwin et al., 2003; Baldwin et al., 2007; Shaw and 
Shepherd, 2008] have advocated the inclusion of a well‐
resolved stratosphere in models used for a variety of pur-
poses including seasonal and decadal prediction and the 
simulation of longer‐term changes in surface climate. Deci-
sions about the inclusion of a well‐resolved stratosphere in 
predominately tropospheric climate and earth system models 
are better informed by a clear assessment of the strengths and 
weaknesses of current stratosphere‐resolving models. 
[4] Multimodel assessments of the ability of stratosphere‐

resolving general circulation models (GCMs) have occurred 
at frequent intervals during the last decade. The GCM‐
Reality Intercomparison Project (GRIPS) of the Strato-
spheric Processes and their role in Climate (SPARC) core 
project of the World Climate Research Programme (WCRP), 
assessed short runs of 13 GCMs [Pawson et al., 2000]. This 
intercomparison found that the main climatological features 
of the stratosphere were well simulated by most models but 
that significant cold biases existed throughout the extra-
tropical lower stratosphere and were particularly acute in the 
Southern Hemisphere (SH). Additionally, there was a large 
divergence in the simulation of the annual cycle in the zonal 
mean temperature of the lower stratosphere. 
[5] The performance of longer simulations from eight 

CCMs, which included coupled stratospheric chemistry, was 
reported by Austin et al. [2003]. In this intercomparison, 
models which incorporated a nonorographic gravity wave 
drag (NOGWD) parameterization were found to have much 
reduced temperature biases in both the northern and south-
ern high latitudes compared both to models without a 
NOGWD parameterization and to the models in the Pawson 
et al. [2000] intercomparison. Austin et al. [2003] also 
demonstrated that the relationship identified by Newman 
et al. [2001] between polar temperatures and the meridio-
nal heat flux at 100 hPa could be used to evaluate the model 
responses to tropospheric wave forcing. 
[6] More recent intercomparisons of CCMs have been 

conducted as part of the SPARC Chemistry Climate Model 
Validation (CCMVal) activity [Eyring et al., 2005]. In 
CCMVal phase 1 (CCMVal‐1), 13 CCMs, run with near 
identical climate and chemical forcings, were compared by 

Eyring et al. [2006]. In particular they found significant 
improvements in the simulation of both global mean and 
high‐latitude temperatures relative to the earlier studies, 
though large differences among models still existed in the 
temperature and meridional heat flux diagnostics. Eyring 
et al. also pointed to a significant bias in the mean breakup 
date of the Southern Hemisphere polar vortex in most of the 
models. Further aspects of the dynamics of the CCMVal‐1 
models such as the driving of the Brewer‐Dobson circula-
tion and the threshold temperatures for polar stratospheric 
cloud (PSC) formation were assessed by Butchart et al. 
[2010a]. 
[7] The present study builds on these earlier assessments 

and compares 16 CCMs run with near identical climate and 
chemical forcings for CCMVal phase 2 (CCMVal‐2). The 
simulation of the stratospheric climate is assessed in more 
detail than in the previous studies using a larger ensemble of 
CCMs and a more extensive range of diagnostics. In addi-
tion to examining the mean stratospheric climate and sea-
sonal cycle, a detailed comparison of the model’s abilities to 
model intraseasonal variability, stationary waves, tropical 
variability, and annular mode dynamics is made. The per-
formance of the individual models is explored by Butchart 
et al. [2010b]; here the focus is on the multimodel mean 
climatology together with an assessment of the generic 
model biases and uncertainties (i.e., model spread). In the 
present study reference to individual model results is gen-
erally excluded. Nonetheless the individual model results 
shown in the figures are identified by the model names for 
cross referencing with the companion study of Butchart 
et al. [2010b]. 

2. Models and Simulations 

[8] The 16 models used in this study are listed in Table 1, 
along with their horizontal and vertical resolution, top level, 
and references. For a more extensive description of these 
models, see Morgenstern et al. [2010]. The models vary 
greatly in their representation of key processes and sophis-
tication though all include coupled stratospheric chemistry. 
Many of the models have been involved in one or more of 
the previous assessments but may have undergone signifi-
cant modification and development even in the relatively 
short period between the CCMVal‐1 and CCMVal‐2 pro-
jects (see Morgenstern et al. [2010] and appropriate refer-
ences in Table 1). The models considered here are those that 
uploaded dynamical diagnostics from the CCMVal‐2 ref-
erence simulations [Eyring et al., 2008] to the central data 
base at the British Atmospheric Data Centre (BADC) 
though, because the focus is on dynamical processes, only 
results from models formulated using the primitive equa-
tions or using a representation of the fluid equations of 
motion at least as accurate as the primitive equations, are 
used. Also note that two of the models have an upper 
boundary below 1 hPa (see Table 1) and hence for those 
diagnostics presented in section 3 as vertical profiles the 
curves for these two models stop below 1 hPa. 
[9] Eyring et al. [2008] defined two reference simulations: 

REF‐B1 and REF‐B2. The “historical” REF‐B1 simulation 
covers the period 1960–2005. This simulation generally 
includes all anthropogenic and natural forcings based on 
observed changes in the abundance of trace gases (i.e., 
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Table 1. Resolution, Number of Levels, and Upper Boundary of the Models Used in This Studya 

Model Horizontal Resolution, Number of Levels/Top Level Reference 

AMTRAC3 ∼200 km (cube sphere grid), 48 L, 0.017 hPa Austin and Wilson [2010] 
CAM3.5 1.9° × 2.5°, 26 L, 3.5 hPa Lamarque et al. [2008] 
CCSRNIES T42 (2.8° × 2.8°), 34 L, 0.012 hPa Akiyoshi et al. [2009] 
CMAM T31 (3.75° × 3.75°), 71 L, 0.00081 hPa Scinocca et al. [2008]; de Grandpré et al. [2000] 
CNRM‐ACM T42 (2.8° × 2.8°), 60 L, 0.07 hPa Déqué [2007]; Teyssèdre et al. [2007] 
E39CA T30 (3.75° × 3.75°), 39 L, 10 hPa Dameris et al. [2005]; Garny et al. [2009]; 

Stenke et al. [2009] 
EMAC T42 (2.8° × 2.8°), 90 L, 0.01 hPa Jöckel et al. [2006] 
GEOSCCM 2° × 2.5°, 72 L, 0.015 hPa Pawson et al. [2008] 
LMDZrepro 2.5° × 3.75°, 50 L, 0.07 hPa Jourdain et al. [2008] 
MRI T42 (2.8° × 2.8°), 68 L, 0.01 hPa Shibata and Deushi [2008a, 2008b] 
Niwa_SOCOL T30 (3.75° × 3.75°), 39 L, 0.01 hPa Schraner et al. [2008]; Egorova et al. [2005] 
SOCOL T30 (3.75° × 3.75°), 39 L, 0.01 hPa Schraner et al. [2008]; Egorova et al. [2005] 
UMSLIMCAT 2.5° × 3.75°, 64 L, 0.01 hPa Tian and Chipperfield [2005, 2006] 
UMUKCA_METO 2.5° × 3.75°, 60 L, 84 km Morgenstern et al. [2008, 2009]; Hardiman 

et al. [2010b]; Osprey et al. [2010] 
UMUKCA_UCAM 2.5° × 3.75°, 60 L, 84 km Morgenstern et al. [2008, 2009]; Hardiman 

et al. [2010b]; Osprey et al. [2010] 
WACCM 1.9° × 2.5°, 66 L, 5.96 × 10−6 hPa Garcia et al. [2007] 

aThe models are listed alphabetically by name. For grid point models the horizontal resolution is given as the latitude×longitude grid spacing in degrees. 
For spectral models the horizontal resolution is given as the triangular truncation of the spectral domain, with the equivalent grid point resolution in brackets. 

