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Savelli F, Knierim JJ. Hebbian analysis of the transformation of 
medial entorhinal grid-cell inputs to hippocampal place fields. J 
Neurophysiol 103: 3167–3183, 2010. First published March 31, 2010; 
doi:10.1152/jn.00932.2009. The discovery of grid cells in the medial 
entorhinal cortex (MEC) permits the characterization of hippocampal 
computation in much greater detail than previously possible. The 
present study addresses how an integrate-and-fire unit driven by 
grid-cell spike trains may transform the multipeaked, spatial firing 
pattern of grid cells into the single-peaked activity that is typical of 
hippocampal place cells. Previous studies have shown that in the 
absence of network interactions, this transformation can succeed only 
if the place cell receives inputs from grids with overlapping vertices 
at the location of the place cell’s firing field. In our simulations, the 
selection of these inputs was accomplished by fast Hebbian plasticity 
alone. The resulting nonlinear process was acutely sensitive to small 
input variations. Simulations differing only in the exact spike timing 
of grid cells produced different field locations for the same place cells. 
Place fields became concentrated in areas that correlated with the 
initial trajectory of the animal; the introduction of feedback inhibitory 
cells reduced this bias. These results suggest distinct roles for plas-
ticity of the perforant path synapses and for competition via feedback 
inhibition in the formation of place fields in a novel environment. 
Furthermore, they imply that variability in MEC spiking patterns or in 
the rat’s trajectory is sufficient for generating a distinct population 
code in a novel environment and suggest that recalling this code in a 
familiar environment involves additional inputs and/or a different 
mode of operation of the network. 

I N T R O D U C T I O N  

An understanding of how information is processed by the 
circuits of the hippocampal formation can provide a mechanis-
tic explanation for the role of this area in learning and memory 
(Eichenbaum et al. 2007; O’Keefe and Nadel 1978; Squire et 
al. 2004). Hippocampal principal neurons have spatially selec-
tive firing fields (“place fields”) confined to a restricted region 
of a typical recording area (O’Keefe and Dostrovsky 1971) 
although they can display multiple fields in larger environ-
ments (Fenton et al. 2008). In contrast, one of the major inputs 
to the hippocampus, the medial entorhinal cortex (MEC), 
contains spatially specific firing patterns that are periodic 
(Hafting et al. 2005). Each MEC “grid cell” fires in multiple 
locations arranged as vertices of an equilateral triangular (or 
hexagonal) grid spanning the recording area. Hippocampal 
place cells are thought to build their place fields mainly by 
converting the many-location responses of grid cells into firing 
that is usually restricted to a single location (McNaughton et al. 

Address for reprint requests and other correspondence: F. Savelli, Zanvyl 
Krieger Mind/Brain Institute, Johns Hopkins University, 338 Krieger Hall, 
3400 N. Charles St., Baltimore, MD 21218 (E-mail:fsavelli@jhu.edu). 

2006; O’Keefe and Burgess 2005; but see Kropff and Treves 
2008 for an alternative view). Understanding the rules that 
govern this transformation would be a major step forward in 
understanding hippocampal computation and function. 

It has been proposed that place fields can be generated from 
grid cell inputs by a simple summation and threshold opera-
tion. That is, if a place cell receives input from an arbitrary set 
of grid cells, the activation of the place cell can be prevented 
everywhere except in the single region where the input to the 
cell is maximal (McNaughton et al. 2006; O’Keefe and Bur-
gess 2005). This cutoff mechanism could be implemented by 
the postsynaptic spiking threshold. However, if the geometric 
alignment of the input grids is unconstrained, distinct subsets 
of coactive inputs will almost invariably generate similarly 
high levels of synaptic excitation in multiple regions covering 
the majority of the environment (Solstad et al. 2006). A simple 
threshold mechanism would not be able to single out one of 
these regions. The only circumstance in which this mechanism 
would work in a purely feedforward manner is if there was a 
single location where most of the afferent grid cells onto a 
place cell shared a common vertex, which would then summate 
to cause the place cell to fire at that particular location and fail 
to reach threshold at other locations (Solstad et al. 2006). 

A subset of grids with overlapping vertices at a single 
location could be optimally selected from randomly aligned 
grid inputs by choosing a suitable synaptic weight vector, e.g., 
via Fourier analysis (Solstad et al. 2006), a fitting algorithm 
(Blair et al. 2007), or independent component analysis (Fran-
zius et al. 2007). It is not known, however, how this task can 
be autonomously accomplished at a behaviorally relevant time 
scale with physiological mechanisms. In the present study, we 
investigated a Hebbian learning rule within a minimal, spiking 
network model of a layer of grid-cell inputs with modifiable 
connections onto an output layer. The model is not intended to 
simulate the output of a particular subregion of the hippocam-
pus (e.g., dentate gyrus or CA1), any of which receive far more 
complex inputs than the reduced set of pure grid-cell inputs 
studied here. The model can be thought of as an explicit 
investigation of MEC grid inputs onto CA1 cells in the absence 
of the CA3 Schaffer collateral system (Brun et al. 2002) or 
perhaps onto individual dendrites of a DG granule cell (Leu-
tgeb et al. 2007; Ujfalussy et al. 2009). However, we were 
primarily concerned with the problem of how a simple, feed-
forward network could accomplish the grid-to-place trans-
formation problem in a general form, to generate insights 
that might be applicable at some level to all hippocampal 
subfields. 

D
ow

nloaded from
 jn.physiology.org on S

eptem
ber 17, 2010 

www.jn.org 0022-3077/10 Copyright © 2010 The American Physiological Society 3167 

http://jn.physiology.org
www.jn.org
mailto:E-mail:fsavelli@jhu.edu


3168 F. SAVELLI AND J. J. KNIERIM 

M E T H O D S  

Computational model and simulations 

Both place cells and their grid cell inputs were simulated as spiking 
units. Place cells of the hippocampus were modeled as integrate-and-
fire neurons. Their inputs were spike trains derived from a phenom-
enological characterization of the activity of MEC grid cells of 
varying phases, orientations, and scales, along the trajectory followed 
by a real rat recorded in our laboratory during a 15-min segment of a 
foraging session in a walled square box (60 � 60 cm). This design 
made the simulated course of activity of place cells and their inputs 
temporally and behaviorally relevant to typical experimental condi-
tions. 

A triangular grid template of each grid cell was defined by the 
position of one of its vertices (phase), the orientation of the vector 
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linking this vertex with one of its neighbors (orientation), and the 
intervertex distance (scale) (Hafting et al. 2005). The firing rate in the 
excitation map of this grid decreased exponentially with the square of 
the distance from the nearest vertex in proportion to the scale of the 
grid. In particular, the normalized firing rate (ranging from 0 to 1) at 
any position was computed as exp[�d2/(k � s2)], where s is the scale 
of the grid, d is the distance of the position from the closest vertex of 
the underlying grid template, and k is a factor (held constant at 0.018 
throughout the paper) chosen to make the simulated grids appear 
similar to published data (Hafting et al. 2005). The normalized firing 
rate was used to modulate the instantaneous rate of an inhomogeneous 
Poisson spike train according to the rat’s trajectory. We implemented 
the generation of the spike train via dynamic thinning (Dayan and 
Abbott 2001). Briefly, at each iteration of the algorithm, the next spike 
interval was sampled from the exponential distribution of event 
intervals of a Poisson process of maximal rate (20 Hz, corresponding 
to the peaks of the grid); intervals shorter than 3 ms were set to 3 ms 
to create a refractory period. As the simulation proceeded, whenever 
the interval expired, the spike was accepted with a probability given 
by the normalized firing rate of the grid cell calculated for the current 
position. Positions were sampled at 30 Hz from the trajectory fol-
lowed by the rat during an unconstrained foraging session lasting 37 
min. Figure 1A illustrates the rat’s trajectory (gray) and the spikes (red 
dots) for three simulated grid cells of different scales. 

Two random number generators were used, both of the “Mersenne 
Twister” type (Gnu Scientific Library’s implementation). The first 
assigned the geometric properties of phase, orientation, and scale to 
the grid inputs and set up the synaptic connectivity between these 
inputs and the postsynaptic cells (explained in the following text). The 
second was dedicated to the generation of the grid-cell spike trains. 
The separation of these two sources of randomness allowed us to run 
simulations that were identical except for the exact spike timing of the 
input trains by changing only the seed of the second random number 
generator. We used this type of manipulation when studying the 
remapping properties of the model. 

FIG. 1. Basic elements of the simulations and place-field generation by 
synaptic plasticity. A: grid cells were simulated as inhomogeneous Poisson 
spike trains in which the momentary firing rate was modulated depending on 
the predetermined geometrical properties of the grid cell and on the position of 
the rat. A 15-min trajectory segment of a real rat foraging in a 60 cm2 square 
box was used. Three examples of grid cells are shown. The gray lines show the 
rat’s trajectories, and the red dots indicate the locations of the rat when the 
simulated grid cell fired spikes. Place cells were simulated as integrate-and-
fire units taking synaptic inputs from the grid cells. Each simulation contained 
1,000 grid cells of varying scale, phase, and orientation and 500 place cells. 
Each place cell received inputs from 100 distinct grid cells that were randomly 
selected from the pool of 1,000 grid cells. B: uniform integration of randomly 
aligned grid inputs with constant and equal synaptic weights does not produce 
place fields. The gray line represents the rat’s cumulative trajectory (15 min), 
and the red dots denote the location of spikes produced by the integrate-and-
fire output cell receiving 100 grid inputs (dot size is scaled to improve 
visualization). B1–B3: the outcome of the same simulation run with different 
weights (B1, w � 7.0 � 10�2 �S; B2, w � 4.5 � 10�2 �S; B3, w � 3.7 � 
10�2 �S; weights have physical dimensions of a conductance; see METHODS). 
Decreasing the weights causes a reduction of firing in the output cell but the 
firing does not become more spatially concentrated. C: postsynaptically gated 
synaptic plasticity supports the formation of a place field by clustering spatially 
coincident inputs. Trajectory and spikes during salient epochs of the field 
formation within the first 3 min of exploration are shown. The inputs, initial 
weights, and all parameters were the same as in B2 except for the inclusion of 
the synaptic plasticity rule of Eq. 2. D: temporal evolution (x axis) of the 
weights for the 100 grid inputs (y axis) during the 1st 3 min of foraging. Blue 
indicates a synaptic weight (w) of 0 and red indicates maximum synaptic 
weight. E: temporal evolution of weights as in D but for the whole duration of 
the foraging session. F: the resulting spatial response is consistent during the 
whole simulation. 
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The membrane dynamics of hippocampal place cells was modeled by 

