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Classic computational theories of the mnemonic functions of the hippocampus ascribe the processes of 
pattern separation to the dentate gyrus (DG) and pattern completion to the CA3 region. Until the last dec-
ade, the large majority of single-unit studies of the hippocampus in behaving animals were from the CA1 
region. The lack of data from the DG, CA3, and the entorhinal inputs to the hippocampus severely ham-
pered the ability to test these theories with neurophysiological techniques. The past ten years have seen a 
major increase in the recordings from the CA3 region and the medial entorhinal cortex (MEC), with an 
increasing (but still limited) number of experiments from the lateral entorhinal cortex (LEC) and DG. 
This paper reviews a series of studies in a local–global cue mismatch (double-rotation) experiment in 
which recordings were made from cells in the anterior thalamus, MEC, LEC, DG, CA3, and CA1 regions. 
Compared to the standard cue environment, the change in the DG representation of the cue-mismatch 
environment was greater than the changes in its entorhinal inputs, providing support for the theory of 
pattern separation in the DG. In contrast, the change in the CA3 representation of the cue-mismatch envi-
ronment was less than the changes in its entorhinal and DG inputs, providing support for a pattern com-
pletion/error correction function of CA3. The results are interpreted in terms of continuous attractor 
network models of the hippocampus and the relationship of these models to pattern separation and pat-
tern completion theories. Whereas DG may perform an automatic pattern separation function, the attrac-
tor dynamics of CA3 allow it to perform a pattern separation or pattern completion function, depending 
on the nature of its inputs and the relative strength of the internal attractor dynamics. 

� 2015 Elsevier Inc. All rights reserved. 
1. Introduction 

Although most computational theories of the mnemonic func-
tions of the hippocampus have focused on the CA3 and dentate 
gyrus (DG) regions, the large majority of single-unit studies of 
the hippocampus have been recordings from the CA1 region. This 
emphasis on CA1 is understandable for both functional and practi-
cal reasons. CA1 is the region that primarily transmits the output of 
DG/CA3 processing to the rest of the cerebrum (Witter & Amaral, 
2004). Thus, it can serve as a functional readout of the information 
provided by the hippocampus to other brain areas that are 
involved in hippocampus-dependent cognition and behavior. 
Moreover, CA1 is the first cell layer encountered in the rodent hip-
pocampus when an electrode is advanced from the dorsal surface 
of the brain, and it is by far the easiest layer of the hippocampus 
to record large ensembles of well-isolated units. 

Although recordings from CA1 can illuminate the types of infor-
mation and representations being sent to other brain regions, these 
recordings in isolation can inform little about the nature of the 
information processing that occurs within the hippocampal cir-
cuitry. For example, one may know that CA1 place cells form inde-
pendent spatial representations of two distinct environments 
(Bostock, Muller, & Kubie, 1991). However, this knowledge alone 
tells us little about the computational processing that creates these 
two representations, and whether that processing occurs within 
CA1, in upstream hippocampal regions like DG or CA3, or even in 
regions entirely afferent to the hippocampus. To understand the 
neural computations of the hippocampus, it is necessary to under-
stand the information represented in hippocampal inputs, in its 
internal processing stages, and in its outputs, as well as the trans-
formations that occur as information is processed through these 
circuits. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nlm.2015.10.008&domain=pdf
http://dx.doi.org/10.1016/j.nlm.2015.10.008
mailto:jknierim@jhu.edu
http://dx.doi.org/10.1016/j.nlm.2015.10.008
http://www.sciencedirect.com/science/journal/10747427
http://www.elsevier.com/locate/ynlme


39 J.J. Knierim, J.P. Neunuebel / Neurobiology of Learning and Memory 129 (2016) 38–49 
This article will review a series of studies from our lab over the 
past decade in which we recorded the activity of hippocampal 
input regions and output regions, as well as the intrahippocampal 
processing in the DG and CA3 regions. To induce controlled, para-
metric changes to the animal’s environment, we used a ‘‘double 
rotation” manipulation, in which the local reference frame of the 
behavioral track was placed in varying degrees of conflict with 
the global reference frame of the laboratory environment 
(Knierim, 2002; Shapiro, Tanila, & Eichenbaum, 1997). We investi-
gated how neural populations in the hippocampal system 
responded to these alterations in order to deduce the neural repre-
sentations and computations associated with the different regions. 
In particular, we addressed the questions of whether we can inter-
pret (1) DG responses as evidence for its proposed role of perform-
ing pattern separation on its inputs and (2) CA3 responses as 
evidence for its proposed role of performing pattern completion 
(or the related concepts of error correction and generalization) 
on its inputs. We begin with a brief history of the computational 
theories of pattern separation and completion. 
2. Classic theories of DG function: Pattern separation in DG vs. 
pattern completion in CA3 

The most prominent theory of DG function is the pattern sepa-
ration theory (Kesner, Gilbert, & Wallenstein, 2000; McNaughton & 
Morris, 1987; McNaughton & Nadel, 1990; Rolls & Treves, 1998; 
Yassa & Stark, 2011), which originated in David Marr’s theory of 
the cerebellum (Marr, 1969). Marr proposed that the cerebellar 
granule layer created a very sparse representation of incoming sen-
sorimotor input by an expansion recoding strategy; that is, highly 
overlapping representations encoded by populations of pontine 
mossy fibers, which formed synapses onto an enormous layer of 
cerebellar granule cells, were transformed into extremely sparse, 
independent representations in the granule layer. This transforma-
tion allowed the storage, with minimal interference, of the count-
less contexts in which a movement occurred. Investigators 
elaborated Marr’s subsequent theory of the hippocampus (Marr, 
1971) and ascribed a similar function to the DG granule cell layer 
(McNaughton & Morris, 1987; McNaughton & Nadel, 1990; Myers 
& Scharfman, 2009, 2011; O’Reilly and McClelland, 1994; Rolls & 
Treves, 1998). If the entorhinal cortex (EC) represented two expe-
riences with a high degree of overlap in the population of active 
cells, an expansion recoding mechanism caused the hippocampal 
granule layer to create representations that overlapped consider-
ably less than its EC inputs. This process is illustrated in Fig. 1, 
which shows a hypothetical relationship between two input pat-
terns and two output patterns. Each sphere represents a cell in 
Outpu
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Fig. 1. Pattern separation by expansion recoding. Input patterns (colored cells) at bottom
colour in this figure legend, the reader is referred to the web version of this article.) 
the population, and the colored spheres represent the currently 
active neurons. The input patterns show great overlap, in that each 
pattern shares 2 of the 3 active neurons. With expansion recoding 
onto a larger output population, there is no overlap in the sets of 
active cells. 