greenhouse gases (GHGs) and ozone depleting substances 
(ODSs)) solar variability, volcanic eruptions, and sea surface 
temperature and sea ice distributions (SSTs) (see Table 1 of 
Eyring et al. [2008]). In addition, several models included an 
extra artificial zonal momentum forcing in the equatorial 
stratosphere to constrain the model to reproduce the observed 
quasi‐biennial oscillation (QBO) over this period. These 
models are therefore not strictly “free‐running” GCMs but 
are still considered in this assessment. 
[10] REF‐B2 is a self consistent simulation from the past 

into the future (1960–2100). Observed changes in the con-
centrations of GHGs and ODSs are prescribed for the past 
period. For the future, GHG amounts follow the A1B sce-
nario given by Nakicenovic and Swart [2000], and the 
surface halogens follow the adjusted A1 scenario given by 
World Meteorological Organization [2007]. External for-
cings such as solar variability and volcanic eruptions are not 
included to maintain consistency in the time series from the 
past to the future. Similarly, to avoid a possible disconti-
nuity in the SST forcing between the past and future, the 
SSTs are taken from ocean‐atmosphere model simulations 
(without the coupled chemistry) following the same A1B 
GHG scenario, apart from the Canadian Middle Atmosphere 
Model (CMAM) which includes a fully coupled ocean. 
Further details of the design of the REF‐B1 and REF‐B2 
simulations and the rationale behind these simulations is 
given by Eyring et al. [2008] and Morgenstern et al. [2010]. 
[11] The main focus of this study is on the period 1980– 

1999 when the global stratosphere was extensively observed 
by instruments on artificial satellites and space ships. In 
addition, high‐quality stratospheric (re)analyses of dynam-
ical quantities [Swinbank and O’Neill, 1994; Kalnay et al., 
1996; Uppala et al., 2005] are available for all or part of 
this period. The emphasis will be on the REF‐B1 simula-
tions which were specifically designed to provide the best 
possible representation of the stratospheric climate and 
variability over the period 1960–2006. However, because of 
the lack of emissions data for the simulations after 2000 
[Eyring et al., 2008], only the first 20 years of the exten-

sively observed period from 1980 to the present day is 
analyzed from the simulations. In addition comparison with 
the corresponding period from the REF‐B2 simulations will 
be used for some of the diagnostics to help elucidate the role 
of SST variability. 

3. Qualitative Assessment 

3.1. Polar Night Jet 

[12] The starting point for this assessment is the mean 
structure and interannual variability of the stratospheric 
polar night jet (PNJ). Two aspects are considered: the 
strength of the stratospheric PNJ and its latitudinal position 
(Figure 1). The model ensemble performs extremely well in 
these diagnostics in the Northern Hemisphere (NH), though 
not quite so well in the SH. The NH jet is generally both 
well positioned and of the correct strength in almost all 
models, and the multimodel mean is very close to the 
reanalysis data. Apart from three obvious outliers, the 
spread in the jet strength is slightly larger than the obser-
vational range with no systematic bias toward strong or 
weak jets. The one outlying model with too weak of a jet 
also positions the jet about 20° too close to the equator 
(note the other incorrectly positioned jet at 10 hPa is almost 
certainly a consequence of that particular model having an 
upper boundary below 1 hPa). 
[13] In the SH winter, clear biases exist for the majority of 

the models in the upper stratosphere. The model ensemble 
fails to capture the observed tilt of the jet toward the equator 
between 10 and 1 hPa, with most models producing a jet 
with an untilted profile. In the upper stratosphere there is a 
large spread in the strength of the SH midwinter jet pro-
duced by the models with a systematic bias toward jets 
which are too strong. Only one model produces a jet which 
is too weak. In contrast, below 10 hPa the spread in the jet 
strength is smaller in the SH than in the NH. 
[14] The interannual variability of the wintertime extra-

tropical stratospheric circulation is mainly characterized by 
variations in the strength and location of the PNJ. This 
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Figure 1. Zonal wind speed and latitude of the jet maxima (top) of the Northern Hemisphere (NH) 
December to February (DJF) climatology and (bottom) of the Southern Hemisphere (SH) June to August 
(JJA) climatology in the REF‐B1 simulations. Data are based on climatological means for the models, 
ERA‐40 and NCEP data from 1980 to 1999 and on the Randel et al. [2004] climatology that re-
presents the time period 1992–1997. The grey shading indicates a 95% confidence interval for the 20‐year 
mean ERA‐40 climatology based on a t‐distribution. Where an ensemble of simulations is available for a 
model, quantities are calculated for the ensemble mean zonal‐mean zonal wind field. 

variability is again assessed by considering the maximum in 
the interannual standard deviation of the zonal wind and its 
latitude. Because the maximum interannual variability occurs 
in high latitudes in the NH winter but is displaced toward 
midlatitudes in the SH winter (e.g., see Figures 5 and 11 of 
Butchart and Austin [1998]), results are shown in Figure 2 
for the regions 45–90°N, and 30–80°S. On average the 
variability is not as well simulated by the models as the mean 
climate. For the NH winter, the observations show maximum 
variability close to the climatological mean jet maximum. 
All the models fail to capture the equatorward tilt with height 
for the maximum variability, and in two models the maxi-
mum is displaced to the lower middle latitudes in the upper 
stratosphere. There is also a wide spread among the models 
in the amplitude of the jet variability with several obvious 
outliers, most of which have too much variability especially 
in the upper stratosphere. Only one model exhibits a distinct 
lack of variability compared to the observations. 
[15] For the SH winter, the observations show maximum 

variability on the equatorward side of the jet, fairly close to 
the region of the QBO. Most of the models show variability 
that is too weak and located too far poleward compared to 
observations. 

[16] The nature of the variability of the PNJ can be further 
isolated by applying an Empirical Orthogonal Function 
(EOF) analysis to the extratropical zonal‐mean zonal wind 
[e.g., Feser et al., 2000; Black and McDaniel, 2009]. Here 
an EOF analysis is applied at 50 hPa. By considering all 
months, this analysis captures seasons when the variability 
maximizes: January to March in the NH and mid‐October to 
mid‐December in the SH [Thompson and Wallace, 2000]. In 
general, the models capture this seasonality reasonably well 
though the period when there is large variability is extended 
in several of the models compared to the reanalysis (not 
shown). 
[17] In both the reanalysis and the models, the extratropical 

variability of the zonal‐mean zonal wind in the stratosphere 
can be mainly described by two modes with the first mode 
dominating. In the reanalysis data the leading mode explains 
87% of the variance in the NH. In the SH, both modes 
contribute, explaining 59% and 35% of the variance, 
respectively. The leading mode describes the variations in 
the strength of the eastward PNJ while the second mode 
represents the meridional shift of the jet. Moreover, because 
theses two leading modes describe the same two processes 
(i.e., variations in the jet strength and a meridional shift of 
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Figure 2. Location and amplitude of the maximum interannual standard deviation of the zonal‐mean 
zonal wind (top) in the NH in DJF poleward of 45°N and (bottom) in the SH in JJA between 30 and 
80°S. Data are based on the period 1980–1999 for the models and ERA‐40. Where an ensemble of simu-
lations is available for a model, quantities are calculated for the ensemble mean interannual zonal wind 
standard deviation field. 

