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Abstract 

These are lecture notes on Neural-Network based Machine Learning, focusing almost entirely 
on very recent developments that began around 2012. There are a ton of materials on this 
subject, but most are targeted at an engineering audience, whereas these notes are intended for 
those focused on ‘theory’, but from an extremely pragmatic perspective. 
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1 A Brief Conceptual Tour of Contemporary ML 

At the beginning of a course I always like to provide a philosophical/conceptual tour of the subject 
matter. Usually I apologize and say “this won’t make much sense, but hopefully it’ll give you some 
organizing principles”. In this case, the field may be simple enough that this will make some sense 
right away! 

1.1 Curve Fitting with at Least a Million Parameters 

If at any point Machine Learning seems confusing, complicated, jargon-filled, etc, then just remember... 
it’s really just curve fitting, or ‘regression’, with a very, very large number of parameters. 

In ML, we typically represent data as a vector x in a high dimensional (often  100) vector 
space. Canonical examples include a vector of all the pixel intensities in an image, or a vector that 
can represent all of the words in a language-model’s vocabulary. That means that we need a way to 
parameterize a complex, non-linear function that acts on this space. Neural networks are the most 
obvious modular construction that can represent a large class of such functions. 

We build a NN by taking our data x i , performing an affine transformation, and applying a simple 
non-linear function to the resulting components. The most frequent, and now-canonical example is 

f i(x) = max 
 
0, W ij x

j + b i 
 

(1.1.1) 
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The max(0, y) function is referred to as a ‘Rectified Linear Unit’ or ReLU in the literature. It’s 
perhaps the simplest possible non-linear function, as its piecewise linear with two pieces, one of 
which is zero. The matrix W and vector b are typically referred to as ‘weights’ and ‘biases’. Together 
they are the ‘neural network parameters’. When a NN trains or ‘learns’, it is simply improving its 
choice of values for W and b in order to better accomplish a specified task. 

Our example f above represents a single layer of a NN. A general NN is simply a composition of 
such functions, explicitly 

max 
 
0, W i n,j max 

 
0, W j n−1,k max (0, · · · ) + bj n−1 

 
+ b i n 

 
(1.1.2) 

In most cases each layer of the NN depends on separate parameters Wn, bn for the nth layer. The 
object we just wrote down is referred to as a fully connected NN. For historical reasons it’s often 
also called a ‘multilayer perceptron’ model. 

We can form much more complicated NN architectures by splitting up our vector space x into 
sub-components, and having different (smaller) matrices act on the subcomponents in a variety of 
complicated ways. We can also apply more general operators or linear-algebra constructions to the 
results. Perhaps the most famous examples of these ideas are the Convolutional Neural Network 
(CNN) and Recurrent NN (RNN), of which the LSTM or ‘Long Short-Term Memory’ network is a 
more involved example. We’ll discuss them in detail later on. 

If our initial vector space has high dimension (eg ∼ 103), as is typical, then W will necessarily 
contain a lot of parameters, at least of order 106 . It seems that the field of NN-based ML has only 
developed recently because of the computational requirements to deal with so many parameters, 
and such large data samples. In particular, excitement in the field was kicked off in 2012 by the 
‘AlexNet’ paper of Krizhevsky, Sutskever, and Hinton. 

Why are we here? It makes sense for physicists to think about this subject because NNs are 
much more like condensed matter systems than algorithms. They have enough parameters that 
they’re not so far from a kind of ‘thermodynamic limit’. 

1.2 What’s the Goal of Learning? 

In the last section we gave a very brief explanation of what a NN is – a very general non-linear 
function on a high-dimensional vector space. But what should we do with it? 

All we really want is to do ‘curve fitting’ or ‘regression’, ie we want to learn values for the NN 
parameters θ = {Wk, bk} so that the complete function F represented by the NN does something 
interesting or useful. That means that we need to (1) specify a goal and (2) figure out how to learn 
values for θ so that our NN does a good job of achieving that goal. 