Pattern separation may be graphically illustrated in terms of the 
input–output curves of the DG (Fig. 2A). Consider how the DG and 
the EC represent two different events. The x-axis represents the 
difference in the combined medial entorhinal cortex (MEC) and lat-
eral entorhinal cortex (LEC) representations of the two events. This 
difference may be quantified by the correlation of neural popula-
tion activity between the representations of each event (a high 
Dinput corresponds to a low correlation between the two repre-
sentations). The y-axis represents the difference in the correspond-
ing DG representations. According to the pattern separation theory, 
the Doutput of the DG is greater than the Dinput from the EC, 
quickly reaching a maximum difference (i.e., the DG representa-
tions of the two experiences are completely decorrelated, even 
when the Dinput is still fairly small). In support of the theory that 
the DG performs such an operation, rats with selective DG lesions 
were impaired in tasks thought to rely on spatial pattern separa-
tion (Gilbert, Kesner, & Lee, 2001); genetic knockout of the NR1 
subunit of the NMDA receptor in DG impaired the ability of mice 
to discriminate similar environments in a fear conditioning exper-
iment (McHugh et al., 2007); and CA3 place fields in these mice 
were impaired in the discrimination of two environments 
(McHugh et al., 2007). Human imaging studies have supported a 
role of the hippocampus in pattern separation, but these studies 
were limited by an inability to resolve the DG and CA3 regions 
(Bakker, Kirwan, Miller, & Stark, 2008). (For more detailed reviews, 
see Rolls & Kesner, 2006; Santoro, 2013; Yassa & Stark, 2011.) 

The complementary role of pattern completion is commonly 
ascribed to the CA3 region. Strictly defined, pattern completion 
refers to the ability of a network to retrieve from memory a com-
plete pattern of activity when presented with incomplete or 
degraded input patterns; for example, a network may output a 
complete phone number when presented with only a fraction of 
the number as a retrieval cue. This process is thought to be the 
result of the recurrent collateral circuitry providing an anatomical 
basis for an autoassociative network, that is, a network in which 
activity patterns can become associated with themselves. Such a 
network might also display attractor dynamics. In general terms, 
an attractor refers to a set of stable states in a system that have 
the property that they ‘‘attract” neighboring states to move toward 
the stable states, like a magnet attracts nearby metal particles or 
like a ball rolls down the slope of a hill toward a valley (Knierim 
& Zhang, 2012). Attractor dynamics in CA3, in concert with pattern 
t 

 

 overlap more than the output patterns at top. (For interpretation of the references to 
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Fig. 2. Hypothesized input–output curves for the DG, CA3, and CA1 regions of the hippocampus. The x-axis of each graph denotes the difference between the neural activity 
representations of two specific input patterns. The y-axis represents the difference between the corresponding output patterns. (A) The DG is hypothesized to change its 
output patterns to a greater extent than the input patterns change (pattern separation). (B) CA3 is hypothesized to show a sigmoidal relationship between Dinput and 
Doutput, performing pattern completion with small Dinput and pattern separation with large Dinput. (C) CA1 is hypothesized to display a linear relationship between Dinput 
and Doutput. 
separation processing in its DG inputs, may cause the CA3 network 
to display outputs that show both pattern separation and pattern 
completion. 

Fig. 2B shows the sigmoidal relationship between pattern input 
similarity (from combined MEC, LEC, and DG inputs) and pattern 
output similarity that arises from these attractor dynamics 
(Guzowski, Knierim, & Moser, 2004; McClelland & Goddard, 
1996; Rolls & Treves, 1998). When two input representations are 
similar (Dinput � 0), the output representations are also very sim-
ilar (Doutput � 0). As the representations diverge (Dinput > 0, but 
still small), the output representations of CA3 maintain a higher 
degree of similarity than the inputs (Doutput < Dinput). This resis-
tance to changes in the input is caused by the putative attractor 
dynamics of CA3 (Knierim & Zhang, 2012). The inputs cause CA3 
cells to fire within the basin of attraction set up by the rat’s previ-
ous experiences. The attractor dynamics cause the CA3 representa-
tion to move closer to the Doutput � 0 state, although the 
influences from the external input prevent the two representations 
from being completely correlated (i.e., Doutput > 0). As the Dinput 
increases further, eventually the attractor dynamics cause a non-
linear change in the Doutput, causing the output representations 
to be less similar than the inputs (pattern separation: Dout-
put > Dinput). This can be interpreted as the input representations 
of each experience causing the CA3 representations to fall into two 
distinct attractor states that are mutually inhibited. 

Note that the recurrent collaterals and putative attractor 
dynamics of CA3 do not just reflect pattern completion. When Din-
put is small, CA3 reflects pattern completion (Doutput < Dinput). 
When Dinput is large, CA3 output reflects pattern separation 
(Doutput > Dinput). Note also that in this model, pattern comple-
tion, error correction, and generalization are all different instances 
of the same underlying computational dynamics. Outputs can be 
made more similar than the inputs when the changes to the input 
(Dinput) are due to missing or degraded parts of the representation 
(pattern completion), small errors in the input representation 
(error correction), or small differences in the representations of 
legitimately similar inputs (generalization). Although these differ-
ent cases might result in variations in the shape of the sigmoid 
(e.g., making it shallower or sharper; moving the inflection point 
along the x axis), the attractor dynamics will endow the CA3 with 
qualitatively similar, nonlinear, input–output curves. Thus, rather 
than performing pattern separation per se, the CA3 output can be 
thought of as the final arbiter between the pattern separation pro-
cesses of the DG inputs and the pattern completion processes of 
the recurrent collateral circuitry. 