the jet, respectively) in both the observations and in all the 
models, meaningful comparisons can be made. 
[18] The eigenvalues of the first mode of variability 

(Figure 3) indicate that for the NH this mode explains a 
similar amount of the variance in the models as in the 
reanalysis data, although there is a large intermodel spread. 
The model ensemble broadly reproduces the structure of the 
leading EOF and is particularly successful in reproducing 
the structure of the second EOF (Figure 4). 
[19] In the SH, a more significant bias can be identified 

with the eigenvalue of the leading mode generally much 
larger for the models than for the reanalysis data (Figure 3), 
indicating that on average there is too much variance in the 
strength of the model PNJs. This large variance is accom-
panied by an overall equatorward bias of the leading EOF 
pattern in the SH (Figure 4). These results contrast with 
those for the midwinter interannual variability shown in 
Figure 2 where the model variability is generally too weak 
and too far poleward compared to the reanalysis. The dif-
ferences are a consequence of EOF analysis being domi-
nated by the variability in the late winter and spring. 

3.2. Polar Temperatures Biases and PSC Threshold 
Temperatures 

[20] Figure 5 shows the climatological temperature biases 
over the polar cap in the winter and spring seasons in the 

NH and SH. Eyring et al. [2006] highlighted the contrast 
between the upper and lower stratosphere in the CCMVal‐1 
ensemble which remains in the CCMVal‐2 ensemble ana-
lyzed here. In the upper stratosphere most models lie within 
the range of temperatures shown in the different analyses in 
both hemispheres, though there is a large intermodel spread. 
In the lower stratosphere, where the range of the analyses is 
much smaller, strong contrasts exist between the two 
hemispheres, with a clear cold bias for most of the models in 
the SH spring and a more vertically confined cold bias 
between 300 and 100 hPa in the NH spring. In the mid-
winter seasons, the model ensemble generally performs 
better than in the spring seasons, although there is a cold 
bias below 200 hPa in the SH. 
[21] High‐latitude temperature biases can have a large 

impact on the formation and occurrences of PSCs in the 
models which are critical for the accurate simulation of polar 
ozone loss [e.g., Austin et al., 2010a]. Following Pawson 
et al. [1999] and Austin et al. [2003], the potential for 
PSC formation in the models and ERA‐40 reanalysis is 
estimated by calculating for each day the percentage of the 
horizontal area of the hemisphere where the 50 hPa daily 
mean temperatures poleward of 60° are below the nitric acid 
trihydrate (NAT) and ice PSC formation thresholds (195 K 
and 188 K, respectively). These daily percentage areas are 
then accumulated over the course of the winter and spring 
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~~ 

Figure 3. Eigenvalue of the leading mode of variability of 
the 50 hPa zonal‐mean zonal wind (m2 s−2) for the (top) NH 
and (bottom) SH. Numbers in brackets (tick labels of the x‐
axes) indicate the fraction of the total variance explained by 
the leading mode. Error bars 2Dl indicate the sampling pffiffiffiffiffiffiffiffiffi 
error determined after North et al. [1982]: Dl = 2=N 
where N is the sample size. With N = 60, a conservative 
estimate of the effective sample size is used considering 
long persistence (2 months) in the stratosphere and weak 
zonal wind variations during 50% of the year. The EOF 
analysis was carried out for the NH (SH) 50 hPa zonal‐mean 
zonal wind anomalies poleward of 45°N (S). Monthly mean 
fields for all months from 1980 to 1999 are included with 
seasonal cycle and linear trends removed. Data are also 
weighted with the square root of the cosine of latitude. 

(92 days from July to September in the SH and 90 days from 
December to February in the NH) to provide, for that year, 

ANAT) and ice (Aice)an estimate of the amount of NAT ( 

tion of one model which had a large cold bias in the NH 
winter (cf. Figures 5 and 6). An important caveat to these 
conclusions is, however, the known difficulties [e.g., 
Manney et al., 2003, 2005a, 2005b] in deriving PSC 
quantities from global assimilation data and the dependence 
on the analyses or reanalysis dataset used [Austin and 
Wilson, 2010]. 

3.3. Stationary Waves 

[23] At each altitude in the extratropical troposphere and 
stratosphere the climatological stationary wave field (i.e., the 
zonally asymmetric part of the climatological mean circula-
tion) is observed to have a well‐defined peak in latitude. For 
the geopotential the latitude of this peak is generally well 
simulated by the model ensemble during December to 
February (DJF) in the NH, and September to November 
(SON) in the SH (see Figure 7, top). 
[24] The models have more difficulty in simulating the 

stratospheric stationary wave amplitude (Figure 7, bottom) 
with a tendency for the waves to be too weak in the NH 
winter and a large model spread in amplitudes in the SH 
spring. The bias in the NH winter extends throughout the 
year resulting in a relatively weak seasonal cycle of sta-
tionary planetary wave amplitude (see Figure 8, which 
shows the seasonal cycle at 10 hPa). In the SH the amplitude 
of the seasonal cycle is too large and peaks too early for 
many of the models. The differences in the seasonal timing 
in the SH are the main reason for the large spread in the 
simulations seen in Figure 7. For many of the models, the 
peak stationary wave is weaker in the NH than in the SH, in 
contrast to the observations. 
[25] The structure of the polar vortex is reflected in the 

stratospheric stationary wavefield when decomposed into its 
dominant wave‐1 component, which governs the location of 
the center of the vortex relative to the pole, and its weaker 
wave‐2 component, which further governs the orientation 
and distortion of the vortex. Figure 9 (top) shows in polar 
coordinates the amplitude and phase of these components 
for the 50–70° latitude climatological stationary wave at 
10 hPa, for the NH and SH peak periods (the wave‐2 
amplitude is multiplied by a factor of four for graphical 
display). The amplitude biases in the figure are consistent 
with Figures 7 and 8. In the observations, the NH wave‐1 
component leads to a polar vortex centered off the pole 
between 0 and 30°E. Most of the models simulate this. The 
SH wave‐1 component is more poorly simulated, corre-
sponding to the fact that the orientation of the Antarctic 
polar vortex varies significantly among the models. The 
wave‐2 component in both hemispheres is more variable 
among the models. 
[26] A measure of the distortion of the vortex from a simple 

shifting off the pole is given by the ratio of the wave‐2 

~ 

~ 

~ 

~ 

PSCs in units of %‐days. to wave‐1 amplitudes which in the observations is about 
Aice (Figure 6, 

ANAT 

Aice and 
ANAT the spread between the models is small in the SH. In 

[22] In the Antarctic, the multimodel mean 25% in the NH and 10% in the SH (see Figure 9, bottom). 
grey bars) agrees well with the ERA‐40 estimate, but the This ratio is generally well simulated in the NH, with a 
multimodel mean is significantly smaller than the moderate bias toward small values, but is generally over-
ERA‐40 estimate over the same period. For both estimated in the SH, suggesting that the SH vortex in the 

models is unrealistically distorted from circularity. 

