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Brief Communication 

Absence of Long-Term Depression in the Visual Cortex of Glutamic 
Acid Decarboxylase-65 Knock-Out Mice 
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Long-term depression (LTD) is widely considered a mechanism 
for experience-induced synaptic weakening in the brain. Re-
cent in vivo studies on glutamic acid decarboxylase [GAD 65 
(�/�)] knock-out mice indicates that GABAergic synaptic inhi-
bition is also required for the normal weakening of deprived 
inputs in the visual cortex. To better understand how GABAer-
gic inhibition might control plasticity, we assessed the status of 
synaptic inhibition and LTD in visual cortical slices of GAD 65 
knock-out mice. We found the following: (1) the efficacy of 
GABAergic synapses during repetitive activation is reduced in 

Shortly after birth, the visual cortex enters into a brief critical 
period of enhanced plasticity (Hubel and Wiesel, 1970). At this 
stage, a simple alteration of visual experience, such as monoc-
ular deprivation, selectively weakens the deprived inputs, shift-
ing the eye preference of cortical cells toward the nondeprived 
eye (Fagiolini et al., 1994; Gordon et al., 1996). It is widely 
believed that NMDA receptor-dependent forms of synaptic 
modification, such as long-term potentiation (LTP) and long-
term depression (LTD), are essential for developmental plas-
ticity in the visual and other sensory cortices (Singer, 1995; 
Daw et al., 1999; Rittenhouse et al., 1999; Di Cristo et al., 
2001). In the context of this idea, it has been proposed that the 
critical period results from the delayed maturation of the 
GABAergic system (Komatsu, 1983; K irkwood and Bear, 
1994). The recruitment of GABAergic synaptic inhibition re-
stricts the induction of synaptic plasticity (Kirkwood and Bear, 
1994); hence, its late maturation (Blue and Parnavelas, 1983; 
Luhmann and Prince, 1991; Guo et al., 1997) would provide a 
window of opportunity for plasticity to occur (Huang et al., 
1999; Rozas et al., 2001). 

Recently, however, this view has been challenged based on 
results obtained with knock-out (KO) mice that lack glutamic 
acid decarboxylase 65 (GAD 65), one of the two isoforms of the 
GABA synthesizing enzyme GAD 65. In GAD 65 (�/�) mice, 
monocular deprivation does not cause the normal shift in ocular 
dominance unless synaptic inhibition is pharmacologically en-
hanced by local application of diazepam (Hensch et al., 1998). 
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GAD 65 (�/�) mice; (2) the induction of LTD is impaired in the 
visual cortex of GAD 65 (�/�) mice; and (3) chronic, but not 
acute, treatment with the benzodiazepine agonist diazepam 
restores LTD in GAD 65 (�/�) mice. These results suggest that 
a certain inhibitory tone is required for the induction of LTD in 
visual cortex. We propose that the lack of visual cortical LTD in 
GAD 65 (�/�) may account for the lack of experience-
dependent plasticity in these mice. 

Key words: critical period; synaptic plasticity; GABA; neocor-
tex; IPSC; synaptic inhibition 

Although these results stress the importance of GABAergic in-
hibition in visual plasticity, the cellular basis for the lack of 
plasticity in GAD 65 (�/�) mice remains unknown. The 
induction of LTP and LTD in visual cortical slices from GAD 
65 (�/�) mice was reportedly normal, supporting arguments 
against the involvement of these mechanisms of synaptic mod-
ification in visual cortical plasticity. In view of the important 
implications of such a conclusion, we set out to reexamine in 
GAD 65 (�/�) mice the status of LTD, perhaps the most 
relevant mechanism of plasticity to account for the effects of 
monocular deprivation. Here we report that the induction of 
LTD is impaired in young GAD 65 (�/�) mice, yet LTD can 
be restored in these mice by chronic application of diazepam. 
Our reexamination of the status of NMDA-dependent plastic-
ity forces a fundamental revision in how in vivo experiments on 
GAD 65 (�/�) are interpreted. 