Fig. 2C shows the hypothesized relationship between input 
changes and output changes for CA1 (Guzowski et al., 2004). 
Lacking both the numerical expansion between the input and out-
put layers of DG and the strong, recurrent collateral system of CA3, 
CA1 is thought to show a more linear relationship between its 
inputs and outputs (as Dinput increases, Doutput increases by 
approximately the same amount). Note that this linear relationship 
does not predict that CA1 will necessarily vary its inputs in linear 
proportion to changes in the external environment or other exper-
imental manipulations. The Dinput to CA1 includes not only the 
entorhinal representations, but also the input from CA3. Thus, 
CA1 might show nonlinear changes in its place cell outputs as a 
function of experimental manipulations, but this might reflect 
nonlinear changes inherited from CA3, rather than nonlinear pro-
cessing in CA1 itself. In other words, if one could measure precisely 
the changes in the CA1 inputs and the changes in the CA1 outputs, 
the input–output curve might show a linear change as in Fig 2C, 
even if the output of CA1 plotted relative to changes in the exper-
imental manipulations is highly nonlinear. 

3. Double rotation experiments 

With these considerations in mind, we will now review a series 
of neurophysiological recording experiments from hippocampal 
afferent regions (the MEC, LEC, and anterior thalamus), intrahip-
pocampal regions (DG and CA3), and the hippocampal output layer 
(CA1). In these experiments, rats ran clockwise on a circular track 
(Knierim, 2002) (Fig. 3). The track was divided into 4 quadrants, 
each with a distinct visual and tactile texture. The track was cen-
tered in a room with a circular, black curtain at the periphery. 
Along the curtain were 6 salient global cues. After many days of 
training to run laps on the track for irregularly placed food reward, 
the rats experienced over 4 days a sequence of alternating sessions 
in which the cues were arranged in the standard configuration 
(standard session) or in a mismatched configuration (mismatch 
session). The mismatches were generated by rotating the local cues 
on the track in a counterclockwise (CCW) direction and the cues 
along the curtains by an equal amount in a clockwise (CW) direc-
tion (double rotation). The net mismatch between the local and 
global reference frames was 45�, 90�, 135�, or 180�. 

3.1. Superficial-layer MEC spatial representations and thalamic head 
direction representations are controlled by the global cues 

The superficial layers of MEC provide the major spatial informa-
tion to the hippocampus, in the form of grid cells, boundary cells, 
and head direction cells (Hafting, Fyhn, Molden, Moser, & Moser, 
2005; Sargolini et al., 2006; Savelli, Yoganarasimha, & Knierim, 
2008; Solstad, Boccara, Kropff, Moser, & Moser, 2008; Zhang 
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Fig. 3. Double rotation experiment. The inner circle denotes the behavioral track with different local textures on the 4 quadrants. The black, outer ring denotes the circular 
curtain at the perimeter, with 6 distinct landmarks that constitute the global cue set. Shown here is a typical sequence of recordings, with 3 standard sessions interleaved 
with 2 mismatch sessions (180� and 45�). In the mismatch sessions, the local cues are rotated CCW and the global cues are rotated CW by the same amount. From Neunuebel 
et al. (2013). 
et al., 2013). MEC cells are modulated by the theta rhythm, just like 
place cells (Brun et al., 2008; Hafting, Fyhn, Bonnevie, Moser, & 
Moser, 2008; Ranck, 1973; Stewart, Quirk, Barry, & Fox, 1992). 
MEC cells, CA1 place cells, and head direction cells appear to be 
tightly coupled to each other: When head direction cells rotate 
their preferred firing directions in an environment, both MEC cells 
and place cells rotate their spatial tuning profiles by equal amounts 
(Hargreaves, Yoganarasimha, & Knierim, 2007; Knierim, Kudrimoti, 
& McNaughton, 1995, 1998). Under most circumstances, head 
direction cells are controlled by the most peripheral landmarks 
in an environment (Taube, Muller, & Ranck, 1990; Zugaro, 
Berthoz, & Wiener, 2001). Thus, as predicted, head direction cells 
of the thalamus changed their preferred firing directions to follow 
the global cues in the double rotation experiment (Fig. 4). When-
ever more than one head direction cell was recorded simultane-
ously (range 2–7 cells), all of the head direction cells rotated by 
the same amount. This result provided convincing evidence that 
the head direction system formed a tightly coupled network, con-
sistent with ring attractor models of head direction cells (see below 
for further descriptions of ring attractors) (Skaggs, Knierim, 
Kudrimoti, & McNaughton, 1995; Zhang, 1996; Blair, 1996; 
Redish, Elga, & Touretzky, 1996; Song & Wang, 2005; Knierim & 
Zhang, 2012). 

Because of the close anatomical association between areas with 
head direction cells and the MEC (Witter & Amaral, 2004), along 
with the presence of head direction cells in MEC (Sargolini et al., 
2006) and the previously described coupling between head direc-
tion cells and MEC spatial firing (Hargreaves et al., 2007), one 
LL 
L

GG 
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Fig. 4. Head direction cell responses to the double rotation. In these circular histograms
tuning curve of a head direction cell between the standard session and a mismatch sessio
is added to the circle corresponding to 90� (i.e., at the 3 o’clock position) ‘‘L” indicates the 
head direction cells rotated by approximately the same amount as the global cues. Mod
would predict that the MEC spatial representations would be con-
trolled strongly by the global cues in the mismatch sessions. As 
predicted, the firing fields of MEC cells rotated in alignment with 
the global cues (Neunuebel, Yoganarasimha, Rao, & Knierim, 
2013). Fig. 5A shows population correlation matrices between 
two standard sessions (left) and between a standard and mismatch 
session (right). Each pixel in the matrix represents the correlation 
between the population vectors representing the location of the rat 
(in degrees of angle along the track) in one session and the next. 
The band of high correlation (bright white stripe) along the main 
diagonal on the left matrix indicates that the MEC population rep-
resentation of location was stable between the two standard ses-
sions (i.e., the population vector was highly correlated between 
the same locations on the track in the two sessions and poorly cor-
related between different locations). During the mismatch session 
(right), the correlation band was maintained, but shifted above the 
main diagonal (red dashed line), indicating that the representa-
tions followed the rotation of the global cues in the mismatch ses-
sion. We converted the 2-dimensional correlation matrices into 1-
dimensinal polar plots by calculating the average correlation of all 
pixels along the diagonals of the matrix (Fig. 5B). Fig. 5C shows a 
well-formed tuning curve for the STD1–STD2 correlation (gray) 
and a similarly well-formed tuning curve for the STD1-
MISMATCH correlation (purple), rotated 45� clockwise to follow 
the global cue set. 