Cm 

dV 
��gl(V � El) � � �gs(V � Es) (1)

dt s 

where V is the membrane voltage, Cm is the membrane capacitance (2 
nF), gl is the leak conductance (0.2 �S), and El is the leak reversal 
potential (�65 mV). The synaptic contribution to membrane dynam-
ics was modeled with dynamic conductances; for each synapse s, gs is 
its conductance and Es is its reversal potential. Whenever V crossed 
the firing threshold (�50 mV), a 1-ms spike event was superimposed. 
For the following refractory period (3 ms), V was kept at its resting 
potential (�70 mV), after which the integration of the voltage dy-
namics according to Eq. 1 was resumed. The membrane voltage V was 
never allowed to decrease below the lower bound �100 mV or 
increase above 100 mV by artificially clipping voltages outside these 
extremes (the dynamics of the conductances was not manipulated). 
Equation 1 was numerically integrated by the exponential Euler 
method with a 1-ms time step. When inhibitory interneurons were 
employed, they had the same physiological parameters as in the 
preceding text. 

In this conductance-based model, the synaptic conductance gs was 
0 in the absence of presynaptic activity. To model synaptic activity, gs 

was instantaneously incremented by a quantity ws every time a 
presynaptic spike occurred and decayed exponentially to 0 according 
to the equation dgs/dt � �gs/�s. For excitatory synapses, the time 
constant �s was set to 2 ms, after the dynamics of AMPA receptors 
(Colquhoun et al. 1992). For inhibitory synapses, �s was set to 6 ms 
to follow the slower course of GABA receptor dynamics. The reversal 
potentials Es of excitatory and inhibitory synapses were set to 0 and 
�70 mV, respectively. The value of ws depended on previous poten-
tiation or depression of synapse s by synaptic plasticity, as described 
below (Eq. 2). This variable, therefore played the role of synaptic 
weight (generally indicated with just the letter w in the rest of the 
paper) and was the subject of synaptic modification whenever synap-
tic plasticity was active in the simulation. The initial value of ws at all 
synapses was 4.5 � 10�2 �S, unless otherwise specified. The weight 
was artificially kept from becoming negative or growing above a 
saturation limit of 0.1 �S. 

Presynaptic and postsynaptic firing rates used in the synaptic rule 
(see Eq. 2 below) were computed by convolving the presynaptic and 
postsynaptic spike trains with an exponential kernel. The time con-
stant of the kernel (�r) was generally set to 100 ms, but the effect of 
greater time constants was studied as well. 

We used two types of networks in the simulations. The basic 
version contained 1,000 grid-cell spike-train generators as input to 
500 integrate-and-fire units, representing potential place cells of the 
hippocampus (Fig. 1A). The phase, orientation, and scale of the grids 
were uniformly sampled as follows. The 1,000 units were first divided 
into 10 groups of 100 units that corresponded to 10 different scales of 
intervertex spacing, ranging from 30 to 53 cm by constant increments. 
This was the range of intervertex spacings observed in roughly the 
most dorsal 1 mm extension of the dorsocaudal MEC (Hafting et al. 
2005). Each group was in turn split into 10 subgroups, each of 10 
units, corresponding to 10 different orientations separated by 6° 
increments. The first orientation value was sampled randomly in the 
0–6° range independently for each different scale. Finally, the phases 
of the 10 units in each of these scale�orientation subgroups were 
uniformly sampled over the entire enclosure covered by the rat’s 
trajectory. Each of the 500 integrate-and-fire hippocampal units re-
ceived 100 excitatory synaptic inputs that were uniformly sampled 
without repetition from the available pool of 1,000 grid-cell spike-
train generators. Hence the same input unit was generally shared by 
different hippocampal cells. 

The second network type included 50 additional integrate-and-fire 
units as feedback interneurons. These interneurons received excitatory 
inputs from the hippocampal cells and made inhibitory synapses (see 

preceding text) onto the same class of cells. The main results de-
scribed in this paper could be qualitatively reproduced with many 
simulations varying in the number and strength of the synaptic 
connections. The quantitative results we report refer to the following 
parameters. Each excitatory unit projected to 40 randomly chosen but 
distinct interneurons (excitatory synapses); each interneuron projected 
to 300 randomly chosen but distinct excitatory units (inhibitory 
synapses). The strength of these excitatory and inhibitory synapses 
was not subject to plasticity: ws for inhibitory synapses was set to 0.2 
�S and ws for excitatory synapses was set to 0.8 �S. 

In each simulation, the computational model was run over a 15-min 
segment of the tracked rat’s 37-min trajectory in accordance with the 
run-time of a typical physiological recording experiment of place 
cells. The output of the simulations mainly consisted of the times-
tamps of every spike for each cell and the weight of every input to 
each cell sampled every 100 ms. These data were stored in files and 
analyzed off-line. 

Simulations were implemented in C�� with use of the Gnu 
Scientific Library. Data analysis and plotting were implemented in 
Python using the NumPy and Matplotlib libraries as provided by the 
Enthought Python Distribution (Enthought, Austin, TX). 

Data analysis 

The average firing rate of a cell was calculated as the number of 
spikes it fired during the simulated session divided by the duration of 
the session. To compute firing rate maps, the recording enclosure was 
segmented into �3 � 3 cm bins. The firing rate in a bin was 
calculated as the number of spikes that occurred when the rat occupied 
the bin divided by the time spent by the rat in the bin. The rate maps 
were not smoothed. Bins that were visited for periods totaling �233 
ms were excluded from further analysis. The rate map was normalized 
by dividing every bin by the maximum value across all bins. For cells 
with an average firing rate �0.033 Hz, place fields were defined as 
sets of at least four contiguous bins (36 cm2) if the bins all had value 
 0.15 (i.e.,  15% of the maximal bin value) and at least one bin had 
a mean firing rate  1 Hz. When one or more place fields were 
detected on a rate map, their size and relative contribution to the total 
cell activity were computed. Size was simply computed by counting 
the number of bins composing the field. The proportion of “in-field” 
firing was computed as the ratio between the sum of rates in the bins 
that belonged to any detected field and the sum of the rates in all the 
bins of the map. High values of this ratio indicated that most of the 
cell’s firing occurred within the boundaries of the detected place fields 
with sparse firing occurring outside the fields. The size and in-field 
firing proportion were conservative estimates in that the cutoff value 
(15% of the peak rate) for the boundaries of the place fields often 
tended to exclude the fringes of the field. Whenever a distribution or 
the statistics of peak firing rates is reported, it comprises only the cells 
that were included in place field analysis (i.e., with mean firing rate 
�0.033 Hz). 

To determine whether place fields were distributed homogeneously 
throughout the environment, the cumulative rate map of a cell popu-
lation was computed. For each bin of the cumulative rate map, the 
sum of the corresponding bins in the individual rate maps of all the 
cells in the population was first computed. Bins excluded from further 
analysis in individual maps were excluded from the cumulative map. 
Finally, the bins of the cumulative rate map were normalized with 
respect to the greatest bin value. To investigate whether the spatial 
biases represented by the cumulative rate map correlated with the 
initial segment of the rat’s trajectory, an occupancy map for the first 
minute of trajectory was correlated with the cumulative rate map. The 
occupancy map had the same dimensions as the cumulative map and 
its bin values represented the time the rat spent in them within the 
segment of trajectory under consideration. This procedure was then 
applied to all the trajectory segments obtained by sliding a 1-min time 
window by 1-s steps along the entire available trajectory (37 min). 
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The resulting set of r values was used to assess the statistical 
significance of the r value corresponding to positioning the window at 
the starting point of the simulation. 

R E S U L T S  

A synaptic rule for generating place fields 

The problem with integrating randomly aligned grid inputs 
(Solstad et al. 2006) is illustrated in Fig. 1B, which shows the 
trajectory of the rat (gray line) and the locations of the spikes 
(red dots) from a simulated integrate-and-fire unit receiving 
100 different grid inputs. The three plots result from simula-
tions that differed only in the initial weight assigned to all 
synapses. The synaptic weights were not subject to any mod-
ification during the session. Figure 1B1 shows the firing of the 
output cell when the synaptic weights were greatest. The 
output cell did not form a restricted place field. An increase in 
the firing threshold was simulated by decreasing the weights of 
all input cells, but the cell still fired in multiple locations (Fig. 
1B2). Finally, the weights were decreased such that the cell 
only fired a few spikes (Fig. 1B3), but the cell still showed no 
spatial specificity. This example illustrates the general point 
that a simple summation-and-threshold model of random grid 
cell inputs will not generally cause a peak of firing of the 
output cell in a single location (Solstad et al. 2006). This was 
the common behavior of almost all 500 simulated cells that 
received different combinations of inputs from the same pool 
of 1,000 grid units. A qualitatively similar result was obtained 
by increasing an inhibitory current into the unit instead of 
decreasing the synaptic weights, as an alternative way of tuning 
the cutoff level of postsynaptic activation (data not shown). 

As shown by Solstad et al. (2006), it is essential that a large 
proportion of input grid cells have a single location in which 
they all fire to create a single firing field of the output place cell 
at that location. Thus the inputs to a place cell must be either 
hard-wired in this fashion or a synaptic weight distribution 
must be learned to select such inputs for a given place cell. 
This selection can be accomplished by a postsynaptically gated 
Hebbian synaptic rule 

dw 
� k (pre �  p)post (2)

dt 

where w is the weight, pre is the presynaptic firing rate, post is 
the postsynaptic firing rate, k is the learning rate factor, and  p 
is a threshold on the presynaptic firing rate. Postsynaptic 
activity is required to trigger synaptic modification. The direc-
tion of change is determined by the presynaptic firing rate: if 
pre is greater than  p, the synapse is potentiated; otherwise, the 
synapse is depressed. 

