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SUMMARY 

Sensory systems do not work in isolation; instead, 
they show interactions that are specifically uncov-
ered during sensory loss. To identify and charac-
terize these interactions, we investigated whether 
visual deprivation leads to functional enhancement 
in primary auditory cortex (A1). We compared 
sound-evoked responses of A1 neurons in visually 
deprived animals to those from normally reared 
animals. Here, we show that visual deprivation leads 
to improved frequency selectivity as well as in-
creased frequency and intensity discrimination per-
formance of A1 neurons. Furthermore, we demon-
strate in vitro that in adults visual deprivation 
strengthens thalamocortical (TC) synapses in A1, 
but not in primary visual cortex (V1). Because deaf-
ening potentiated TC synapses in V1, but not A1, 
crossmodal TC potentiation seems to be a general 
property of adult cortex. Our results suggest that 
adults retain the capability for crossmodal changes 
whereas such capability is absent within a sensory 
modality. Thus, multimodal training paradigms might 
be beneficial in sensory-processing disorders. 
INTRODUCTION 

Responses in primary auditory cortex (A1) to individual sound 
properties, such as frequency and loudness, are relevant for 
perception of sound characteristics, such as pitch, and for local-
ization of sound sources in space (Harris, 1952; Jenkins and 
Merzenich, 1984; Middlebrooks and Green, 1991; Rayleigh, 
1907; Wier et al., 1977; Zatorre et al., 2002). Early blindness leads 
to behaviorally observed crossmodal benefits, such as improved 
frequency discrimination performance (Gougoux et al., 2004) 
and sound localization abilities (Lessard et al., 1998). However, 
whether and how A1 neuronal responses are altered by losing 
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vision and the underlying changes in A1 circuits are unknown. 
In particular, whether the crossmodal changes are manifested 
as changes in the thalamorecipient layer, which receives direct 
feed-forward sensory inputs, is also not known. 
The connectivity and organization of A1, in particular at the 

level of thalamocortical (TC) inputs, can be modified by auditory 
experience during an early critical period (�P12–P15 in mice) 
(Barkat et al., 2011; de Villers-Sidani et al., 2007; Insanally 
et al., 2009; Sanes and Bao, 2009); thus, within-modality 
(unimodal) experience has an influence only during early life. 
This narrow plastic window observed in TC inputs is also 
observed in visual cortex (V1) (for review, Hensch, 2005; Katz 
and Crowley, 2002), indicating that TC inputs may be less plastic 
later in life. However, recent evidence suggests that TC plasticity 
can be reactivated later in life following sensory deprivation or in 
response to peripheral nerve transection (Montey and Quinlan, 
2011; Oberlaender et al., 2012; Yu et al., 2012). 
Crossmodal plasticity was first observed at the synaptic level 

as a global reduction in the postsynaptic strength of excitatory 
synaptic transmission in layer 2/3 of A1 and barrel cortex after 
visual deprivation (Goel et al., 2006) and has different deprivation 
requirements than unimodal plasticity (He et al., 2012). The 
reduction in excitatory synaptic strength was in contrast to a 
global increase in the strength of excitatory synapses observed 
in deprived V1, which may indicate a homeostatic adaptation to 
increased activity in the spared sensory cortices (Whitt et al., 
2013). Therefore, we examined whether the feed-forward TC in-
puts to A1 are altered crossmodally and how this impacts A1 
neuronal properties in the TC recipient layer 4 (L4). Here, we 
report that depriving mice of vision for a short period of time 
changes A1 response properties to enhance sound processing, 
which is accompanied by a potentiation of auditory TC synap-
ses. These crossmodal changes in A1 circuitry may play a role 
in the enhancement of auditory perception in blind individuals. 