The responses to all mismatch angles are represented as polar 
plots in Fig. 6A. As the cue-mismatch increased in magnitude, the 
population correlations between the standard and mismatch ses-
 L G G 

IS-135 MIS-180 
, 0� is at the top of the plot. Each dot indicates the rotation angle of the directional 
n. For example, if the preferred direction of a cell rotated 90� between sessions, a dot 
rotation of the local cues and ‘‘G” indicates the rotation of the global cues. Almost all 
ified from Yoganarasimha, Yu, and Knierim (2006). 
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Fig. 5. Conversion of 2-dimensional population correlation matrices to 1-dimensional polar plots. (A) MEC population correlation matrices were calculated for two standard 
sessions (STD-1 vs. STD-2, left) and for a standard-mismatch session (STD-1 vs. MISMATCH, right). The x- and y-axes of the plots indicate the location of the rat on the circular 
track binned in 1� increments from 0 to 359. Each bin of the 360 � 360 matrix shows the correlation between the MEC population vectors of neural activity when the rat is 
located at the corresponding bin of the two track sessions. The band of high correlation (white) along the main diagonal of the STD-1 vs. STD-2 matrix shows that spatial 
representation of the MEC population was stable between the two sessions. A similar band is seen on the STD-1 vs. MISMATCH matrix, but the band is shifted upward relative 
to the main diagonal (dashed line), indicating that the representation rotated coherently in the MISMATCH session along with the global cues. (B) To transform the correlation 
matrix into a polar plot, the correlations of all the pixels along each diagonal of the matrix are averaged, generating a 1-dimensional line graph. The line graph is then 
transformed into a polar plot, with the mean correlation plotted on the radial axis and the angle of rotation plotted as an angular coordinate. (C) The polar plot representations 
of the two correlation matrices from part A are shown, with the STD-1 vs. STD-2 plot in gray and the STD-1 vs. MISMATCH plot in purple. L indicates the rotation of the local 
cues and G indicates the rotation of the global cues. Modified from Neunuebel et al. (2013). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
sions decreased, indicating that the MEC representations continu-
ously degraded with increasing local–global conflict. This decorre-
lation may reflect a combination of CW rotations of the underlying 
grid cells and other spatial cells (following the global cue set) as 
well as potential shifts of the grid in the horizontal plane, as the 
representations become decoupled from the external landmarks 
in the environment. In general, though, the MEC representations 
followed the global cues, with little evidence of a strong, local-
cue driven component to the MEC population response. 
3.2. Superficial-layer LEC representation is controlled by the local cues 

In contrast to the MEC, grid cells and head direction cells appear 
to be absent in LEC (Hargreaves, Rao, Lee, & Knierim, 2005; 
Knierim, Neunuebel, & Deshmukh, 2013; Yoganarasimha, Rao, & 
Knierim, 2011), and LEC cells are much more weakly modulated 
by theta compared to MEC and hippocampal cells (Deshmukh, 
Yoganarasimha, Voicu, & Knierim, 2010). Superficial-layer LEC cells 
fire in the presence of discrete objects in an environment, and 
under these conditions a small minority show spatial tuning pro-
files that resemble the robust place fields of the hippocampus, even 
when the firing location is away from the objects (Deshmukh & 
Knierim, 2011). Thus, one might predict that LEC cells would be 
more strongly controlled by local cues on the track, rather than 
the global landmarks on the curtains. Consistent with this 
prediction, Neunuebel et al. (2013) demonstrated that, even 
though the LEC did not have a robust spatial representation of 
the track, there was a significant correlation between the LEC rep-
resentations of the standard and mismatch sessions, and this rep-
resentation was clearly controlled by the local cues (Fig. 6B). (Note 
that we only analyzed firing when the rat’s head was on the track 
and the rat was moving forward at a minimal speed. We did not 
analyze neural activity when the rat was looking off the track, per-
forming so-called ‘‘head scanning” behavior and potentially 
attending to individual cues on the curtains (Monaco, Rao, Roth, 
& Knierim, 2014)). 
3.3. DG performs pattern separation on its EC inputs 

Given that the MEC and LEC are the major inputs to the DG, we 
can begin to measure the Dinput–Doutput curve of the DG 
(Neunuebel & Knierim, 2014). As the cue mismatch increased, 
the MEC representation gradually degraded (Dinput increased) 
and was controlled by the global cues (Fig. 6A). In contrast, the 
LEC representation was not strongly correlated between the stan-
dard and mismatch sessions for any cue-mismatch angle, but a 
weak, local-cue-controlled signal was detectable (Fig. 6B). The DG 
representation of the 45� mismatch environment was very similar 
to the standard environment, as the two representations were 
highly correlated (although less correlated than the standard ses-
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DG LEC MEC 