The rule in Eq. 2 permits place-field formation by detecting 
the spatial coincidence of vertices from multiple grid inputs 
onto a cell, potentiating such inputs, and depressing the rest of 
the inputs onto the cell. The process is illustrated in Fig. 1, 
C–F, for the same cell, grid inputs, and trajectory as in Fig. 1B. 
All the weights were initially set to the same value (4.5 � 10�2 

�S, the same as in the constant-weight simulation in Fig. 1B2), 
 p was set to 5 Hz, and k was set to 4 nS/sHz2 � 4 nS · s. This 
learning rate is high; for example, it allows an input firing at 
just 1 Hz above the threshold  p to increase its weight from the 
starting value of 4.5 � 10�2 �S to the saturation value of 0.1 

�S in  �14 s if the postsynaptic cell is firing at 1 Hz or in �4 
s if the postsynaptic cell is firing at 4 Hz (or, alternatively, if 
the input is firing at 4 Hz above  p). The weights were updated 
every 4 ms; less frequent updates up to every 100 ms did not 
produce qualitative differences as far as the following results 
are concerned, provided that the learning rate was not altered in 
the process. In the remainder of the paper, the simulation 
parameters were the same unless otherwise specified. 

Figure 1C shows the rat’s trajectory and the cell’s spikes 
during different salient intervals of the first 3 min of explora-
tion. The concurrent evolution of the synaptic weights for the 
grid inputs to this cell is shown in Fig. 1D. The first postsyn-
aptic spike was produced after the first minute of exploration 
(t1). As a result, the postsynaptic firing rate grew above zero 
and triggered the synaptic rule: the most active inputs (con-
tributing the most to postsynaptic firing) were potentiated and 
the least active inputs were depressed. The change is repre-
sented by the transition between the uniformly green colored 
area and the region where horizontal stripes begin to appear 
after t1 in Fig. 1D. The discrimination between inputs was 
initially weak because the magnitude of synaptic change was 
proportional to the postsynaptic firing rate (Eq. 2), which at 
this point accounted only for a single spike. Successive 
spikes (t1–t4) reiterated this phenomenon, giving rise to a 
positive feedback loop between the potentiation of selected 
inputs and the postsynaptic firing rate in the area where the 
field was forming. After �2 min of exploration (t4), inputs 
became maximally discriminated. A small subset of inputs 
with vertices in the place field (red/yellow stripes in Fig. 1D, 
denoting weight values approaching the saturation limit of 0.1 
�S) prevailed over the rest of the inputs, which did not have 
vertices in this location (blue background, denoting weight 
values approaching 0 �S). This discrimination remained rela-
tively stable across the whole session—despite the synaptic 
rule staying active at all times—as reflected by the continuous 
horizontal pattern of yellow/red stripes over the blue back-
ground in the weight evolution plot spanning the whole 15-min 
simulation (Fig. 1E). The place field resulting from the activity 
of these inputs was also consistent and stable, as revealed by 
partitioning the position and spike data into three consecutive 
5-min intervals (Fig. 1F). The final distributions of weights 
from each input grid onto this place cell and two other 
co-simulated place cells are provided in Supplementary 
Figs. S1–S3.1 

The same process produced place fields in most of the 500 
co-simulated output cells (see Supplementary Fig. S4). Rate 
maps of five cells are illustrated in Fig. 2, A (without plasticity) 
and B (with plasticity). In each case, the addition of the 
plasticity rule caused the cells to form highly specific place 
fields. Population statistics for the entire set of 500 output cells 
are shown in Fig. 3. The mean firing rates ranged from 0.04 to 
1.47 Hz (mean � SD � 0.39 � 0.2 Hz), so all the 500 cells 
qualified ( 0.033 Hz) for place field analysis (Fig. 3A). The 
peak firing rate was 14 � 5.8 (SD) Hz. Figure 3B shows the 
distribution of the number of fields per cell across the popula-
tion. Most cells (403 cells) produced one field, 82 cells pro-
duced two fields, and 15 cells produced more than two fields. 
Hence cells with more than one field were less frequent than 
cells with single fields due to the lower probability that the 

1 The online version of this article contains supplemental data. 
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FIG. 2. Qualitative comparison of different simulations. 
Rate maps in the same column correspond to the same cell 
receiving the same inputs and were produced by simulations in 
which only the form or parameters of the synaptic rule changed 
(row H is an exception in that it receives different inputs; see 
text). The number above each rate map denotes the peak firing 
rate corresponding to the red color in the rate map. A: simula-
tion 0: synaptic weights were fixed and no synaptic plasticity 
was present. Integration of grid inputs does not produce strong 
spatial specificity in the output cells. B: simulation 1: the 
postsynaptically gated rule (Eq. 2,  p � 5 Hz) was active at all 
times. Place fields with strong spatial specificity are produced 
with the learning rule (see also Supplementary Fig. S4). 
C: simulation 2: same as B but with  p � 10 Hz. Fewer inputs 
were potentiated because of the higher  p threshold, resulting in 
lower firing rates, but spatial selectivity was generally pre-
served. The 2 rate maps enclosed by the dashed rectangle did 
not meet the mean firing rate criterion (�0.033 Hz) for inclu-
sion in the data analysis. D: simulation 3: same as B but 
heterosynaptic depression was excluded from the rule ( p � 5 
Hz,  d � 0.05 Hz). This exclusion caused the runaway poten-
tiation of all or most inputs, leading to very high firing rates and 
a loss of spatial selectivity that was similar to A. E: simulation 
4: same as C, but heterosynaptic depression was excluded from 
the rule ( p � 10 Hz,  d � 0.05 Hz). In this case, the higher  p 

threshold prevented the runaway potentiation observed in D but 
still caused a loss of spatial selectivity compared with C, mostly 
because of the emergence of multiple place fields per cell. 
F: simulation 5: the loss of spatial selectivity due to the lack of 
heterosynaptic depression ( p � 5 Hz,  d � 0.3 Hz) was 
recovered by the addition of intervertex background firing of 
the grid cell (0.5 Hz) and by a slower integration of the 
presynaptic spikes into the rate value used in the synaptic rule 
(see also Supplementary Fig. S6). This modification allowed the 
necessary function of heterosynaptic depression to be recovered 
in the form of homosynaptic depression. G: simulation 6: same 
as B but the rate of learning in the synaptic rule was 20 times 
slower. Place fields did not form within the foraging session 
duration (15 min). H: simulation 7: same as B but the grid inputs 
were sampled from a larger intervertex spacing range (70–93 
cm) compared with all other simulations in the paper (30–53 
cm). Using this larger range produces place fields closer in size 
to typical dorsal hippocampus recordings (see also Supplemen-
tary Fig. S5). 

same set of potentiated grid inputs would coincide in multiple 
spots of the recording enclosure. It is not known precisely how 
many place cells fire in multiple locations in a given environ-
ment, and the answer is almost certainly a complicated func-
tion of hippocampal subregion (CA1, CA3, DG) (Chawla et al. 
2005; Vazdarjanova and Guzowski 2004), size of the environ-
ment (Fenton et al. 2008; Henriksen et al. 2009), behavioral 

task/trajectories (e.g., open-field foraging versus linear track 
running), and other variables. We made no attempt to alter the 
proportion of cells with single place fields to match a prede-
termined proportion of single- versus multiple-field cells given 
our simulated environment and behavior, although subsequent 
simulations intended to analyze other aspects of the model 
were found to affect this proportion [see simulations with 

FIG. 3. Quantitative verification of the quality of the place fields developed by 500 co-simulated place cells. The simulation was run with parameters as in 
Fig. 2B. A: average firing rates across the entire simulation. B: number of fields per cell. Most cells developed a single field. C: relative proportion of firing 
occurring inside the area of the place fields counted in B. Most of the cell activity took place inside these fields. D: size of the fields counted in B. All fields 
are 1 order of magnitude smaller than the recording box (3,600 cm2). 
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inputs of larger spacing (Fig. 2H and Supplementary Fig. S5), 
a higher  p (simulation 2 of Fig. 2 and Table 1), or with added 
feedback inhibitory interneurons (see Influence of early trajec-
tory and feedback inhibition on spatial biases)]. 

Figure 3C shows the distribution of the proportion of spiking 
inside the place field over the whole population (see METHODS); 
in the majority of the cells (454 cells) �70% of the total firing 
occurred inside place fields. The typical size of the field was 
much smaller than the recording area (3,600 cm2); place field 
sizes ranged from 36 cm2 (the minimum size requirement for 
field classification) to 288 cm2 (mean � SD � 101 � 36 cm2; 
Fig. 3D). Although the place fields tended to be smaller than 
those typically found in CA3 and CA1 recording experiments, 
shifting upward the range of intervertex spacing of the inputs 
(from the 30–53 cm used in the preceding text to 70–93 cm) 
caused the place fields to resemble more closely those observed 
in typical dorsal hippocampus recordings in terms of size, 
hetereogeneity of shape, and number of fields per cell (com-
pare Fig. 2, H with B, and Supplementary Fig. S5 with S4). 

