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a b s t r a c t

Discovery of long-term potentiation (LTP) in the dentate gyrus of the rabbit hippocampus by Bliss and
Lømo opened up a whole new field to study activity-dependent long-term synaptic modifications in
the brain. Since then hippocampal synapses have been a key model system to study the mechanisms of
different forms of synaptic plasticity. At least for the postsynaptic forms of LTP and long-term depression
(LTD), regulation of AMPA receptors (AMPARs) has emerged as a key mechanism. While many of the
synaptic plasticity mechanisms uncovered in at the hippocampal synapses apply to synapses across
 

              

              

               

               

              

MPA receptors
ortex

diverse brain regions, there are differences in the mechanisms that often reveal the specific functional
requirements of the brain area under study. Here we will review AMPAR regulation underlying synaptic
plasticity in hippocampus and neocortex. The main focus of this review will be placed on postsynaptic
forms of synaptic plasticity that impinge on the regulation of AMPARs using hippocampal CA1 and primary
sensory cortices as examples. And through the comparison, we will highlight the key similarities and
functional differences between the two synapses.
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1. Introduction

Rapid activity-dependent mechanisms of synaptic plasticity,
such as LTP and LTD, are believed to be central for the proper
development of brain connectivity and for the coding and stor-
age of memory. Because both LTP and LTD have innate built-in
positive-feedback propensity, there is a requirement for global
homeostatic plasticity mechanisms acting on a slower time scale
to provide stability to the overall neuronal activity [1,2]. Most
         

       

         

        

of our understanding on synaptic plasticity mechanisms derives
from hippocampal studies, in part because this structure is critical
for memory formation, but also because synaptic plasticity is

dx.doi.org/10.1016/j.semcdb.2011.06.007
http://www.sciencedirect.com/science/journal/10849521
http://www.elsevier.com/locate/semcdb
mailto:heykyounglee@jhu.edu
dx.doi.org/10.1016/j.semcdb.2011.06.007
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articularly robust in this area. Although multiple forms of LTP and
TD are expressed in the hippocampus, even at the same synapses
3], the most commonly studied form of LTP/LTD is NMDAR receptor
NMDAR)-dependent, and is predominantly studied at the Schaffer
ollateral to CA1 synapses. The mechanisms of LTP and LTD induced
t the CA1 synapses are known to an extensive molecular detail,
hich mainly involve regulation of AMPARs [4,5] (see Section

.3). While many of the basic mechanisms of AMPAR regulation
uring synaptic plasticity in the hippocampus apply to synapses
lse where, there are critical differences, which underscores the
pecific functional requirement of the synapses under study.

Hippocampus is part of the archicortex, which is structurally
ifferent from the 6-layered neocortex. Despite the anatomical and
unctional distinctions, synapses in both brain areas display com-

on forms of synaptic plasticity. Early studies done by Mark Bear’s
roup reported that the bidirectional regulation of synapses in layer
/3 of visual cortex shares common induction mechanisms with
ynapses in the CA1, including the dependence on NMDARs [6].
ater studies uncovered further commonalities, including mecha-
isms of AMPAR regulation, but also revealed important differences

n the induction mechanisms of LTP and LTD across neocortical
ayers [7,8]. However, for the purpose of meaningful comparisons

e will limit our discussions to the NMDAR-dependent forms of
TP/LTD in layer 2/3 of the neocortex and the Schaffer collateral
o CA1 synapses. NMDAR-dependent LTP and LTD are expressed
ostsynaptically via regulation of AMPARs, which are also utilized
y global homeostatic synaptic plasticity. Therefore we will com-
are AMPAR regulation during LTP/LTD and homeostatic synaptic
lasticity in these two brain areas.

. LTP/LTD in CA1 and neocortex

Kirkwood et al. first convincingly demonstrated that common
orms of NMDAR-dependent of LTP and LTD are present at the
chaffer collateral synapses in the hippocampal CA1 and the layer
to 2/3 synapses in the visual cortex [6]. At both types of synapses,

heta burst stimulation induces LTP and low frequency stimulation
1-Hz, 900 pulses) produces LTD. Also in both areas, the induc-
ion of LTP is Hebbian, requiring co-incident pre- and post-synaptic
ctivity [9], which is a property conferred by its dependence on the
ctivation of NMDARs [6,9]. NMDAR-dependent LTP and LTD have
ince been demonstrated in other sensory cortices and higher order
ortical areas in diverse species [10], including the human inferior
nd middle temporal cortex [11].