~~ 

contrast, in the Arctic there are large differences in the 
simulation of these quantities (Figure 6, right). In general, 3.4. Stratospheric Response to Wave Driving 

ANAT Aicethe models simulate lower values of and than [27] Probably the most prominent feature of the strato-
those derived from the ERA‐40 reanalysis with the excep- spheric response to wave driving is the Brewer‐Dobson 
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Figure 4. Regression patterns (m s−1) of the (top) first and (bottom) second mode of variability of the 50 
hPa zonal‐mean zonal wind determined for regions poleward of 45°; (left) SH and (right) NH. 

circulation and associated transformed Eulerian mean 
residual circulation (v*, w*) in the models [Andrews et al., 
1987, chap. 3; Hardiman et al., 2010a, equations (22) and 
(23)]. A useful measure of the overall strength of this 
overturning meridional mass circulation is the mass flux 
entering the stratosphere deduced from the residual vertical 
velocity, w*, just above the tropical tropopause [Butchart 
and Scaife, 2001]. In the REF‐B1 simulations the latitu-
dinal distributions of w* at 70 hPa and between 40°S and 
40°N are remarkably similar to that derived from the ERA‐
Interim reanalysis (not shown) and also the UKMO analy-
ses (see thick dashed line in Figure 2 of Butchart et al.  
[2006]), though in the models w* is more symmetric 
across the equator. All but one of the models accurately 
reproduce the locations of the “turn‐around latitudes” where 
w* is zero (i.e., the latitudes where the tropical upwelling 
changes to extratropical downwelling) and the annual cycle 
in the integrated upward mass flux between these turn‐
around latitudes was also generally well reproduced. 
[28] On average the annual mean tropical upwelling mass 

fluxes at 70 and 10 hPa in the REF‐B1 simulations agree 
with the mass fluxes derived from the ERA‐Interim 
reanalysis (Figure 10, black bars, see caption for details), 
with the standard error in the multimodel mean less than the 
interannual variability in the analyzed mass fluxes (not 
shown). Following Butchart et al. [2010a], corresponding 
“Downward Control” [Haynes et al., 1991] estimates of 
the upwelling mass fluxes are shown by the grey bars in 
Figure 10 (again see caption for details) and agree reason-
ably well with actual mass fluxes derived from the residual 

vertical velocities w* shown by the black bars. Apart from 
in one outlying model, parameterized orographic gravity 
wave drag (OGWD) contributes significantly to the down-
ward control estimate (for the five models that supplied 
OGWD data) and, on average, accounts for 21.1% of the 
driving of the upwelling at 70 hPa decreasing to 4.7% at 
10 hPa (Figure 10). At 70 hPa the resolved waves ac-
counted for 70.7% (71.6% at 10 hPa) and NOGWD 7.1% 
(10.9% at 10 hPa) of the driving, again with the NOGWD 
contribution averaged only over the four models which 
provided these diagnostics. In general, however, there was a 
wide spread between the models in the contributions from 
the different types of wave drag (i.e., drag from the resolved 
waves, OGWD and NOGWD). At 70 hPa the contributions 
from the resolved waves ranged from 51.0% to 102.7% 
(74.7% if the one outlying model is excluded) while the 
range for OGWD and NOGWD was 2.0 to 40.9% and −3.4 
to 16.8%, respectively. 
[29] For each model the ratio of the upwelling (as calcu-

lated from w*) at 10 hPa to that at 70 hPa (weighted by the 
multimodel mean at each altitude) provides a measure of the 
net entrainment out of the tropical pipe in the lower 
stratosphere with respect to the multimodel mean [Neu and 
Plumb, 1999]. When there is no mixing from midlatitudes 
into the tropics the ratio reduces to a measure of the hori-
zontal transport across the subtropical barrier. In the models 
the ratio ranges from 90% to 115% of the multimodel 
average (Figure 10b, see caption for details) indicating much 
less spread between models than is obtained from tracer‐
based measures of subtropical transport [Neu et al., 2010]. 
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Figure 5. Climatological mean temperature biases for (top) 60–90°N and (bottom) 60–90°S for the (left) 
winter and (right) spring seasons. The climatological means for the models, ERA‐40 and NCEP data from 
1980 to 1999 and for UKMO from 1992 to 2001 are included. Biases are calculated relative to ERA‐40 
reanalyses for 1980–1999. The grey (yellow) area shows a 95% confidence interval for the 20‐year mean 
(10‐year mean for UKMO) from the ERA‐40 (NCEP and UKMO) reanalyses based on a t‐distribution. 

Most likely this is a consequence of differences in the rel- [31] The forcing from upward propagating waves also 
ative leakiness of the tropical pipes in the models. affects the polar stratosphere. One manifestation of this 
[30] For all the tropical upwelling diagnostics presented forcing is the approximate correlation between the eddy 

above broadly similar conclusions were obtained if the meridional heat flux (a proxy for the upward flux of wave 
REF‐B2 rather than the REF‐B1 simulations were used, activity) at 100 hPa averaged over a band between 40° and 
suggesting that the conclusions for the multiyear mean 80°N (40°–80°S) during January and February (July and 
upwelling are not sensitive to the choice of SST forcing August) and the subsequent temperature of the polar cap at 
data. 50 hPa in February and March (August and September), first 
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Figure 6. Mean (1980–1999) for (left) the Antarctic and (right) the Arctic of the seasonally accumulated 
area at 50 hPa where daily temperatures are (top) below 195 K (approximate threshold temperature for 
NAT formation) and (bottom) below 188 K (approximate threshold temperature for ice formation). 
Dashed black line is for ERA‐40 reanalysis (1980–1999). The units are the percentage of the hemisphere 
where the daily temperature is below the threshold multiplied by the duration in days. 

Figure 7. Latitudinal location and value of the maximum amplitude of the stationary wavefield (left) for 
the NH DJF climatology and (right) for the SH SON climatology. Data are based on climatological means 
for the models, ERA‐40 and NCEP data from 1980 to 1999. The stationary wave amplitude is defined as 
the zonal root‐mean square of the zonally asymmetric climatological geopotential height. Cubic spline 
interpolation is used to determine the latitude of the maximum and its value from the gridded data. 
The black dashed curve is the mean of all the model curves. 
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Figure 8. Seasonal variation of the maximum amplitude of the (left) NH and (right) SH 10 hPa clima-
tological stationary wave. Data are based on climatological means for the models, ERA‐40 and NCEP 
data from 1980 to 1999. Cubic spline interpolation is used to determine the maximum value, as in 
Figure 7. The black dashed curve is the mean of all the model curves. 

Figure 9. (a) Phase in degrees and amplitude (contour interval 200 m), in polar coordinates, of wave‐1 
(circles) and wave‐2 (diamonds) 10 hPa DJF stationary waves for the NH. The wave‐2 amplitude has 
been multiplied by a factor of four. (b) As in Figure 9a, for the SH SON. (c) Ratio of wave‐2 to  
wave‐1 amplitude at 10 hPa for the NH DJF. (d) As in Figure 9c, for the SH SON. Data are based on 
climatological means for the model REF‐B1 simulations, ERA‐40 and NCEP data from 1980 to 1999. 
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Figure 10. Annual mean upward mass flux averaged from 1980–1999 for the REF‐B1 simulations, 
ERA‐Interim reanalysis averaged from 1989–2009 and UKMO analyses from 1992–2001. Upwelling cal-
culated from w* is shown by black bars. Upwelling calculated by downward control is split into contri-
butions from resolved waves (dark grey), orographic gravity wave drag (OGWD) (grey), and 
nonorographic gravity wave drag (NOGWD) (light grey). OGWD and NOGWD are shown combined 
for the GEOSCCM and MRI model. For some models and for the ERA‐Interim reanalysis only the 
resolved wave contributions are shown. In the CMAM, NOGWD produces a negative upwelling and 
so cancels some of the upwelling produced by the OGWD and the resolved waves. This cancellation 
is shown by diagonal lines. The black horizontal lines show the multimodel mean and the intermodel stan-
dard error. The interannual standard error for the ERA‐Interim reanalysis is shown by the unshaded part 
of the bar with the horizontal line at the midpoint being the multiyear mean. Values shown at (a) 70 hPa 
and (b) 10 hPa. The numbers above the bars in Figure 10b are the ratio for that model of the upwelling 
mass flux (normalized by the multimodel mean) at 10 hPa to upwelling mass flux (normalized by the 
multimodel mean) at 70 hPa. 