MATERIALS AND METHODS 
Coronal slices (300–400 �m) from the visual cortex and hippocampus of 
GAD 65 (�/�) mice (Kash et al., 1997) were prepared as described 
previously (Kirkwood and Bear, 1994). Briefly, after sectioning in ice-
cold oxygenated (95% O2–5% CO2) dissection buffer (in mM: 212.7 
sucrose, 5 KCl, 1.25 NaH2PO4, 3 MgCl2, 1 CaCl2, 26 NaHCO3, 10  
dextrose, and 10 kynurenate), slices were transferred to a storage cham-
ber containing normal artificial CSF (ACSF) for at least 1 hr before 
recording. Normal ACSF is similar to the dissection ACSF except that 
sucrose is replaced by 124 mM NaCl, MgCl2 is lowered to 1 mM, CaCl2 
is raised to 2 mM, and kynurenate is omitted. 

For whole-cell voltage clamp, the cells were visually identified with an 
infrared differential interference contrast Zeiss (Oberkochen, Germany) 
microscope. Patch pipettes (2–4 M�) were filled with internal solution 
consisting of (in mM): 130 Cs-gluconate, 8 KCl, 10 EGTA, 10 HEPES, 
and 1 QX-314, pH 7.4 (275–285 mOsm). In the experiments described in 
Figure 2, 40 mM Cs-gluconate was replaced by 40 mM CsCl. The reversal 
potential of the GABAergic currents was close to the value predicted by 
the Nernst potential of Cl� (�64.6 � 2.0 mV, n � 5 and �30.5 � 1.3 mV, 
n � 4 for the first and second solutions, respectively). The junction 
potential (typically �5 mV) was compensated. Only cells with membrane 
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potentials more negative than �65 mV, access resistance smaller than 20 
M� (8–18 M�, compensated at 80%), and input resistance larger than 
100 M� (130–410 M�) were studied. 

Synaptic responses were evoked with 15–300 �A, 0.2 msec current 
pulses delivered with a bipolar stimulating electrode (200 �m diameter; 
Frederick Haer Co., Bowdoinham, ME). Microelectrodes were filled 
with ACSF (1–2 M�) for extracellular recordings. In visual cortical 
experiments, the stimulating electrodes were placed in the middle of the 
cortical thickness, approximately equidistant from the pia and the white 
matter, and the responses were recorded in layers II /III. In hippocampal 
experiments, the stimulating and the recording electrodes were places in 
the dendritic field of the CA1 region. Synaptic responses were quantified 
as the initial slope of the field potential (FP) in CA1 and the amplitude 
of the maximum negative FP in layer III. Changes in the amplitude of the 
maximum negative FP reflect changes in the magnitude of a synaptic 
current sink (Aizenman et al., 1996) and correlate with changes in the 
initial slope of EPSPs recorded intracellularly in layer III neurons (Kirk-
wood and Bear, 1994). Long-term depression was induced by delivering 
900 pulses at 1 Hz. Only data from slices with stable recordings (�5% 
change over the baseline period) were included in the analysis. All data 
are presented as average � SEM normalized to the preconditioning 
baseline. Statistical significance was assessed using t test or two-way 
repeated-measures ANOVA, followed by the Fisher’s post hoc test. 
Diazepam was dissolved in 0.01% DMSO. All drugs were purchased 
from Sigma/RBI (Poole, UK). 

RESULTS 
All experiments were performed in visual cortical slices prepared 
from 3-week-old [postnatal day 21 (P21) to P27] GAD 65(�/�) 
mice and age-matched wild-type littermates. Stimulation was 
applied to layer IV, and synaptic responses were recorded in layer 
II /III. 

Normal inhibitory input in GAD 65 (�/�) mice 
Indirect evidence from field recordings and high-K-induced 
GABA release suggested a deficit in GABAergic transmission 
in the visual cortex of GAD 65 (�/�) (Hensch et al., 1998). To 
assess the status of GABAergic transmission more directly, we 
studied evoked IPSCs under whole-cell voltage-clamp condi-
tions. Monosynaptic IPSCs were recorded at 0 mV and in the 
presence of 10 �M CNQX and 100 �M APV to block fast 
glutamatergic transmission. We first measured the magnitude 
of the maximal IPSC, which provides a mean of comparing the 
total GABAergic inputs converging into pyramidal cells (Ling 
and Benardo, 1999). Previously, we reported that BDNF-
overexpressing mice, which exhibit an early developmental 
increase in GAD 65 puncta, also show an accelerated devel-
opmental increase in the maximal IPSC (Huang et al., 1999). 
Thus, we expected a reduced maximal IPSC in the GAD 65 
(�/�) mice. Figure 1 summarizes the results. To our surprise, 
but in line with a previous study in CA1 (Tian et al., 1999), we 
found no significant difference ( p � 0.28) in the magnitude of 
the maximal IPSCs between GAD 65 (�/�) (529 � 33 pA; 
n � 11) and their age-matched wild-type littermates (561 � 25 
pA; n � 11). These results suggest that total GABAergic input 
converging onto pyramidal cells is not affected by the deletion 
of the GAD 65 gene. 

