Input-Specific Metaplasticity in the Visual Cortex Requires Homer1a-Mediated mGluR5 Signaling

Graphical Abstract

Authors
Varun Chokshi, Ming Gao, Bryce D. Grier, Ashley Owens, Hui Wang, Paul F. Worley, Hey-Kyoung Lee

Correspondence
heykyounglee@jhu.edu

In Brief
Chokshi et al. demonstrate that visual experience-induced expression of H1a and its interaction with mGluR5 selectively depress intracortical synapses in an NMDAR-dependent manner. Such metaplasticity may benefit in vivo circuit function by allowing input-specific homeostatic control.

Highlights
- Visual experience induces input-specific metaplasticity in L2/3 of visual cortex
- Both NMDAR and mGluR5 are necessary for input-specific metaplasticity
- mGluR5 and H1a interaction mediates input-specific homeostasis in vivo
Input-Specific Metaplasticity in the Visual Cortex Requires Homer1a-Mediated mGluR5 Signaling

Varun Chokshi,1,2 Ming Gao,1,5 Bryce D. Grier,1,4 Ashley Owens,1 Hui Wang,1,6 Paul F. Worley,3 and Hey-Kyong Lee1,2,3,4,7,*

1The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
2Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD 21218, USA
3The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
4Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
5Present address: Division of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
6Present address: Epsilon, University of Cincinnati College of Business, Cincinnati, OH 45221, USA
7Lead Contact
*Correspondence: heykyonglee@jhu.edu
https://doi.org/10.1016/j.neuron.2019.08.017

SUMMARY

Effective sensory processing depends on sensory experience-dependent metaplasticity, which allows homeostatic maintenance of neural network activity and preserves feature selectivity. Following a strong increase in sensory drive, plasticity mechanisms that decrease the strength of excitatory synapses are preferentially engaged to maintain stability in neural networks. Such adaptation has been demonstrated in various model systems, including mouse primary visual cortex (V1), where excitatory synapses on layer 2/3 (L2/3) neurons undergo rapid reduction in strength when visually deprived mice are reexposed to light. Here, we report that this form of plasticity is specific to intracortical inputs to V1 L2/3 neurons and depends on the activity of NMDA receptors (NMDARs) and group I metabotropic glutamate receptor 5 (mGluR5). Furthermore, we found that expression of the immediate early gene (IEG) Homer1a (H1a) and its subsequent interaction with mGluR5s are necessary for this input-specific metaplasticity.

INTRODUCTION

Visual experience guides the refinement of synaptic connections after the onset of vision. Mouse primary visual cortex (V1) has been widely used to study experience-dependent homeostatic plasticity mechanisms in vivo (Whitt et al., 2014). In juvenile mice, a few days of visual deprivation through dark exposure (DE) increases the strength of excitatory synapses onto V1 layer 2/3 (L2/3) pyramidal neurons, while restoring visual experience induces a rapid reduction of synaptic strength (Gao et al., 2010; Goel et al., 2006; Goel and Lee, 2007). Unlike Hebbian plasticity, which is triggered by rapid changes in input activity, changes in activity over longer timescales, such as with long-term alterations in visual experience, trigger homeostatic mechanisms to maintain network stability (Abbott and Nelson, 2000; Bear et al., 1987; Bienenstock et al., 1982; Cooper and Bear, 2012). There are largely two forms of homeostatic plasticity: sliding threshold metaplasticity and synaptic scaling. While the former slides the induction threshold for NMDA receptor (NMDAR)-dependent plasticity (Bear et al., 1987; Bienenstock et al., 1982; Cooper and Bear, 2012), the latter is largely independent of NMDAR activity (Turrigiano, 2008; Turrigiano et al., 1998). Previous studies have shown that a few days of visual deprivation upregulates synaptic expression of GluN2B-containing NMDARs, which promotes long-term potentiation (LTP) in L2/3 of V1 (Guo et al., 2012; Philpot et al., 2001, 2003; Quinlan et al., 1999). Recently, it was demonstrated that visual deprivation-induced upregulation of miniature excitatory postsynaptic currents (mEPSCs) in L2/3 of V1 is dependent on GluN2B and elevated spontaneous activity (Bridi et al., 2019). These results support the idea that visual deprivation-induced strengthening of excitatory synapses in V1 L2/3 is due to sliding threshold model of metaplasticity, in which elevated spontaneous activity acts on GluN2B-containing NMDARs to promote potentiation across a large number of synapses. We recently reported that mEPSCs generally reflect the strength of lateral intracortical (IC) inputs to V1 L2/3 neurons but do not capture changes occurring at sparse inputs such as feedforward (FF) synapses from L4 (Petrus et al., 2015). We found that IC inputs onto V1 L2/3 neurons become stronger in response to DE, while the strength of FF synapses from L4 remains constant. These results suggest that in intact circuitry where different inputs receive different patterns of activity, homeostatic synaptic adjustment occurs in an input-specific manner. To date, Arc and retinoic acid have been shown to play roles in input-specific strengthening of synapses by inactivity (Bédos et al., 2011; Yee et al., 2017). It is currently unknown whether input-specific homeostatic plasticity occurs when there is an abrupt increase in input activity, and if so, what the molecular mechanisms mediating this phenomenon are.

When visual deprivation is reversed by reexposure to light, the average size of mEPSCs in V1 L2/3 neurons is reduced (Gao et al., 2010; Goel et al., 2006; Goel and Lee, 2007). Here, we report that this change is restricted to the lateral IC inputs and is not present at the FF synapses from L4. Furthermore,
Figure 1. mGluR5 Activity Is Required for Experience-Dependent Downregulation of mEPSCs
(A) Experimental design. Mice were normally reared until opening of the critical period (P21) and then given either PBS or MPEP. For the NR and DE conditions, PBS or MPEP (once daily i.p.) were given for 2 days, while for the LE condition, PBS or MPEP injection was given once after 2 days of DE and 30 min prior to light exposure. Arrows show the time of each injection. (B and C) MPEP prevents experience-dependent reduction in mEPSC amplitudes. Top: average mEPSC traces. Bottom left: comparison of average mEPSC amplitude (B [PBS]): NR = 11.6 ± 0.2 pA, n = 15; DE = 12.65 ± 0.3 pA, n = 17; LE = 11.4 ± 0.3 pA, n = 13; ANOVA, F(2,42) = 6.57, *p < 0.01; C [MPEP]: NR = 12.9 ± 0.4 pA, n = 15; DE = 12.3 ± 0.3 pA, n = 14; LE = 12.9 ± 0.2 pA, n = 14; ANOVA, F(2,40) = 1.074, p = 0.35). Bottom right: Estimated population density plot of mEPSC amplitudes. x-axis shows the estimated probability density, which is the estimated probability per mEPSC amplitude estimated from each measured data fitted with the Gaussian kernels. y-axis is shared with the left panel. For the MPEP group, there was no significant change in the average mEPSC amplitudes, but there was a significant difference in the variance of the estimated population density probability (see Table S1) reflecting a change in the variance of mEPSC amplitudes in the population.

(B) MPEP treatment (once daily i.p. for 2 days) in NR mice increases mEPSC amplitude in a multiplicative manner. (Mann-Whitney test: NR-PBS versus NR-MPEP, p < 0.0001; NR-PBS-scaled versus NR-MPEP, p > 0.01) (E and F) mEPSC frequency does not change across groups. Left: comparison of average mEPSC frequency (E [PBS]: NR = 4.0 ± 0.4 Hz, n = 15; DE = 3.5 ± 0.2 Hz, n = 17; LE = 3.0 ± 0.2 Hz, n = 13; ANOVA, F(2,42) = 2.07, p = 0.14; F [MPEP]: NR = 4.1 ± 0.4 Hz, n = 15; DE = 3.2 ± 0.3 Hz, n = 14; LE = 3.9 ± 0.3 Hz, n = 14; ANOVA, F(2,40) = 1.57, p = 0.09), ns, not statistically significant. Right: estimated population density plot of mEPSC frequencies. x-axis: estimated probability density, which is the probability per mEPSC frequency estimated from each measured data fitted with the Gaussian kernels. Error bars represent mean ± SEM. See also Figure S1 and Table S1.
immediately before light reexposure (i.p. 30 min before LE), mEPSC amplitudes did not decrease following LE (Figure 1C). Average mEPSC frequency was similar across groups (Figures 1E and 1F). These data indicate that mGluR5 activity is required for experience-dependent reduction in excitatory synaptic strength during normal visual experience and LE condition in V1 L2/3.

Next, we tested whether the effect was specific to mGluR5 among Group 1 mGluRs. In contrast to MPEP, mGluR1 inhibition by (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA; 1 mg/kg, i.p. once daily for 2 days), a competitive antagonist of mGluR1, did not affect basal amplitude of mEPSCs but blocked increases with DE (Figures S1A–S1C). AIDA treatment in DE mice immediately prior to LE did not block the decrease in mEPSC amplitudes (Figure S1B). While the average mEPSC amplitudes of PBS- and AIDA-treated NR groups were not statistical different, there was multiplicative reduction in mEPSC amplitudes in the AIDA group (Figure S1C). There were no significant changes in mEPSC frequency across groups (Figure S1D). We rule out the possibility that the differential effect of AIDA and MPEP is due to the ability of MPEP to block both agonist-dependent and independent activity, while AIDA only blocks the former, by replicating the AIDA results using an inverse agonist of mGluR1, Bay36-7620 (20 mg/kg i.p. once daily) (Gil-Sanz et al., 2008) (Figures S1E–S1H). These results suggest that mGluR1 plays a distinct role from mGluR5 in that it supports strengthening of synapses with visual deprivation. Collectively, our results suggest that mGluR5 activity is specifically required for weakening excitatory synapses with visual experience.