The process of field creation was qualitatively diverse across 
individual cells. Some cells built their place fields quickly, 
starting from the first traversal through the field (Fig. 4A). 
More often, due to a weaker presynaptic pattern or more rapid 
traversals through the location, multiple visits were needed 
before intense and consistent firing began (Fig. 4B; see also 
Fig. 1C). Some cells fired their first spikes in the eventual field 
(Fig. 4A), whereas other cells fired a few initial spikes else-
where, thereby perturbing the synaptic weights in a way that 
later facilitated the initiation of a place field in a different 
location (Fig. 4C). In rare cases, remapping of a fully devel-
oped field emerged, reflecting interference between input pat-
terns (Fig. 4D). In some cases, the cell did not fire for long 
periods during the initial stage of the exploration, spanning up 
to a few minutes, after which it started to fire consistently in a 
quickly formed field (Fig. 4, B and C). The initial lack of 
postsynaptic firing implies that visits to the future field were 
too brief for the temporal and spatial integration of input spikes 
to induce suprathreshold depolarization. Real place cells are 
known to display such a diverse range of individual behaviors 
in a new environment, as some place cells fire from the rat’s 
first entry into the place field in a novel environment (Hill 
1978), others begin firing abruptly after initial trajectories 
through the field produced no firing (Frank et al. 2004, 2006), 

TABLE 1. Statistics of place field formation in different simulations 

and there is a general sharpening of the place-field represen-
tation over time in a novel environment (Wilson and Mc-
Naughton 1993). A number of cells also maintained a spatial 
pattern of firing that resembled their grid-cell inputs, such as 
Fig. 4E (see also Supplementary Fig. S4). Although such firing 
patterns have not been reported in CA1 or CA3 place cell 
recordings, we attribute their appearance in the simulations to 
the scaled-down, simple architecture of the model, and espe-
cially to the absence of spatially nonperiodic inputs; we did not 
make any attempt to artificially minimize the proportion of 
these cells. 

The threshold  p in Eq. 2 affects the number of synapses that 
are likely to undergo potentiation versus depression. A higher 
 p favors depression, leading to greater discrimination of the 
inputs generating a field and yielding lower and more spatially 
restricted levels of activity in the output cells. In some cells, a 
potentiated input subset might not emerge at all because initial 
postsynaptic firing could induce depression on most of the 
synaptic inputs that were contributing to it, thus dramatically 
reducing or driving to extinction future postsynaptic activity. 
Figure 2C shows examples of rate maps from a simulation in 
which  p was increased to 10 Hz from its previous value of 5 
Hz (Fig. 2B). The firing rates of the cells and the field sizes 
were decreased, and two of the cells fell below the 0.033 Hz 
criterion for analysis (dashed outline). These two simulations 
are compared at the population level in Table 1. All 500 cells 
met the minimum firing-rate criterion for inclusion in the 
place-cell analysis ( 0.033 Hz) when  p � 5 Hz, whereas 
slightly more than half of them did so when  p � 10 Hz (Table 1, 
simulations 1 vs. 2). On average, the peak firing rates and the field 
size in the population included in the place cell analysis were also 
lower when  p � 10 Hz (Table 1, simulations 1 vs. 2). 

Constraints on the synaptic rule 

FUNCTION OF HETEROSYNAPTIC DEPRESSION. The synaptic plas-
ticity rule of Eq. 2 is input specific; that is, the change in weight 
is entirely specified by the current presynaptic and postsynaptic 
firing rates at each synapse. However, the rule produces a form 
of heterosynaptic depression in that when some strongly active 
synapses drive the postsynaptic cell to fire, any inactive syn-
apses undergo depression. We asked whether heterosynaptic 
depression is necessary for place field formation in our model. 
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Simulation number 1 2 3 4 5 6 

Simulation parameters* 
 p, Hz  5 10 5 10 5 5 
 d, Hz  0 0 0.05 0.05 0.3 0 
k,  nS  ·  s  4  4  4  4  4  0.2 
Minimum intervertex firing of grid inputs, Hz 0 0 0 0 0.5 0 
�r, ms  100 100 100 100 1000 100 

Results 
Number of cells that met analysis criteria 500 255 500 500 394 499 
Peak rate, Hz 14.0 � 0.3 6.2 � 0.2 26.5 � 0.3 7.7 � 0.2 9.2 � 0.3 3.9 � 0.2 
Number of place fields/cell 1.22 � 0.02 1.05 � 0.02 3.87 � 0.06 1.72 � 0.04 1.19 � 0.03 1.38 � 0.03 

2Place field size, cm 102.0 � 1.6 69.7 � 1.2 297.6 � 13.2 69.4 � 1.1 89.3 � 1.5 79.5 � 1.6 
In-field firing/total firing 0.79 � 0.00 0.83 � 0.01 0.79 � 0.00 0.66 � 0.01 0.75 � 0.00 0.52 � 0.01 

Values are mean � SE. *Parameters that varied between simulations that are displayed in this table. Values that differed from those in simulation 1 are in 
bold.  p is the presynaptic threshold for switching between potentiation and depression;  d is the minimum presynaptic firing rate to induce plasticity; k is the 
learning rate; �r is the decay constant of the presynaptic firing rate for excitatory synapses. 
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FIG. 4. Examples of qualitatively diverse place field formation. A: a cell 

that quickly formed its place field during the 1st visit to the place-field location. 
B: a cell that remained mostly inactive for �7 min before starting to fire 
consistently in the field. C: a cell that 1st fired in a location different from the 
future field, then was inactive for �2.5 min, and finally established the place 
field. D: a cell that relocated its field after 10 min. E: a cell that developed 3 
stable fields. 

We ran simulations in which the plasticity at any synapse was 
disabled whenever the presynaptic firing rate was less than a 
threshold ( d) of 0.05 Hz. When the presynaptic firing rate was 
greater than  d, Eq. 2 was applied as before. The performance 
of the system—in terms of how many well-tuned place cells 
were produced—was severely undermined when heterosynap-
tic depression was disabled in this manner. The value of the 
threshold for inducing potentiation ( p) affected the outcome. 
With  p � 5 Hz, the system lacking heterosynaptic depression 
( d � 0.05 Hz) was drastically impaired in its ability to 
produce place fields (Fig. 2D, simulation 3). The reason for this 
impairment was that inactive synapses that were spared de-
pression early in the simulation underwent potentiation at a 
later time. Eventually, runaway potentiation affected nearly all 
the weights, resulting in a loss of discrimination between input 
patterns. As a result, the spatial response of each output cell 

was as specific as the one obtained when all inputs had the 
same, fixed weights (Fig. 2A, simulation 0), albeit at a much 
higher rate. Across the 500 cells, the peak firing rate was 26.5 � 0.3 
(mean � SE; Table 1, simulation 3), the number of fields per 
cell was 3.87 � 0.06 (Table 1, simulation 3), and the field size 
was 297.6 � 13.2 (Table 1, simulation 3). Note that these 
values are respectively about 2, 2, and 3 times greater than the 
highest values from the other simulations shown in Table 1. 

With a higher threshold for inducing potentiation ( p � 10 
Hz), the simulation lacking heterosynaptic depression did not 
lead to runaway potentiation, but it was nonetheless impaired 
in the ability to produce single-field responses (Fig. 2E). The 
average number of fields produced by each cell of the analyzed 
population was higher without heterosynaptic depression (1.72 � 
0.04; Table 1, simulation 4) than with heterosynaptic depres-
sion (1.05 � 0.02; Table 1, simulation 2). In addition, more of 
the cells’ firing occurred outside of the fields in the absence of 
heterosynaptic depression (Table 1, simulation 4 vs. simulation 
2). These simulations showed that heterosynaptic long term 
depression is an essential aspect of Eq. 2 for the effective 
generation of place-cell-like behavior. Heterosynaptic long 
term depression (LTD) and depotentiation were the first exper-
imentally observed examples of activity-dependent reduction 
of synaptic efficacy in the hippocampus (Bliss et al. 2007) both 
in vitro (Lynch et al. 1977) and in vivo (Levy and Steward 
1979). However, recent experimental results at perforant path 
synapses suggest that low-rate, spontaneous activity that typi-
cally occurs in vivo might provide a background level of 
activity of presynaptic cells that allows depression of these 
low-rate synapses using homosynaptic mechanisms (Abraham 
et al. 2007). Alternatively, as the rat moves into the intervertex 
regions of a grid, the trace of presynaptic activity caused by the 
recent traversal of a more active area could allow this input to 
undergo enough homosynaptic depression, if the trace decay is 
sufficiently slow. To test whether there are conditions under 
which strict heterosynaptic depression was not essential for 
place-field formation, we ran simulations in which the rule 
lacking heterosynaptic depression was used, with different 
time scales for the presynaptic firing rate decay, with or 
without spontaneous activity of grid cells in the intervertex 
spaces. Figure 2F (simulation 5) shows that the combination of 
intervertex firing at �0.5 Hz (which is similar to published 
figures of some grid cells in Hafting et al. 2005) and a longer 
time constant (�r 1,000 ms) can promote the formation of 
robust, unitary place fields, without the need for true heterosyn-
aptic depression (see Table 1 for simulation results and param-
eters). To determine the relative influence of these two factors, 
their interaction was explored further in Supplementary Fig. 
S6. Thus if the argument that heterosynaptic depression in vivo 
may really be a disguised version of homosynaptic depression 
(Abraham et al. 2007) proves to be generally true, these results 
show physiologically plausible ways to preserve the essential 
functional role played by heterosynaptic depression in the 
abstract rule of Eq. 2—that is, the rapid depression of inputs that 
are relatively inactive when the place field is forming—without 
requiring true heterosynaptic depression of inactive synapses. 

SENSITIVITY TO THE LEARNING RATE. The learning rate used in 
the synaptic rule permitted the formation of place fields within 
the first few minutes of exploration in most cells. Furthermore, 
it was not always necessary that the environment be thoroughly 
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explored before a stable field was formed (e.g., Fig. 4A). 
Although these properties mimic the behavior of many real 
place cells (Frank et al. 2004, 2006; Hill 1978; Wilson and 
McNaughton 1993) and are consistent with the fast learning 
essential for the putative role of the hippocampus in episodic 
memory (Knierim et al. 2006; Manns and Eichenbaum 2006; 
O’Keefe and Nadel 1978; Squire et al. 2004; Vargha-Khadem 
et al. 1997), they are somewhat incompatible with the operat-
ing conditions of most analytical and computational studies of 
synaptic learning rules (see, for instance, Dayan and Abbott 
2001; Gerstner and Kistler 2002). In these studies, the rate of 
synaptic change is assumed to be small compared with the rate 
of presentation of the input patterns. This assumption usually 
enables the mathematical derivation of the final steady state of 
the synaptic weights, which usually reflects some statistical 
properties of the stimulus space. For this purpose, the space of 
input patterns must be repeatedly experienced in its entirety for 
the learning system to reach the final state. In the case of 
place-field formation, this requirement would imply waiting 
until the animal has sampled the environment multiple times, 
in contrast with experimental observations. 