RESULTS 

We performed visual deprivation after the TC critical period for 
hearing (Barkat et al., 2011; de Villers-Sidani et al., 2007; Insan-
ally et al., 2009; Sanes and Bao, 2009) in A1 by exposing mice 
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Figure 1. Response Characteristics of A1 Neurons Change after DE 
(A) Representative FRAs showing increase in firing rate as a function of 
intensity of sound. Occasionally a multipeaked response pattern (right) was 
observed. 
(B–E) Characterization of response properties. The top rasters indicate mea-

surements for an example cell. Black horizontal bar indicates duration of 
sound (40 ms). Spontaneous rate is measured in blue area. Significant re-
sponses were first identified using Victor’s binless method (Figure S1) for 
estimating the stimulus-related information in the spike trains (Victor, 2002). 
This algorithm searches, via a sliding window (green), for significant neuronal 
responses within user-set limits of a response window (600 ms following onset 
of stimulus) and compares the observed spike rates within that window to 
those seen within a chosen window deemed to contain only spontaneous 
activity (200 ms preceding onset of stimulus, blue), while treating the latter as a 
Poisson process. Here, the size of the sliding window is inversely proportional 
to the temporal precision of recording spike-related information. (B) First 
(C57/BL6 strain; P21 and P22) to darkness (DE; n = 10) for 
6–8 days. We then compared the sound-evoked responses of 
cells in the L4 of A1 with those from control animals of similar 
age and strain with normal visual experience (NR; n = 9). We 
recorded single-unit responses to brief pure-tone stimuli (Fig-
ure 1; Figure S1 available online) and then assessed frequency 
selectivity by plotting the evoked firing rate (spontaneous rate 
subtracted) as a function of the presented sound frequency 
and level resulting in frequency response area functions (FRAs). 
For example, FRAs from about half of recorded cells (n = 89/ 
173) were sharp-peaked, indicating high-frequency selectivity, 
whereas others showed broadly tuned multipeaked patterns 
(Figure 1A). Increasing sound level generally resulted in increased 
firing rates (Figure 1A). We next compared key metrics of respon-
siveness between cells in DE and NR. The top panels of Figures 
1B–1E show representative neuronal responses plotted as a 
function of time for each trial in the form of spike rasters and illus-
trate the derivation of responsiveness metrics. Our in vivo record-
ings show that cells in DE animals have higher spontaneous rates 
(Figure 1B), whereas first-spike latencies in DE cells were shorter, 
which reflects an increase in response promptness and excit-
ability (Figures 1C and S2). Peak evoked rates (maximum differ-
ence in spike rates between the response and spontaneous 
windows) increased after DE (Figure 1D), although the mean 
evoked response rates (difference in averaged spike rate be-
tween response and spontaneous windows calculated across 
all trials) were unchanged (Figure 1E). The variance in firing rates 
was different across the two groups (F = 3.90; p < 10�5; two-

sample F test) without a significant change in mean evoked activ-
ity (Figure 1E), indicating a greater degree of modulation of A1 
responses by auditory stimuli after DE. Comparison of interspike 
intervals (ISI) also revealed that the DE units had significantly 
reduced ISI for responses recorded during the entire response 
period. The first spike latency was noted to be significantly 
shorter than the spontaneous ISI (Figure S2). 
An increase in peak firing rate can indicate either a general shift 

of all evoked responses to higher rates, an increase in sensitivity 
of A1 cells to changes in sound level, or an increase in the re-
sponses to a specific subset of stimuli, e.g., a specific increase 
in the responses to high-level stimuli. To test if the observed in-
crease in firing rates represented a shift in responsiveness inde-
pendent of level or an increase in sensitivity of cells to changes in 
sound level, we plotted the firing rate at a cell’s characteristic fre-
quency (CF) as a function of sound level (Figures 2A and 2B). 
Linear fits to the rate-level curves indicate the sensitivity (the 
slope of the regression) of a cell to changes in sound level. 
Both sensitivity and the mean firing rate at CF increased fol-
lowing DE, indicating a greater sensitivity to sound-level changes 
(Figures 2E and 2F). Furthermore, cells in DE animals showed 
lower thresholds for firing, revealing heightened sensitivity to 
quieter sound stimuli (Figures 2C and 2G). 
spikes in each trial are indicated in green (C). Peak and mean rates are mea-