In the ML context, these goals are almost always represented by a loss function. This is a 
function that depends on both θ and the data, which is minimized for values of θ where the NN is 
performing well. The canonical example is if we try to draw a straight line through a scatter plot of 
data, then our loss function might be the least squares loss 

L = 
 

i 

|yi − Fθ(xi)|2 (1.2.1) 
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and we learn the θ – in this case just the slope and intercept – so that the line passes through the 
data. Most loss functions in machine learning can be understood and justified in terms of probability 
and information theory, most often using the maximum likelihood principle. 

In general in ML, we would like to find functions that classify images, write paragraphs, play 
games like Atari or Go, or generate a host of never-before-seen images. Soon we will discuss how to 
specify loss functions that lead to functions that accomplish these goals. Generally speaking they 
are classified as 

• Supervised Learning: For each data point we have a specific goal, as in the regression example 
above. This also means that we can explicitly take derivatives of the loss function. 

• Reinforcement Learning: How to learn a policy that determines what action an agent should 
take in a given environment. In RL we can evaluate whether the policy is good or bad on 
average, over some time interval, but we do not know if each moment-to-moment choice the 
AI makes is optimal. The canonical example is a game-playing AI. 

• Unsupervised Learning: We want to somehow extract patterns from the data, naively without 
a clear specification of what a ‘pattern’ is. In practice we usually make progress here by 
turning UL into something closer to SL. Note that if we do UL very, very well, we might also 
implicitly solve a lot of SL and RL problems. 

The difference is largely about how close the connection is between the goal and the data itself; 
when the connection’s more immediate, learning is easier, quicker, and more efficient. We’ll discuss 
all of this in detail soon. 

Figuring out how to specify, or learn to specify, better and more abstract goals is an important 
area of research. It’s especially important when considering safety, as simple goals often have 
unintended consequences. 

1.3 Optimization – How to Learn 

The third absolutely crucial ingredient in contemporary ML is optimization – given a goal and a 
set of NN parameters, how do we determine values of the parameters so that the NN performs 
well? This is called optimization because we are ‘optimizing’ the parameters to minimize the loss, or 
maximize performance. 

In practice, essentially all forms of optimization used in ML are versions of stochastic gradient 
descent, where 

θn+1 = θn − ∇θL(θ; X) (1.3.1) 

where  is typically called the learning rate. This is a discrete process of updating the parameters to 
try to minimize the loss. The word ‘stochastic’ is used here because we do not compute the loss over 
the full dataset, but only over a smaller, randomly selected batch of data from the full distribution. 

There are many, many fancier versions of gradient descent in use, with largely uninformative 
names like Momentum, RMSProp, Adafactor, Adam, etc. There are also algorithms that attempt 
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to use an adaptive learning rate. That said, in practice the field has converged to primarily use 
Momentum and Adam. We’ll explain what these are and why they might be a good idea later on. 
But the ‘why’ of these algorithms isn’t all that well understood. Here are some quick comments: 

• The main issue we seem to confront is ill-conditioning – the fact that the very, very high 
dimensional ‘loss landscape’ has some very steep and some very shallow directions. This can 
be formalized by comparing the largest and smallest eigenvalues of the Hessian of the loss. 

• Another obvious issue we can confront is that the loss function will not be convex, and so it 
may have local minima and saddle points. It’s actually not clear (to me) to what extent this 
is a significant problem in ML, but it’s widely discussed as a potential problem. Note that 
a random matrix will tend to have as many positive as negative eigenvalues, so naively we 
should expect the local loss landscape to have many saddle points. 

• As physicists it’s tempting to think about the gradient descent update in the continuum limit, 
where  → 0 and we’re smoothly ‘rolling’ down the loss potential. But the continuum limit is 
a terrible approximation to efficient optimization. In practice, we want our discrete steps to be 
as large as possible, so that gradients at successive steps are uncorrelated – otherwise, we’re 
‘wasting’ information. 

• There’s a ton of theory on optimization, but it’s unclear how well it applies, as most treatments 
focus on the convex case. Furthermore, formal theory papers often recommend schedules for 
the learning rate that lead to prove-able convergence, but that aren’t very effective in practice. 

• It’s worth noting that NN parameters have a lot of degeneracies – for example, permutations 
of the rows of matrices in each layer. So even global optima will be very non-unique. 