Besides the common induction rules, neocortical and hippocam-
al LTP/LTD also share downstream signaling. In the CA1, LTP
nd LTD require activation of various protein kinases and pro-
ein phosphatases, respectively, which suggest involvement of
hosphoproteins [12]. Similarly, neocortical LTP also depends on
rotein kinases, such as Ca2+/calmodulin-dependent protein kinase

I (CaMKII) [13–16] and cAMP-dependent protein kinase (PKA)
17,18], and neocortical LTD requires protein phosphatase activity
19]. One of the phosphoproteins implicated in the expression of
TP/LTD in CA1 is the AMPAR [20,21], and AMPAR phosphorylation
lso appears crucial in neocortical LTP/LTD [22,23]. As discussed
ater (Section 2.2.2), altering AMPAR phosphorylation regulates
ynaptic transmission by either changing single channel properties
r receptor trafficking.

.1. Overview on the known differences in synaptic plasticity
etween hippocampus and neocortex
       

        

        

        

While there are many similarities between LTP/LTD observed
t CA1 and neocortical synapses, apparent differences were noted
ven from early studies. For instance, CA1-LTP normally displays
prominent short-term potentiation (STP), which decays into a
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long-lasting potentiation, whereas neocortical LTP typically lacks
STP and develops gradually over time [6]. In the CA1, STP can be
observed in isolation under conditions of blocking protein kinases
[20,24]. Interestingly, neocortical LTP is more susceptible to inhi-
bition of protein kinases such that mice lacking only 1 copy of
the �CaMKII gene (�CaMKII+/–mice) completely lack LTP in the
cortex [13,14], while the CA1-LTP is minimally affected [14]. The
rather specific LTP deficits in neocortex of �CaMKII+/–mice corre-
lated with a selective impairment of permanent memory formation
[14]. These studies were one of the first demonstrations that LTP in
the neocortex can be selectively targeted for disruption, and sup-
ports a role of neocortex in the storage of remote memories, which
is distinct from the role of hippocampus in the initial formation
of memories [25]. Similarly, mice expressing a dominant negative
form of p21-activated kinase (PAK) display abnormal spine mor-
phology and LTP/LTD in the temporal cortex, but not in CA1, which
correlated with impairments in long-term memory [26].

There are other examples that indicated that synaptic plas-
ticity in the neocortex occurs under more restricted conditions
and vulnerable to manipulations than in the CA1. For instance,
knockout mice lacking glutamate decarboxylase 65 (GAD65), the
gamma-aminobutyric acid (GABA) synthesizing enzyme enriched
at GABAergic boutons [27], lack LTD in the visual cortex, but exhibit
normal synaptic plasticity in the CA1 [28]. This suggests that neo-
cortical LTD is more vulnerable to changes in GABAergic function.
Neocortical LTD is also more sensitive to blockers of phospholipase
C (PLC)-linked receptors. Blocking multiple PLC-linked receptors
abolish LTD in the visual cortex, but leaves a portion of LTD intact
in the CA1 [29]. This suggests that neocortical LTD is regulated more
drastically by changes in the tone of PLC-linked neuromodulators.
In line with this, activation of PLC-linked neuromodulator receptors
in visual cortex produces LTD even under spike-timing windows
that are known to favor LTP [22], as well as with induction protocols
that normally yield pairing-induced LTP [30]. This may explain the
strong requirement of neuromodulatory systems in cortical reor-
ganization [31–33]. Recent studies also show that there are specific
differences in AMPAR regulation in the neocortex compared to that
in the hippocampus (Section 2.3 and Table 1).

2.2. AMPAR regulation during synaptic plasticity

It is now widely accepted that AMPAR regulation is a key compo-
nent in the expression of postsynaptic forms of LTP and LTD, as well
as homeostatic synaptic plasticity of excitatory synapses. There are
largely 2 modes of AMPAR regulation that contribute to synaptic
plasticity: one is via regulation of its synaptic trafficking and the
other is via alterations in phosphorylation of its subunits. These two
key regulation mechanisms may not be independent, because some
phosphorylation sites have been implicated in regulating synaptic
trafficking of AMPARs [12,20].