sured within the response window (identified by the binless algorithm, green 
areas in D and E, respectively). Lower graphs show the distributions of the 
response properties between NR and DE cells (n = 173 and 175, respectively). 
Box plots indicate mean ± 95% confidence interval. ** and * indicate p < 
0.001and p < 0.05, respectively. ns, not significant. See also Figures S1 and S2. 
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Figure 2. Tuning Characteristics of A1 Neurons Change after DE 
(A) Representative rate-level functions for NR (upper) and DE (lower), respectively. Q represents slope. 
(B–D) Derivation of FRA-related statistics. (B) Mean evoked rate calculated from contours of spike rates at center frequency of the cell. (C) Thresholds calculated 
from lowest-sound-pressure level at which responses were evoked and (D) derivation of quality factor at 10 dB above (Q10) the threshold. 
(E–H) Summary statistics of tuned units. NR and DE are identified by red and blue cumulative distribution functions, with mean and 95% confidence intervals 
shown in inset. (E) Slopes of rate-level functions. (F) Comparison of mean firing rates at characteristic frequencies (CF). (G) Thresholds. (H) Q10. 
We next investigated the effects of DE on the frequency selec-
tivity of A1 neurons. After DE, neurons with well-described FRAs 
(cells with a single predominant peak and bandwidth <3 octaves 
10 dB above the CF; see Supplemental Experimental Proce-
dures) were more prevalent (NR = 89/173 cells; DE = 135/175; 
�26% increase; F1,347 = 25.65; p < 10�7). To characterize fre-
quency selectivity of neurons, we calculated the quality factor 
(Q): a measure of bandwidth (BW) respective to a cell’s charac-
teristic frequency (Q10 = CF/BW; BW measured at 10 dB above 
threshold; Figure 2D). DE neurons showed higher Q10, which 
indicates sharper frequency tuning (i.e., narrower bandwidth) 
(Figure 2H). Together, these results indicate that DE changes 
receptive field properties and overall responsiveness of A1 neu-
rons. In addition, our results indicate that crossmodal plasticity is 
present in the TC-recipient layer even after the unimodal thala-
mocortical critical period. 

Cells in L4 receive TC as well as intracortical inputs. To test the 
hypothesis that TC synapses could be involved in altering 
response properties in A1, we examined the crossmodal regula-
tion of these synapses using optogenetics. We injected adeno-
associated virus containing channelrhodopsin-2 (AAV-ChR2) 
into the medial geniculate body (MGB) of mice 6–8 weeks prior 
to experiments, after which DE was initiated around postnatal 
age 90 days (P90) (see Supplemental Experimental Procedures), 
666 Neuron 81, 664–673, February 5, 2014 ª2014 Elsevier Inc. 
with a subset of mice returned to the normal environment for 
7 days of light exposure (LE). NR controls were kept in the normal 
light/dark cycle. 
A1 slices were made from NR, DE, and LE mice, and L4 

principal neurons of A1 were patched for whole-cell recordings. 
The borders of A1 were well delineated by yellow-fluorescence 
protein (EYFP) expressed in the transfected TC terminals (Fig-
ure 3A). To quantitatively compare the strength of individual TC 
synapses independent of ChR2 expression level, we replaced 
Ca2+ with Sr2+ in the bath. Sr2+ desynchronizes evoked release, 
such that individual events reflect single-vesicle release, which 
allows determination of quantal synaptic response size (Gil 
et al., 1999). We then measured the amplitude of light-evoked 
strontium-desynchronized miniature excitatory postsynaptic 
currents (LEv-Sr2+-mEPSCs) in L4 neurons. Basal spontaneous 
events were mathematically subtracted to obtain the amplitude 
of evoked TC LEv-Sr2+-mEPSCs (see Supplemental Experi-
mental Procedures). We found that DE significantly increased 
the amplitude of TC LEv-Sr2+-mEPSCs in L4 neurons compared 
to NR in A1, which reversed with LE (Figure 3A). We next deter-
mined if changes occurred in TC synapses in L4 of the primary 
visual cortex (V1) by injecting AAV-ChR2 into the lateral genicu-
late nucleus (LGN) and recording in V1 (Figure 3B). In contrast to 
L4 of A1, TC synapses in L4 of V1 were unaltered after DE 
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Figure 3. Crossmodal Potentiation of TC Synapses in A1 without Changes in V1 
(A) Crossmodal regulation of TC synapses in A1-L4. Top: AAV-ChR2-EYFP injection to MGB. Note expression of EYFP (green) in MGB (left and center panels). 
Top right: a biocytin-filled A1-L4 neuron (red) with DAPI (blue) and EYFP (green). Middle: Example traces of LEv-Sr2+-mEPSCs from NR, DE, and LE group. A 5 ms 
duration LED light was delivered at the arrowhead to activate TC synapses. Spontaneous events were collected during a 400 ms window (gray dotted line) before 
the LED, and LEv-Sr2+-mEPSCs were measured during a 400 ms window 50 ms after the LED (blue solid line). Bottom left: average calculated LEv-Sr2+-mEPSC 
amplitude of thalamocortical inputs (see Supplemental Experimental Procedures). *p < 0.04, ANOVA. Bottom right: average raw LEv-Sr2+-mEPSC traces (without 
subtracting spontaneous events). 
(B) TC synapses in V1-L4. Top: AAV-ChR2-EYFP injection to LGN. Note EYFP (green) in LGN (left and center panels). Top right: A biocytin-filled V1-L4 neuron (red) 
with DAPI (blue) and YFP (green). Middle: Example traces of LEv-Sr2+-mEPSCs. Marks are the same as in (A). Bottom left: average calculated LEv-Sr2+-mEPSC 
amplitude of TC inputs. Bottom right: average raw LEv-Sr2+-mEPSC traces. See Table S1 for data. Bar graphs are mean ± SEM. 
(Figures 3B and S3). This is consistent with a narrow critical 
period for synaptic scaling and plasticity in V1-L4 following visual 
deprivation (Desai et al., 2002; Jiang et al., 2007). 
Crossmodal potentiation of TC synapses in A1-L4 after DE 