Visual Experience Specifically Weakens Lateral IC Inputs to L2/3 Neurons

V1 L2/3 neurons receive strong FF inputs from L4 principal neurons, but these constitute a small portion of the total inputs (Ziegger et al., 2004; Douglas and Martin, 2004). The rest of the inputs are IC connections from local L2/3 neurons, deeper V1 layers, higher order visual areas, and other cortical areas (Dantzker and Callaway, 2000; Iurilli et al., 2012; Schroeder and Foxe, 2005; Xu et al., 2016; Yang et al., 2013). Previously, we reported that DE only potentiates IC inputs without changes in FF inputs in V1 L2/3 neurons (Petrus et al., 2015). These findings also suggested that mEPSCs mainly represent IC inputs and that homeostatic synaptic plasticity driven by visual deprivation is input specific.

We determined whether homeostatic plasticity induced by increased visual experience is also input specific. We measured the strength of individual synapses in an input-specific manner by recording Sr2⁺ desynchronized evoked EPSCs from V1 L2/3 neurons. To specifically activate FF inputs from L4 to L2/3, we injected an adeno-associated virus containing double-floxed channelrhodopsin-2 (AAV9.EF1a.dIlox.hChR2(H134R)-mCherry or AAV9.EF1a.DIo.hChR2(H134R)EYFP) into V1 of Scnn1a-Tg3-cre (L4Cre) mice (see STAR Methods). IC inputs of V1 L2/3 neurons were stimulated by an electrode placed in L2/3 lateral to the recorded neuron (Figure 2A). In the presence of Sr2⁺, evoked responses result in desynchronized release of vesicles (Abdul-Ghani et al., 1996; Dodge et al., 1968; Gil et al., 1999; Oliet et al., 1996). These desynchronized single vesicle events are considered mEPSCs (Sr2⁺-mEPSCs) resulting from the stimulated input and can be analyzed to measure the strength of individual synapses participating in evoked synaptic transmission (Figure 2B). We calculated the average amplitude of evoked Sr2⁺-mEPSCs by subtracting out the contribution of spontaneous mEPSCs (see STAR Methods for detail).

IC inputs potentiated with DE and reverted back to normal levels with a subsequent LE (Figure 2C), which mirrored mEPSC changes. However, the strength of FF inputs from L4 did not alter significantly (Figure 2D). This indicates that visual experience drives homeostatic plasticity in an input-specific manner in L2/3 neurons through selective weakening of IC inputs. Mechanistically, the specific weakening of IC inputs with visual experience was dependent on NMDAR and mGluR5 activity. This was demonstrated by administering either the NMDAR antagonist R-4-(2E)-3-phosphono-2-propenyl)-2-piperazinocarboxylic acid (CPP; 10 mg/kg, i.p.) or the mGluR5 inverse agonist MPEP (10 mg/kg, i.p.) to DE mice 30 min prior to LE. In CPP- or MPEP-injected mice, IC inputs failed to decrease in response to LE (Figure 2E) without an effect on FF evoked Sr2⁺-mEPSC amplitudes (Figure 2F). Our results indicate a novel dual requirement of NMDAR and mGluR5 activity for input-specific depression of IC synapses with LE.

H1a Is Required for Visual Experience-Dependent Weakening of Excitatory Inputs

Homer1 proteins regulate agonist-independent activity of Group I mGluRs (Ange et al., 2001; Tu et al., 1998) and the coupling of mGluRs to downstream signaling pathways (Kammermeier and Worley, 2007; Kammermeier et al., 2000; Park et al., 2013). The long forms of Homer1 (H1b/c and H3) block constitutive activity of mGluRs (Ange et al., 2001) and restrict receptors to small clusters within synaptic sites (Ango et al., 2000; Kammermeier et al., 2000). However, when the activity-dependent variant of Homer1 (H1a) is expressed, group I mGluRs disperse across the dendrites and become constitutively active. Both H1a and long forms of Homer1 share the EVH1 domain, which binds to its effectors including group I mGluRs (Tu et al., 1998, 1999). In dissociated neuronal cultures, H1a mediates homeostatic downscaling induced by pharmacologically increasing activity (Hu et al., 2010). This action of H1a that activates agonist-independent mGluR5 signaling is upstream of Arc (Hu et al., 2010), which is also required for downscaling excitatory synapses in V1 (Gao et al., 2010). Furthermore, it was shown that visual experience following dark rearing rapidly induces H1a mRNA expression in V1 (Brakeman et al., 1997).

Based on our result that mEPSC amplitude measurement reflects the strength of IC inputs, we examined the involvement of H1a in the experience-dependent synaptic weakening by recording mEPSCs in V1 L2/3 neurons in H1a knockout (H1aKO) mice (Hu et al., 2010). We confirmed that there was no expression of H1a in V1 of these animals (Figure S2A) albeit an increase in H1b/c mRNA and protein levels (Figures S2B and S2C).

We found that genetic KO of H1a affected mEPSCs in a manner similar to that of pharmacological inhibition of mGluR5 in wild-type (WT) mice. This is consistent with the notion that H1a triggers mGluR5 agonist-independent signaling (Ango
et al., 2001). Basally, H1aKOs showed elevated mEPSC amplitudes compared to H1aWTs (t test, \(p < 0.01 \)), which was multiplicative suggesting that most of the sampled synapses undergo change (Figures 3A–3D). The abnormal enhancement of basal mEPSC amplitude seen in H1aKOs was not likely due to gross changes in the expression of glutamate receptors, because we did not find significant changes in either the surface or total levels of several glutamate receptor subunits in microdissected V1 L2/3 slices processed for surface biotinylation (Figure S3A). In H1aKOs, the effect of DE was occluded by the increased basal synaptic strength, and more importantly, these mice lacked an LE-induced decrease in mEPSC amplitudes (Figure 3C). These findings contrast the normal bidirectional regulation observed in H1aWTs (Figure 3B). There was no significant change in mEPSC frequency across groups (Figure 3E). Our results suggest that H1a is required for experience-dependent weakening of synapses in V1 L2/3 neurons during NR and LE conditions.

H1aKO Animals Display Normal Early Developmental Change in mEPSCs

mEPSCs in V1 L2/3 neurons decrease in amplitude and increase in frequency around P14, which coincides with eye
opening in mice (Goel and Lee, 2007). We tested whether the high basal mEPSC amplitude of H1aKOs reflects a failure of this developmental process. We compared the mEPSCs of NR mice before eye opening (P11–P12) and during the critical period (P23–P32) (Figure 4A). H1aKOs displayed comparable mEPSC amplitudes at P11–P12 to H1aWTs (Figures 4B and 4C). Like H1aWTs, H1aKOs also exhibited a developmental decrease in mEPSC amplitudes, but the average amplitude did not decrease to the same level (Figures 4B and 4C). In parallel, H1aKOs showed a normal developmental increase in mEPSC frequency (Figure 4D). Thus, H1aKOs seem to undergo largely normal early development of excitatory synaptic transmission in V1 L2/3 neurons upon eye opening. Our results also highlight that there are two distinct mechanisms for the developmental decrease in mEPSC amplitude: a major component that is independent of H1a and a minor component that is dependent on H1a, as seen by the small but significantly elevated mEPSC amplitude in 3 weeks old H1aKOs (also see Figure 3D).

To address the role of mGluR5 signaling in these developmental processes, we performed daily MPEP injections (10 mg/kg, i.p. once daily) starting at P14, when mice typically open their eyes. mEPSC recordings were done at P23–P32. MPEP treated mice showed significantly larger mEPSC amplitude (Figure 4C), but also higher mEPSC frequency (Figure 4D). Elevated mEPSC frequency is reminiscent of that observed in L4 neurons in barrel cortex of mGluR5KO (Ballester-Rosado et al., 2010), which suggests that mGluR5 may have an effect on mEPSC frequency which is not likely through H1a. Collectively, these results suggest that mGluR5 and H1a play a relatively minor role in establishing normal excitatory synaptic strength during postnatal development.

Postnatal H1a Expression in V1 Is Required for Experience-Dependent Weakening of Excitatory Synapses

Given that our H1aKO is global and constitutive, we wanted to rule out any adverse effect resulting from globally lacking H1a during early development. To attain temporal and spatial control of H1a expression, we employed mice harboring a Cre-inducible conditional KO of the Homer1 gene (Homer1flox/flox) (Figure 5A). This conditional KO is not specific for H1a, however, and also affects the constitutively expressed long forms of Homer1 (H1b/c). To have specific temporal and spatial control over H1a, we crossed mice expressing the conditional KO of factor (1.12) is not different from those of H1aKOs (Mann-Whitney test: NR-H1aWT versus NR-H1aKO, p < 0.0001; NR-H1aWT-scaled versus NR-H1aKO, p > 0.4).