Reduced efficacy of GABAergic synaptic transmission 
during repetitive activation in GAD 65 
In cortex, inhibitory synaptic transmission is greatly attenuated 
during repetitive activation, likely attributable to the progressive 
depletion of the releasable pool of vesicles (Galarreta and Hes-
trin, 1998; Varela et al., 1999). GAD 65, which is specifically 
localized in the axon terminals, is likely an important factor 

Figure 1. Normal number of inhibitory inputs in GAD 65 KO mice. A, 
Stimulation in layer IV effectively recruits the maximal IPSCs in layer 
II /III cells. Diagram on the lef t depicts stimulation–recording configura-
tion. Traces are examples of maximal responses evoked by layer IV 
stimulation ( 1), lateral stimulation ( 2), and layer IV and lateral stimula-
tion together (1 � 2). B, C, Similar relationship between stimulus intensity 
and IPSC magnitude in GAD 65 KO mice and their wild-type (WT ) 
littermates. A, Example IPSCs evoked by a series of stimulus of increas-
ing intensity (5, 10, 20, 40, 80, and 160 mA) recorded in layer II /III 
pyramidal cells from wild type (lef t) and an age-matched GAD 65 KO 
littermate (right). B, Relationship between IPSC magnitude and stimulus 
intensity for wild type (open circles; 11 cells, 6 mice) and GAD 65 KO 
littermates ( filled circles; 11 cells, 6 mice). Indicated on the right are the 
maximal IPSC amplitudes (obtained at 160 mA) for all individual 
experiments. 

determining the size of the releasable pool and/or its replenish-
ment after depletion (Tian et al., 1999). In fact, GABAergic 
transmission during tetanic stimulation is impaired in the CA1 
region of the hippocampus of GAD 65 KOs (Tian et al., 1999). 
The results shown in Figure 2 A confirmed that this is also the 
case in visual cortex. In these experiments, the stimulation 
intensity was adjusted to evoke IPSCs of similar amplitude in 
cells from GAD 65 KO (198 � 5 pA;  n � 8) and wild-type 
(202 � 8; n � 11) mice. However, the response to a 1 sec 100 
Hz stimulus train was much reduced in the GAD 65 KO cells 
(total charge, 358 � 25 pC in GAD 65; 493 � 58 pC in wild 
type; p � 0.001). Indirect evidence from field potential record-
ings suggest that, in cortex, GABAergic transmission might be 
impaired at even lower frequencies (Hensch et al., 1998). 
Therefore, we studied the response of layer II / III cells to 
trains of 15 stimulation pulses delivered at different frequen-
cies (50, 30, and 1 Hz). Because prolonged depolarization can 
affect the evoked IPSC (Alger and Pitler, 1995), these exper-
iments were performed at �70 mV rather than at 0 mV. To 
allow the measurement of IPSCs at �70 mV, the reversal 
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Figure 2. Reduced efficacy of GABAergic synaptic transmission dur-
ing repetitive activation in GAD 65 KO mice. A, Reduced response to 
tetanic stimulation (100 pulses at 1 Hz) in cells from GAD 65 KO mice. 
Superimposed traces represent the average of the responses of eight 
cells from GAD 65 KO mice (thick trace) and 11 cells from age-
matched wild-type (WT ) littermate (thin trace) mice. Stimulation 
intensity was adjusted to evoke single IPSCs of similar amplitude in 
both genotypes. The inset shows the same average responses at higher 
temporal resolution. The total charge flow during the tetanus is shown 
on the right bar graph. The response of cell was integrated and then 
averaged across genotypes. B, Examples of responses evoked by 15 
pulse trains delivered at 30 Hz (top) and 50 Hz (bottom) in cells from 
a GAD 65 KO (thick trace) mouse and its age-matched wild-type 
littermate (thin trace). The traces (averages of 4 responses) have been 
normalized to the response to the first pulse of the train. C, Average 
attenuation of the IPSC amplitude during 15 pulse trains delivered at 
1 Hz (triangles), 30 Hz (circles), and 50 Hz (squares). Results from wild 
type are shown on the lef t, and results from GAD 65 KOs are on the 
right. The curves are single exponentials that give the best fit to the  
data. D, Relative amplitudes of IPSC at steady state (average of the 
last 3 responses of a train) across different stimulation frequencies. 
Open symbols, Wild type; filled symbols, GAD 65 KO. 