noted by Newman et al. [2001] using reanalysis data for 
the NH. 
[32] A succinct way of comparing and evaluating the 

different models is to plot the parameters of linear fits to 
scatterplots of 100 hPa meridional heat flux versus 50 hPa 
temperatures (Figure 11, see caption for details). The 
intercept of the regression line (x axis) gives an indication of 
the temperature that the polar cap would have if no resolved 
wave‐driving were present. The slope of the regression line 
(y axis) gives an indication of the sensitivity of the strato-
spheric temperature response to changes in the wave forcing 
or, more particularly, the flux of wave activity from the 
troposphere. 
[33] In the NH, the multimodel mean linear fit parameters 

are within sampling uncertainty of the linear fit parameters 
in the ERA‐40 reanalysis, with only one outlier. In general 
in the NH, the cluster of model points is shifted toward the 
upper left quadrant of the plot, indicating a tendency toward 
lower polar temperatures and an enhanced response of the 
lower stratosphere to tropospheric wave‐driving. The ten-
dency toward a cold bias in the lower stratosphere during 
spring is consistent with previous model assessments and 
with Figure 5. 
[34] In the SH, although there is a much larger spread than 

in the NH, the multimodel mean linear fit parameters are 
again within sampling uncertainty of the linear fit para-
meters in the ERA‐40 reanalysis. Several of the models 
show properties statistically distinct from those in the ERA‐
40 reanalysis and the large spread is probably due to the 
large differences in the simulated midwinter ozone during 

1980–1999 [Austin et al., 2010b] affecting the dynamics of 
the models. 

3.5. Intraseasonal Variability 

[35] In the extratropical regions major stratospheric sud-
den warmings (SSWs) are an important component of the 
intraseasonal variability which contribute significantly to 
determining the mean climate. In the simulations major 
SSWs are identified using the methodology of Charlton and 
Polvani [2007], based on reversals of the zonal‐mean zonal 
wind at 60°N and 10 hPa, for the months November to 
March. Unlike previous model intercomparisons [Charlton 
et al., 2007] most models produce approximately the cor-
rect number of major SSWs over the period 1960 to 2000 
(note the use of the longer period to account for the large 
interannual standard deviation), with the model ensemble 
mean frequency very close to the ERA‐40 climatological 
frequency (see Figure 12). At the 95% confidence level two 
models had a lower frequency of major SSWs compared to 
the reanalysis and one a higher frequency with a resultant 
midwinter stratospheric jet of significantly reduced strength. 
Apart from one model there was little systematic difference 
between the frequency of major SSWs in the REF‐B1 and 
REF‐B2 simulations, suggesting little sensitivity to the 
choice of SST forcing. On the other hand there were large 
differences between the models, though in all cases, 95% 
confidence intervals for the major SSW frequency analyzed 
for ERA‐40 overlap for the REF‐B1 and REF‐B2 simula-
tions (again see Figure 12). The SH winter period was also 
analyzed between 1960 and 2000 but no examples of a 
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Figure 11. Parameters of the linear fit to the scatterplot of the 100 hPa meridional heat flux versus the 
50 hPa temperature (for more details of the procedure see Newman et al. [2001] and Eyring et al. [2006]). 
Shown is the intercept of the linear fit (x‐axis) plotted against the slope of the regression line (y‐axis) for 
the NH and the SH. Black symbols show the same diagnostic for the ERA‐40 reanalysis data. Estimates 
of 95% confidence limits for the two parameters are included for each estimate in the thin colored lines. 
Grey shading indicates the 95% confidence estimates for the ERA‐40 reanalysis data. 

major SSW, similar to that observed during September 
2002, were simulated in any model (using the same criteria 
for major SSW occurrence as for the NH). 
[36] Studies by Black et al. [2006] and Black and 

McDaniel [2007a, 2007b] (hereafter BM) have shown that 
there is an important dynamical link between the strato-
sphere and troposphere as the final warming takes place and 
that the timing of the final warming is highly variable from 
year to year. Final warming dates in both hemispheres were 
calculated using the BM method which defines the final 
warming as occurring when zonal‐mean zonal winds at a 
specified latitude fall below a low‐wind threshold (0 ms−1 in 
the NH and 10 ms−1 in the SH) and do not return to values 
above the threshold before the next winter (see BM for 
further details). For some models, the zonal‐mean zonal 
winds never become westward in some years; these years 
are ignored in the analysis. In both hemispheres the models 
generally have final warming dates either at or later than 
the date obtained from the ERA‐40 re‐analysis data for the 
period 1980–1999 (see Figure 13). In SH over half the 
models shown in Figure 13 had mean final warmings later 
than observed and in both hemispheres the multimodel 
mean estimate of the final warming date is significantly later 
than observed. 
[37] A useful comparison in the SH can be made with 

diagnostics of the climatological descent of the zero wind 
line (Figure 14), which was calculated for the previous 
intercomparison by Eyring et al. [2006]. Results from the 
CCMVal‐2 model ensemble and the CCMVal‐1 ensemble 

shown by Eyring et al. are very similar, both showing a 
delayed or missing transition to westward winds in the zonal 
wind climatology in the SH spring in many of the models 
which is consistent with the spring time temperature biases 
noted in section 3.2. Models in which a late final warming is 
observed in the SH generally also have a late climatological 
transition of the zonal winds at 60°S. 

3.6. Tropical Variability 

[38] Vertical profiles of the interannual standard deviation 
in the detrended zonal‐mean zonal wind averaged between 
10°S and 10°N in the REF‐B1 simulations are shown in 
Figures 15a and 15b. Below ∼48 km (∼1 hPa) nearly all the 
models underestimate tropical variability in comparison to 
ERA‐40. Five models exhibit particularly low stratospheric 
variability, largely due to the absence of either an internally 
generated or artificially prescribed QBO. 
[39] Figures 15c and 15d show the vertical profiles of the 

amplitude of the variability in zonal wind at periods between 
2 and 5 years (see caption for details). This range of periods 
captures possible QBO‐like variability and it is evident from 
the figure which models neither prescribe nor internally 
generate a QBO (see Morgenstern et al. [2010] for details of 
the models). Interestingly enough, there are still differences 
seen between those models which prescribe a QBO, possi-
bly related to the fact that these models do not include any 
feedback mechanisms between the simulated ozone and the 
imposed artificial forcings. Furthermore, nearly all models 
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Figure 12. Mean  frequency of major  SSWs per year for  
REF‐B1 and REF‐B2 simulations between 1960 and 
2000. Dotted black line shows the mean frequency in the 
ERA‐40 data set (1960–2000) and 95% confidence interval 
(dotted lines). For each model, the upper bars indicate REF‐
B1 simulations and the lower bars indicate REF‐B2 simula-
tions. Where ensemble simulations are available, the mean 
frequency is calculated by combining all ensemble mem-
bers. Bars are sorted according to the major SSW frequency 
in the REF‐B1 simulations. Where the frequency of SSWs 
in the model and ERA‐40 data set is significantly different 
at 95% confidence the bars are shown in grey. Whiskers 
on each bar indicate a 95% confidence interval for the major 
SSW frequency. 