was opposite in polarity to the mEPSC changes observed previ-
ously in A1-L2/3 of juvenile animals (Goel et al., 2006). We deter-
mined that the polarity of crossmodal synaptic changes is 
laminar-specific, because DE triggers potentiation of excitatory 
synapses in L4 of A1 regardless of age. In both juveniles (P28) 
and adults (P90), DE increased mEPSC amplitude in A1-L4, 
both of which recovered after LE (Figures 4A and 4B). L4 
changes did not occur via multiplicative scaling (Figures 4C 
and 4D), suggesting that the change is not uniform across the 
sampled synapses. The most parsimonious explanation is that 
the change is restricted to a subset of synapses, which may 
include TC synapses. The regulation of A1-L4 mEPSC amplitude 
by DE was not strain specific and was also observed in adult 
CBA mice (Figure 4E). In contrast to A1, mEPSC amplitude did 
not change with DE in V1-L4 (Figure S3), which is consistent 
with the stability of TC synapses when within-modality sensory 
manipulations are performed in adults. 
DE-induced potentiation of TC synapses in A1-L4 without 

changes in V1-L4 was unexpected, because it suggests that 
TC plasticity is more readily recruited across sensory modalities 
than within a sensory modality in adults. To determine whether 
the crossmodal potentiation of TC synapses is a general feature 
of the adult sensory cortex, we repeated the study in mice that 
were deafened by ototoxic lesioning of the cochlea (see Supple-
mental Experimental Procedures and Figure S4). We found that 
the strength of TC synapses in L4 of A1, as measured as the 
amplitude of LEv-Sr2+-mEPSCs after expressing ChR2 into the 
MGB, did not differ between normal and deaf (DF) adult mice 
(Figure 5A). In contrast, TC synapses in L4 of V1 were signifi-
cantly potentiated in adult DF mice (Figure 5B). These results 
demonstrate the generality of our finding that sensory depriva-
tion recruits TC plasticity in other sensory cortices at an age 
when it does not modify TC synapses in its respective primary 
sensory cortex. 
We previously reported that crossmodal regulation of L2/3 