2.2.1. AMPAR synaptic trafficking in LTP and LTD
One of the first evidence supporting synaptic trafficking of

AMPARs in synaptic plasticity came from studies in CA1 demon-
strating the existence of “silent” synapses, which lack functional
AMPARs [34,35]. In particular, these studies showed that “silent”
synapses convert to functional ones (i.e. express functional
AMPARs) following LTP induction. These results paved a way for
subsequent studies addressing how AMPARs could traffic in and out
of synapses following LTP and LTD. By expressing specific AMPAR
subunits that allow electrophysiological detection (i.e. electrophys-
iological tagging method), Malinow’s group demonstrated that LTP
       

         

      

       

       

is associated with synaptic incorporation of GluA1 (or GluR1) sub-
unit containing AMPARs [36,37]. Although over-expressing the
GluA1 subunit, which assemble into homomers, allow detection
of functional GluA1-homomers at synapses following LTP [36,37],
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Table 1
Comparison of AMPAR regulation in CA1 and neocortex.

CA1 Neocortex

Cell surface GluA1/GluA2 ratio Higher [54,67]. Lower [66,117].

CP-AMPARs Mostly perisynaptic and extrasynaptic [54,107].
Limited synaptic and extrasynaptic expression
[39,127].

Synaptic expression during development and via changes in sensory
experience [66,95,108–113].

GluA1-S831 phosphorylation Increased phosphorylation with LTP [57,58].
Not necessary for LTP or LTD [71].
Not necessary for synaptic AMPAR trafficking [36].

Necessary for spike-timing dependent LTD and pairing LTD [22,30].
Not necessary for spike-timing dependent LTP [22].
Necessary for normal experience-dependent synaptic scaling [66].

GluA1-S845 phosphorylation Dephosphorylation with LTD [58,62].
Necessary for NMDAR-dependent LTD [71,128].
“Primes” associative LTP [69].a

Increases cell surface AMPAR without changes in
a

Increased phosphorylation with sensory deprivation [66,95].
Necessary for both LTP and LTD [22].
“Primes” associative spike-timing dependent LTP [22].
Necessary for experience-dependent synaptic scaling [66].

a
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membrane insertion [53]. Interestingly, GluA1-S845 phosphoryla-
tion is highly regulated by neuromodulators linked to the cAMP
signaling cascade. For instance, in both the CA1 and the visual cortex

Endocytic 
zone 

Synaptic 
Perisynaptic 

Extrasynaptic 

Recycling 
endosome 

Lysosome 

PSD 

Fig. 1. A model of AMPAR regulation. AMPARs reside in distinct subcellular com-
partments as depicted. Exocytosis from recycling endosome to extrasynaptic sites
depends on GluA1-S845 phosphorylation. PKA-linked neuromodulators increase
the extrasynaptic GluA1 population via acting on GluA1-S845. Interestingly, cor-
tical synapses have a smaller basal extrasynaptic GluA1 population compared to
CA1. Extrasynaptic population can laterally diffuse into synaptic areas, and synaptic
activity traps and anchors them to the PSD. Synaptic targeting depends on GluA1-
S818 phosphorylation and CaMKII activity, as well as prior phosphorylation on the
GluA1-S845, but not on the GluA1-S831. Synaptic AMPARs can be endocytosed via
   

       

      

        

           

        

         

        

        

           

       

            

       

           

        

           

         

       

       

          

       

        

         

           

   

          

       

         

       

         

        

         

         

         

         

       

        

         

          

          

         

       

    

       

synaptic AMPAR function [53,67].

a In these studies, GluA1-S845 phosphorylation was pharmacologically increased
ested.