Fig. 6. Responses of the MEC, LEC, DG, and CA3 populations to the double rotation. Each polar plot denotes the correlation between the population representations of two 
standard sessions (gray plots) or between a standard and a mismatch session (colored plots). The correlation value is plotted along the radial dimension and the angular 
dimension indicates the amount that the population vectors were rotated relative to each other. The dark tick marks at the outer ring indicate the rotation extent of the global 
cues and the light tick marks indicate the rotation extent of the local cues, as in Fig. 5C. High population correlations are indicated by well-formed tuning curves with larger 
peak correlations; low population correlations are indicated by poorly formed tuning curves with smaller peak correlations. See original reports for more details. (A) MEC 
population correlations degraded gracefully with increasing mismatch angles and were controlled by the global (G) cues. From Neunuebel et al. (2013). (B) LEC population 
correlations were poorly tuned in all standard-standard and standard-mismatch comparisons, but the peak correlations were controlled by the local (L) cues. From Neunuebel 
et al. (2013). (C) DG population correlations were well-formed for the 45� mismatch, but became almost completely decorrelated with the larger mismatch sessions. The 
population of DG cells with significant spatial information is plotted. Modified from Supplementary Data in Neunuebel and Knierim (2014). (D) CA3 population correlations 
were well-formed for all mismatch angles and were controlled by the local (L) cues. The population of CA3 cells with significant spatial information is plotted. Modified from 
Supplementary Data in Neunuebel and Knierim (2014). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 
sions) (Fig. 6C). Detailed comparison of the change in the MEC and 
the change in the DG suggests that the DG changed more than the 
MEC (i.e., the peak correlation for DG compared to its standard-
standard correlation was less than the same comparison for 
MEC). With mismatch angles >90�, the DG representations of the 
standard and mismatch session become highly decorrelated, even 
while the MEC representations maintained a smoothly decreasing 
correlation. A minority of DG cells did not remap the two environ-
ments, and these cells tended to be controlled by the local cues. 
Overall, this pattern resembles strongly the hypothetical Dinput– 
Doutput curve from Fig. 2. With small Dinput, the Doutput was 
greater than the Dinput. With larger Dinput, the Doutput was 
almost maximal, as the DG representations of the standard and 
mismatch session were almost completely decorrelated. 
3.4. CA3 performs pattern completion/error correction/generalization 
on its DG/EC inputs 

Lee, Yoganarasimha, Rao, and Knierim (2004) showed that the 
CA3 population maintained a relatively coherent representation 
of the standard environment in the mismatch sessions. As the mis-
match angle increased, the correlation slowly degraded, similar to 
the MEC input. Whereas the graceful degradation in MEC may 
reflect an increasing shift of the spatial representations of MEC rel-
ative to the track (e.g., grid cell firing patterns may shift in the hor-
izontal plane, causing some grid vertices to ‘‘fall off” the track and 
other to ‘‘climb on”; Neunuebel et al., 2013), the degradation in 
CA3 may result from a combination of such a shift as well as an 
increase in partial remapping of CA3 cells. Critically, in contrast 



44 J.J. Knierim, J.P. Neunuebel / Neurobiology of Learning and Memory 129 (2016) 38–49 
to the MEC, the CA3 representation was controlled by the local 
cues, and Neunuebel and Knierim (2014) independently verified 
this finding (Fig. 6D). Thus, armed with the information about 
how the MEC, LEC, and DG inputs change with the increasing mis-
match amount, we can begin to measure the Dinput–Doutput 
curve for CA3. The MEC maintains a high degree of correlation 
between the standard and mismatch sessions, but the representa-
tion is controlled by the global cues (Fig. 6A). Thus, the MEC repre-
sentation cannot explain the local-cue-controlled, coherent 
representations retrieved by the CA3 network. The LEC has weakly 
correlated representations between all standard and mismatch 
sessions (Fig. 6B), and the DG has weakly correlated representa-
tions between standard sessions and mismatch sessions >45� 
(Fig. 6C). Since the only cues that CA3 receives about the local cues 
appear to come from these weakly correlated inputs, this provides 
strong evidence for pattern completion in CA3 (i.e., a large Dinput 
results in a smaller Doutput). 

Importantly, in this experiment we do not appear to explore the 
parameter space in which the Dinput is large enough to detect the 
pattern separation functions of the CA3 attractor (i.e., the right-
ward extreme of the sigmoid curve of Fig. 2). However, experi-
ments from other laboratories have shown evidence that the CA3 
representations are completely independent under more extreme 
conditions that would presumably generate a larger Dinput from 
EC, (Guzowski et al., 2004; Leutgeb, Leutgeb, Treves, Moser, & 
Moser, 2004; Vazdarjanova & Guzowski, 2004). Leutgeb et al. 
(2004) recorded the activity of CA3 and CA1 place cells as rats 
explored similar enclosures in the same location or in completely 
different rooms. Under these conditions, the CA3 representations 
of the different rooms were completely orthogonal to each other, 
whereas the CA1 representations maintained some degree of sim-
ilarity that presumably reflected the common aspects of the two 
rooms. Vazdarjanova and Guzowski (2004) imaged immediate 
early gene activity when changes to an environment were small 
(individual environmental cues were altered) or large (the rat 
was moved to a new room). With the small manipulations, the 
CA3 ensemble representation changed less than the CA1 represen-
tation; conversely, with the large change to a new environment, 
the CA3 representation changed more than the CA1 representation. 
Taken together with our double rotation data, these experiments 
suggest that CA3 displays the sigmoidal Dinput–Doutput relation-
ship predicted by theory (Guzowski et al., 2004; McClelland & 
Goddard, 1996; Rolls & Treves, 1998). 

3.5. CA1 representations reflect a (linear?) combination of CA3 and EC 
inputs 

Lee et al. (2004) demonstrated that CA1 populations created a 
split representation in the mismatch sessions, whereas CA3 simul-
taneously produced a more coherent representation controlled by 
the local cues. Some CA1 place fields rotated with the local cues 
and a similar number rotated with the global cues (some place 
fields even split in half, with one subfield rotating with the local 
cues and the other with the global cues). Like CA3, other CA1 cells 
showed a remapping response, either losing their firing fields or 
gaining a field. 