Optimization is all about getting a good result while using as little computation and time as possible. 
Note that because NNs and datasets are extremely large (and constantly pushing the frontier), 
memory use is also a major constraint on optimization. 

There are also interesting 2nd order optimization methods, which use information about the 
Hessian (or a potentially less familiar object, the Fisher information matrix) to optimize faster. These 
methods aren’t very widely used, as the cost of computing the Hessian hasn’t been convincingly 
demonstrated to be worth the gain. 

Improving and better understanding optimization is an important area of research, though as 
with many areas of ML, it’s challenging to demonstrate convincingly broad improvements. 

1.4 Algorithmic Differentiation and Backprop 

To optimize our NN efficiently we need to be able to take derivatives of very general classes of 
functions. This seems challenging, because these functions may be represented by complicated 
computer programs involving nested loops, matrix multiplication, and all sorts of non-linear functions. 
How should we go about it? 

Here are two naive approaches that we won’t want to use. The first is symbolic differentiation – 
if we have a symbolic representation of our function, we can compute the derivative analytically, 
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and then write a program based on the resulting formula. This won’t work because it’s inefficient 
and insufficiently general. To see why it’s inefficient, consider f(xi) = 

 
i xi. The gradient of this 

function is very simple conceptually, but if you write it out symbolically (without some insight), it 
actually involves a ton of symbols. For an even worse example, think about what you’d do with the 
determinant of a matrix! 

The second naive approach is finite differences like 

f (x) = 
f(x + ) − f(x) 

 
(1.4.1) 

In general, this is a very problematic due to finite precision and the presence of order 2 terms. 
For example, consider the function f(x) = 1010 + x2 , and say we want to compute its derivative 
at x = 10/9 = 1.111 · · · . Whatever we choose for , we will end up with horrendous rounding or 
truncation errors. For instance if  = 10−3 and we have 16 digits of precision, we’ll compute 

(1010 + 10
2 

92 + 2× 10 
9 10

−3 + 10
2 

92 10
−6) − 1010 − 10

2 

92 

10−3 
→ 2.2234 (1.4.2) 

So we only end up with 5 digits of precision, and even at that level we get the wrong answer! 

Algorithmic Differentiation 

Fortunately, there’s a third way, which is referred to as Algorithmic Differentiation1 or sometimes 
Automatic Differentiation... either way it’s AD. It’s what’s used by NN libraries like Pytorch and 
Tensorflow, though it’s also used in a wide variety of other contexts. 

The idea of algorithmic dfifferentiation is quite simple. Given that a computer is literally 
computing some function f : X → Y , it must be possible to decompose the function f into a 
number of very elementary steps. Each of these building blocks can be differentiated explicitly (ie 
analytically), with the result evaluated numerically. This fact plus the chain rule means that given 
any program for evaluating f , we can break it down into constituent pieces and use the chain rule 
to obtain the full derivative, without any approximations that will blow up the numerical error. 

Typically in general and also in codes like tensorflow, the decomposition of a function into more 
or less elementary pieces is referred to as the computational graph. 

Backprop 

By the way, you’ve probably heard of the backpropagation algorithm. It’s really just a re-statement 
of the chain rule. That is if our function is 

f(gi(θ j)) (1.4.3) 

then we can compute the derivative as 

∇θj f = 
 

i 

∂f 
∂gi 

× 
∂gi 
∂θj 

(1.4.4) 

1For an extensive discussion see the book by Griewank and Walter on ‘Evaluating Derivatives’. 
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This can be computed by first evaluating ∂jgi or first evaluating ∂if . If we compute ∂jgi first we are 
propagating forward. But we are ‘propagating backwards’ if we first compute the derivative ∂f

∂gi 
, 

which is at the ‘end’ of the computation, and then we propagate ‘backward’ towards the beginning 
of the computation, by computing ∂gi 

∂θj
and multiplying. With more nested functions we’d keep 

‘propagating further backward’. That’s it. 
The reason to perform backprop is that when we have a small number of outputs and a high-

dimensional input, then it’s more efficient than computing in the forward direction. Let’s look at 
the computation in a bit more detail, and see exactly how much less efficient it is to compute the 
derivatives vs the function itself. 