he incorporation of native Ca2+-permeable GluA1-homomers at
A1 synapses during LTP is debated [38–40]. Nevertheless, there

s a clear consensus in the field that new AMPARs are mobilized
o synapses following LTP. Recent studies using single molecule
racking of individual AMPARs showed that one mode of increasing
he synaptic content of AMPARs is via activity-dependent “diffu-
ional trapping” [41,42]. Individual AMPARs tagged with a quantum
ot has been shown to diffuse laterally across the plane of the
lasma membrane, often traversing into synaptic regions. While
he dwell time of AMPARs at synapses is longer than that seen at
xtrasynaptic sites, synaptic activity dramatically limits the mobil-
ty of synaptic AMPARs. This led to the idea that synaptic activity
ccumulates AMPARs at synapses via limiting the lateral diffusion
ate [43]. In support of this, there is a strong correlation between
ell surface and synaptic AMPAR levels [44], and the AMPARs
ecruited to synapses following LTP predominantly originate from
re-existing surface population [45]. However, LTP inducing stim-
li also increases the exocytosis rate of AMPARs [45], and disrupting
xocytosis microdomains located close to the postsynaptic density
PSD) prevents LTP [46]. Collectively, these findings suggest that
xocytosis of AMPARs is crucial for increasing the surface popula-
ion of AMPARs, which are then trapped at synapses in an activity
ependent manner (Fig. 1).

On the flip side, convergent evidence supports a role of AMPAR
ndocytosis following LTD induction and interfering with AMPAR
ndocytosis impairs LTD in the CA1 region [47]. Endocytosis of
MPARs occurs at discrete perisynaptic and extrasynaptic endo-
ytic “hot zones”, and the close proximity of perisynaptic endocytic
ones to the PSD is maintained by protein–protein interactions
nvolving the long forms of Homer, Shank, and dynamin-3 [48].
xpression of Homer1a, which is an activity induced dominant neg-
tive form of Homer, decreases the fraction of spines containing
ndocytic zones [48]. This suggests that neural activity can regu-
ate the availability of perisynaptic endocytic zones. Unexpectedly,
ynapses lacking endocytic zones had lower synaptic AMPAR lev-
ls [48], consistent with findings that recycling endosomes are a
ource for providing AMPARs that can be trafficked to synaptic sites
ollowing LTP [49]. Thus, endocytic zones are not only involved in
ndocytosis of AMPARs, but also are critical for supplying AMPARs
o recycling endosomes for synaptic insertion (Fig. 1).

.2.2. AMPAR phosphorylation and LTP/LTD
Phosphorylation of specific AMPAR subunits is essential for

he regulation of plasma membrane and synaptic trafficking of

        

           

           

      

       

MPARs [20] (Fig. 1). In the case of LTP, phosphorylation of GluA1
818 by PKC and S845 by PKA are thought critical for synaptic
argeting of GluA1-containing AMPARs following LTP induction
50–52]. Our current understanding is that the GluA1-S845
        

           

         

        

        

         

         

         

       

        

       

       

          

  

       

        

Increases cell surface AMPAR and synaptic AMPAR function [66].

adrenergic receptor agonist application, and the necessity of S845 was not directly

phosphorylation plays a more permissive role in LTP by increas-
ing the amount of AMPARs at extrasynaptic plasma membrane
[53] or stabilizing perisynaptic GluA1 homomers [54], while the
GluA1-S818 site is thought critical for the actual synaptic targeting
of AMPARs following LTP by increasing the rate of extrasynaptic
and synaptic insertion [50,52]. In addition, the GluA1-S831 site, a
major CaMKII phosphorylation site [55,56], might contribute LTP
[57,58] by regulating the single channel conductance [59,60]. In
the case of LTD, GluA1-S845 dephosphorylation [58,61,62] and
GluA2-S880 phosphorylation [63,64] have been implicated to play
a role. How the regulation of these two subunits coordinate LTD
expression remains unclear.

PKA phosphorylation of GluA1-S845 has been proposed to
“prime” the receptors for synaptic targeting by promoting plasma
           

           

        

           

        

          

perisynaptic endocytic zones, which also act to supply AMPAR to recycling endo-
somes. Dephosphorylation of GluA1-S845 targets endocytosed AMPARs to lysosome
for degradation, while phosphorylation of this site allows recycling back to the
plasma membrane. CP-AMPARs predominantly accumulate at perisynaptic sites in
CA1, while accumulate at cortical synapses with changes in sensory experience.
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ctivation of �-adrenergic receptors increases GluA1-S845 phos-
horylation [22,65] and cell surface expression of GluA1 [66–68],
nd promotes LTP induction [22,69]. These effects are likely due
o the close proximity of �-adrenergic receptors and PKA signaling

olecules to the synaptic AMPARs. Indeed, �2-adrenergic recep-
ors are localized at PSDs and form a macromolecular complex
ith GluA1, stargazin, and PSD-95 [68]. And PKA is linked to this
acromolecular complex via anchoring to A-kinase anchoring pro-

ein 79/150 (AKAP79/150), which interacts with PSD-95 [70]. While
luA1-S845 promotes LTP induction, it is not necessary for CA1-
TP, as mice carrying an alanine mutation of this site (GluA1-S845A)
xpress normal LTP at these synapses [71]. This contrasts the neces-
ity of GluA1-S845 in neocortical LTP (see Section 2.3).