(E) No change in average mEPSC frequency. First panel: comparison of average mEPSC frequency of H1aWTs (NR) (p = 4.2 ± 0.4 Hz, n = 20; DE = 3.5 ± 0.2 Hz, n = 14; LE = 4.6 ± 0.3 Hz, n = 14; Kruskal-Wallis test, p > 0.09). Second panel: estimated population density plots of mEPSC frequency (x axis shows the estimated probability density). Third panel: comparison of average mEPSC frequency of H1aKOs (NR) (5.0 ± 0.4 Hz, n = 15; DE = 5.2 ± 0.6 Hz, n = 14; LE = 4.4 ± 0.3 Hz, n = 12; ANOVA, F[2,38] = 0.65, p = 0.53). Fourth panel: estimated population density plots (x axis shows the estimated probability density).

Error bars represent mean ± SEM. Also see Figures S2 and S3 and Table S1.
Homer1 to H1aKO mice to generate H1b/c+/+;H1a−/− mice. By targeting viral-mediated CaMKII-promoter-driven Cre expression postnatally (postnatal day 21 [P21] to P30) to V1, we generated V1 neurons with three different genotypes as delineated in Figure 5A: H1b/c+/+;H1a+/−, H1b/c+/−;H1a−/−, and H1b/c−/−;H1a−/−. Transfected cells were identified for recording by GFP expression driven by the viral construct. mEPSCs recorded in L2/3 neurons with conditional H1aKO (H1b/c+/−;H1a−/−) were similar to those seen in constitutive H1aKOs; the basal mEPSC amplitude was higher than in cells recorded from the other two lines in which V1 neurons were heterozygous for H1a (Figures 5B–5D). More importantly, conditional H1aKO (H1b/c+/−;H1a−/−) neurons did not exhibit experience-dependent synaptic weakening with LE (Figure 5C). It is important to note that conditional H1aKO neurons are heterozygous for H1b/c. Neurons heterozygous for H1a only (H1b/c+/−;H1a+/−) or for both splice variants of Homer1 (H1b/c+/−;H1a+/−) displayed normal experience-dependent plasticity (Figures 5B and 5D). Thus, H1a is haplosufficient to support this form of plasticity. The frequency of mEPSCs did not change significantly across groups (Figures 5B–5D). To ensure that the KO of H1a was successful in the condition KOs (H1b/c−/−;H1a−/−), we performed quantitative PCR and found significantly reduced H1a and H1b/c mRNA levels compared to control H1b/c+/−;H1a+/− mice (Figures S4A and S4B). We also confirmed that GFP expression was comparable in two of the groups that received viral transfections (Figure S4C). Our data indicate that postnatal H1a expression in V1 is required for weakening excitatory synapses with visual experience.

Interaction between mGluR5s and Homer Is Required for Experience-Dependent Weakening of V1 L2/3 Synapses

The preceding experiments suggest that agonist-independent mGluR5 activity and H1a are critical for depressing mEPSCs upon visual experience. However, mGluR5s are not the only targets of H1a (Kato, 2009; Shiraishi-Yamaguchi and Furuichi, 2007; Tu et al., 1998, 1999). To test the specific role of H1a and mGluR5 interaction, we examined two different knockin (KI) mice with mutations that target the Homer binding site on mGluR5s (1123TPSPSF) and reduce the binding affinity of Homer1 EVH1 domain. The first line contains the substitutions T1123A and S1126A on mGluR5 (TSK1), which reduce EVH1 binding affinity by 4–10 times (Park et al., 2013). In the TSK1s, the basal synaptic strength was significantly higher than in TSWTs (Figures 6A and 6B; t test, p < 0.005), and this difference was multiplicative (Figure 6C). Similar to H1aKOs, this increase in basal synaptic strength occluded the potentiation of synapses by DE. Importantly, TSK1s also lacked depression of synapses...
Figure 5. Postnatal H1a Expression Is Required for Visual Experience-Dependent Regulation of mEPSCs

(A) Genotype scheme for producing conditional H1aKO. Survival surgeries were performed to inject AAV-containing Cre in mouse V1 L2/3 neurons (age at injection, P21–P30). To localize H1a primarily in excitatory neurons, Cre expression was driven by CaMKII promoter and GFP was tagged as a reporter for expression. Control mice were injected with only CaMKII-driven GFP. mEPSC recordings were performed in GFP-expressing neurons at P28–P45.

(B–D) Lack of visual experience-dependent plasticity of mEPSCs in acute postnatal H1aKO neurons (H1b/c+/+;H1a−/−). First panel: confocal image of a recorded neuron (red, filled with biocytin) also expressing Cre-GFP (green). Second panel: comparison of average amplitude of mEPSCs (B [H1b/c+/+;H1a−/−]: NR = 11.8 ± 742 Neuron 104, 736–748, November 20, 2019

(legend continued on next page)
following LE, mirroring the effect seen in H1aKOs. There was no significant difference in mEPSC frequency across groups (Figure 6D). TSKIs expressed comparable levels of glutamate receptors in L2/3 of V1, except for a significantly higher surface expression of the NR2A subunit (Figure S3C).

The second line contained the F1128R mutation on mGluR5s (FRKIs), which reduces the affinity of Homer1 EVH1 binding by 50-fold (Park et al., 2013). FRKIs specifically lack H1a interaction without impact on mGluR5 signaling through a prolyl isomerase Pin1 (Park et al., 2013), which is not the case for TSKIs or H1aKOs. Despite this difference, FRKIs showed an elevated basal mEPSC amplitude compared to FRWTs (Figures 6E and 6F; t test, p < 0.05), but unlike that seen in H1aKOs (Figure 6D) or in TSKIs (Figure 6C), the increase was not multiplicative (Figure 6G). Nevertheless, FRKIs exhibited neither DE-induced potentiation nor LE-induced weakening of synapses (Figure 6F), similar to H1aKOs and TSKIs. There was no significant difference in the average mEPSC frequency across groups (Figure 6H). Results from TSKIs and FRKIs provide evidence for a role of mGluR5 and Homer1 interaction in mediating experience-dependent weakening of synapses during normal vision and LE.

Input-Specific Regulation of IC Inputs Is Mediated by mGluR5-H1a Signaling

While measurements of mEPSCs mainly reflect IC inputs (Figures 1 and 2), we wanted to confirm that mGluR5 signaling through H1a acts in an input-specific manner. To do this, we crossed L4Cre and FRKI mice to generate L4Cre;FRKI mice, which allowed us to drive ChR2 expression in L4 neurons in the FRKI genotype. The rationale for choosing FRKIs was that, unlike H1aKOs or TSKIs, they have preserved mGluR5 signaling through Pin1, which has been implicated in potentiating NMDAR responses (Park et al., 2013). Therefore, the use of FRKIs avoids any potential confounds of altering Pin1 signaling. In L4Cre;FRKIs, we found that experience-dependent plasticity of IC inputs is abolished (Figure 7A). This suggests that H1a-induced agonist-independent signaling of mGluR5 is critical for mediating input-specific metaplasticity. Unexpectedly, we also observed an aberrant strengthening of FF inputs with LE in L4Cre;FRKIs (Figure 7B). One possibility may be due to unmasking of synaptic potentiation in the absence of mGluR5-H1a dependent metaplasticity. According to the sliding threshold model, enhanced activity with LE would increase the threshold for LTP. Hence, blocking mGluR5-H1a dependent metaplasticity would prevent the change in synaptic modification threshold and promote potentiation of inputs that normally would be subthreshold for inducing LTP. Consistent with this idea, we found that injection of NMDAR antagonist CPP (10 mg/kg, i.p.) 30 min prior to LE prevented the aberrant potentiation of FF inputs in L4Cre;FRKIs without affecting IC inputs (Figures 7C and 7D). In conclusion, we demonstrated that restoring visual experience triggers input-specific weakening of IC synapses, which is dependent on NMDAR activity and mGluR5 signaling through interaction with H1a. Collectively, our results support the metaplasticity model of homeostatic adaptation, which could explain the input-specific nature of synaptic changes.

DISCUSSION

We found that an increase in visual experience induces input-specific depression of IC synapses onto V1 L2/3 pyramidal neurons without affecting FF synapses from L4 (Figures 2C and 2D). Changes in mEPSC amplitudes mainly reflect the more abundant IC inputs (Figures 1A, 2C, 2D, and 3A). Visual experience-induced input-specific synaptic depression was dependent on NMDARs (Figure 2E), which suggests the involvement of the sliding threshold model of metaplasticity. In addition, this form of metaplasticity was dependent on the agonist-independent activity of mGluR5 triggered by its interaction with H1a (Figures 1, 2, 3, 5, 6, and 7).

Agonist-Independent Activity of Specific Group I mGluR Subtypes Mediates Opposing Metaplasticity

Acute pharmacological inhibition of individual group I mGluRs revealed that specific subtypes of mGluRs play distinct functions in bidirectional regulation of excitatory synapses. Inhibiting the agonist-independent activity of mGluR5s, using a specific inverse agonist, blocked visual experience-dependent synaptic depression (Figure 1), while an inverse agonist of mGluR1 prevented DE-mediated synaptic potentiation (Figure S1). There is precedence for differential roles of these two types of mGluRs in a traumatic brain injury model, where mGluR1 activity increases cell death and mGluR5 activation is required for neuroprotection (Luo et al., 2014).