If our NN has non-linearities φ(x), then a two-layer NN function will take the form 

y i = φ(W ij 2 φ(W jk 
1 xk + bj 1) + b i 2) (1.4.5) 

where repeated indices are summed. The layers have dimensions D2, D1, D0 for the outputs, hidden 
layer, and the data itself, respectively. Assuming φ isn’t especially complicated, the largest source 
of computation when we simply evaluate yi will be the matrix multiplications by W2 and by W1. 
These will require D2D1 and D1D0 component multiplications, respectively. The biases just requires 
D2 and D1 additions, which are negligible in comparison. 

How about the evaluation of the derivatives with respect to the parameters via backprop? This 
will also be dominated by the matrices. We can compute (here the i index isn’t summed over) 

∂yi 

∂W ij 2 

= φ  
 
W ib 

2 φ(W bc 
1 xc + b b 

1) + b i 2 

 
× φ(W jk 

1 xk + bj 1) (1.4.6) 

This provides the derivatives with respect to W2. But to continue the process at the next layer, 
we need to compute the derivative wrt to the hidden-layer activations φj, which is (i and j aren’t 
summed here) 

∂yi 

∂φ j 
= φ  

 
W ik 

2 φ(W kc 
1 xc + b b 

1) + b i 2 

 
× W ij 2 (1.4.7) 

With this information we can proceed to compute gradients at the next layer. Notice that we have 
had to perform two matrix multiplications per layer to evaluate the derivatives via backprop, whereas 
we only had one matrix multiplication per layer for the forward evaluation of the NN. This is a useful 
rule of thumb when estimating the number of computations and speed of evaluation of backprop. 

I haven’t written out the derivatives with respect to the bias b2, as it’s a negligible fraction of 
the computation. But it’s very important – we most definitely need to learn b as well as W when we 
train our NN! 

1.5 Architectures 

Although fully connected NNs are still very common as sub-components, in practice, for most tasks, 
other ‘architectures’ are used. At this moment there are really only three basic ideas that have been 
shown to be powerfully useful: 
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• CNN: Convolutional Neural Networks are mostly used for images, and are easily motivated by 
translation invariance. They slide fixed ‘filters’ over the image to compute convolutions. 

• RNN: Recurrent NNs and their stabler cousin, the LSTM, are very widely used for sequence 
data. 

• Attention: A third idea that’s become very important in the last couple of years is attention, 
and a specific pure-attention model called the Transformer. Attention-based models process 
data by highlighting or up-weighting specific features based on learned correlations. 

The first two can be easily motivated by symmetry, while the third’s a bit more abstract, but might 
be motivated dynamically, by considering the kinds of correlations present in real-world data. 

Another aspect of NNs that might be placed under the aegis of ‘architecture’ is whitening – 
that is, we would like information to ‘flow through’ a NN in a stable way, without signals blowing 
up or vanishing. Several of the most highly cited papers from the last five years simply suggest a 
strategy for whitening, and often that strategy in effect modifies the activation functions or effective 
architecture in some simple way. 

1.6 Overfitting and Generalization 

A shocking feature of NNs is that if P is the number of parameters and D is the dataset set size, 
typically we’re in the regime P  D. Metaphorically, this means that when we train NNs, in effect 
we’re fitting a 10th order polynomial to 3 data points! 

The obvious problem with fitting a 10th order polynomial to 3 datapoints is that it will overfit, 
rather than learn any meaningful pattern in the data. Somehow NNs mostly don’t overfit too much, 
and in practice overfitting doesn’t necessarily get worse as P increases. The absence of overfitting is 
closely related to the idea of generalization – a ML model generalizes well if it does well not just 
on the training data, but on other ‘test’ data that it has not encountered before. A related question 
is whether ML models learn general, robust features first, or if they learn from the bottom-up, 
starting with ‘details’. My sense is that generalization and overfitting are not very well understood 
in the field, and elementary findings often seem to surprise seasoned researchers. That said, will 
give a simple account later in the course which seems to explain the rough features, in particular 
why P  D isn’t a catastrophic problem. 