synapses in barrel cortex following DE is dependent on whisker 
inputs without a gross change in whisking frequency (He et al., 
2012). This suggests that crossmodal synaptic plasticity in 
L2/3 requires bottom-up sensory experience without much 
change in the amount of sensory drive. To determine whether 
crossmodal TC potentiation is also experience-dependent, we 
deafened the visually deprived mice (DD). Deafening prevented 
Neuron 81, 664–673, February 5, 2014 ª2014 Elsevier Inc. 667 
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Figure 4. Crossmodal Potentiation of A1 L4 mEPSCs Is Age-Independent and Nonmultiplicative 
(A) Results from juvenile (P28) mice. DE increases the average mEPSC amplitude of A1-L4, which reverses with LE (bottom left). Top: average mEPSC traces. 
Bottom right: average mEPSC frequency. 
(B) Results from adult (P90) mice. In A1-L4, DE increases the mEPSC amplitude, which reverses with LE (B, bottom left). Top: average mEPSC traces. Bottom 
right: average mEPSC frequency. *p < 0.05, ANOVA. See Table S2 for data. 
(C) DE induces a nonmultiplicative increase in mEPSC amplitude of A1-L4 in young mice. The amplitudes of NR mEPSCs were multiplied by a scaling factor of 
1.27 to match the average mEPSC amplitude to that of DE (Kolmogorov-Smirnov test between DE and NR scaled: p < 0.0001). 
(D) Nonmultiplicative increase in mEPSC amplitude of A1-L4 in P90 mice with 7d-DE. Scaling factor was 1.17 (Kolmogorov-Smirnov test between DE and NR 
scaled: p < 0.0001). 
(E) DE increases the average mEPSC amplitude of A1-L4 neurons of CBA mice, which do not undergo age-related hearing loss. Top: average mEPSC amplitude 
comparison. Bottom left: average mEPSC traces. Bottom right: No change in the average mEPSC frequency. *p < 0.02, t test. Bar graphs are mean ± SEM. 
the TC potentiation associated with DE (Figure 5A), which 
suggests that the crossmodal TC potentiation requires auditory 
experience. However, we did not find significant difference in 
the auditory environment or ultrasonic vocalizations between 
NR and DE mice (Figure S5), which suggests that the bottom-
668 Neuron 81, 664–673, February 5, 2014 ª2014 Elsevier Inc. 
up sensory input is not greatly different between the two 
conditions. 
Our results show increased responsiveness and frequency 

selectivity of A1 neurons due to changes at TC synapses. These 
alterations may increase sound discrimination performance of 
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Figure 5. Crossmodal Potentiation of TC Synapses Is Observed with Deafening and Is Experience Dependent 
(A) Regulation of TC synapses in A1-L4. Top: Example traces of LEv-Sr2+-mEPSCs from NR, deaf (DF), and DE+DF (DD) group. A 5 ms duration LED light was 
delivered at the arrowhead to activate TC synapses. Marks are the same as in Figure 3. Bottom left: average calculated LEv-Sr2+-mEPSC amplitude of TC inputs 
(see Supplemental Experimental Procedures). Bottom right: average raw LEv-Sr2+-mEPSC traces (without subtracting spontaneous events). 
(B) Crossmodal potentiation of TC synapses in V1-L4 after deafening. Top: example traces of LEv-Sr2+-mEPSCs. Marks are the same as in Figure 3. Bottom left: 
average calculated LEv-Sr2+-mEPSC amplitude of TC inputs. *p < 0.008, t test. Bottom right: average raw LEv-Sr2+-mEPSC traces. Bar graphs plot mean ± SEM. 
See Table S3 for data and Figure S4. 
neurons (Fritz et al., 2003; Kilgard et al., 2001; Polley et al., 2006). 
In addition to increased responsiveness, changes in the tempo-

ral pattern and reliability of responses may also improve encod-
ing of sound features (Borst and Theunissen, 1999). Thus, 
neuronal populations in DE animals might have increased sound 
discrimination performance. 
To investigate whether DE improves auditory discriminability 

and whether temporal firing patterns contribute to these 
changes, we performed a multiple discriminant analysis on 
neurons from DE or NR animals (MDA; see Experimental 
Procedures) (Figure 6A). This analysis predicts attributes of a 
given stimulus (in this case, frequency or sound level) based 
on differences in the evoked spike patterns when stimulus 
parameters are varied (Machens et al., 2003). Separate MDA 
analyses were performed to test for discriminability of fre-
quencies or sound-level changes by either holding sound 
level or frequency constant. Given that we did not observe 
an increase in mean evoked firing rates, this analysis addition-
ally tests the reliability of encoding stimulus features in the 
absence of an increase in responsiveness alone. The perfor-
mance of this classifier was qualitatively evaluated by a 
confusion matrix (Figure 6A, right) that plots the known 
identity of the stimulus on the x axis and the model-predicted 
identity of the stimulus on the y axis, with perfect classifica-
tion performance indicated by the diagonal and erroneous 
assignments made offset from the diagonal. We evaluated 
the classifier at three different levels of temporal precision 
as derived from a binless method (see Supplemental Experi-
mental Procedures; size of sliding window = 1, 10, and 
50 ms) to identify the timescale at which changes occur. DE 
units showed a stronger diagonal bias in the confusion matrices 
than NR units, indicating a qualitative increase in discrimination 
performance for both frequency (Figure 6B) and sound level 
(Figure 6C). 
To quantify the degree of commonality between the true and 