Future experiments are needed clarify the role of agonist-independent mGluR1 signaling mechanisms that support the synaptic potentiation (Figure S1). Recent work in V1 (Bridi et al., 2018) suggested that DE-mediated potentiation of mEPSCs may require molecular mechanisms capable of sensing small increases in spontaneous firing. A recent imaging study using an optical glutamate sensor estimated that extrasympathetic glutamate concentration increases to micromolar levels with neural activity (Okubo et al., 2010). The affinity of group I mGluRs to glutamate is well within the range to sense such small changes (Conn and Pin, 1997). Furthermore, DE increases the rate of spontaneous burst firing (Bridi et al., 2018), which would be conducive for the glutamate spillover needed to

0.3 ± 0.2 pA, n = 17; DE = 13.1 ± 0.4 pA, n = 14; LE = 11.1 ± 0.4 pA, n = 16; ANOVA, F(2,44) = 8.031, p < 0.005; C[H1b/c+];H1a/−: NR = 13.7 ± 0.6 pA, n = 17; DE = 14.3 ± 0.4 pA, n = 14; LE = 13.1 ± 0.6 pA, n = 12; ANOVA, F(2,40) = 1.143, p > 0.3; D[H1b/c−];H1a/−: NR = 11.7 ± 0.3 pA, n = 12; DE = 14.7 ± 0.6 pA, n = 16; LE = 12.8 ± 0.5 pA, n = 14; ANOVA, F(2,39) = 8.229, p < 0.005; Newman-Keuls multiple comparison (p < 0.05, ***p < 0.001). Third panel: estimated population density plot of mEPSC amplitudes (x axis shows the estimated probability density). Fourth panel: average mEPSC traces. Fifth panel: comparison of average mEPSC frequency (B[H1b/c+];H1a/−: NR = 6.1 ± 0.4 Hz, n = 17; DE = 5.5 ± 0.5 Hz, n = 14; LE = 5.7 ± 0.6 Hz, n = 16; ANOVA, F(2,44) = 0.3479, p > 0.7; C[H1b/c−];H1a/−: NR = 5.8 ± 0.5 Hz, n = 17; DE = 5.1 ± 0.5 Hz, n = 14; LE = 5.6 ± 0.5 Hz, n = 12; ANOVA, F(2,40) = 0.3313, p > 0.5; D[H1b/c−];H1a/−: NR = 4.6 ± 0.6 Hz, n = 12; DE = 5.2 ± 0.4 Hz, n = 16; LE = 5.8 ± 0.6 Hz, n = 14; ANOVA, F(2,39) = 1.202, p > 0.3). Error bars represent mean ± SEM. Also see Figure S4 and Table S1.
Figure 6. mGluR5-H1a Interaction Is Indispensable for Homeostatic Decrease in mEPSC Amplitude in V1 L2/3 Neurons

mEPSC recordings were done in V1 slices from juvenile mice (P23–P32).

(A and B) TSKI lack visual experience-dependent homeostatic plasticity. Left: average mEPSC amplitude comparison (A [TSWT]: NR = 10.9 ± 0.3 pA, n = 18; DE = 12.7 ± 0.3 pA, n = 12; LE = 11.4 ± 0.2 pA, n = 16; ANOVA, F(2,43) = 8.295, p < 0.001; Newman-Keuls multiple comparison, ***p < 0.001, **p < 0.01; B [TSKI]: NR = 12.6 ± 0.4 pA, n = 18; DE = 12.2 ± 0.3 pA, n = 16; LE = 13.1 ± 0.2 pA, n = 15; ANOVA, F(2,46) = 1.716, p > 0.19). Middle: estimated population density plot of mEPSC amplitudes (x axis shows the estimated probability density). Right: average mEPSC traces. TSKIs showed a significant change in the variance of the estimated population density probability of mEPSC amplitudes (see Table S1).

(C) Cumulative probability of mEPSC amplitudes of NR TSWT (black solid line) overlaid with that of NR TSKI (blue solid line) showing a multiplicative increase. Cumulative probability curve of TSWT mEPSC amplitudes multiplied by a scaling factor (1.16; black dashed line) overlaps with the TSKI curve. Mann-Whitney test: NR-TSWT versus NR-TSKI, p = 0.0001; NR-TSWT-scaled versus NR-TSKI, p > 0.9. See also Figure S3.

(D) No change in mEPSC frequency across groups. First panel: average mEPSC frequency in TSWT (NR = 3.8 ± 0.3 Hz, n = 18; DE = 4.7 ± 0.4 Hz, n = 12; LE = 4.0 ± 0.5 Hz, n = 16; ANOVA, F(2,43) = 0.9937, p > 0.37). Second panel: estimated population density plot of mEPSC frequencies (x axis shows the estimated probability density).
activate perisynaptic mGluRs. While it is currently unclear how mGluR1 and mGluR5 respond differentially to neural activity accompanying changes in visual experience, there are differences in downstream signal coupling that may lead to opposite outcome on synaptic plasticity. The downstream Ca²⁺ increase resulting from mGluR1 activation occurs as a single transient burst, whereas mGluR5 signaling drives Ca²⁺ oscillations (Kim et al., 2005). A transient large increase in intracellular Ca²⁺ is sufficient to potentiate synapses, while prolonged Ca²⁺ signals tend to depress synapses (Yang et al., 1999). Hence, such differences in the time course of Ca²⁺ transients may lead to opposing synaptic changes. It is of importance to note that both the potentiation of mEPSCs with DE (Bridi et al., 2018) and depression of mEPSCs with LE are dependent on NMDARs (Rodriguez et al., 2019), which supports the interpretation that these homeostatic changes are due to the sliding threshold model of metaplasticity.

H1a Acts as a Visual Experience Sensor to Depress IC Inputs

We found that mGluR5 and its interaction with H1a is necessary for input-specific metaplasticity (Figures 2 and 7). H1a density). Third panel: average mEPSC frequency in TS Ki (NR = 3.4 ± 0.3 Hz, n = 18; DE = 3.4 ± 0.3 Hz, n = 16; LE = 4.2 ± 0.4 Hz, n = 15; ANOVA, F(2,46) = 1.798, p > 0.17). Fourth panel: estimated population density plot (x axis shows the estimated probability density).

(E and F) FRKIs fail to weaken synaptic strength with LE. Left: comparison of average mEPSC amplitude (E: FRWT) NR = 11.5 ± 0.4 pA, n = 18; DE = 13.0 ± 0.4 pA, n = 26; LE = 11.8 ± 0.4 pA, n = 17; ANOVA, F(2,58) = 4.600, p < 0.05; Newman-Keuls multiple comparison "p < 0.05" F [FRKIs]: NR = 13.6 ± 0.8 pA, n = 14; DE = 13.2 ± 0.5 pA, n = 12; LE = 13.8 ± 0.6 pA, n = 17; ANOVA, F(2,40) = 0.1870, p > 0.8). Middle: estimated population density plot (x axis shows the estimated probability density). Right: average mEPSC traces.

(G) FRKIs display a non-multiplicative increase in basal mEPSC amplitudes compared to FRWT. Mann-Whitney: NR-FRWT (black solid line) versus NR-FRKI (blue solid line), p < 0.0001; NR-FRKI versus NR-FRWT-scaled (black dashed line, scaling factor = 1.19), p < 0.0001.

(H) No change in mEPSC frequency across groups. First panel: comparison of average mEPSC frequency of FRWTs (NR = 6.2 ± 0.6 Hz, n = 18; DE = 5.6 ± 0.3 Hz, n = 26; LE = 5.4 ± 0.4 Hz, n = 17; ANOVA, F(2,58) = 0.9287, p > 0.4). Second panel: estimated population density plot (x axis shows the estimated probability density). Third panel: average mEPSC frequency in FRKIs (NR = 6.1 ± 0.6 Hz, n = 14; DE = 5.1 ± 0.4 Hz, n = 12; LE = 6.0 ± 0.4 Hz, n = 17; ANOVA, F(2,40) = 1.252, p > 0.29). Fourth panel: estimated population density plot (x axis shows the estimated probability density). Error bars represent mean ± SEM. Also see Table S1.
expression is induced in cultured neurons by high activity upon blocking inhibition (Hu et al., 2010) and in vivo in various models designed to elevate activity such as increased visual activity (Brakeman et al., 1997), artificially generated seizures (Cavarsan et al., 2012, 2015; Hu et al., 2010), traumatic brain injury (Luo et al., 2014), and pain desensitization (Tappe et al., 2009). Activity-dependent expression of H1a has also been proposed to play a neuroprotective role in NMDAR-induced neuronal injury (Wang et al., 2015), potentially through decoupling Ca2+ signaling pathways between NMDARs and mGluR5.