GluA1-S818 is located within a membrane proximal region
MPR) right after the last transmembrane domain of the GluA1,
hich is a region that interacts with an actin cytoskeleton bind-

ng protein 4.1N [72]. The role of GluA1-S818 in LTP is rather
omplex, because it requires concomitant action of other phospho-
ylation sites (e.g. GluA1-S816) and depalmitoylation of a cysteine
esidue (i.e. GluR1-C811) within the MPR [50,52]. In any case, muta-
ions that prevent S818 and S816 phosphorylation decreases, while
hosphomimic mutation of these two serines (S816D and S818D)

ncreases, the membrane insertion rate of AMPARs [52]. The mem-
rane targeting of GluA1 by the MPR serines was due to regulating
he interaction between the GluA1 and 4.1N, and disrupting this
nteraction inhibits LTP [52].

In addition to the GluA1-S845 and S818 sites, GluA1-S831 might
lso play a role in LTP. CaMKII is both necessary [73,74] and suf-
cient [75] for LTP, and consistent with being one of the CaMKII
ubstrates [55,56], phosphorylation of GluA1-S831 increases with
TP [57,58]. However, while CaMKII activity is required to drive
MPARs to synapses, this is independent of GluA1-S831 [36].
ecause phosphorylation of GluA1-S831 increases single channel
onductance [59], it is likely to mediate the increase in AMPAR
onductance with LTP [76,77]. However, CA1 LTP is quite normal
n mice specifically lacking the GluA1-S831 site [71], hence it is not
ecessary for LTP expression.

LTD, on the other hand, is accompanied by a dephosphorylation
f GluA1-S845 [58,62], phosphorylation of GluA2-S880 [63,64], and
ndocytosis of AMPARs [78,79]. The role of GluA1-S845 dephos-
horylation is likely via targeting GluA1-containing AMPARs for
ndocytosis and eventual degradation in the lysosomes [80].
luA2-S880 phosphorylation is also involved in receptor endo-
ytosis by preferentially shifting GluA2 interaction from Grip to
ick-1 [63,81]. Mimicking phosphorylation of the GluA2-S880 site
GluA2-S880E mutation) depresses synaptic transmission and par-
ially occludes LTD [82]. However, GluA2 is not necessary for LTD,
ince NMDAR-dependent CA1 LTD [83,84] and activity-dependent
ndocytosis of AMPARs [85] can occur in the absence of the GluA2
ubunit. Because LTD is absent in mice lacking the GluA1-S845 site
GluA1-S845A mutant) [71], GluA1 may play a more dominant role.

.2.3. AMPAR regulation during synaptic scaling
Activity-dependent regulation of AMPARs is not limited to

TP/LTD, but also occurs during homeostatic synaptic plasticity.
he latter form of synaptic plasticity acts to maintain balance
n the overall network activity by working on global variables
hat act on a longer time scale than those needed for LTP/LTD.
ne form of homeostatic synaptic plasticity is termed “synap-

ic scaling”, because homeostasis is achieved via adjustment of
ynaptic gain [2]. It is now well documented that a prolonged
ecrease and increase in input activity, respectively, scales up and
         

        

       

         

       

own excitatory synapses. Early evidence for synaptic scaling came
rom neuronal cultures where pharmacological blockade of neural
ctivity globally increases the gain of excitatory synapses, and phar-
acologically increasing neuronal firing reduces the strength of
   

        

        

          

        

         

        

  

         

         

        

        

         

      

         

        

          

      

      

         

          

       

        

        

          

         

         

         

         

       

         

         

         

 

      

 

         

        

          

        

         

         

        

          

       

       

     

        

         

       

       

      

       

         

         

        

         

       

       

       

elopmental Biology 22 (2011) 514–520 517

excitatory synapses [86,87]. Synaptic scaling was found to respond
to global cell-wide variables, such as somatic action potentials
[88,89], and produce changes across most of the synapses on a
neuron. However, some studies suggest that synaptic scaling can
happen locally at single synapses [90–92]. Global and local home-
ostatic synaptic plasticity may serve distinct roles in regulating
neuronal function [93].