model-predicted assignments and to provide an estimate of 
the reliability of stimulus encoding, we calculated the mutual 
information (MI) for each confusion matrix (Supplemental Exper-
imental Procedures, Equation 2). By comparing the observed dif-
ferences in MI to those obtained after randomly reassigning the 
stimulus labels multiple times (‘‘chance’’ distribution; see Sup-
plemental Experimental Procedures), we observed increases in 
both frequency- and level-related MI (frequency; range of MI 
increase with DE = 0.068–0.124 bits; one-tailed p values = 
0.0001–0.003; level; 0.041–0.083 bits; p = 0.00001–0.0005). 
Consistent with the increased MI, we observed decreased global 
mean absolute classification errors for the model in DE units for 
both frequency and level, which could also contribute to 
enhanced auditory function in DE animals (frequency; range of 
decrease in error magnitude = 0.47–0.987 kHz; one-tailed 
p values = 0.003–0.01; level; 1.01–1.99 dB sound-pressure level 
[SPL]; p values = 10�12–0.0008). 
The temporal pattern of neuronal responses to stimuli is char-

acterized by inherent variability, the reduction of which increases 
the efficiency of stimulus encoding (Tolhurst et al., 1983). Plotting 
the variance as function of spike rate revealed a reduced vari-
ance for DE neurons at temporal resolutions of 1, 10, and 
50 ms (Figure 7A). To next quantify crossmodal changes in the 
efficiency of neuronal encoding, we calculated the Fano factor, 
which is the ratio of variance and mean spike counts. The Fano 
factor was globally reduced (Figures 7B and 7C), generally 
implying a decrease in trial-to-trial variability overall and for 
both aspects of stimuli, thus signifying an increase in encoding 
precision. 
Neuron 81, 664–673, February 5, 2014 ª2014 Elsevier Inc. 669 
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Figure 6. Schematic of MDA Approach 
(A) A principal components analysis was performed on the spike-count vectors forming the feature space obtained for each unit at each of the frequency-level 
combinations for n stimulus repetitions. The red and blue data are shown here projected along the first two principal components with a separation boundary 
between spike count vectors that are dissimilar to each other. In this case, the MDA estimates the probability with which each element of the stimulus matrix 
(21 frequencies 3 7 levels) was assigned to the correct value based on the similarity between the observed responses to multiple repeats of the same stimulus. 
The centroid of each repeat was calculated, and every subsequent repeat was compared to the previous (random) repeat of the stimulus. Given that each 
population of spike counts from multiple sets of neuronal responses had that many degrees of freedom, we reduced the dimensionality to the first ten principal 
components, which accounted for R50% of the variance in the samples. Adjusted spike counts were calculated by subtracting the spontaneous rates and 
Z scored prior to classification to determine the reliability of responses over and above a simple increase in responsiveness alone. The performance of this 
classifier was evaluated by generating a confusion matrix that plots the known value of the stimulus on the x axis and the model-predicted identity of the stimulus 
on the y axis, with perfect classification performance indicated by the 45� diagonal and erroneous assignments made away from the diagonal. The mutual in-
formation (MI) between the true value of the stimulus and the predicted value was estimated to quantify how well the neurons encode different stimulus features 
(frequencies and levels). 
(B) DE increases frequency discrimination of A1 neurons. Confusion matrices for NR (upper panel) and DE (lower panel) showing model-predicted frequency for 
each known frequency value. Each column represents discrimination performance at three different temporal resolutions (1, 10, and 50 ms; shown on top of each 
column). Color scale indicates proportion of classifications, and diagonal alignment indicates near-perfect classification performance (identical for all plots). The 
bias-corrected MI is indicated at the top of each figure. The most number of correct frequency assignments appeared to be made by the classifier closer to the 
groups’ overall CFs. 
(C) DE increases level discrimination of A1 neurons. Confusion matrices for sound-level-based classification for NR (upper panel) and DE (lower panel). DE 
increased MI uniformly for both aspects of stimuli. The discriminability approaches saturation in performance beyond 60 dB SPL. 
DISCUSSION 