By using several genetic models, we have demonstrated that H1a is required for mGluR5-mediated input-specific metaplas- ticity triggered by an increase in visual activity. Specifically, mGluR5 and H1a interaction is necessary, as demonstrated by the lack of homeostatic adaptation in mice carrying mutations of mGluR5 that reduce its interaction with Homer1. It was shown in cell culture experiments that H1a-mediated interruption of mGluR5-Homer1 crosslinking mediates a shift in mGluR5 signaling to an agonist-independent form (Ango et al., 2001). Additionally, in mouse models with enhanced association of mGluR5 and H1a produces greater mGluR5-dependent LTD (Ronesi et al., 2012).

Previous studies in culture neurons have implicated H1a in global synaptic scaling induced by pharmacological manipulations of neural activity (Hu et al., 2010). This global scaling could be a property of dissociated neuronal cultures, as the synaptic inputs are likely uniform in that model system. In contrast, V1 L2/3 neurons receive diverse sets of inputs arising from different areas, including other sensory cortices, in addition to FF inputs from L4 (Iurilli et al., 2012; Schroeder and Foxe, 2005; Thomson and Lamy, 2007). Therefore, changes in visual experience are expected to affect the activity of distinct inputs differently, thus requiring input-specific homeostatic adaptation as we report here (Figure 2). The selective depression of IC inputs with LE and our previous work showing specific potentiation of IC inputs with DE (Petrus et al., 2015) suggest that IC synapses may be more plastic for bidirectional homeostatic control. A recent study demonstrated plasticity of excitation to inhibition (E/I) balance in local recurrent inputs to L4 of V1, but not FF thalamocortical inputs, following monocular deprivation (Miska et al., 2018), which further suggests sensory manipulations can lead to input specific changes in synaptic function. Our results are also consistent with an emerging idea that input-specific mechanisms, like metaplasticity, are more relevant for homeostatic regulation of intact circuits in vivo (Bridi et al., 2018). Furthermore, it was suggested that input-specific homeostatic adaptation allows better information processing capacity of neural networks (Barnes et al., 2017); hence, it is expected to benefit cortical function.

Concerted Action of mGluR5 and NMDAR in Mediating Input-Specific Metaplasticity

mGluR5s have been implicated in metaplasticity. Specifically, they can prime synapses for induction of NMDAR-dependent LTP (Abraham, 2008; Bortolotto et al., 1994; Cohen and Abraham, 1996) and also increase the threshold for LTP (Matta et al., 2011). Given their perisynaptic location (López-Bendito et al., 2002), mGluR5s are well poised to detect glutamate spillover with high synaptic activity. Since LE-induced depression is input specific and depends on NMDAR activity (Figure 2E), we propose that H1a-induced agonist-independent mGluR5 signaling mediates the increase in the threshold for the induction LTP. H1a is specifically targeted to spines via input-specific activation of NMDARs and downstream activation of protein Kinase G (PKG; Okada et al., 2009). One way H1a could increase the synaptic modification threshold is via enabling direct inhibition of NMDAR function by mGluR5. It was demonstrated that mGluR5s are held away from NMDARs by their interaction with Homer1 and Shank scaffolds (Moutin et al., 2012). However, upon H1a expression, mGluR5s become detached from their synaptic scaffold and directly bind and inhibit NMDARs (Moutin et al., 2012). Such inhibition is predicted to increase the synaptic modification threshold to promote synaptic depression as observed in our study. Another aspect of mGluR5 signaling would also explain the input-specific nature of such metaplasticity, mGluR5 is phosphorylated at the Homer EVH1 binding site by proline-directed kinases that can be activated by PKG, which creates a binding site for Pin1 (Park et al., 2013). mGluR5-Pin1 signaling is dependent on H1a, poten-
tiates NMDAR currents, and prevents depotentiation (Park et al.,
2013). Accordingly, this pathway may create the synaptic tag for input specificity and bidirectional control of synaptic strength (Marton et al., 2015). Hence, based on the specific complement of intracellular signals triggered at individual synapses, even with global increases in H1a expression, certain synapses will have elevated synaptic modification threshold to support metaplastic synaptic depression, while others that have concurrent Pin1 signaling would be protected from such depression. Metaplasticity has been implicated in selective weakening and strengthening of eye-specific inputs accompanying monocular deprivation (Cooper and Bear, 2012). Our results suggest that metaplasticity may be widely adopted in vivo where distinct inputs with different levels of activity converge onto a postsynaptic neuron.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **LEAD CONTACT AND MATERIALS AVAILABILITY**
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Mice
- **METHOD DETAILS**
 - Viral transfections
 - Acute slice preparation
 - Whole cell recording of mEPSCs
 - Whole cell recording of evoked Sr2+-mEPSCs
 - Steady-state surface biotinylation
 - Immunoblot analysis
 - Biocytin processing for confirmation of mEPSC recordings in GFP-expressing cells
 - Quantitative polymerase chain reaction (qPCR)
- **QUANTIFICATION AND STATISTICAL ANALYSIS**
- **DATA AND CODE AVAILABILITY**
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.neuron.2019.08.017.

ACKNOWLEDGMENTS

This work was supported by NIH grants R01-EY014882 (to H.-K.L.) and R01-DA010309 (to P.F.W.). The authors would like to thank Dr. Alfredo Kirkwood for helpful discussions on this project and Dr. Reiji Kuruvilla for help on qPCR experiments.

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

P.F.W. is a co-founder and chief scientific officer of CogNext.

Received: October 12, 2018
Revised: June 24, 2019
Accepted: August 9, 2019
Published: September 25, 2019

REFERENCES

Antibodies

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>GluA1</td>
<td>Millipore (Rabbit)</td>
<td>Millipore Cat# AB1504; RRID:AB_2113602</td>
</tr>
<tr>
<td>GluA2</td>
<td>Millipore (Mouse)</td>
<td>Millipore Cat# MAB397; RRID:AB_2113875</td>
</tr>
<tr>
<td>mGluR5</td>
<td>Millipore (Rabbit)</td>
<td>Millipore Cat# AB5675; RRID:AB_2295173</td>
</tr>
<tr>
<td>NR1</td>
<td>Huganir lab (JHU, Baltimore) (Rabbit)</td>
<td>N/A</td>
</tr>
<tr>
<td>NR2A</td>
<td>Millipore (Rabbit)</td>
<td>Millipore Cat# 07-632; RRID:AB_310837</td>
</tr>
<tr>
<td>NR2B</td>
<td>Thermo Fisher Scientific (Rabbit)</td>
<td>Thermo Fisher Scientific Cat# 71-8600; RRID:AB_2534001</td>
</tr>
<tr>
<td>Tubulin</td>
<td>Millipore (Mouse)</td>
<td>Millipore Cat# 05-559; RRID:AB_309804</td>
</tr>
<tr>
<td>H1b/c</td>
<td>Worley lab (JHU, Baltimore) (Rabbit)</td>
<td>N/A</td>
</tr>
<tr>
<td>H1a</td>
<td>Worley lab (JHU, Baltimore) (Rabbit)</td>
<td>N/A (Same as H1b/c)</td>
</tr>
<tr>
<td>Goat anti-rabbit Cy5</td>
<td>GE Healthcare</td>
<td>GE Healthcare Cat# PA45011; RRID:AB_772205</td>
</tr>
<tr>
<td>Goat anti-mouse Cy3</td>
<td>GE Healthcare</td>
<td>GE Healthcare Cat# PA43010; RRID:AB_772196</td>
</tr>
<tr>
<td>Goat anti-mouse Cy5</td>
<td>GE Healthcare</td>
<td>GE Healthcare Cat# PA45010; RRID:AB_772198</td>
</tr>
<tr>
<td>Goat anti-rabbit alkaline phosphatase-tagged secondary antibody</td>
<td>GE Healthcare</td>
<td>GE Healthcare Cat# 31340; RRID:AB_228339</td>
</tr>
<tr>
<td>goat anti-mouse Cy3</td>
<td>GE Healthcare</td>
<td>GE Healthcare Cat# PA43010; RRID:AB_772196</td>
</tr>
</tbody>
</table>

Bacterial and Virus Strains

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAV9.EF1.dfflo.hChR2(H134R)-mCherry.WPRE.hGH,</td>
<td>Gift from Karl Diesseroth; Addgene viral prep # 20297-AAV9; http://addgene.org/20297</td>
<td>Addgene_20297</td>
</tr>
<tr>
<td>AAV9.EF1a.DIO.hChR2(H134R).EYFP.WPRE.HGhpA</td>
<td>Gift from Karl Diesseroth; Addgene viral prep # 20298-AAV9; http://addgene.org/20298</td>
<td>Addgene_20298</td>
</tr>
<tr>
<td>AAV9.CamKII.Hi.eGFP-Cre.WPRE.SV40</td>
<td>Gift from James M. Wilson; Addgene viral prep # 105551-AAV9; http://addgene.org/105551</td>
<td>Addgene_105551</td>
</tr>
<tr>
<td>AAV9.CamKII0.4.eGFP.WPRE.Rbg</td>
<td>Gift from James M. Wilson; Addgene viral prep # 105541-AAV9; http://addgene.org/105541</td>
<td>Addgene_105541</td>
</tr>
</tbody>
</table>