show a weaker peak amplitude for the QBO compared with 
ERA‐40. 
[40] Unlike for the QBO, peak amplitudes of the SAO in 

the models are spread about the amplitude seen for ERA‐40 
(Figures 15e and 15f). For the two models which overesti-
mate the SAO amplitude by the largest amount the bias is 

most likely a consequence of their lack of a QBO: the QBO 
in the lower stratosphere winds would act periodically to 
filter out small‐scale gravity waves, which would otherwise 
drive the eastward phase of the SAO. However, the signif-
icance of any net model bias above ∼32 km (10 hPa) has to 
be treated with caution due to the paucity of observations 
assimilated there by ERA‐40. 
[41] The amplitude of the annual cycle in tropical zonal‐

mean zonal wind in the REF‐B1 simulations is shown in 
Figures 15g and 15h. The amplitude of the ERA‐40 annual 
cycle shows two peaks: in the upper troposphere and at the 
stratopause. All the models exhibit a peak in the amplitude 
in the upper troposphere but with one model having unre-
alistically small amplitudes. All the models significantly 
underestimate the amplitude of the annual cycle near the 
stratopause. On the basis of results from a high‐top version 
of the Met Office’s global climate model Osprey et al. 
[2010] argue this may be linked to an overly strong SAO 
and SH summer jet and stronger than observed westward 
circulation during June to August (JJA), though this may be 
only relevant to those models having an overly strong SAO. 

Figure 13. Mean date of the final warming (day number) 
for the REF‐B1 (upper bars for each model) and REF‐B2 
(lower bars for each model) simulations (1980–1999). Black 
dashed line shows the mean final warming date for the 
ERA‐40 data with 95% confidence estimates shown in dot-
ted lines. Models are ordered by the mean date of their final 
warming in the REF‐B1 simulation. Where a significant dif-
ference between models and the ERA‐40 reanalysis estimate 
is observed the bar is plotted in grey. Where an ensemble of 
simulations is available, the statistic reflects the mean of all 
three ensemble members. Black whiskers on each bar indi-
cate twice the standard error for each estimate. Approximate 
comparable calendar dates for a nonleap year are included 
on the bottom axis. 
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Figure 14. Descent of the zero zonal‐mean zonal wind at 60°S based on the climatological mean annual 
cycle calculated from the monthly and zonal‐mean zonal winds. The dark grey area shows a 95% con-
fidence interval for the intermodel standard error, and the light grey area shows a 95% confidence interval 
for the 20‐year mean ERA‐40 transition, based on a t‐distribution. Climatological means are calculated 
for the same period as in Figure 1. 

[42] A brief comparison of the variability in the zonal 
wind in the tropics in the REF‐B1 and REF‐B2 simulations 
from 1980–2000 shows differences throughout the strato-
sphere, which are associated with a lack of a QBO in most 
of the REF‐B2 simulations and a strengthened SAO (not 
shown). Like the REF‐B1 ensemble, all REF‐B2 simula-
tions exhibit a poor annual cycle in the upper stratosphere. 

3.7. Synopsis and Comparison to Previous Multimodel 
Assessments 

[43] It is clear from the above results that the models, on 
average, perform well in simulating most aspects of mean 
climate of the stratosphere. There are, however, some 
stratospheric processes and phenomena in which there are 
significant consistent biases in most of the models. In par-
ticular, these include the springtime cold bias in the lower 
stratosphere and general delay in the winter to summer 
transition in many of the models. In comparison with pre-
vious multimodel assessments, the overall simulation of 
stratospheric climate has on average improved over the 
10 years or so since Pawson et al. [2000], most notably due 
to the introduction of parameterized NOGWD [Austin et al., 
2003]. On the other hand, there is no clear evidence that 
there has been a systematic improvement in the simulation 

of stratospheric climate between the current generation of 
CCMs and those assessed by Eyring et al. [2006], i.e., 
between CCMVal‐1 and CCMVal‐2. 
[44] The present study, nonetheless, advances that of 

Eyring et al. [2006] with a comprehensive intercomparison 
of the intraseasonal to interannual variability and the zonally 
asymmetric component of the circulation. In general, the 
variability was not as well reproduced by the models as the 
time‐mean climate. This was a particularly acute problem in 
the tropics where nearly all the models under represent the 
strength of the QBO despite many of them artificially 
imposing it. Indeed even when the QBO was imposed there 
was an unexpected spread in tropical zonal wind variability. 
A weak tropical annual cycle in the zonal‐mean zonal wind 
was common across all models too. In the extratropics there 
are some clear links between diagnostics of stratospheric 
variability and persistent biases in the models, for example 
between the late final warming in many models and the cold 
bias in the spring time lower stratosphere. The multimodel 
assessment also indicated common deficiencies and un-
certainties in simulating the zonally asymmetric component 
of the flow. In the NH the circulation is on average too zonal 
whereas in the SH there was a wide spread in the orientation 
of the polar vortex. 

Figure 15. Profiles of (a and b) the interannual standard deviation, (c and d) the amplitude of the “QBO” (i.e., coherent 
variability with periods between 2 and 5 years), (e and f) the amplitude of SAO, and (g and h) the amplitude of the annual 
cycle in the detrended zonal‐mean zonal wind averaged from 10°S–10°N for the full period of the REF‐B1 simulations and 
ERA‐40 reanalysis. Methodology is similar to that in the work of Pascoe et al. [2005]. The amplitude is the ratio of the 
definite integral of the zonal mean power spectrum to the standard deviation of the zonal‐mean zonal wind for periods 
between 2 and 5 years (Figures 15c and 15d), the 6 month harmonic (Figures 15e and 15f), and the 12 month harmonic 
(Figures 15g and 15h). Linear trends were first fitted to and then removed from the data. An asterisk after a model name 
indicates that the model has an externally forced (i.e., artificial) QBO. For clarity the model results are split into right‐hand 
and left‐hand panels. 
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Figure 15 
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Table 2. Processes and/or Phenomena Validated Using Metricsa 

Metric 

Phenomena Process Description Name 

Mean Climate 
Zonal mean climatology 60–90°N DJF temperatures at 50 hPa tmp_nh 

60–90°S SON temperatures at 50 hPa tmp_sh 
Maximum NH eastward wind in DJF at 10 hPa umx_nh 
Maximum SH eastward wind in JJA at 10 hPa umx_sh 

er‐Dobson circulation Brew Tropical upwelling mass flux at 70 & 10 hPa up_70 
up_10 

Extratropical wave driving Slope of the regression of the February and March PW_nh 
50 hPa temperatures 60–90°N on the 100 hPa January 

and February heat flux 40–80°N 
Slope of the regression of the August and September PW_sh 
50 hPa temperatures 60–90°S on the 100 hPa July 

and August heat flux 40–80°S 

Climate Variability (Intraseasonal–Interannual) 
Extratropical variability Amplitude of the leading mode of variability (EOF) of fev_nh 

the 50 hPa zonal‐mean zonal wind for NH and SH fev_sh 
Tropical variability Amplitude of the annual‐cycle at 2 hPa in tann 

the zonal‐mean zonal wind, 10°S–10°N 
Amplitude of the SAO at 1 hPa in the sao 
zonal‐mean zonal wind, 10°S–10°N 