potential of C l� was shifted to a more positive value by 
increasing the [Cl�] in the recording pipette (see Materials 
and Methods). As shown in Figure 2 B–D, during the train 
stimulation, the response magnitude rapidly decreased until it 
reached a steady level that depended on the stimulation fre-
quency. The degree of depression at the steady state was 
consistently larger in the GAD 65 (�/�) at all the frequencies 
tested. A statistical analysis revealed that the differences in 
frequency-dependent depression between GAD 65 (�/�) and 
wild types were highly significant (two-factor ANOVA; F(1,59) 

� 15.66; p � 0.0002). These results indicate that the ablation of 
GAD 65 reduces the efficacy of inhibitory transmission during 
prolonged activation. 

Impaired LTD in visual cortex of GAD 65(�/�) mice 
Experimental evidence indicates that LTD-like mechanisms are 
involved in the ocular dominance shifts caused by monocular 
deprivation in kittens (Rittenhouse et al., 1999). Thus, assessing 
the status of LTD in the GAD 65 KO is of obvious relevance for 
understanding results obtained with monocular deprivation in 
these mice. To investigate how the ablation of GAD 65 affects 
LTD, we used the standard protocol of prolonged low-frequency 
stimulation (LFS) (900 pulses at 1 Hz), which induces robust 
LTD in young animals in a number of regions, including the 
cortex. For comparative purposes, we also studied LTD in the 
Schaffer collateral 3 CA1 pathway in the hippocampus. All 
experiments were done “blind” to the genotype, and Figure 3A 
summarizes the results. In the visual cortex, LFS reliably induced 
LTD in slices from the wild-type mice (80.1 � 4.3%; n � 4 mice; 
13 slices), but it barely affected the responses recorded in the KO 
littermates (97.4 � 2.7; n � 4 mice; 15 slices). This difference was 
highly significant ( p � 0.001). In contrast, in CA1, LFS induced 
comparable levels of LTD ( p � 0.90) in slices from wild-type 
mice (77.6 � 6.1; n � 4 and 9) and their KO littermates (78.5 � 
3.1; n � 8 and 18). Together, these results indicate that the 
ablation of GAD 65 impairs the induction of LTD specifically in 
the visual cortex. 

Chronic but not acute application of diazepam 
restores cortical LTD in GAD 65 KO mice 
The effects of monocular deprivation can be restored in GAD 
65 (�/�) mice by infusing the benzodiazepine agonist diaze-
pam into the cortex (Hensch et al., 1998). We asked whether 
this effect of diazepam was the result of a rescued LTD. It is 
well established that GABAergic inhibition regulates the in-
duction of synaptic plasticity by limiting the activation of 
NMDA receptors (Artola et al., 1990; Kirkwood and Bear, 
1994). Indeed, manipulations that reduce inhibition also de-
crease the magnitude of LTD, whereas manipulations that 
enhance inhibition also increase LTD (Steele and Mauk, 
1999). Therefore, we tested whether potentiating the inhibitory 
response with benzodiazepines restores LTD in the visual 
cortex of GAD 65 (�/�). In a first series of experiments, 
diazepam was acutely applied to the bath. At this concentra-
tion (15 �M), diazepam reliably enhanced the amplitude (170% 
of control; p � 0.048) and duration (135% of control; p � 
0.027) of the IPSC recorded in cells from GAD 65(�/�) mice 
(n � 5; data not shown) (Segal and Barker, 1984; Hensch et al., 
1998; Rozas et al., 2001). However, as shown in Figure 4, such 
bath applications of diazepam failed to restore LTD in GAD 
65 (�/�), and there was no difference ( p � 0.89) in the 
magnitude of LTD obtained in the presence (96.2 � 3.0; n � 
5;15) of the drug or in interleaved controls (only DMSO, 
95.4 � 3.7; n � 5;9). Because experience-dependent visual 
cortex plasticity was rescued in GAD 65 (�/�) animals chron-
ically treated with diazepam (Hensch et al., 1998), we asked 
whether a prolonged exposure to diazepam is necessary to 
restore LTD. In these experiments, all pups in a given litter 
were treated with diazepam (10 mg/kg, i.p., daily) for 6 d 
before the experiments. This dosage of diazepam has been 
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Figure 3. Induction of LTD with 1 Hz LFS is impaired 
in the visual cortex but not in the CA1 region of GAD 65 
KO mice. The graphs depict average changes in the 
evoked field potentials induced by LFS (1 Hz, 15 min) in 
slices of visual cortex ( A) and CA1 (B) prepared from 
3-week-old wild-type (WT ) mice (open circles) and their 
GAD 65 KO littermates ( filled circles). The LTD magni-
tude for each individual experiment (measured 1 hr after 
LFS) is shown at the right of each graph. Example field 
potential traces from experiments performed in wild-type 
(top) and KO (bottom) mice are shown in the right. The  
superimposed traces are averages of four consecutive re-
sponses recorded 1 min before (thin traces) and 1 hr after 
(thick traces) LFS. 