Regardless of the extent of change, the most prominent post-
synaptic change related to synaptic scaling is the regulation of
AMPARs, which often tap into similar mechanisms used during
LTP/LTD. For instance, prolonged inactivity leads to accumulation of
AMPARs at synapses, which correlated with an increase in AMPAR-
mediated miniature excitatory postsynaptic current (mEPSC) [87].
On the other hand, prolonged increase in neural activity removes
synaptic AMPARs and decrease mEPSCs [87,94]. Most studies find
that the main regulation is at the level of controlling synap-
tic GluA1 content [66,95–100], but disrupting GluA2-dependent
mechanisms also impact synaptic scaling [101,102]. Molecular
details of AMPAR regulation during synaptic scaling is quite simi-
lar to that observed during LTP/LTD, such as modulation of GluA1
phosphorylation [66,95] and GluA2 interaction with Pick-1 [102]
and/or other carboxy-tail binding partners [101]. At this point,
how seemingly opposite changes in neural activity (i.e. increase
in activity for driving LTP versus a decrease in neural activity
that produce scaling up) lead to similar AMPAR regulation (i.e.
up-regulation of synaptic AMPAR function) is not clear. One possi-
bility is that distinct signaling occurs for LTP/LTD versus synaptic
scaling. For instance, LTP/LTD that lead to AMPAR regulation are
mainly NMDAR-dependent, while synaptic scaling can happen in
the absence of NMDAR activity, such as requiring mGluR signal-
ing [103]. However, NMDAR activity can influence the kinetics of
synaptic scaling [104], and may be critical for local synapse-specific
scaling [93].

2.3. Contrasting AMPAR regulatory mechanisms in hippocampus
and neocortex

So far the available data suggest that neocortical synapses may
be more permissive to synaptic trafficking of Ca2+-permeable (CP-)
AMPARs than synapses in the CA1. In the CA1, synaptic incorpora-
tion of CP-AMPARs, such as GluA1-homomers, is debated [38–40],
and may occur under certain conditions such as activation of
CaMKI signaling [105,106]. In addition, there is evidence that CP-
AMPARs are predominantly localized to perisynaptic sites in the
CA1 [54,107]. On the other hand, CP-AMPARs are observed at neo-
cortical synapses early in development [108–110], and changes
in sensory experience regulate synaptic expression of CP-AMPARs
[95,111–113]. For instance, single-whisker experience increases
synaptic CP-AMPARs in the barrel cortex [111,112], which requires
Pick-1 [114]. In the visual cortex, CP-AMPARs appear at synapses
following binocular visual deprivation, which then are subse-
quently removed by visual experience [66,95]. Furthermore, visual
deprivation-induced cross-modal changes in barrel cortex also
involve regulation of CP-AMPARs [95,113]. While the CP-AMPAR
regulation seen in the barrel cortex by single whisker experi-
ence mimics LTP [111,112], the regulation in visual cortex after
binocular deprivation follows the rules of synaptic scaling [66,95].
The cross-modal changes seem to involve both LTP-like [113] and
homeostatic synaptic plasticity mechanisms [95] depending on the
duration of visual deprivation. Regardless, these results suggest
that CP-AMPAR, especially GluA1-homomer, regulation may be a
key mechanism in which sensory cortices respond to changes in
         

  

       

        

         

the sensory environment.
In mice lacking the GluA1-S845 phosphorylation site, CP-

AMPARs accumulate at visual cortical synapses [66], but are
actively removed and degraded in the CA1 [54]. While further
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tudy is required to determine how CP-AMPARs are differentially
egulated in the two brain regions, it is tempting to speculate
hat the cortical synapses may be more tolerant to the pres-
nce of CP-AMPARs. CP-AMPARs have faster decay kinetics and
arger conductance than Ca2+-impermeable AMPARs [115]. Hence
t is possible that changes in the temporal dynamics of synaptic
esponses conferred by the presence of CP-AMPARs may provide
enefit to the cortical synapses, which may outweigh any poten-
ial negative impact of having the extra Ca2+ signal. Interestingly,
he basal expression of GluA1 is lower in visual cortex compared
o CA1 [116] (unpublished observations H.-K. Lee). Furthermore,
he percentage of GluA1 present on the cell surface is lower in
isual cortex (about 15–30%) [66,117] than in CA1 (about 40–45%)
54,67]. These measurements reflect predominantly extrasynaptic
urface population suggesting that the size of this “reserve” pool of
luA1-containing AMPARs is less in the neocortex.