To test the importance of a fast learning rate for place-field 
formation, we ran simulations with a range of learning rates 
that are an order of magnitude slower than that used so far. 
When learning was ten times slower (k � 0.4 nS · s in  Eq. 2), 
visual inspection of firing rate maps of the output cells revealed 
fields that formed more slowly and were still weak (or absent) 
by the end of the 15-min session in about half the population. 
When learning was 20 times slower (k � 0.2 nS · s), the 
proportion of such cells was higher still (Fig. 2G). Inspection 
of the temporal evolution of the weights revealed that discrim-
ination between inputs took much longer to build up under 
these conditions (not shown). Table 1 (simulation 6) shows the 
quantitative analysis of the fields of the whole population in 
this simulation. Note the lower average peak firing rates and 
in-field firing and the higher average number of fields per cell 
compared with simulation 1 of Fig. 2 and Table 1. It thus 
appears that fast learning is a critical aspect of the transforma-
tion of grid inputs to unitary place fields. 

PRESYNAPTICALLY GATED RULE. A logical variation of the 
postsynaptically gated Hebbian rule (Eq. 2) is a presynaptically 
gated rule, in which the polarity of plasticity depends on the 
postsynaptic firing rate 

dw 

runaway of all the weights occurred, leading to poor spatial 
specificity because of a lack of input selection or because of the 
loss of all excitatory drive onto the output cell. Figure 5 
illustrates the resulting bimodal distribution of mean firing 
rates across the population ( p � 1 Hz; higher values increase 
the proportion of cells that become inactive but do not quali-
tatively change the main result). Intuitively, this result can be 
understood as follows. The presynaptically gated rule either 
potentiates or depresses all active synapses at any given time 
(while leaving inactive synapses unchanged, since the rule is 
presynaptically gated). Potentiation occurs at all active syn-
apses whenever postysynaptic firing is above  p, whereas 
depression occurs at all active synapses whenever postsynaptic 
firing is below  p. Because a grid input to a place cell with a 
single field will typically exhibit more firing fields outside of 
the place field than inside it, the mean balance of plasticity 
occurring at this input will be negative. In this case, runaway 
depression of the inputs will eventually occur. If instead the 
place field area covers the majority of the input’s vertices, the 
mean balance of plasticity at that input will be positive. In this 
case, runaway potentiation of most or all inputs will eventually 
occur. Thus a synaptic weight distribution that generates sin-
gle-peaked place fields from grid cell inputs is an unstable state 
when the presynaptically gated rule is active with fast 
plasticity. 

The failure of simulations with the presynaptically gated rule 
and the poor performance of the simulations in which the 
postynaptically gated rule is applied with a slow learning rate suggest 
that successful place-field formation requires that the system 
work in the region of parameter space far away from the region 
where both rules converge appreciably to the covariance rule. 

Effects on population coding 

INFLUENCE OF EARLY TRAJECTORY AND FEEDBACK INHIBITION ON 

SPATIAL BIASES. As noted in the preceding text, cells can form 
stable fields before the exploration of the environment is 
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dt 
� k (post �  p)pre (3) 

The postsynaptically gated and presynaptically gated rules are 
equivalent if the rate of learning is sufficiently slower than the 
presentation of the input patterns and if  p is set to the aver-
age presynaptic (for Eq. 2) or postsynaptic (for Eq. 3) firing rate 
across all the input patterns (Dayan and Abbott 2001). When 
these conditions are met, both rules amount to a covariance FIG. 5. 

mean firing rates (Hz) 

Bimodal distribution of spatial response with the presynaptically 

rule (Dayan and Sejnowski 1993; Sejnowski 1977). Because 
the postsynaptically gated rule (Eq. 2) with a slow learning rate 
does not generate place fields in a time frame consistent with 
experimental data, it is worth asking empirically if Eq. 3 could 
work as well as Eq. 2 in the latter’s successful regime of fast 
learning (k � 4 nS · s). Simulations showed that the presyn-
aptically gated rule with fast learning did not form strong, 
unitary place fields. For any cell, either positive or negative 

gated synaptic rule. The application of this rule leads to either runaway 
potentiation or depression of all the weights of any cell; this in turn causes 
either elevated, indiscriminate firing or the loss of activity in the postsynaptic 
cell. This pattern is reflected in the bimodal distribution of mean firing rates in 
the histogram. A: rate maps of two sample cells that lost firing. B: rate maps of 
2 sample cells that fired strongly over much of the environment. A simple 
threshold on these rate maps would produce activity reminiscent of the dentate 
gyrus, in which the majority of cells are silent and a minority fire in multiple 
locations (Chawla et al. 2005; Jung and McNaughton 1993; Leutgeb et al. 
2007). 
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complete (e.g., Fig. 4A). The order in which different locations 
are initially visited might therefore be relevant for where cells 
will form their fields. This consideration raises the question of 
whether the initial stage of exploration exerts an influence over 
the final global distribution of place fields (O’Keefe and 
Conway 1978), which is not always uniform across the envi-
ronment (Hetherington and Shapiro 1997; Wiener et al. 1989). 

To address this question, we ran simulations with 15-min 
epochs of the rat’s exploration starting from different time 
points of the entire 37-min foraging session. All other param-
eters and starting conditions of the simulations were identical 
to that of simulation 1. We calculated a cumulative rate map 
(CRM) from each simulation by summing the normalized 
individual rate maps of all the place cells. The CRMs showed 
that place fields did not spread across the recording enclosure 
uniformly; rather they tended to concentrate in certain regions 
and miss other regions (Fig. 6A). The regions that were 
over-represented were different in each simulation. An occu-
pancy map was calculated for the first 60-s trajectory of each 
simulation, and these maps were positively correlated with the 
CRMs for their respective simulations (Fig. 6, A and C). It was 
important to determine whether the resulting r values were 
higher than those expected by correlating the CRMs with any 
arbitrary trajectory. A sample of r values was computed by 
sliding a 60-s window in 1-s increments along the entire 
37-min trajectory and calculating the correlation of the CRM 
with the occupancy map for each increment. The r values of 
the initial trajectories shown in Fig. 6C were all in the top 6% 
of the simulated sample (P � 0.03, P � 0.04, P � 0.03, P � 

Different simulations, trajectory epoch used (minutes): 
0-15 5-20 10-25 15-30 20-35 

A  cumulative rate maps (whole epoch duration) 

0.002, P � 0.06), demonstrating that there is a significant 
relationship between the initial trajectory in an environment 
and the bias in the locations of place field formation. 

The pronounced heterogeneity of the place-field distribution 
produced by the simple, feedforward model is greater than that 
typically observed in place-field studies. Many types of feed-
back interneurons are prevalent in the hippocampus (Freund 
and Buzsaki 1996). The spatial biases revealed by the CRMs 
were mitigated when a subpopulation of generalized, feedback 
inhibitory interneurons—receiving excitatory connections 
from the output place cells and making inhibitory connections 
back onto them—was added to the model (Fig. 6D). Intu-
itively, feedback inhibition reduced the gap between densely 
and scarcely populated areas by introducing mutual inhibition/ 
competition between place cells, which prevented too many 
cells from being active enough to start building a field at the 
same time. In this way, feedback inhibition made the global 
activity spread more uniformly in the environment. The inter-
neurons fired in the range �22–25 Hz, whereas the excitatory 
units projecting to these interneurons fired between 0 and �0.5 
Hz. An additional effect of feedback inhibition was a general 
reduction of average firing rates in the population of place 
cells. The mean (for all simulated cells) and peak (for the cells 
meeting the criterion of place cell analysis) firing rates without 
feedback inhibition were respectively 0.39 � 0.2 (SD) Hz and 
14 � 5.8 Hz compared with 0.07 � 0.07 and 5.6 � 2.7 Hz 
when inhibition was present (Fig. 6, column 1). Furthermore, 
all 500 excitatory cells in the simulation without inhibition 
fired at  0.033 Hz—the criterion for inclusion in the place-cell 

B  trajectories (whole epoch) 

500 cells 500 cells 499 cells 499 cells 499 cells 

D  cumulative rate maps with feedback inhibition (whole epoch) 

323 cells310 cells315 cells308 cells318 cells 

p < 0.03 p < 0.03 p < 0.03 p < 0.002 p < 0.06 

C  trajectories (first 60 s of epoch) 

E  individual rate map of cell 4 (whole epoch) 

FIG. 6. Effects of early trajectory on place field location and 
density. The 5 columns represent 5 different simulations that 
were identical except for the choice of the 15-min epoch of 
trajectory data. A: cumulative rate map of all cells showing 
inhomogeneous place field density across the simulated popu-
lation. B: cumulative trajectory of each 15-min epoch. The 
spatial sampling was comparable across different simulations. 
C: trajectory data for the 1st 60 s of each epoch. Occupancy 
maps (not shown) were calculated from these early trajectories. 
The occupancy maps were correlated with the respective cu-
mulative rate maps in A: place fields concentrated mostly in the 
locations first explored by the rat (r values: 0.34, 0.25, 0.33, 
0.54, 0.21; occupancy maps were not smoothed prior to corre-
lation). D: the biases in the distribution of fields shown in A are 
reduced when a subpopulation of feedback inhibitory interneu-
rons is added to the place cells. E: different place fields 
developed by the same cell across the simulations in A. The 
change of spatial density in the cumulative rate maps is made 
possible by a similar individual “remapping” of the majority of 
the cells. 
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analysis—but only 318 did so in the simulation with inhibition. 
Among these 318 cells, the percentage of cells with more than 
one field was drastically reduced (under 4%) compared with 
the simulation without inhibition (�19%). Thus in addition to 
spreading out the distribution of place fields, the inhibition 
prevented a large number of cells from firing in more than one 
location in the environment. 