Because the major input to CA1 is from CA3, the CA1 result 
seems counterintuitive. If the CA3 network goes through all the 
trouble of completing the input pattern of the altered environment, 
why does CA1 ‘‘ignore” this CA3 input and instead send the ‘‘cor-
rupted” signal to the rest of the brain? It is important to realize that 
different parts of the transverse axis of CA1 receive input from dif-
ferent parts of the CA3 transverse axis as well as direct inputs from 
layer III of the EC. Proximal CA1 receives input from distal CA3 and 
from MEC, whereas distal CA1 receives input from proximal CA3 
and LEC (Witter & Amaral, 2004; Witter, Wouterlood, Naber, & 
Van Haeften, 2000). The recordings from Lee et al. (2004) were pri-
marily from proximal CA1 and from distal CA3. Thus, we can 
explain the split representation of CA1 by these anatomical projec-
tion patterns (Fig. 7). Proximal CA1 receives a local-cue-driven rep-
resentation from distal CA3 and a global-cue-driven representation 
from MEC. Lacking a strong recurrent collateral system, it appears 
that CA1 performs a linear operation on its inputs: the inputs con-
vey separate local and global representations, so the CA1 output 
forms a split representation that mimics the dual nature of its 
inputs. This split representation may reflect the comparator func-
tion often ascribed to CA1, that it compares the EC representation 
about the current state of the world with the mnemonic represen-
tations stored in CA3 of expected events predicted by the current 
inputs (Hasselmo, 2005; Levy, 1996; Lisman & Otmakhova, 2001; 
Vinogradova, 2001). Thus, the competition between pattern sepa-
ration and pattern completion in the DG-CA3 processing loop 
retrieves from CA3 the most likely stored representation based 
on the current input, and this representation is then compared to 
the current input in CA1. Analogously, we would expect that distal 
CA1 would show responses that reflect a relatively linear combina-
tion of its inputs from proximal CA3 and LEC. Although such a com-
parator function was not explicitly demonstrated in our analyses, a 
finer-grained analysis (perhaps segregating EC-related firing from 
CA3-related firing based on variables such as theta phase or firing 
coherence at beta, low gamma, and high gamma frequency bands; 
Bieri, Bobbitt, & Colgin, 2014; Colgin et al., 2009; Hasselmo, 
Bodelon, & Wyble, 2002; Igarashi, Lu, Colgin, Moser, & Moser, 
2014) might reveal intriguing neural dynamics between the CA1 
local and global representations that could underlie such a 
comparison. 

Fig. 8 summarizes the relationship between the LEC, MEC, and 
DG spatial input patterns to CA3 and the responses of these cell 
populations to the double rotation experiment. For clarity of pre-
sentation, the CA3 population activity on the circular track is 
depicted as a ring attractor, although the activity of place cells is 
more accurately modeled as a 2-dimensional sheet attractor 
(Knierim & Zhang, 2012; Samsonovich & McNaughton, 1997; 
Zhang, 1996). The cyan circles represent cells with place fields at 
the corresponding locations on the track. The diameters of the cir-
cles indicate the current firing rate of each cell, with larger diame-
ters indicating higher firing rates. The green lines indicate 
excitatory connections among cells with neighboring place fields 
and the dashed black lines indicate inhibitory connections to all 
other cells. Although the excitatory and inhibitory connections 
are shown only for cells at the top of the ring, all cells have this 
connectivity pattern, resulting in a continuous ring attractor in 
which every location on the track is a stable state. With appropri-
ate weights, a single bump of activity will form on this ring even in 
the absence of external inputs. When external inputs are added to 
the network, the location of the activity bump can be set by these 
inputs. The colored rings below demonstrate the activity levels of 
cells in the LEC, MEC, and DG inputs to CA3 when the rat is located 
at the north location on the track (left column). It is important to 
note that these rings indicate the activity of cells that represent 
locations on the track; they do not represent the place fields on 
the track. A topography of projections is assumed, such that cells 
that represent a certain location on the track project to cells in 
CA3 that represent the same location. The orange LEC ring shows 
a noisy representation with only a weak bias for higher activity 
at the north representation in the standard session. The purple 
MEC ring shows a well-formed spatial representation at the cur-
rent location of the rat, from grid cells and other spatially modu-
lated cells. The red DG ring also shows a well-formed spatial 
representation of the current location of the rat from DG place 
cells. In the familiar, standard environment, these 3 representa-
tions provide a coherent input to CA3 that drives the CA3 attractor 
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Fig. 7. Proximal CA1 (CA1p) receives input from the MEC that is controlled by the global cues. It also receives input from distal CA3 (CA3d) that is controlled primarily by local 
cues. The CA1 output back to the deep layers of MEC is an apparent linear split representation of the conflicting local–global inputs it receives from its afferent inputs. That is, 
CA1 receives conflicting reference frame signals from its inputs, and its outputs faithfully reflect this conflict. Adapted from Neunuebel et al. (2013). 

Fig. 8. Putative attractor dynamics of CA3. CA3 population activity is represented schematically as a bump in a continuous ring attractor. Excitatory connections are shown in 
green and inhibitory connections are in black (dashed lines). Inputs from DG, MEC, and LEC are indicated as input rings of activity. In the standard session (left column), the 
active inputs when the rat is at the north location of the track drive the CA3 activity bump at the north location of the ring. G1 and G2 refer to the locations of two global cues 
that control MEC activity, and L1 and L2 refer to the locations of two local cues that control LEC activity. When the rat is on the west location of the track (middle column), the 
corresponding cells controlled by the G2 and L2 cues cause the CA3 activity bump at the west location of the attractor ring. The right column shows the active cells during a 
mismatch session when the rat is back at the north location. For clarity of illustration, we show a 90� CW rotation of the global cues alone, which, in the absence of any other 
reference frame, is equivalent to the 90� mismatch of the double rotation. When the global cues are rotated 90� CW, the DG remaps and the LEC continues to fire in a weak 
spatial representation controlled by the local cues (L1). However, because the G2 global cues have been rotated to the north, the MEC cells that formerly encoded the west 
location defined by the G2 global cues are now active when the rat is at north. The CA3 attractor dynamics cause a relatively coherent activity bump to form at the local-cue-
predicted location. 
bump to form at the north location. Similarly, when the rat is at the 
west location (middle column), the corresponding cells fire as 
input to CA3, causing the attractor bump to form at the west 
location. 