Amplitude of “QBO” at 20 hPa in the zonal‐mean qbo 
zonal wind, 10°S–10°N 

Stratospheric sudden warmings Frequency per year of major stratospheric SSW 
sudden warmings, defined using reversal 

of the zonal‐mean zonal wind at 10 hPa, 60°N 
Mean date of the NH final warmings at fw_nh 
50 hPa, 60°N defined using the criteria of 

Black and McDaniel [2007a, 2007b] 
Mean date of the SH final warmings at fw_sh 
50 hPa, 70°S defined using the criteria of 

Black and McDaniel [2007a, 2007b] 

Final warming 

aThe first column lists the processes and phenomena with the chosen metrics given in columns 2 and 3. Abbreviations: NH=Northern Hemisphere; 
SH=Southern Hemisphere; DJF=December–January–February; JJA=June–July–August; SON=September–October–November; EOF=empirical 
orthogonal function; SAO=semiannual oscillation; QBO=quasi‐biennial oscillation. 

[45] While the above qualitative analysis enables a 
detailed examination of individual processes within the 
models, assessment of the relative severity of model biases 
and possible links between biases is difficult. One approach 
to comparing model performance across a range of different 
processes is to define and calculate metrics of model per-
formance [e.g., Waugh and Eyring, 2008]. 

4. Quantitative Assessment: Metrics 

[46] To establish the fidelity and quantify the assessment 
of the simulations “metrics” representing many of the key 
stratospheric dynamical processes have been identified (see 
Table 2). The list has some metrics in common with Waugh 
and Eyring [2008] but also extends that list particularly in the 
area of stratospheric variability. A pragmatic approach has, 
however, been used and for many diagnostics the metrics 
opted for require the least input of dynamical fields or 
complex analysis and thus are available for a greater range of 
models. 
[47] As in the previous section the aim is to assess the 

performance of the model ensemble and provide a guide to 
the overall performance of the models in several key areas. 
Again the analysis is not concerned with identifying the 
performance of any of the models in particular. Because of 
this, models which did not provide enough data to fully 
assess a significant proportion of the metrics in Table 2 
(particularly the CAM3.5 and E39CA model) are excluded 

from this analysis. This minimizes any potential bias 
between metrics which might result from changing the 
composition of the multimodel ensemble for each diagnostic. 

4.1. Metric Calculation 

[48] Model validation metrics are calculated using 
equation (4) of Waugh and Eyring [2008]: 

1 j model obsjg ¼ 1 
ng obs 

where mmodel and mobs are the model and observational 
estimates of each diagnostic, respectively, sobs is the 
interannual standard deviation of the observations, and ng 

is a scaling parameter. For consistency with the Waugh 
and Eyring [2008] analysis, scores are standardized 
using the interannual standard deviation of the observed 
quantity in question and the parameter ng is set to 3. 
Where g ≤ 0 (i.e., the diagnostic is different from the 
observational estimate by more than three standard 
deviations), the value of the metric is set to zero. 
[49] Perhaps a more natural normalization to use instead 

of the interannual standard deviation would be to use the 
standard error inherent in an estimate of the quantity and 
include some estimate of the observational uncertainty. 
Since in this study all of the metrics, except for the one for 
SSWs and the tropical variability metrics, are calculated for 
the same 20 year period (1980–1999), using the standard 
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Figure 16. (top) Box and whisker plots of g‐metrics. For details of metrics, see text and Table 2. Box 
shows the 25th to 75th percentile of the distribution of the validation metrics, the central horizontal line 
shows the median of the validation metrics and the black dot shows the arithmetic mean. Whiskers show 
the range of the data excluding outliers (plotted with open diamonds). Metrics are ordered by median. 
Also shown is (bottom) the distribution of j metrics (see text) and are plotted relative to the same 
diagnostic calculated from reanalysis data and scaled by its standard deviation. The ±3 region used to 
define models which would achieve a zero metric in the validation metric calculation is shaded in grey. 
The absolute value of the maximum and minimum for each diagnostic in the model ensemble is printed at 
the top and bottom of each group of points. 

error in place of the standard deviation would have little 
effect on the comparison of performance revealed by the 
calculations presented here (it would simply tend to make all 
metric scores lower and these could then be renormalized be 
changing the value of ng). In the case of the SSW metric, the 
relative skill of the models will be slightly overestimated in 
the current analysis (i.e., using the interannual standard 
deviation instead of the standard error). It has not been 
possible at this stage to incorporate estimates of observa-
tional uncertainty in the calculation of the metrics. Obtain-
ing an estimate of the observational uncertainty is far from 
trivial since most observational estimates are derived from 
complex reanalysis products and hence any simple com-
parison between reanalysis datasets would incorporate both 
true observational uncertainty and that due to the details of 
the particular model/data assimilation system used. Conse-
quently, for this study it was considered preferable not to 
incorporate this term in the analysis. For the tropical vari-
ability metrics, estimating the uncertainty in the ERA‐40 
reanalysis is more complex. To estimate the uncertainty, the 
data set was sampled for several 10‐year periods, and the 
range of possible values of annual cycle, SAO, and QBO 
amplitudes was used in the metric calculation. 

[50] While the metric g is a useful way of validating the 
performance of the model ensemble against reanalysis data, 
it does not provide any information about the sign of biases 
in the models. This information is an important component 
of the assessment of model performance, since in some 
diagnostics the model ensemble shows a systematic negative 
or positive bias indicative of a common deficiency in the 
models. Therefore an additional metric which retains the 
sign information removed in the calculation of g is also 
considered: 

model obsj ¼ 
obs 

j is then simply the difference between model and obser-
vational estimates of each diagnostic, normalized by the 
standard deviation of the observational estimate. Note that in 
this metric, large absolute values indicate a mismatch 
between model and observations. 

4.2. Results 

[51] The distribution of g and j for the metrics in Table 2 
is shown in Figure 16. Several broad conclusions about the 
performance of the models can be drawn from this figure. 
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Figure 17. Pearson rank correlation matrix for quantitative 
metrics. Shown are (top) the correlation between g metrics 
and (bottom) the correlation between scaled model diagnos-
tics (j metrics). Correlation between metrics is printed in each 
square where the correlation is significant at p=0.05. Solid 
shading and printing indicates positive correlation and 
hatched shading and printing indicates negative correlation. 