REMAPPING. Across different environments (and sometimes 
within the same environment), place cells can change their 

A  Grid cell - 1st 60 s 

B  Grid cell - whole session 

C Place cell - 1st 60 s 

D  Place cell - whole session 

18Hz 17Hz 6Hz 

E  Cell 32 

18Hz 7Hz 17Hz 

F  Cell 26 

14Hz 13Hz 14Hz 

G  Cell 24 

H  Cumulative rate maps 

500 cells 498 cells 499 cells 

relative firing locations or change their average firing rates 
(Bostock et al. 1991; Knierim 2003; Leutgeb et al. 2004, 2005; 
Muller and Kubie 1987; Skaggs and McNaughton 1998). This 
phenomenon, called remapping, is thought to reflect the role of 
the hippocampus in contextual learning. We asked in what 
circumstances our simulations would produce different maps 
even if starting with the same grid cell inputs and the same 
uniform synaptic weights. As already shown, different place 
fields developed when the early trajectory was modified in the 
simulations described in the previous section. Indeed the spa-
tial reorganization of place-field density (Fig. 6A) implied that 
the majority of the cells individually relocated their fields 
across simulations; an example of such a cell is shown in Fig. 
6E. This result suggests that where a place field fires in a 
particular environment may depend in part on the rat’s early 
exploration trajectories in that environment as speculated by 
O’Keefe and Conway in their pioneering studies of place-field 
formation and cue control (O’Keefe and Conway 1978). 

An even simpler perturbation of the field-generating process 
that produced diverging maps consisted of small variations in 
the timing of spike input patterns. This variation was accom-
plished by repeating the simulation with a different realization 
of each grid cell’s Poisson spike train. This was implemented 
by changing the seed of the random number generator (RNG) 
used in the grid-cell spike trains’ generation process (Fig. 7A). 
All other stochastic aspects of the simulation—such as network 
connectivity and grid cells’ geometric and firing properties— 
were handled by another RNG with a seed that was not 
changed between simulations (see METHODS). Nonstochastic 
aspects, such as the initially uniform weights, were also iden-
tical. The spike-timing alterations had a minimal effect on the 
overall pattern of firing of the grid cells (Fig. 7B). These small 
alterations, which occurred independently for each grid input, 
caused similar small alterations in the exact spiking of postsyn-
aptic place cells (Fig. 7C). The resulting differences in the 
momentary values of both pre- and postsynaptic firing rates in 
turn triggered plasticity differentially in terms of timing, loca-
tion, magnitude, and direction of synaptic efficacy changes. 
Eventually, this caused the fast, nonlinear dynamics of the field 
formation to diverge, leading to the potentiation of different 
sets of synapses and thus to different field locations (Fig. 7D). 

FIG. 7. Effects on place field location of exact timing and location of grid 
cell spikes. The 3 columns represent 3 simulations that were identical except 
for the initialization of the random number generator affecting the exact timing 
of the grid cell spikes. As a result, grid cells spiked at slightly different times 
and locations without altering their overall spatial firing pattern; by contrast, 
many place cells generated their place fields in distinct locations. A: an  
example of an input grid cell that spiked at slightly different locations and 
times during the 1st 60 s. The trajectory of the rat, as well as every other model 
parameter, did not change. B: the cumulative spatial firing patterns of this cell 
observed over the whole 15-min sessions were not affected appreciably. C: an  
example of an output place cell showing similar differences in early spiking. 
D: firing observed at the time scale of the whole session reveal that the same 
cell produced firing fields in 3 distinct locations. E: rate maps of a sample cell 
that changed location and number of place fields across the 3 simulations. 
F: rate maps of a cell that changed field location between the 1st and 2nd 
simulations and firing rate between the second and 3rd simulations. G: rate 
maps of a cell that did not appreciably change either field location or firing rate. 
H: cumulative rate maps computed from all cells of the simulated population 
that met analysis criteria. The spatial biases of place field density did not 
change across simulations in spite of the concurrent individual changes in 
place field locations (because the initial trajectory of the rat did not change 
across simulations—compare with Fig. 6A). 
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Not all cells produced different fields every time the RNG’s reminiscent of partial remapping of real place cells (Knierim 
seed was changed. Rather, different combinations of location 2003; Knierim and McNaughton 2001; Skaggs and McNaugh-
and rate remapping (or lack thereof) were expressed through- ton 1998; Tanila et al. 1997). (Note that we used the term 
out the population of place cells (Fig. 8, E–G), in a manner remapping here to denote the phenomenology of the simula-

tions producing different place fields for the same output 
Trajectory-induced remapping Spike-timing-induced remapping neurons, analogous to the phenomenology of real place cell 
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remapping. However, the simulations always started from the 
identical uniform synaptic weights pattern; there was no se-
quential history between simulations. See DISCUSSION for further 
elaboration.) The spatial biases of the population (as shown by 
CRMs) remained the same despite the underlying individual 
relocation of place fields (Fig. 7H) unlike the remapping 
obtained by changing the rat’s trajectory (Fig. 6A). This result 
is consistent with the previous observation that the spatial 
biases reliably depended on the details of the initial trajectory, 

mean firing rate (Hz) mean firing rate (Hz) which was unaltered in the RNG seed simulations. 
Figure 8 illustrates quantitative details of the remapping that 

occurred between simulations varying in trajectory (A and B, 
0–15 and 5–20 min, respectively) or in spike timing (C and D); 
both sets of simulations included feedback interneurons (as in 
Fig. 6D). Figure 8, A and C, illustrates scatter plots of indi-
vidual mean firing rates for all cells. Values for the same 

20 40 60 20 40 60 reference simulation are reported on the abscissa for both A and 
place field distance (cm) place field distance (cm) C, whereas values for the simulations with modified trajectory 

and grid spike timing are reported on the ordinates of A and C, 
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respectively. In both cases, low-rate cells in one simulation 
could turn into high-rate cells in the other. Dashed lines 
indicate the 0.033 Hz threshold used for inclusion in the 
place-field analysis; many cells that do not reach threshold in one 
simulation are above threshold in the other. Figure 8, B and D, 
shows the distributions of distances between the field developed in 
one simulation and the field developed in the other. Only cells that 
produced exactly one field in both simulations were included: 196 
such cells were produced in the remapping by change of trajectory 
(B) and 204 cells in the remapping by change of spike timing (D).
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of reference.) In both cases, at least half of these cells experienced 
a relocation of their fields by a distance  15 cm. Conversely, a 
large fraction of cells changed their firing locations by only small 
amounts (�5 cm). Partial remapping was therefore widely present 
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FIG. 8. Varying place field locations and/or mean firing rate across simulations 
that differ only in the rat’s early trajectory or in the input spike timing. A: scatter 
plot of mean firing rates of each simulated place cell in a reference simulation 
(abscissa, 0–15 min epoch of trajectory data) and in a simulation with a different 
start time (ordinate, 5–20 min epoch). Dashed lines indicate the firing rate 
threshold criterion for inclusion in data analysis (�0.033 Hz). Cells that did not 
meet the criterion in one simulation could still meet the criterion in the other; the 
firing rates of these cells are denoted by the dots on the left of the vertical dashed 
line and above the horizontal dashed line, or by the dots below the horizontal 
dashed line and on the right of the vertical dashed line. Cells could have negligible 
activity in one simulation while being among the most active in the other. 
B: histogram of the distance between the place fields created in the reference vs. 
altered simulations as in A for each simulated cell that produced exactly 1 field in 
both simulations. The majority of cells produced different fields between the 2 
simulations. C and D: these graphs are similar to A and B except that the altered 
simulation was obtained from the same reference simulation by changing the seed 
of the random number generator involved in the generation of the input spike trains 
(instead of the trajectory epoch starting point). Changes in place field locations 
and/or mean firing rates were similar in the 2 types of manipulations. E–H: same 
as A–D but in a simulation that does not contain feedback inhibition. The amount 
of remapping that occurs from both trajectory changes and spike-timing changes 
is similar in the simulations run with and without inhibition. 

in the cell population to a similar extent in simulations varied by 
trajectory and input spike timing. Similar results were obtained 
from simulations that did not include feedback interneurons (Fig. 
8, E–H). The only major difference between the simulations with 
and without feedback inhibition is the overall higher firing rate of 
the simulation without feedback, which eliminated the number of 
cells that fell below firing-rate threshold but had little effect on the 
proportion of cells that changed their place field locations. 

D I S C U S S I O N  

Previous theoretical investigations of the grid-to-place 
field transformation hypothesized that some form of synap-
tic plasticity is involved in restricting the firing of a place 
cell to a single location (Blair et al. 2007; Franzius et al. 
2007; Molter and Yamaguchi 2008; Rolls et al. 2006; Si and 
Treves 2009; Solstad et al. 2006; Ujfalussy et al. 2008). We 
have shown here that a physiologically plausible, Hebbian 
learning rule is capable of selecting inputs only from grid 
cells that share a common vertex location to accomplish this 
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task (Solstad et al. 2006). Our investigations revealed that 
within the confines of our model fast learning dynamics and 
some form of heterosynaptic depression are required to 
transform the multipeaked input of grid cells into single-
peaked output of place cells. In addition, the model provides 
potential insights into the heterogeneous temporal dynamics 
of place-field formation, the prevalent remapping phenom-
ena, and the potential separation of the roles of synaptic 
plasticity and network competition via feedback inhibi-
tion. 