There is also potential difference in the role of AMPAR phos-
horylation for synaptic plasticity in hippocampus and neocortex.
s discussed previously, GluA1-S845 site is specifically involved in

he expression of LTD in the CA1 without effect on LTP [54,58,71].
owever, mice lacking the site (GluA1-S845A mutants) display

mpairment of both LTP and LTD in the visual cortex [22,30]. This
s interesting in light of the findings that neocortical plasticity
s highly dependent on neuromodulatory systems, such as nore-
inephrine and acetylcholine [31–33]. Furthermore, the polarity of
eocortical synaptic plasticity critically depend on the neuromod-
latory system, such that activation of PKA-linked neuromodulator
eceptors produces LTP and PLC-linked receptors result in LTD
ith the same stimulation protocol [22,30]. It is noteworthy that

ctivating �-adrenergic receptor, which is linked to PKA signal-
ng, increases GluA1-S845 phosphorylation [22,66] and cell surface
xpression of AMPARs [66] in the visual cortex. Whether the “prim-
ng” effect of GluA1-S845 plays a more critical role in neocortical
lasticity needs further study, but this would be consistent with the
ndings that synaptic plasticity in neocortex is more vulnerable
o manipulations of PKA. For instance, inhibiting PKA completely
locks both LTP and LTD in the visual cortex [17,22]. In con-
rast, while PKA inhibitors are effective at blocking LTP in the
A1 in neonates [118,119], beyond the second postnatal week
TP is usually not severely impacted until the late maintenance
hase [58,120,121] (but see [122]). The role of PKA in neocortical
TP may be complicated, because in barrel cortex PKA-dependent
TP is only revealed following sensory deprivation [18]. However,
onsidering that sensory deprivation leads to homeostatic synap-
ic plasticity [66,95,117,123–125], and that the state of synapses
etermines the distinct signaling for LTP/LTD [20], this may not be
surprise. Indeed, sensory deprivation changes the state of AMPAR
hosphorylation [66,95], which may influence the expression of
KA-dependent LTP.

Another potential difference in AMPAR regulation is on the
ole of GluA1-S831. In CA1, GluA1-S831 phosphorylation corre-
ates with [57,58], but is not necessary for LTP [71]. However, in the
isual cortex GluA1-S831 is necessary for associative spike-timing
ependent and pairing-induce LTD [22,30]. This is paradoxical,
onsidering that GluA1-S831 is phosphorylated by CaMKII [55,56]
nd PKC [126], but LTD in the visual cortex is normal in �CaMKII
nockouts [13] or in the presence of PKC inhibitors [29]. How
he GluA1-S831 site contributes to cortical LTD remains to be
etermined, but we recently found that basal phosphorylation of
luA1-S845 is abnormally high [66] in the visual cortex of GluA1-
831A mutants, which would explain the absence of LTD. However,
his abnormal regulation is specific to the cortex, because GluA1-
         

          

         

        

845 site is not significantly altered or negatively impacted in the
A1 of GluA1-S831A mutants [71]. These results suggest that CA1
nd neocortex may respond differently to changes in GluA1-S831
hosphorylation.
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3. Conclusions

Hippocampal synapses, especially the Schaffer collateral inputs
to CA1, have been instrumental in unraveling many of the funda-
mental mechanisms of synaptic plasticity. While many of the basic
mechanisms are conserved across brain areas, there are specific
differences. Recent studies highlight that the neocortex has a dis-
tinct functional role in that it contributes to the long-term storage
of memories, and in particular sensory cortices need to respond to
changes in sensory demand that is tied to the behavioral state and
the sensory environment. Therefore, it is perhaps not a surprise that
the sensory neocortices show more restricted plasticity than the
CA1, and have somewhat different AMPAR regulatory mechanisms
in place to respond to their specific functional demands.
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