Chemicals, Peptides, and Recombinant Proteins

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAPI</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# D-1306; RRID: AB_2629482</td>
</tr>
<tr>
<td>Avidin-Texas red conjugate</td>
<td>Life technologies</td>
<td>Cat# A-820</td>
</tr>
<tr>
<td>Formalin</td>
<td>Sigma-Aldrich</td>
<td>Cat# HT5014; MDL: MFCD00003274</td>
</tr>
<tr>
<td>Biocytin</td>
<td>Sigma-Aldrich</td>
<td>Cat# B4261</td>
</tr>
<tr>
<td>Isoflurane</td>
<td>Patterson Veterinary</td>
<td>Cat# 07-890-8115</td>
</tr>
<tr>
<td>Tetrodotoxin citrate (TTX)</td>
<td>Abcam</td>
<td>Cat# ab120055</td>
</tr>
<tr>
<td>DL-APV</td>
<td>Sigma-Aldrich</td>
<td>Cat# A5282</td>
</tr>
<tr>
<td>glycine</td>
<td>Fisher</td>
<td>Cat# BP381-1</td>
</tr>
<tr>
<td>Disodium-ATP</td>
<td>Sigma-Aldrich</td>
<td>Cat# A6419</td>
</tr>
<tr>
<td>Disodium-phosphocreatine</td>
<td>Sigma-Aldrich</td>
<td>Cat# P7936</td>
</tr>
<tr>
<td>Sodium-GTP</td>
<td>Sigma-Aldrich</td>
<td>Cat# G8877</td>
</tr>
<tr>
<td>Lidocaine N-ethyl bromide</td>
<td>Sigma-Aldrich</td>
<td>Cat# L5783</td>
</tr>
<tr>
<td>ECF substrate</td>
<td>GE Healthcare</td>
<td>GE Healthcare Cat# RPN5785</td>
</tr>
<tr>
<td>Bicuculline methiodide</td>
<td>Enzo</td>
<td>Cat# BML-EA149-0050</td>
</tr>
<tr>
<td>MPEP hydrochloride (MPEP)</td>
<td>Tocris</td>
<td>Cat# 1212</td>
</tr>
</tbody>
</table>

(Continued on next page)
Continued

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay36-7620</td>
<td>Tocris</td>
<td>Cat# 2501</td>
</tr>
<tr>
<td>AIDA</td>
<td>Tocris</td>
<td>Cat# 0904</td>
</tr>
<tr>
<td>(R)-CPPene (CPP)</td>
<td>Abcam</td>
<td>Cat# ab120232</td>
</tr>
<tr>
<td>EZ-LinkTM Sulfo NHS-SS-Biotin</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# 21331</td>
</tr>
<tr>
<td>Pierce NeutrAvidin UltraLink Resin</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# 53150</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>Fisher Scientific</td>
<td>Cat# BP151-100</td>
</tr>
<tr>
<td>Prolong Anti-fade mounting media</td>
<td>Invitrogen</td>
<td>Cat# P36930</td>
</tr>
<tr>
<td>Trizol-Chloroform RNA extraction reagent</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# 10296-010</td>
</tr>
<tr>
<td>RETROscript Reverse Transcription kit</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# AM1710</td>
</tr>
<tr>
<td>Maxima SYBR Green/Rox Q-PCR Master mix</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# K0221</td>
</tr>
<tr>
<td>Bovine serum albumin</td>
<td>Fisher Scientific</td>
<td>Cat# BP1600-1</td>
</tr>
</tbody>
</table>

Critical Commercial Assays

- **BCA protein assay kit**: Pierce | Cat# 23225

Experimental Models: Organisms/Strains

- **C57BL/6J**: The Jackson Laboratory | RRID: IMSR_JAX:000664
- **B6;C3-Tg(Scnn1a-cre)3Aibs/J**: The Jackson Laboratory | RRID: IMSR_JAX:009613
- **Floxed-Homer1 (Homer1fl/fl)**: Dr. Paul Worley, JHMI | NA
- **Homer1a knockout (H1aKO)**: Dr. Paul Worley, JHMI | NA
- **mGluR5TS knockout in (TSKI)**: Dr. Paul Worley, JHMI | NA
- **mGluR5FR knockout in (FRKI)**: Dr. Paul Worley, JHMI | NA

Oligonucleotides

- **Primer for H1a Forward**: CCAGAAAGTATCAATGGGACAGATG | Sigma-Aldrich; Chiarello et al., 2013 | N/A
- **Primer for H1a Reverse**: TGCTGAATTGA | Sigma-Aldrich; Chiarello et al., 2013 | N/A
- **Primer for H1b/c Forward**: GGCAAACAC | Sigma-Aldrich; Hu et al., 2010 | N/A
- **Primer for H1b/c Reverse**: TGTTTATGGACTGG | Sigma-Aldrich; Hu et al., 2010 | N/A
- **Primer for GFP Forward**: GTGCTTGTTAGTTGCCGTGT | Sigma-Aldrich; Xu et al., 2012 | N/A
- **Primer for GFP Reverse**: CCGAAATCCTGACCCA | Sigma-Aldrich; Xu et al., 2012 | N/A
- **Primer for GAPDH Forward**: CTGGAGA | Integrated Data Technologies; Hu et al., 2010 | N/A
- **Primer for GAPDH Reverse**: AGTGGGA | Integrated Data Technologies; Hu et al., 2010 | N/A

Software and Algorithms

- **Prism 7.0**: GraphPad Software https://www.graphpad.com/scientific-software/prism/; RRID: SCR_002798
- **Igor Pro**: Wavemetrics https://www.wavemetrics.com/products/igopro/igorpro.htm; RRID: SCR_000325
- **StepOne Software**: Applied Biosystems RRID:SCR_014281
- **ImageQuant TL 7.0 software**: GE Healthcare RRID:SCR_014246

Other

- **StepOnePlusTM Real-Time PCR system**: Applied Biosystems Cat# 4376600; RRID: SCR_015805
- **LSM 510 Meta confocal microscope**: Zeiss (JHU Integrated imaging center) RRID:SCR_016187
- **Spin-X Acetate Centrifuge Tube filters**: Costar Cat# 8103

(Continued on next page)

Continued

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axon patch-clamp amplifier</td>
<td>Molecular Device</td>
<td>Multiclamp 700B</td>
</tr>
<tr>
<td>40x Objective lens</td>
<td>Nikon Instruments</td>
<td>Nikon instruments CFI fluor 40X/0.80W</td>
</tr>
<tr>
<td>Data acquisition board</td>
<td>National instruments</td>
<td>Cat# 779556-01; MLD# BNC-2090A</td>
</tr>
<tr>
<td>Digital stimulator</td>
<td>Cygnus Technology</td>
<td>Cygnus Cat# PG-4000A</td>
</tr>
<tr>
<td>Stimulation isolation unit</td>
<td>Cygnus Technology</td>
<td>Cygnus Cat# SIU91A</td>
</tr>
<tr>
<td>0.45 μm pore size PVDF membrane</td>
<td>Biorad</td>
<td>Biorad Cat# 162-0264</td>
</tr>
<tr>
<td>Pelco easillicerTM</td>
<td>TedPella</td>
<td>TedPella Cat#11000</td>
</tr>
<tr>
<td>0.20 μm pore size Immobilon-P PVDF membrane</td>
<td>Millipore</td>
<td>Millipore Cat# ISEO00010</td>
</tr>
<tr>
<td>Leica microslicer</td>
<td>Leica</td>
<td>Leica Cat#VT1200S</td>
</tr>
</tbody>
</table>

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Hey-Kyung Lee (Email: heykyounglee@jhu.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

Male and female mice were reared in a 12hr light/12hr dark cycle. Knockout mice for Homer1α (H1αKO), as well as mice with knockin mutations on the TS amino acids (T1123A and S1126A) in the C terminus of mGluR5 (TSKI) or knockin mutation on the F1128R amino acids in the C terminus of mGluR5 (FRKI) were obtained from Dr. Paul Worley’s lab (Johns Hopkins School of Medicine, Baltimore). Each mutant line was crossed with C57BL/6 mice (The Jackson Laboratory, RRID:IMSR_JAX:000664) to generate wild-type controls termed H1αWT, TSWT, and FRWT, respectively. The floxed-Homer1α (Homer1αflox) line was also obtained from the Worley lab. To create the conditional knockout for Homer1α with the normal long form of Homer1, we created the H1αKOflox line (H1αflox/H1αflox) by crossing Homer1αflox with H1αKO. H1αWTflox mice (H1αflox/H1αflox) were generated by breeding Homer1αflox mice with H1αWT mice. Young animals were dark exposed (DE) between postnatal day 21 (P21) and 35 (P35) for 2 days. DE animals were cared for in the dark room with infrared vision goggles using dim infrared light. Some DE mice were re-exposed to normal light conditions for two hours to study the effects of light exposure (LE).

Layer 4-Cre mice (B6;C3-Tg(Scn1a-cre)3Albs/J; The Jackson Laboratory, RRID:IMSR_JAX:009613) were used to study the FF synaptic inputs onto L2/3 cells (L4-Cre). To study the effect of the mGluR5 F1128R mutation on individual inputs, we generated L4-Cre;FRKI mice by crossing L4-Cre mice with FRKI mice. These animals were dark exposed for two days between P70 and P120 to accommodate sufficient expression of ChR2 in L4 neurons as required for our studies (see Viral transfections section for details).