Figure 4. Chronic but not acute application of diazepam (DZ) restores 
LTD in the visual cortex of GAD 65 KO mice. A, LFS does not induce 
LTD in slices from GAD 65 KO in control conditions (DMSO; open 
circles) or when 15 �M diazepam was continuously bath applied from 20 
min before experiment ( filled circles). B, Pretreatment with diazepam (10 
mg/kg daily; 5–6 d) abolishes the differences in LTD between wild-type 
(open circles) and  GAD 65 KO (  filled circles) mice. As in Figure 3, the 
results from all individual experiments are depicted on the right of each 
graph. Representative field potential traces for each experimental condi-
tion are shown on the far right. The  superimposed traces are averages of 
four consecutive responses recorded 1 min before (thin traces) and 1 hr  
after (thick traces) LFS. 

shown previously to reduce excitability and to affect plasticity 
(Levkovitz et al., 1999). At the end of the treatment, the 
heterozygotes were discarded, and LTD was measured in the 
GAD 65 (�/�) and wild-type mice. The experimenter was 
blind to the genotype of the animal. As illustrated in Figure 
4 B, in slices prepared from diazepam-treated animals, LFS 
resulted in robust and comparable ( p � 0.91) LTD in both wild 
type (84.9 � 3.4; n � 4 and 11) and GAD 65 (�/�) (85.4 � 2.2; 
n � 5 and 15). In both cases, the magnitude of LTD was 
comparable with the one obtained in slices prepared from 
untreated wild-type animals ( 80%) (Fig. 1). These results 

indicate that chronic but not acute exposure to diazepam is 
sufficient to restore LTD in GAD 65 (�/�) mice. 

DISCUSSION 
Previous studies on GAD 65 (�/�) mice reported a marked 
increase in cortical excitability and a severe reduction in 
experience-evoked visual cortical plasticity (Kash et al., 1997; Hen-
sch et al., 1998). Both outcomes were attributed to the reduced 
GABAergic function associated with the elimination of GAD 65. 
We found that, in addition, at least one mechanism of synaptic 
modification, LTD, is impaired in the visual cortex of GAD 65 
(�/�) mice. As discussed below, such findings bear obvious rele-
vance for understanding the lack of visual cortical plasticity in 
GAD 65 (�/�). 

GAD 65, one of the two isoforms of the GABA-synthesizing 
enzyme GAD, locates primarily in the axon terminals (Esclapez 
et al., 1994). Because of its subcellular location and dependence 
of cofactors, GAD 65 is believed to be important at times of 
increased synaptic activity. In CA1, the genetic deletion of GAD 
65 does not affect basal GABAergic transmission, but it compro-
mises the ability to sustain repetitive activation. Similarly, in 
visual cortex, the steady-state response to prolonged stimulation 
was clearly reduced in GAD 65 (�/�). In contrast, the magnitude 
of the maximal IPSC, which reflects the number and potency of 
GABAergic inputs targeting a cell (Ling and Benardo, 1999), was 
not affected by the mutation. Thus, the availability of GAD 65 
appears to be a limiting factor for the efficacy of transmission at 
high frequencies but not the potency or number of GABAergic 
inputs in visual cortex. 