Here, we demonstrate that TC inputs to A1, which do not modify 
with deafening, do potentiate following visual deprivation in 
adults. This, together with visual-deprivation-induced crossmo-

dal facilitation of long-term potentiation at L4 to L2/3 synapses in 
somatosensory barrel cortex (S1BF) (Jitsuki et al., 2011), sug-
gests an enhancement of feed-forward sensory processing in 
the spared senses. Recent studies highlight some degree of 
TC plasticity in adult cortices (Cooke and Bear, 2010; Heynen 
and Bear, 2001; Montey and Quinlan, 2011; Oberlaender et al., 
2012; Yu et al., 2012). We propose that TC plasticity is more 
effectively recruited across sensory modalities than within a 
sensory modality, which may serve as a substrate for sensory 
670 Neuron 81, 664–673, February 5, 2014 ª2014 Elsevier Inc. 
compensation throughout life. Furthermore, crossmodal TC 
plasticity is likely universal across sensory systems, because 
we find that deafening also results in TC potentiation in L4 of 
V1 in adult mice. 
The significance of our study is that TC plasticity is recruited in 

adult primary sensory cortex across sensory modality when it is 
not expressed within a sensory modality. Furthermore, we sug-
gest that the crossmodal recruitment of TC plasticity in A1 may 
underlie the observed improvement in auditory processing with 
vision loss. It is known that experience-dependent TC plasticity 
in primary sensory cortices is mainly restricted during an early 
developmental phase (Barkat et al., 2011; Crair and Malenka, 
1995; Fox, 2002), which corresponds to the precritical period. 
Recently, studies have highlighted that there is some degree of 
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Figure 7. DE Increases Spiking Reliability 
(A) Variance of spike counts as function of mean 
spike counts at three different temporal resolu-
tions. The ratio of variance and mean spike 
counts (Fano factor; shown as slope of regression 
fit) is decreased after DE consistent with MI 
comparisons. 
(B and C) Fano factor (ratio of variance and mean 
spike counts) at three different temporal resolu-
tions. Consistent with MI comparisons, Fano fac-
tor (FF) showed a significant overall decrease after 
DE when compared separately for frequencies (B) 
and sound levels (C; p < 0.05; t test). Plotted are 
means ± SD. 
plasticity at the TC inputs in adults within a sensory modality 
with manipulations such as nerve transection (Yu et al., 2012) 
or sensory deprivation (Montey and Quinlan, 2011; Oberlaender 
et al., 2012). Here, we show that sensory deprivation in one 
modality can potentiate TC inputs across sensory modalities, 
which supports the growing body of evidence that TC plas-
ticity can be effectively recruited in adults. Blind individuals 
show perceptual enhancement of hearing in aspects such as 
improved sound localization (Lessard et al., 1998; Voss et al., 
2004), pitch discrimination (Gougoux et al., 2004), and spatial 
tuning characteristics (Rö der et al., 1999). Our results show 
sharper tuning curves and lower activation thresholds in 
neurons at the thalamorecipient layer of A1, due to the 
observed strengthening of feed-forward inputs. Crossmodal 
potentiation of TC inputs to A1 is experience-dependent, as it 
required intact hearing. Because there was no significant differ-
ence in the auditory environment and vocalizations between 
normal and visually deprived groups, we surmise that there 
might be cortical and/or subcortical adjustments that allow 
auditory inputs to more effectively potentiate TC synapses 
after losing vision. Moreover, because deafening prevented 
the DE-induced plasticity, we have shown that auditory experi-
ence is required for this plasticity to occur. The observed 
potentially beneficial changes in A1 TC inputs and auditory 
processing could account for enhanced auditory performance 
in blind individuals. Moreover, because DE was able to rapidly 
induce changes in TC-recipient neurons in adults and im-

prove auditory processing, multisensory training paradigms 
may benefit individuals with central processing deficits, e.g., 
auditory processing disorders. Overall, our results here demon-

strate rapid and robust crossmodal changes in functional 
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attributes of primary sensory cortices 
following the loss of a sensory modality. 