The right column illustrates the 90� mismatch condition, as two 
global cues (indicated G1 and G2) rotate CW. (For clarity of illustra-
tion, the global cues are rotated 90� CW and the local cues remain 
stationary. In the absence of any other polarizing cues, this situa-
tion mimics precisely the double rotation condition in terms of 
the local–global mismatch.) When the rat is placed on the track 
at the north location, it perceives the local cues at that same loca-
tion. Thus, the LEC cells will fire as before. However, because the 
MEC representation follows the global cues, the cells that were 
active at the north location in the standard session are now silent, 
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as they will fire only when the rat travels to the east location 
(where G1 is now visible). The MEC cells active at the initial G2 
location (west in the standard session; middle column) are active 
instead, sending excitatory drive to the west location of the CA3 
ring. Finally, the DG representation has almost entirely remapped 
(pattern separation), with a weak bias for the cells at the north 
location to fire. Other DG cells that encode random locations on 
the track are also active, indicating the global remapping that 
occurs in the DG. 

Given these inputs, the attractor dynamics in CA3 determine 
how the CA3 place cells fire in the mismatch session. The data 
clearly indicate that CA3 is controlled by the local cues. Thus, the 
combined LEC and DG input apparently form the ‘‘seed” that biases 
the attractor bump (i.e., the active cells in Fig. 8) to fire in the local-
cue-predicted location. Although the MEC provides a strong input 
for CA3 cells that represent the global cues (G2) to fire, the inhibi-
tion from the attractor bump appears to prevent strong activity at 
that location of the ring. (The CA3 data show that there are a small 
number of CA3 cells controlled by the global cues, suggesting that 
the strong external drive can overcome the attractor dynamics to 
some degree (Lee et al., 2004; Neunuebel & Knierim, 2014)). Other 
active cells outside the bump can generate alterations in the attrac-
tor dynamics, such as the formation of spurious attractor states 
(Knierim & Zhang, 2012), as the result of the conflict between 
the external inputs. Thus, given the altered input patterns of it 
inputs, we see that the CA3 attractor dynamics allow the input ‘‘er-
rors” to be partially corrected and a single, coherent output repre-
sentation to form. When the rat is at the north, the inputs to the 
north CA3 cells are severely weakened and degraded by the 
absence of the drive from MEC and DG. However, the ability of 
the network to form a strong activity bump at this location, given 
the weak inputs, can be considered a demonstration of pattern 
completion. 

It is important to note that these diagrams illustrate only the 
sets of active cells that represent the standard environment. Not 
depicted are other DG and CA3 cells that were silent in the stan-
dard session but that became active in the mismatch session. In 
cases of ‘‘global remapping,” completely different ensembles of 
neurons (active sets) are activated as the result of large environ-
mental changes (Kubie & Ranck, 1983). The different active sets 
correspond to activity on different ‘‘charts,” to use the terminology 
of Samsonovich and McNaughton (1997). Such global remapping in 
CA3, such as that produced by bringing the rat to a completely dif-
ferent environment (Colgin et al., 2010; Leutgeb et al., 2005; but 
see Knierim, 2003), would show the pattern separation properties 
of CA3 and could be depicted by adding a new attractor ring to the 
diagram that illustrates a new CA3 ‘‘chart,” with its own activity 
bump (Samsonovich & McNaughton, 1997). 

3.6. Relationship between DG and CA3 

A number of further considerations can be appreciated from 
these illustrations. Pattern separation is often considered to be 
an operation that occurs during memory storage and pattern com-
pletion to be a process that occurs during memory retrieval. 
Although this can be a conceptually useful distinction, it is unlikely 
to completely hold true when discussing the neurophysiological 
mechanisms underlying these processes. According to Fig. 2A, the 
DG automatically orthogonalizes 2 different input patterns, regard-
less of whether these input patterns are new memories to be 
stored or retrieval cues to reinstate previously stored memories. 
It is the attractor dynamics of CA3 that determines whether a 
new memory pattern will be stored or whether a previously stored 
pattern will be retrieved. When CA3 is presented with input cues 
from EC in a novel environment, the representation is sparsified 
in the DG and the powerful mossy fiber inputs from DG to CA3 
impose a pattern of activity on CA3 that becomes associated with 
the same EC cues that drove DG (Treves & Rolls, 1992). The next 
time that the animal receives the same input (e.g., when it returns 
to a particular location in an environment), the DG cells fire again 
and are presumably part of the inputs to CA3 that drive the reacti-
vation of the same CA3 place cells as before. Thus, the DG is active 
during both storage (setting up the initial attractor representation 
in CA3) and retrieval (reactivating this attractor). 

What occurs when the animal enters a completely different 
environment? The EC inputs are presumably very different in the 
new environment (Dinput is high), and the DG imposes a com-
pletely novel pattern of activity on the CA3 network, creating a 
new attractor basin in CA3 that is associated with the EC inputs. 
The interesting dynamics occur when the new environment is only 
partly different. If the change to the EC inputs is small, the EC input 
will place the activity pattern of CA3 within the basin of attraction 
of the initial pattern. The DG input pattern will be less similar to 
the initial representation, due to the pattern separation, but if this 
does not drive the CA3 pattern far enough away from the attractor 
basin, then the system will retrieve a pattern similar to the initial 
pattern (pattern completion/generalization). As the EC input 
changes even further, the DG will continue to drive the CA3 pattern 
away from the original pattern, but the EC will drive it to fire 
within the basin. Eventually, the combined input of both EC and 
DG will cause CA3 to fire in a pattern outside the initial attractor, 
and this will then cause a new attractor basin to emerge. Under 
this scenario, the DG is always providing an input to drive CA3 
away from a stored attractor basin (driving CA3 toward pattern 
separation). Whether CA3 actually performs pattern completion 
or pattern separation depends on the relative balance of EC inputs 
and DG inputs, as well as on the strength of the attractors stored 
within the CA3 network and other modulatory inputs that may 
alter the relative weights of the DG/EC inputs. These ideas might 
be explicitly tested with optogenetics or other techniques that 
could selectively enhance/suppress either the EC or DG inputs to 
CA3 and thereby causally tip the balance in favor of pattern sepa-
ration or pattern completion in ambiguous environments. 
4. Final comments and caveats 

With this review we hope to have demonstrated how a series of 
experimental studies from our laboratory over the past decade 
have provided direct, physiological evidence in favor of classic 
models of hippocampal computation and its relationship to mem-
ory. We have taken the approach from the computational literature 
that the concepts of pattern separation and pattern completion can 
only be studied directly in terms of input–output transformations 
of neural representations (McClelland & Goddard, 1996; O’Reilly 
and McClelland, 1994; Santoro, 2013; Treves & Rolls, 1994). Thus, 
we have investigated the responses of 6 specific processing stages 
in the hippocampal circuit (anterior thalamus, LEC, MEC, DG, CA3, 
and CA1) to a manipulation designed to introduce graded changes 
to the hippocampal inputs. By measuring the correlations between 
the representations of the standard and cue-mismatch sessions, we 
provided evidence that conforms well to the models’ predictions 
that the DG performs pattern separation and that the CA3 contains 
attractor dynamics that can support pattern completion. 