Plasticity 

Our model assumes that plasticity plays a major role in 
place-field formation, an assumption that is made plausible by 
the ubiquity of synaptic plasticity in all subfields of the hip-
pocampus. A challenge to this assumption comes from a study 
in which rats were injected systemically with CPP [a blocker of 
the N-methyl-D-aspartate (NMDA) receptor]. These animals 
formed apparently normal place fields in a novel environment, 
but they were unable to reactivate these same place fields when 
reintroduced into the same environment the next day (Kentros 
et al. 1998; Shapiro and Eichenbaum 1999). This result sug-
gested that NMDA-dependent plasticity may be implicated in 
the long-term stability of place fields but not in their creation. 
In contrast, other studies using genetic knock-out techniques 
have shown decreased quality of place fields in novel environ-
ments when NMDA receptors were disrupted (McHugh et al. 
1996; Nakazawa et al. 2004), a result that is more in agreement 
with our model. The reasons for the discrepancies among these 
studies are not clear, but they may be due to species differences 
and/or differences in recording or behavioral techniques. Al-
ternatively, it is entirely possible that a form of non-NMDA 
receptor plasticity that operates in accordance with the present 
computational model could still support the grid to place 
transformation (Kentros et al. 1998). Further experiments and 
a more anatomically and biophysically detailed model of the 
hippocampus will be required to address the discrepancies 
between these studies and the respective roles on NMDA-
dependent and -independent forms of plasticity in place-field 
formation. 

The properties of the learning rule are suggestive of the 
heterosynaptic depression/depotentiation of an inactive path-
way when postsynaptic activation is driven by a second path-
way (Abraham et al. 2007; Levy and Steward 1979; Lynch et 
al. 1977). We systematically tested our computational model to 
verify the extent to which the rule operates in agreement with 
this experimental phenomenon, especially in its more recent 
characterization (Abraham et al. 2007) as a form of homosyn-
aptic depression “in disguise.” In our simulations, successful 
generation of single place fields could only be accomplished 
with a faithful implementation of the heterosynaptic depression 
of silent inputs, unless the presynaptic activity trace was 
assumed to decay relatively slowly (500 ms to 1 s time 
constant; Fig. 2F and Supplementary Fig. S6). In the latter 
case, the resulting slower input integration provides a sufficient 
window of opportunity for depression to act homosynaptically 
as the rat moves from a peak to a trough of the grid. Deter-
mining the exact biophysical implementation of this function 
was beyond the scope of the present work, but a plausible 
candidate might be the binding of glutamate onto NMDA 

receptors; this permits Ca2� influx into the spine at the occur-
rence of back-propagating action potentials. In this scenario, 
the dependence of the direction of plasticity on the level of the 
presynaptic rate in Eq. 2 would naturally reflect the long-held 
hypothesis that the level of [Ca2�] in the spine determines 
whether LTP or LTD is induced at the synapse (Artola and 
Singer 1993; Bear et al. 1987; Lisman 1989; Shouval et al. 
2002). The time constant of the slow components of the decay 
of the glutamate binding to NMDA receptors (up to 600 ms) 
(Lester et al. 1990) appears compatible with the parameter 
range that succeeded in producing place fields in our simula-
tions without proper heterosynaptic depression. Physiological 
realizations of the mechanism inherent in the postsynaptically 
gated synaptic rule could conceivably involve other forms of 
cellular plasticity as well. For instance, the global decrease in 
membrane excitability that accompanies input-specific LTP 
observed in CA1 Schaffer collaterals reduces the ability of 
nonpotentiated inputs to contribute to later postsynaptic firing 
(Fan et al. 2005; Narayanan and Johnston 2007). Thus this 
phenomenon—if present at perforant path synapses as well— 
could have a functional net effect similar to that of heterosyn-
aptic depression in Eq. 2. 

It is possible that models of plasticity or parameter values 
that escaped our investigation could produce a grid to place 
transformation as effectively as accomplished by the rule in 
Eq. 2. Because this rule produces a crude form of synaptic 
competition, one might conclude that any synaptic rule with a 
similar property should be able to make place fields from grid 
inputs. For example, the BCM rule (Bienenstock et al. 1982) 
can refine the spatial response of a unit taking inputs from 
boundary-related cells into a place field (Barry and Burgess 
2007; Barry et al. 2006; Lever et al. 2002). The BCM rule’s 
rate of synaptic change must be considerably slower than the 
rate of presentation of input patterns to enable temporal com-
petition between these patterns (Bienenstock et al. 1982; 
Dayan and Abbott 2001), thus requiring extensive spatial 
sampling of the recording enclosure. By contrast, our simula-
tions suggest that the rate of synaptic change must be fast to 
generate fields at a realistic time scale, and some of these fields 
were formed before the environment was fully explored, as is 
often experimentally observed (Frank et al. 2004; Hill 1978). 
The present model does not exclude that an additional learning 
scheme like the BCM rule could affect the final place-cell 
response, possibly by eliminating additional fields and/or gov-
erning the integration of nongrid inputs into the hippocampal 
place representation (Barry and Burgess 2007; Barry et al. 
2006), but this additional mechanism would need to operate far 
from the timescale of a foraging session that we were con-
cerned with in this study. 

Place field generation 

The place fields generated by our simulations tended to be 
smaller than those typically found in CA3 and CA1 recording 
experiments. Incorporation of other inputs to the cells (e.g., 
boundary cells) (Lever et al. 2009; Savelli et al. 2008; Solstad 
et al. 2008), more complex network dynamics (Maurer et al. 
2006), or temporal organization of the inputs (Molter and 
Yamaguchi 2008) might make the sizes of the fields more 
similar to those seen in experimental recordings. We also noted 
that the use of inputs with larger grids was an obvious solution 
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to this problem (Fig. 2H, Supplementary Fig. S5). Whereas the 
dorsoventral topographical organization of grid spacing is now 
known to a good quantitative degree (Barry et al. 2007; Brun 
et al. 2008; Hafting et al. 2005), its translation to the dorso-
ventral axis of the hippocampus via the topographical organi-
zation of MEC-hippocampus projections is less quantitatively 
characterized especially with regard to the direct pathway that 
projects to CA1. Thus both the smaller and larger sets of grid 
inputs we tested are in principle compatible with available 
experimental data if the intent is to model place cells classi-
cally recorded from the dorsal hippocampus. 

In single-unit experiments, although some place fields are 
present from the rat’s very first visit to a novel location (Hill 
1978), other place fields develop over time, and the ensemble 
code for location in CA1 improves its accuracy over the course 
of exploration (Frank et al. 2004; Wilson and McNaughton 
1993). Our simulations reproduced both rapid and delayed 
formation of place fields, the latter occurring in a location that 
had been previously “ignored” by the cell. The diversity in our 
simulations was due to factors affecting each cell differently, 
such as the spatial distribution of suprathreshold synaptic 
activity, which was determined by the specific alignment of 
input grids to the cell, the relative degree of excitation at the 
peaks of this distribution; and the duration and order in which 
the peaks were first visited. 

The simulations were initialized with equal weights on all 
inputs. Assignment of a heterogeneous distribution of initial 
weights is likely to be more physiologically realistic (de 
Almeida et al. 2009). This assignment would favor the influ-
ence of those inputs that start with higher weights, but because 
a reduced number of inputs still fails to produce single-peaked 
fields by nonplastic integration when grid phase is kept random 
(data not shown, and see Solstad et al. 2006), the nature of the 
problem would not be essentially affected. For similar reasons, 
we refrained from modeling the firing rate differences that are 
experimentally observed across different vertices of the grid 
(Hafting et al. 2005). In their model based on learning in a 
competitive network, Rolls and colleagues (2006) found that 
such differences helped reduce the number of output cells with 
multiple fields. 

Remapping 

Although an exploration of hippocampal place-field remap-
ping was not an original goal of this work, the model offers 
potential mechanistic insights into this prevalent phenomenon. 
The model produced place fields that were stable within a 
single behavioral session (with rare cells changing their firing 
properties within the session, consistent with experimental 
data; Knierim 2002). However, in any pair of simulations that 
started from identical conditions—including the same uniform 
synaptic pattern—and differed only with respect to the initial 
exploration trajectory or the precise timing of input spikes, the 
model naturally produced different sets of place fields that 
mimicked the remapping seen experimentally under numerous 
conditions (Bostock et al. 1991; Jeffery and Hayman 2004; 
Knierim 2003; Kubie and Ranck 1983). The ease at which 
these independent sets of place fields develop from inputs with 
minimal or null spatial differences is an inevitable byproduct of 
the fast, nonlinear plasticity dynamics that were necessary for 
normal place field formation—a “butterfly” effect. The goal of 

these computational manipulations was to unveil the dramatic 
potential for the creation of orthogonal output representations 
inherent in the process of place field generation itself, even 
before taking into account the spatial changes that can occur in 
entorhinal inputs during remapping in real experiments (Fyhn 
et al. 2007). However, because these changes in the entorhinal 
inputs have not been extensively characterized, it is difficult at 
present to address how (or whether) the inherent pattern sep-
aration potential in the model might be utilized to reproduce 
remapping phenomena observed in response to environmental 
alterations in experimental data. Place cells typically fire in the 
same locations in repeated trips to an unaltered environment 
(Thompson and Best 1990). The learning rule we examined 
potentiates a set of synapses onto a place cell that produces a 
primarily single-peaked place field, while depressing all other 
synapses. However, when the animal leaves that environment, 
the same plasticity rule will tend to depress the previously 
potentiated synapses. This depression could occur, for exam-
ple, during the exploration of a different environment. In this 
situation, it is not known whether the firing patterns of all grid 
cells always maintain the same spatial relationship to each 
other between environments (Fyhn et al. 2007). If clusters of 
grid cells can re-orient or shift independently of each other in 
a novel environment, the formation of a new set of place fields 
would erase the synaptic patterns previously learned in the 
original environment. Even if all grid cells remained coherent 
with each other across environments, the system could localize 
itself in a new environment to a different location on the 
two-dimensional sheet far away from the location active in the 
first environment (see supplementary discussion in Fyhn et al. 
2007). In this case, the sets of grid cells coactive in the new 
environment would be different from those in the first envi-
ronment, again promoting erasure of the previously learned 
synaptic patterns. When the animal is subsequently reintro-
duced into the first environment, even if the grid cells fire in the 
same locations as in the first exploration, the inherent remap-
ping processes in the model would produce a different set of 
place fields. 