EXPERIMENTAL PROCEDURES 

Rearing Conditions 
Control mice were raised in 12 hr light/12 hr dark 
cycles (NR). Experimental animals were dark-
exposed for 7 days. Ambient sound and vocaliza-
tions were both measured using ultrasonic 
recording instruments. All experiments were 
approved by the Institutional Animal Care and 
Use Committees (IACUCs) of Johns Hopkins 
University and University of Maryland and followed the guidelines of the Animal 
Welfare Act. 

ChR2 Viral Transfection 
At P21, mice were transcranially injected with adeno-associated virus contain-
ing channelrhodopsin-2 and yellow fluorescence protein as a marker. 

Induction of Deafness 
After induction of anesthesia using isoflurane vapors, an endaural approach 
was performed, following which 50 ml of kanamycin solution was instilled on 
the round window. Deafening was confirmed by absence of acoustic startle 
and histological observation of hair cell loss using phalloidin staining (Figure S4). 

In Vivo Recordings 
After induction and maintenance of anesthesia using isoflurane, a craniotomy 
was performed using standard landmarks over the A1. A digitally controlled 
micromanipulator was used to lower 16-channel single-shank silicon probes 
orthogonally to the cortical surface. Computer-generated pure-tone stimuli 
were presented in a pseudorandom fashion. The stimuli traversed 21 log-
spaced pure tones (40 ms duration; 1–35 kHz) presented at 10 dB steps 
from 10–70 dB SPL. Spike sorting was carried out using a standard model 
of unsupervised clustering. Significant neuronal responses were identified us-
ing a binless algorithm, following which the mean and peak evoked rates were 
calculated and compared between the two groups (NR and DE). In addition, 
we also compared spontaneous activity, the latency of first spikes, slopes of 
rate-level functions, and frequency response area (FRA) characteristics. A 
multiple discriminant analysis was used to classify neural responses to individ-
ual stimuli and assign response patterns to each stimulus according to their 
frequency or intensity. The relationship between the predicted and predictor 
variables was graphically examined using confusion matrices and the mutual 
information calculated. 

Cortical Slice Preparation 
Brain blocks containing primary visual and auditory cortices were dissected 
and coronally sectioned into 300 mm thick slices using a microslicer. 
, February 5, 2014 ª2014 Elsevier Inc. 671 



Neuron 

Visual Deprivation Improves Auditory Processing 
Light-Evoked Sr2+-mEPSCs 
Slices were transferred to a submersion-type recording chamber mounted on 
the fixed stage of an upright microscope with oblique infrared illumination. 
ChR2 was activated using a 455 nm light-emitting diode (LED) illuminated 
through a 403 objective lens and controlled by a digital stimulator. Cells 
were held at �80 mV and recorded for a minimum of 10 min; event analysis 
was performed using minianalysis software. Data were acquired every 10 s 
for a duration of 1,200 ms. 

Recording of mEPSCs 
AMPA receptor-mediated miniature excitatory postsynaptic currents were iso-
lated pharmacologically with 1 mM tetrodotoxin, 20 mM bicuculline, and 100 mM 
DL-2-amino-5 phosphonopentanoic acid. Biocytin (1 mg/ml) was included in 
the internal solution to confirm morphology and location of recorded cells. 
Cells were held at �80 mV, and the recorded mEPSC data were digitized at 
10 kHz by a data acquisition board and acquired through custom software. 
Acquired mEPSCs were analyzed with a detection threshold set at three times 
the root mean square noise level. 

Biocytin Processing 
Three-hundred-micrometer-thick cortical slices were fixed in 4% paraformal-

dehyde overnight at 4�C. Slices were then incubated in avidin-Alexa Fluor 633 
conjugate diluted 1:2,000 in 1% Triton X-100/0.1 M phosphate buffer overnight 
at 4�C in the dark. Slides were coverslipped with mounting media and sealed 
with nail polish. Images were taken using a confocal microscope. 

For complete details, please refer to Supplemental Experimental 
Procedures. 

SUPPLEMENTAL INFORMATION 

Supplemental Information includes Supplemental Experimental Procedures, 
five figures, and three tables and can be found with this article online at 
http://dx.doi.org/10.1016/j.neuron.2013.11.023. 
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