For the mGluR5, mGluR1, and NMDAR pharmacological inhibition studies, C57BL/6 mice (The Jackson Laboratory) were injected intraperitoneally (i.p.) with an equal volume of a given drug or the vehicle solution (filter sterilized phosphate buffered saline, PBS, 10 mM PO₄³⁻, 137 mM NaCl, and 2.7 mM KCl, pH 7.4) used to dissolve the drug. MPEP hydrochloride (MPEP, 10 mg/kg, Tocris - 1212) was used to block mGluR5, whereas mGluR1 was blocked either with AIDA (1 mg/kg, Tocris - 9094) or Bay36-7620 (20 mg/kg, Tocris - 2501). (R)-CPPene (CPP, 10 mg/kg, Abcam - ab120232) was administered to block NMDARs. The normal reared group was treated 2 hours before collection of slices. DE mice were injected 2 hours before they were dark exposed and received an injection once daily. Mice in the LE group were injected 30 mins before bringing them to light.

All experiments were done in accordance with protocols approved by the Johns Hopkins University Institutional Animal Care and Use Committee (IACUC).

METHOD DETAILS

Viral transfections

Male and female mice were anesthetized in an induction chamber with 3% isoflurane in oxygen (flow rate: 1.0 L/min). L4-Cre mice (B6;C3-Tg(Scn1a-cre)3Albs/J; The Jackson Laboratory, RRID:IMSR_JAX:009613) were bilaterally injected in V1 L4 with a double-floxed Channelrhodopsin-2-expressing virus (AAV9.EF1.dfox.hChR2(H134R)-mCherry.WPRE.hGH) or AAV9.EF1a.-DIO.hChR2(H134R).EF1a.WPRE.WPRE.HGHpa, Penn Vector Core, University of Pennsylvania: catalog# Addgene20297, Addgene20298, respectively) between P21 and P50. The coordinates of injection relative to Bregma were Lateral: 2.5 mm, Posterior: 3.6 mm, and Depth: 0.45 mm. The virus was allowed to incubate for at least 6 weeks post-injection prior to conducting experiments.

H1αKOflox or H1αWTflox mice (Worley lab) were bilaterally injected in V1 L2/3 with either a Cre-expressing virus (AAV9.CamKII.-Hi.eGFP.Cre.WPRE.SV40, Penn Vector core Cat# AV-9-PV2521) to knockout the floxed Homer1α hemi-gene or a control enhanced
GFP (AAV9.CamKII0.4.eGFP.WPRE.Rbg, Penn Vector core Cat# AV-9-PV1917) vector at P21-30. The coordinates of injection relative to Bregma were Lateral: 2.5 mm, Posterior: 3.6 mm, and Depth: 0.36 mm. Mice recovered on a heating pad after surgery and were returned to the animal colony.

Acute slice preparation

Mice were anesthetized with isoflurane, and decapitation was performed after checking for the absence of a toe-pincher response. Brain blocks containing visual cortex were coronally sectioned into 300 μm sections using a microslicer (Leica Cat#VT1200S or TedPella Pelco easlicer Cat#11000). During sectioning, blocks were submerged in ice-cold dissection buffer containing 212.7 mM sucrose, 10 mM dextrose, 3 mM MgCl₂, 1 mM CaCl₂, 2.6 mM KCl, 1.23 mM NaH₂PO₄·H₂O, and 26 mM NaHCO₃, which was bubbled with a 95% O₂/5% CO₂ gas mixture. The slices collected from juvenile animals (P21-P45) were incubated at room temperature for 60 mins in an artificial cerebrospinal fluid (ACSF) solution containing 124 mM NaCl, 5 mM KCl, 1.25 mM NaH₂PO₄·H₂O, 26 mM NaHCO₃, 10 mM dextrose, 2.5 mM CaCl₂, and 1.5 mM MgCl₂, which was bubbled with 95% O₂/5% CO₂. The slices collected from older animals (P70-P120) were incubated in the same ACSF solution at 30 °C for 30 mins, followed by 30 mins of incubation at room temperature.

Whole cell recording of mEPSCs

Coronal slices were transferred to a recording chamber mounted on the fixed stage of an upright microscope with oblique infrared (IR) illumination. ACSF was continually perfused through the recording chamber, and pH was maintained by bubbling 95% O₂/5% CO₂ gas through the ACSF solution reservoir. AMPA receptor-mediated excitatory postsynaptic currents were isolated by adding 1 μM tetrodotoxin (TTX, Abcam Cat#ab120055), 20 μM (-)-bicuculline methiodide (Bic, Enzo Cat# BML-EA149-0050), and 100 μM DL-2-amino-5-phosphonopentanoic acid (APV, Sigma-Aldrich Cat# A5282) to the ACSF. Recording electrodes were filled with an internal solution containing the following ingredients: 130 mM Cs-glucuronate, 10 mM HEPES, 8 mM KCl, 1 mM EGTA, 4 mM Disodium-ATP (Sigma-Aldrich Cat# A6419), 10 mM Disodium-phosphocreatine (Sigma-Aldrich Cat# P7935), 0.5 mM Sodium-GTP (Sigma-Aldrich Cat# G8877), 5 mM Lidocaine N-ethyl bromide (Sigma-Aldrich Cat# L5783) and pH 7.2. Bicynotin (1 mg/ml, Sigma-Aldrich Cat# B4261) was added to the internal solution to confirm morphology and location of the recorded cells post hoc. Cells were recorded in voltage clamp at 80 mV and the recorded mEPSCs were digitized at 10-kHz by a National Instruments data acquisition board (National instruments Cat# 779556-01, ML# BNC-2090A) and acquired through a custom script (provided by Claudio Elgueta) in Igor program (Wavemetrics, RRID:SCR_000325).

Whole cell recording of evoked Sr²⁺-mEPSCs

Slices were continually perfused with Sr²⁺-ACSF containing 124 mM NaCl, 5 mM KCl, 1.25 mM NaH₂PO₄·H₂O, 26 mM NaHCO₃, 10 mM dextrose, 4 mM SrCl₂, and 4 mM MgCl₂, which was bubbled with 95% O₂/5% CO₂. During recording, cells were held at 80 mV in the presence of 20 μM Bic and 100 μM APV to isolate evoked AMPA receptor currents. Evoked currents were recorded for 10 mins using a custom-made acquisition script (provided by Claudio Elgueta) in Igor program (Wavemetrics, RRID:SCR_000325). Data were acquired every 10 s for a duration of 1,500 ms each. ChR2 expressing L4 inputs were activated 710 ms after the onset of acquisition with 455 nm light provided by a light-emitting diode (LED, ThorLabs, M455L3-C5) through a 40X objective lens (Nikon instruments CFi fluor 40X/0.80/W). Neighboring L2/3 cells were stimulated electrically by placing a bipolar electrode lateral to the recording site in L2/3. The stimulation current was controlled by digital stimulator (Cygnus Technology Cat# PG-4000A) and stimulation isolation unit (SIU91A, Cygnus Technology). The recorded traces were digitized at 10 kHz by a National instruments data acquisition board.

Steady-state surface biotinylation

Biotinylation was performed as previously reported (Goel et al., 2011). Visual cortical slices (400 μm) were prepared as above and further microdissection was done to isolate V1 L2/3 sections. At least 8 slices were collected from each animal. Slices were allowed to recover at room temperature for 30 mins, followed by 30 mins at 30 °C in ACSF containing 124 mM NaCl, 5 mM KCl, 1.25 mM NaH₂PO₄·H₂O, 26 mM NaHCO₃, 10 mM dextrose, 2.5 mM CaCl₂, and 1.5 mM MgCl₂, which was bubbled with 95% O₂/5% CO₂. Following recovery, slices were incubated for 10 mins in ice-cold, oxygenated ACSF, followed by 10 mins of incubation in EZ-Link Sulfo-NHS-SS-Biotin (2 mg/ml, Thermo Fisher Scientific Cat# 21331) in oxygenated ACSF. The slices then went through 4 rounds of washing (1 min each) with 100 mM Glycine in a Tris-buffered solution (5 mM Tris base, 0.9%NaCl, pH7.4). Finally, the slices were rapidly frozen over dry ice and stored at 80 °C.

Separation of the biotinylated surface proteins from internal proteins was performed in a 0.02% SDS and 1% Triton X-100 immunoprecipitation buffer solution (IPB; in mM: 20 mM Na₃PO₄, 150 mM NaCl, 10 mM EDTA, 10 mM EGTA, 10 mM Na₂PO₄·7H₂O, 50 mM NaF, and 1 mM Na₂VO₃, pH 7.4; with 1 μM okadaic acid and 10 kU/ml aprotinin). Biotinylated slices were homogenized with 30 strokes from mechanical glass-teflon tissue homogenizers (Pyrex), and then incubated at 4 °C for 30 mins. The homogenized proteins were then separated by centrifugation at 4 °C for 10 min at 13,200 rpm and the supernatant was collected in separate tubes. The protein concentration was measured for each of the samples using a BCA protein assay kit (Pierce Cat# 23225) and then normalized to 1 mg/ml. Some of the samples were stored by adding a gel sample buffer as an input for calculating total protein concentration. 300 μg of each sample was mixed with Neutravidin beads (1:1 slurry with 1% TX-IPB, Thermo Fisher Scientific Cat# 53150) and
rotated for 2 hours at 4°C. The supernatant containing the intracellular fraction was separated from the beads, by carefully pipetting it into a separate tube. The beads were then washed 3 times with 1% TX-IPB, 3 times with 500 nM NaCl in 1% TX-IPB, and then twice with 1% TX-IPB. The biotinylated surface proteins were eluted with a gel sample buffer and passed through cellulose acetate centrifuge tube filters (Costar Cat#8163). The input (total population), supernatant (internal proteins), and biotin (surface population) protein groups were run on an 6% SDS-PAGE gel and transferred to PVDF membranes (Biorad 0.45 µm pore size, Cat# 162-0264) for immunoblot analysis.