This problem can be viewed as a case of the stability/ 
plasticity dilemma (Abraham and Robins 2005; Grossberg 
2009) exacerbated by the very fast learning that we find 
necessary for building place fields. It is not limited to the 
specific plasticity mechanism studied here. Any feed-forward 
model that implicates plasticity in the formation of place fields 
from only grid-cell inputs (Molter and Yamaguchi 2008; Rolls 
et al. 2006; Si and Treves 2009; Ujfalussy et al. 2008) is 
unlikely to account spontaneously for the memory of many 
place field maps if investigated with spiking units and spatial 
sampling that is temporally and behaviorally realistic. One 
potential solution to this problem is that after a synapse from a 
particular grid cell to a place cell becomes potentiated, some 
biochemical marker or other neuromodulatory process might 
prevent plasticity at that synapse, thus protecting it from 
erasure by subsequent experience. For example, prion-like 
proteins have been proposed recently as candidates for long-
term memory storage that would be resistant to subsequent 
reversal (Bailey et al. 2004). If the synapses are not protected, 
then a teaching mechanism would be necessary to retrain the 
synapses to fire the postsynaptic cell in the same location as 
previously learned. This could be done by a system that is 
sensitive to external landmarks or local cues—perhaps from 
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the lateral entorhinal cortex—providing input to DG or CA3 
that drives the place cell to fire in the same location. Even a 
weak spatial bias might bootstrap the same set of grid cells and 
place cells to fire in synchrony as before (especially if coupled 
with hypothesized attractor dynamics provided by the recurrent 
collateral system in the CA3 region), driving the system to 
potentiate the same synapses as in the previous session. In the 
light of the experimental suggestion that long-term memory of 
place fields is NMDA dependent but their generation is not 
(Kentros et al. 1998), such a teaching process should be 
experimentally distinguishable from the field formation. Al-
though this necessity for constant relearning may seem ineffi-
cient, there is experimental evidence that CA1 place fields 
undergo plasticity (revealed through backward expansion of 
place field size and location) every time an animal enters a 
familiar environment after a sufficient delay (�24 h) (Ekstrom 
et al. 2001; Mehta et al. 1997). Such plasticity in familiar 
environments is not evident in CA3 (Lee et al. 2004), suggest-
ing that the mossy fiber and recurrent collateral inputs in CA3 
may be part of the long-term memory system that allows CA3 
cells to fire at the same location in repeated trips to an 
environment. The Schaffer collateral system may then teach 
the CA1 cells to fire in the same location each time relative to 
the incoming MEC input, thus providing the intersession place-
field stability observed in most experimental studies. 

Comparison with different mechanistic models 

Rolls and colleagues (2006) proposed the first mechanistic 
model for the grid-to-place transformation. The model com-
bined synaptic plasticity in place cells with a partial winner-
take-all rule regulating their population activity to introduce 
competition between them. Plasticity was implemented as 
Hebbian potentiation of feed-forward projections from grid 
cells accompanied by fast weight renormalization and was 
shown necessary to generate place fields. This framework was 
largely shared by later studies that investigated how additional 
factors such as phase precession of grid cell firing (Molter and 
Yamaguchi 2008) or putative inputs from the lateral entorhinal 
cortex (Si and Treves 2009) could contribute to the properties 
of the transformation. Our study suggests decoupled roles for 
plasticity and competition: plasticity alone is sufficient for 
generating unitary place fields in single cells, whereas network 
competition may distribute fields more evenly across the en-
vironment and reduce the number of active cells. We also 
provided the first detailed analysis of the nature of the plasticity 
rule in relation to its success in producing place fields based on 
a spiking model. 

A complementary hypothesis was investigated by de 
Almeida and colleagues (2009), who showed that the winner-
take-all rule can produce multipeaked place fields similar to 
those recorded from dentate gyrus without requiring synaptic 
plasticity as long as the initial conditions encompassed a wide 
range of synaptic weight values. This hypothesis has the 
advantage of not requiring the inputs to be aligned at one 
vertex location because competition can in principle nonlin-
early amplify even slight differences of postsynaptic activation 
across space. The stability of the place fields obtained with this 
mechanism, however, needs to be confirmed with a spiking 
model using nonphenomenological network competition, real-
istic spatial sampling, and noninstantaneous kinetics of synap-

tic excitation. For instance, the total momentary excitatory 
drive to a place cell firing in its field is a function of the recent 
trajectory, not only of the current position, due to the slow time 
course of the excitatory contribution of NMDA channels, 
which may be greater than the faster AMPA contribution (de 
Almeida et al. 2009). In our simulations, this effect proved 
beneficial for a less-than-ideal implementation of heterosynap-
tic depression (Supplementary Fig. S6), but in a model that 
resolves competition on the fast timescale of one gamma 
oscillation as proposed by de Almeida and colleagues (2009), 
it could cause different sets of winners to emerge across 
distinct traversals of the same location as a function of the 
approaching trajectory. Nonetheless, the existence of models 
based on different physiological mechanisms (plasticity vs. 
network competition) suggests that the problem of place field 
formation is still experimentally underconstrained. 

Hayman and Jeffery (2008) have suggested that contextual 
inputs from LEC and grid inputs from MEC may be clustered 
onto individual branches of a DG granule cell dendritic tree 
such that the contextual input determines which branch is 
active and thereby produces context-specific firing of the cell. 
Ujfalussy and colleagues (2009) have investigated the same 
notion in a mechanistic model employing a plasticity rule— 
with similar heterosynaptic depression properties as in our 
study—applied separately to each postsynaptic dendritic 
branch rather than to the postsynaptic soma as in our model. 
Each branch received both visual and grid-cell inputs and could 
create a place field in one environment. The cell summated the 
different dendritic contributions thus giving rise to the inde-
pendently modifiable, multiple firing fields typical of DG 
granule cells (Leutgeb et al. 2007). This may be a fruitful line 
of investigation into determining both context specificity of 
place fields as well as place-field stability in repeated trips to 
the same environment—a problem that we discussed in the 
previous section. A disadvantage of applying plasticity in a 
compartmentalized fashion, however, was that heterosynaptic 
depression could not work across branches. Manual interven-
tion was hence necessary to silence those branches that did not 
reach sufficient activation for plasticity to depress their inputs 
(Ujfalussy et al. 2009). 

Experimental tests 

Some implications of the present model provide suggestions 
for future experimental research. The core prediction can be 
asserted as follows. While the field of a place cell is developing 
in a novel environment, every grid cell input that has an 
intervertex space at the place-field location must experience a 
fast reduction of its excitatory influence on the place cell. The 
reduction will need to be especially pronounced if the input at 
hand is not already depotentiated or depressed prior to the 
exposure to the new environment. Ideally, this prediction 
would be tested with intracellular recording of a single hip-
pocampal place cell (Epsztein et al. 2010; Harvey et al. 2009; 
Lee et al. 2009), and (some of) its input grid cells during the 
animal’s foraging session, by gauging the EPSPs provoked 
independently by each input via microstimulation before and 
after the session. This would be an extremely difficult exper-
iment with current technology, however. Alternatively, the 
prediction could be tested in vitro by the quasi-simultaneous 
photostimulation of multiple dendritic sites (Gasparini and 
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Magee 2006; Losonczy and Magee 2006) in the stratum lacu-
nosum-moleculare (where the perforant path entorhinal inputs 
make their connections) of a proximal CA1 cell the soma 
potential of which is also recorded. The stimulation could be 
driven by the first stage of our simulations—which produces 
spike trains according to modeled grid cells and the tracked 
position of the rat. The spikes produced by the cell could be 
used with this positional data to build a virtual spatial rate map 
(based on the positions of the rat that correspond to the output 
spikes in the simulation). Assuming a virtual place field is thus 
produced, the EPSPs resulting from periodic independent stim-
ulation of the different inputs could be used to monitor whether 
each input’s excitatory influence on the postsynaptic cell 
evolves in accordance with the prediction. This experiment 
amounts to replacing the integrate-and-fire “place cell” unit in 
our simulations with a real cell in vitro. With the caveat that the 
spatial resolution of photostimulation does not currently attain 
control of single synapses (Gasparini and Magee 2006; Loson-
czy and Magee 2006), the results could provide preliminary 
evidence in favor or against the model. Note that strong 
evidence consistent with the model would require that the 
alterations in synaptic efficacy occur rapidly to reflect the 
requirement for fast plasticity shown by the model. Similarly, 
plasticity should occur when the postsynaptic cell fires, and the 
sign of plasticity should depend on the activity level of the 
presynaptic input. These predictions are specific to the current 
model rather than to a generic Hebbian plasticity model. 

The emergent properties of the model have potential exper-
imental implications as well. Some studies of place cells have 
demonstrated an over-representation of the boundaries of an 
environment compared with the center (Hetherington and Sha-
piro 1997; Wiener et al. 1989; but see Muller et al. 1987). We 
noted that minor changes in the initial exploration trajectory 
are sufficient to modify the location where place cells form 
their fields, and the locations visited the most in this early 
phase are more likely to eventually host place fields. This result 
suggests that one contributing factor to this boundary over-
representation may be the tendency of rodents to first explore 
the edges of a novel environment before venturing out into the 
center (Drai and Golani 2001; Drai et al. 2001; Tchernichovski 
and Benjamini 1998; Tchernichovski et al. 1998), in addition to 
the possibility that the over-representation is partly inherited 
from boundary cells in MEC (Savelli et al. 2008; Solstad et al. 
2008) or re-entrant subiculum outputs (Lever et al. 2009). 
Experimental manipulations could be performed to systemati-
cally constrain the early rat’s trajectory (Hayman et al. 2008) 
and test the influence of the early trajectory on the inhomoge-
neities of field distributions. Moreover, in our simulations, we 
found that feedback inhibition considerably reduces the inten-
sity of this influence. The prediction follows that if it were 
possible to inactivate feedback interneurons of the hippocam-
pus (like OLM cells) (Freund and Buzsaki 1996) selectively 
without otherwise compromising normal place field formation, 
the global spatial distribution of place fields would become less 
uniform and possibly more concentrated in the areas first 
explored by the rat. 
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