A number of caveats are in order, however. The data presented 
in this review capture the essence of the results, but the entire pic-
ture is much more complex, and the interested reader is directed to 
the original research reports to find further details. Moreover, the 
hippocampal anatomy is more complex than that described here. 
Although the MEC and LEC are the major inputs into the hippocam-
pus, there are other inputs (such as from the septum, perirhinal 
cortex, and brainstem) that we have not accounted for in our 
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recordings or interpretation. A thorough understanding of the 
computational functions of each subregion will require more 
detailed knowledge about all of the inputs and outputs of the hip-
pocampus. Similarly, the population analyses reviewed here com-
bine the many different types of neural responses found in the 
hippocampal formation, recorded over multiple sessions, into a 
single, population vector code (e.g., place cells, object cells, silent 
cells in the hippocampus; grid cells, head direction cells, boundary 
cells, unclassified cells in the MEC). It remains to be determined 
how the different functional cell types may play distinct roles in 
these mnemonic processes. A particularly critical question con-
cerns the role of adult neurogenesis in the functions of the DG 
(Akers et al., 2014; Frankland, Kohler, & Josselyn, 2013; Kesner 
et al., 2014; Nakashiba et al., 2012). The DG data presented here 
come from all cells in the DG that met certain spatial information 
criteria. Although these criteria presumably excluded interneu-
rons, it is not clear how many cells were fully mature granule cells, 
immature (newborn) granule cells, or mossy cells of the hilus 
region (Neunuebel & Knierim, 2012). Understanding the functions 
of these different excitatory cell types will be crucial for a complete 
understanding of DG function. 

Furthermore, there are anatomical and functional differences 
along the hippocampal transverse axis within CA3 and within 
CA1 that warrant further investigation (Henriksen et al., 2010; 
Nakamura, Flasbeck, Maingret, Kitsukawa, & Sauvage, 2013; 
Witter et al., 2000). For example, in contrast to distal and interme-
diate CA3, which show the pattern completion phenomena 
described above, proximal CA3 (within the blades of the DG) 
responds to the double rotation similarly to the DG (i.e., it appears 
to perform pattern separation) (Lee, Wang, Deshmukh, & Knierim, 
2015). This functional differentiation along the CA3 transverse axis 
is consistent with the increasing density of recurrent collaterals 
from proximal to distal CA3 (see also Lu, Igarashi, Witter, Moser, 
& Moser, 2015). We also need to know how the CA2 region, which 
has been mostly ignored in the literature until recently, fits into the 
picture (Caruana, Alexander, & Dudek, 2012; Chevaleyre & 
Siegelbaum, 2010; Hitti & Siegelbaum, 2014; Jones & McHugh, 
2011; Mankin, Diehl, Sparks, Leutgeb, & Leutgeb, 2015). In experi-
ments demonstrating pattern completion (Lee et al., 2015) and pat-
tern separation (Lu et al., 2015), CA2 appears to act like the distal 
CA3 region. Our laboratory is currently investigating how proximal 
CA1 differs from distal CA1 in the double rotation experiment. 

Finally, although we have used the spatially selective firing of 
hippocampal neurons to test the specific predictions of the compu-
tational theories, these experiments have not addressed specifi-
cally how these neural computations can underlie memory 
performance. Relating the neurophysiology to behavioral tests of 
pattern separation and pattern completion (Rolls & Kesner, 2006; 
Yassa & Stark, 2011) will help close the loop between theory and 
experiment and provide key insights into the neural circuit mech-
anisms underlying the mnemonic functions of the hippocampus. At 
the moment we can only speculate how the different hippocampal 
regions would respond in a hippocampus-dependent memory task, 
and how these responses would correlate with the animal’s behav-
ioral performance. Because the double rotation task does not have 
a memory component, it is difficult to make any direct correspon-
dence from these neural response patterns to memory perfor-
mance. However, one might speculate on how these results 
would predict hippocampal responses in an unrelated memory 
task. For example, seeing a familiar face at a distance in an unfamil-
iar context can often lead to confusion about the identity of that 
person. If there is a strong attractor representation in CA3, the 
degraded input from the distant face (presumably encoded by 
LEC) may be strong enough to activate the attractor, not only 
recalling the identity of the person but also the spatiotemporal 
context (presumably encoded by the MEC) in which one last met 
that person. Reactivating neocortical representations via CA1 out-
put to construct a full recollection of the event would constitute 
an episodic memory. However, upon greeting the familiar-
looking person, one may realize that this is a complete stranger 
when they do not return the greeting. Under these conditions, 
the pattern separation mechanisms of the DG may impose a new 
attractor in the CA3 region to create a completely distinct repre-
sentation of the stranger, such that in the future one does not 
repeat the error. Even in situations in which the memory retrieval 
was correct, one still would wish to remember the original episode 
in which the person was previously encountered as well as storing 
a new memory of the current meeting. Perhaps this dual function 
explains why the CA3 region displays a topographical organization 
along its transverse axis, in which the proximal part of CA3 is 
biased toward pattern separation (to form a new, distinct memory 
of the current episode) whereas the distal part of CA3 is simultane-
ously biased toward pattern completion (to retrieve the memory of 
the prior episode). Experiments utilizing high-resolution imaging 
with human subjects might be able to test these ideas and bridge 
the neurophysiological results from rodents with the neuropsycho-
logical literature on human episodic memory, with both 
approaches interpreted in the framework of memory processing 
from the computational literature. 
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