Immunoblot analysis

Immunoblot analysis for the total and surface population was performed separately for each genotype. An equal quantity of each sample was added (10 µg for total and 90 µg for surface proteins), separated on a 6% SDS-PAGE gel, and transferred to a PVDF membrane (0.45 µm pore size, Biorad Cat# 162-0264). The transferred samples were treated with blocking buffer containing 1% bovine serum albumin (BSA, Fisher Scientific Cat#BP1600-1) in PBST (0.1% Tween-20, 10 mM PO4 3-, 137 mM NaCl, and 2.7 mM KCl, pH 7.4) for one hour at room temperature. Primary antibodies against GluA1 (1:500, Rabbit polyclonal, Millipore Cat# AB1504, RRID# AB_2113602), GluA2 (1:200, Mouse, Millipore Cat# MAB397, RRID:AB_2113875), mGluR5 (1:500, Rabbit, Millipore Cat# AB5675, RRID:AB_2295173), NR1 (1:500, Rabbit, obtained from Dr. Richard Huganir’s lab, Johns Hopkins School of Medicine, Baltimore), NR2A (3:1000, Rabbit, Millipore Cat# 07-632, RRID:AB_310837), NR2B (3:500, Rabbit, Thermo Fisher Scientific Cat# 71-8600, RRID:AB_2534001) and Tubulin (1:500, Millipore Cat# 05-559, RRID:AB 309804) diluted in the blocking buffer were applied for one hour at room temperature. Following four washes with the blocking buffer, membranes were treated with either ECL-plex conjugated with Cy dyes (GluA1 and mGluR5: goat anti-rabbit Cy5, GE Healthcare Cat# PA45011, RRID:AB_772205; GluA2: goat anti-mouse Cy3, GE Healthcare Cat# PA43010, RRID:AB_772196; Tubulin: goat anti-mouse Cy5, GE Healthcare Cat# PA45010, RRID:AB_772198) or anti-rabbit alkaline phosphatase-tagged secondary antibodies (NR1, NR2A and NR2B: Thermo Fisher Scientific Cat# 31340, RRID:AB_228339) for one hour at room temperature. In case of alkaline phosphatase antibodies, ECF substrate (GE Healthcare Cat# RPN5785) was applied after 4 washes with the blocking buffer for 20 mins. The membranes were imaged using Typhoon 9410 molecular imager (GE Healthcare Cat# 8149-30-9410).

For H1b/c and Tubulin immunoblot analysis, 20 µg each of H1aWT and H1aKO samples were run on a 12% SDS-PAGE gels and transferred to an immobilon-P PVDF membrane (0.20 µm pore size, Millipore Cat# ISEQ00010). Primary antibody (obtained from Dr. Paul Worley’s lab, Johns Hopkins School of Medicine, 1:500 dilution) for the EVH domain of Homer1 recognized H1b/c at 48kDa. Membranes were treated in the same manner as mentioned above to probe for H1b/c and Tubulin. ECL-plex conjugated with Cy dyes were used as secondary antibody (H1b/c: goat anti-rabbit Cy5, GE Healthcare Cat# PA45011, RRID:AB_772205; Tubulin: goat anti-mouse Cy3, GE Healthcare Cat# PA43010, RRID:AB_772198). A Typhoon 9410 molecular imager was used to image the membranes (GE Healthcare Cat# 8149-30-9410).

Biocytin processing for confirmation of mEPSC recordings in GFP-expressing cells

Slices containing recorded cells were fixed in pre-made formalin solution (Sigma Aldrich Cat# HT5014; MDL: MFCD00003274) overnight at 4°C. Slices were washed twice for 10 mins at room temperature in 0.1 mM phosphate buffer (PB) composed of 19 mM NaH2PO4, 81 mM Na2HPO4, and 1% Triton X-100. The slices were then permeabilized in 2% Triton X-100 (Fisher Scientific Cat# BP151-100) in 0.1 mM PB for 1 hour and later incubated overnight at 4°C in avidin-Texas Red conjugate (Thermo Fisher Scientific Cat# A820) diluted 1:2000 in 1% Triton X-100 (0.1 M PB) and shielded from light. After the avidin incubation, slices were rinsed twice with 0.1M PB, mounted on glass slides, and allowed to air dry for 20 mins in the dark. Slides were coverslipped with Prolong Anti-fade (Invitrogen Cat# P36930) mounting medium and sealed with nail polish. Images were taken using an LSM 510 META confocal microscope (Zeiss).

Quantitative polymerase chain reaction (qPCR)

V1 slices (400 µm) were obtained from the animals as explained in acute slice preparation section above. V1 L2/3 was isolated by performing micro-dissections. The slices were quickly frozen on dry ice and stored for mRNA separation. The total RNA content was separated from collected V1 slices using TRizol-chloroform extraction (ThermoFisher Cat# 10296-010). cDNA was obtained from RNA using the RETROscript Reverse Transcription kit (ThermoFisher Cat# AM1710). For quantification, real-time qPCR was performed using a Maxima SYBR Green/ROX Q-PCR Master Mix (ThermoFisher Cat# K0221), in a StepOnePlusTM Real-Time PCR system (Applied Biosystems Cat# 4376600; RRID:SCR_015805). The following primer sequences were used for each gene:

H1a: forward primer (FP) 5’-CCAGAAAGTATCAATGGGACAGAT-3’; reverse primer (RP) 5’-TGCTGAATTGATGTGTACC TATGTG-3’
H1b/c: FP 5’-GGCCAAACACTTGTATATGTGACCTGG-3’; RP 5’-CTCGTTGCTTGGGATGTTCTGCTG-3’
GFP: FP 5’-GGCTCTTGTAGGCTCCGTGTT-3’; RP 5’-CCTGAAATTTCATGTTGGTGTCA-3’
GAPDH: FP 5’-CTGGCAGAAACCTGCAGGAACTGA-3’; 5’-AGTGGGATGTGCTTTGAG-3’
QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of mEPSCs events was performed using Mini Analysis Software (Synaptosoft, RRID:SCR_002184) and 200 isolated events from each cell were quantified.

For quantification of Sr²⁺-mEPSCs, the amplitude and frequency of pre-stimulus events (spontaneous events) were measured in a window spanning 200 ms to 650 ms from the beginning of acquisition. The stimulation pulse was given at 710 ms, and post-stimulus events (evoked events) were measured from 760 to 1160 ms. At least 50 events on each group were analyzed to determine an average frequency (Prefreq and Postfreq) and amplitude (Preamp and Postamp) using Mini Analysis Program (Synaptosoft, RRID:SCR_002184). Cells were determined to have desynchronized events if their Postfreq was higher than their Prefreq by at least 2-Hz. The average evoked amplitude and average traces were calculated to subtract the spontaneous events using this formula:

\[
\frac{\text{Postamp} \times \text{Postfreq} - \text{Preamp} \times \text{Prefreq}}{\text{Postfreq} - \text{Prefreq}}
\]

Western blots results were visualized and analyzed using ImageQuant TL 7.0 software (ImageQuant, RRID:SCR_014246). QPCR data was analyzed with StepOne Software (StepOne Software, RRID:SCR_014281) using the \(\Delta \Delta C_t \) method normalized to GAPDH readings for each sample. H1a, H1b/c, and GFP mRNA levels in the test groups were quantified as a fold increase of the wild-type group.

All statistical analysis was performed using Graphpad PRISM software (Graphpad Prism, RRID:SCR_002798). The D’Agostino and Pearson omnibus normality test was used to check for normality. For datasets that passed the normality test, one-way ANOVA was performed with the Newman-Keuls multiple comparison posthoc test was used for comparison of more than two groups. MEPSC frequency for the LE group of H1aWT mice did not pass the normality test. Hence, the Kruskal-Wallis test was performed to determine the effect of visual experience on mEPSC frequency in H1aWT. For comparisons between two groups of normally distributed data the Student’s t test was used. Cumulative probability distributions were compared between two distributions using the non-parametric Mann-Whitney test. Data plots were made using Python and Microsoft Excel. Bar graphs display mean ± SEM (standard error of mean). Estimated population density plots were generated by calculating the probability of distribution by fitting the Gaussian kernel for each measured data point.

DATA AND CODE AVAILABILITY

All the datasets are available upon request. All the software and algorithms have been either commercially available or custom scripts generated by a source listed under each subsection above. Custom scripts for data acquisition and analysis are available upon request. Raw data from this study can be accessed from Mendeley Data: https://doi.org/10.17632/pwzhy2w98.1.