[52] 1. For most diagnostics, there is a large spread in the 
performance of the models. This is particularly apparent for 
diagnostics in which the 25th percentile line overlaps zero in 
the box and whisker plots in Figure 16 (top). This indicates 
that a significant number of the models are graded with g = 0,  
or in other words have biases greater than three standard 
deviations when compared to observational estimates. 
[53] 2. The SH diagnostics of both climate and variability 

generally show poorer performance than similar diagnostics 
for the NH. The four diagnostics with the smallest median 
value of g are those for SH final warming date, springtime 
polar cap temperature, variance of the first EOF, and the 
strength of the midwinter midstratosphere jet. 
[54] 3. For some metrics in which model performance is 

generally poor, model biases tend to have the same sign 

indicating a systematic difference between the models and 
the observations. For the metrics considered here, systematic 
negative biases are found for the SH temperature, and the 
amplitudes of the tropical annual cycle and QBO (although 
some caution is necessary for the tropical diagnostics). 
Metrics with a systematic positive bias are those for 
upwelling at 10 hPa, the final warming dates in the NH and 
SH, the amplitude of the first EOF in the SH and the slope 
of the fit between lower stratospheric heat flux and lower 
stratospheric temperature in the NH. For other metrics, there 
are large numbers of models with significant biases, but 
these tend to be evenly distributed between positive and 
negative signs and hence while indicating poor performance 
for individual models, they do not indicate systematic biases 
amongst the multimodel ensemble. 
[55] The relationship between diagnostics can be charac-

terized further using the correlation between different 
metrics (Figure 17). Since the calculation of g uses a cutoff 
for differences greater than ng the Spearman rank correlation 
is used in the analysis presented here rather than the stan-
dard Pearson correlation coefficient (sensitivity tests with 
the Pearson correlation showed broadly similar results). The 
correlation between diagnostics is calculated for both the 
g and j metrics, however, for the two metrics the correlation 
should be interpreted slightly differently. 
[56] Large positive correlations between diagnostics in the 

g metric (Figure 17, top) indicate that models that perform 
well when compared to reanalysis in one diagnostic also 
tend to perform well in another diagnostic. Large negative 
correlations in the g metric indicate that models that perform 
well when compared to reanalysis in one diagnostic also 
tend to perform poorly in another diagnostic. In other words, 
cross correlation in the g metric indicates pairs of diag-
nostics where good performance is or is not related. 
[57] Large positive correlations between diagnostics in the 

j metric (Figure 17, bottom) indicate that models tend to 
have a similar position in the model ensemble. The perfor-
mance of the model relative to observations is not consid-
ered. Large negative correlations between diagnostics in the 
j metric indicate that models tend to have an opposing 
position in the model ensemble. In other words, cross cor-
relation in the j metric indicates that the diagnostics are 
related, or linked to each other by a dynamical and/or 
physical process. 
[58] Several interesting relationships between the diag-

nostics considered are revealed by this analysis. In the SH, 
where model performance is generally poor, there are pos-
itive correlations in the g metric between several diagnostics 
including the springtime temperature, the midwinter jet 
maximum, the final warming date and the amplitude of the 
first EOF. However, only weak correlations exist between 
the j metrics of the same variables. This suggests that an 
additional external factor may be responsible for the corre-
lations between model validation in the SH. Also note that 
j metrics of the amplitude of the first EOF and the date of the 
final warming in the SH are positively correlated as noted 
previously by Fogt et al. [2009]; models with too much 
variability in the first EOF tend to have a delayed final 
warming. 
[59] In the NH, coherent behavior for the j metrics of 

springtime temperature, SSW frequency and midwinter jet 
maximum is observed, a stronger, less variable midwinter 
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vortex tending to lead to a colder vortex in springtime. There 
is also a positive correlation in model performance (i.e., 
g metrics) for the strength of the midwinter jet and SSW 
frequency. 
[60] As expected, there is little correlation between model 

performance between hemispheres, however there is a 
strong positive correlation between the strength of the 
midwinter jet in the NH and SH. 
[61] In the tropics, understanding the relationship between 

metrics is complicated because of the different design of the 
models, with some imposing a QBO, some generating an 
internal QBO and others with no QBO at all. However, 
models with a stronger QBO tend to have stronger 
upwelling at both 70 hPa and 10 hPa and a stronger and 
colder NH vortex. Interestingly at higher tropical altitudes, 
there are negative correlations using the g metric between 
SSW frequency and the model simulation of the SAO and 
1 hPa annual cycle. This suggests that improved model 
performance in the tropical upper stratosphere tends to 
degrade the simulation of major midwinter warmings. 
[62] Analysis of dynamical performance using perfor-

mance metrics provides a useful way of summarizing the 
performance of the ensemble of current models. It should be 
noted however that there are many caveats to the way in 
which metrics are calculated and the choice of diagnostics 
used for model assessment. The metrics and analysis pre-
sented here are simply one way of assessing the perfor-
mance of models. 

5. Concluding Remarks 

[63] This study both updates and more importantly ex-
tends previous evaluations of multimodel simulations of the 
stratospheric climate. The main conclusion from the updat-
ing of the earlier assessments was that in terms of simulating 
the time‐mean, zonally averaged stratospheric climate the 
models have, on average, not improved significantly since 
the last comprehensive assessment by Eyring et al. [2006]. 
Nonetheless, with the notable exception of some key phe-
nomena, the extratropical temperatures and zonal mean 
climate were, in general, qualitatively well reproduced with 
little uncertainty or spread between the models. 
[64] The extension of the assessment to include in-

traseasonal and interannual variability indicated that this 
aspect was, on average, less well simulated. On the other 
hand, the zonal asymmetries which determine the shape and 
position of the polar vortex were reproduced reasonably 
well. 
[65] A major difference of the present assessment from the 

previous multimodel assessments of Pawson et al. [2000], 
Austin et al. [2003], and Eyring et al. [2006] is the use of 
quantitative metrics for evaluating the models. The choice of 
metrics used to “rate” models is subject to some implicit 
assumptions about errors in observed data and can lead to a 
lack of differentiation between good and bad models if not 
considered carefully [Grewe and Sausen, 2009]. Nonethe-
less, considering both the spread, sign, and correlation of 
metrics provides a useful tool for examining any link in 
model performance between the different dynamical pro-
cesses considered and across the multimodel ensemble. 
Interestingly, the metrics suggest a wider spread in model 
performance than would be inferred from the qualitative 

analysis and quantitatively confirm that overall model per-
formance is poorer in the SH than the NH. Moreover the use 
of metrics indicated little correlation in model performance 
between the two hemispheres apart from in the jet strength. 
This suggest that model development should perhaps be 
focused more on the hemispheric scale rather than the global 
parameters and setup, though it is also possible that the 
individual metrics in each hemisphere could be sensitive to 
the choice of global parameters. 
[66] Although the metrics do provide a useful additional 

tool for identifying links in model performance between the 
different dynamical processes and identifying common 
model deficiencies, the metrics themselves provide little or 
no useful information on the underlying physical processes 
within the models. Therefore the metrics are of most sci-
entific value when combined with a more conventional 
analysis of physical quantities, as was done in section 3. 
The combined use of the two approaches in this study in-
dicates that there are long‐standing and significant common 
biases in models which remain poorly understood. Partic-
ularly challenging are the biases associated with the 
springtime breakup of the polar vortex in both hemispheres 
and the generally poor performance of the models in the 
Southern Hemisphere. In the tropics, the majority of models 
are still unable to reproduce anything like a realistic quasi‐
biennial oscillation, though many partially circumvent the 
problem by artificially prescribing this variability even 
though it is unclear if this approach actually leads to an 
overall model improvement away from the tropics. Clearly, 
it restricts the applications for which these models can be 
used for. 
[67] A key outstanding question of this study is how to 

address some of the persistent dynamical biases and pro-
blems which bedevil stratosphere‐resolving climate and 
Earth system models. While massive coordinated multi-
model assessments such as that of the Eyring et al. [2010] 
report have proved extremely valuable both for identify-
ing common model strengths and weakness and also for 
singling out those which are most relevant they have not 
been quite so successful at addressing many of the long‐
standing and persistent model problems, at least from a 
dynamical perspective. A transfer of effort to a coordinated 
focus on specific process such as the SPARC DynVar 
[Kushner et., 2007] initiative on stratospheric variability 
and stratosphere‐troposphere coupling is a potentially use-
ful way forward. 
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