Besides the expected deficit in inhibitory transmission, the abla-
tion of GAD 65 (�/�) also impaired LTD of excitatory transmis-
sion in visual cortex. In a previous study, Hensch et al. (1998) 
reported normal LTD and LTP in the GAD 65 (�/�) mice. This 
discrepancy might be related to the age of the animals used. In 
mice, unlike most other species studied, the induction of LTD with 
1 Hz LFS is strongly regulated during development such that, after 
P30, 1 Hz no longer induces much LTD, not even in CA1 (Mayford 
et al., 1995; Kirkwood et al., 1997) (our unpublished observations). 
In the study of Hensch et al. (1998), the animals were older 
(P24–P33) and showed much less LTD (10% LTD in wild types) 
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compared with our study (P21–P27;  20% LTD in wild types). 
The smaller magnitude of depression combined with short precon-
ditioning baselines (only 10 min by Hensch et al., 1998) makes it 
difficult to discern whether those changes represent LTD or a drift 
in basal responses. In any case, the smaller magnitude of LTD in 
wild types would make those measurements unsuitable for detect-
ing a deficit in LTD. 

We showed that LTD could be rescued in GAD 65 (�/�) mice 
by chronically treating the animals with diazepam. However, 
acute application of diazepam did not restore LTD. These results 
suggest that the LTD deficit is not directly attributable to reduced 
inhibitory tone per se during 1 Hz conditioning stimulation. An 
alternative hypothesis is that the LTD deficit in GAD 65 (�/�) 
mice is a consequence of the history of enhanced cortical activity 
in vivo. It is also possible that LTD is intact in GAD 65(�/�) 
mice, but the mutation affected cortical circuits in such a way that 
they are not effectively recruited by 1 Hz conditioning. 
Whether the increased activity in GAD 65 (�/�) mice already 
induced LTD and saturated it, or whether it caused the down-
regulation of the LTD mechanisms or affected the frequency-
dependency of its induction, remains to be investigated. In this 
respect, it is worth mentioning that, in dark-reared animals, in 
which increased spontaneous activity and cortical excitability 
suggest a weaker inhibition (Benevento et al., 1992), the in-
duction of LTD ex vivo is clearly downregulated (Kirkwood et 
al., 1996). In any case, these results suggest that the inhibitory 
tone plays an important role in the regulation of synaptic 
plasticity in visual cortex. 

In contrast to visual cortex, the induction of LTD was normal 
in the CA1 region of GAD 65 (�/�). It is possible that the 
alterations in GABAergic function in GAD 65 (�/�) are more 
severe in cortex than in hippocampus. Consistent with that 
idea, the deficit in GABAergic transmission were revealed by a 
much milder type of stimulation in cortex (15 pulses at 30 Hz) 
than in CA1 (100 pulses at 100 Hz by Tian et al., 1999). 
Alternatively, LTD in cortex might be more responsive to 
changes in GABAergic transmission. A clear example of higher 
vulnerability of cortical plasticity is provided by the �-CaM kinase 
II knock-out heterozygotes, which display selective deficit of LTP 
in the cortex but not in CA1(Frankland et al., 2001). The seemingly 
labile synaptic plasticity in the cortex might be related to the fact 
that its induction is tightly regulated (Kirkwood et al., 1999; Kojic 
et al., 2000). 

In the original characterization of visual cortical plasticity in 
GAD 65 (�/�) mice, the lack of ocular dominance plasticity was 
attributed solely to the altered balance of excitation and inhibi-
tion. The possible role of NMDA receptor-dependent synaptic 
plasticity was dismissed on the grounds that LTP and LTD were 
normal in these mice (Hensch et al., 1998). Our results showing a 
profound deficit of LTD in younger animals are consistent with 
the alternative hypothesis that LTD is a mechanism for weaken-
ing inputs from the deprived eye (Rittenhouse et al., 1999). 
According to this view, the lack of LTD in GAD 65 (�/�) would 
render these mice refractory to the normal effects of monocular 
deprivation. On the other hand, chronic diazepam would be 
expected to restore experience-dependent plasticity by rescuing 
LTD in these mice. 

The importance of GABAergic circuits in visual cortical plas-
ticity is well established, but their exact role has remained elusive 
and controversial at times, perhaps because most interpretations 
have focused on the direct inhibitory actions of GABAergic 
transmission. Our results indicate that the inhibitory tone might 

also regulate the modification of excitatory synapses, revealing an 
additional level of complexity in the interaction between excita-
tory and inhibitory circuits. 
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