To compensate for overfitting, models are often regularized, which means that they are 
constrained or perturbed in some way to decrease overfitting and improve generalization. The most 
common intuitions are that 

• If models are constrained to be simple – which might mean, for example, that their parameters 
are penalized for exceeding some small range – then one might hope to learn more general 
patterns. A common strategy is adding a norm of the parameters to the loss. 

• If models are robust to perturbations, either in their parameters or the data, then they’re less 
likely to overfit. This idea leads to one of the most popular regularization schemes, called 
Dropout, where some fixed random portion of NN weights or activations are simply set to zero. 
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It’s worth noting that in some cases, overfitting isn’t necessarily a problem, or just reduces to 
optimization. This is true in the infinite data limit, and RL is often, in some sense, in this limit. 

1.7 Datasets 

In many respects, datasets have been more important to machine learning than algorithms or 
architectures. Large datasets motivate and enable new accomplishments, and have become the main 
way that new ideas are benchmarked. This phenomenon has a sociological dark side, as many papers 
are written in order to compete for the best result on a given dataset, so much of the work in the 
field involves tuning for a limited and rather artificial prestige. 

Here are some extremely common datasets: 

• MNIST & SVHN: At present these are essentially ‘toy’ or ‘warmup’ datasets. The former 
contains 5 × 104 images of handwritten digits, and all are 28 × 28 = 784 pixels. Street View 
House Numbers has a smaller and larger version; the large version has about 5 × 105 small 
color images of individual digits from home addreses. 

• CIFAR: These images are small 32 × 32 color images of a variety of objects, so that this dataset 
is a bit more challenging than SVHN. There’s a 10 and 100 class version. This dataset is 
still quite small, however, so progress on CIFAR image classification is mostly about avoiding 
overfitting. 

• ImageNet: This is the predominant large image dataset, with about 106 color images of total 
size 256 × 256, and with 1000 different potential labels. AlexNet’s progress on ImageNet kicked 
off the present wave of NN research. 

• Penn Treebank: This is a small language model dataset. 

• Billion Word Benchmark: A larger language modeling dataset. It’s scrambled at the sentence 
level, so that it doesn’t have any long-term dependencies (eg no self-consistent paragraphs). 

• Mujoco: This is a famous proprietary continuous control environment with semi-realistic 
physics. It’s one of the few most common reinforcement learning environments, and has a 
continuous action space. Even simpler examples are ‘classic control’ problems. 

• Atari: Atari is one of the most common RL environments, including ∼ 50 different Atari 
games. Montezuma’s Revenge is famously difficult due to its sparse rewards and the necessity 
of exploration; most other Atari games have been solved to a super-human level. 

Of course there are many other datasets large and small, but these are the most common. MNIST, 
SVHN, CIFAR, Penn Treebank, and Atari are all small enough that you can train ML models to (in 
some sense) solve them on a laptop or in Google colab. At the moment, training a vision model on 
ImageNet will typically cost hundreds of dollars in cloud GPU time... and there are some proprietary 
datasets much larger than ImageNet. It’s increasingly difficult to conduct cutting edge ML research 
without major computing resources. 
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1.8 Setting Up an MNIST Classifier 

A simple fully connected NN with a few layers is sufficient to do pretty well on the MNIST dataset 
of hand-drawn numerals. And pretty much any optimizer will do for the learning process (default 
learning rates, and any ∼ 10s or 100s batch size should work). The only ingredients we need are a 
method of outputting a classification and an explicit specification of the loss. 

For classification, we will have our network output probabilities pi(x) for the image x to be the 
numeral i = 0, 1, · · · , 9. For this we use the softmax function 

pi(x) = σi(a j) = 
e ai−amax  
j e

aj −amax 
(1.8.1) 

where the aj are called ‘logits’, and are 10 real numbers outputted by the network. So this will be 
our final layer. When making classification decisions, we just choose the digit with the maximum pi, 
which is also simply the digit with maximum ai. 

For the loss, it’s standard to use the maximum likelihood, aka cross-entropy, aka KL-divergence 
between the correct distribution and the NN output distribution 

Lθ(pi, yj, x) = − 
9 

i=0 

yi log pi(x) = − log pactual(x) (1.8.2) 

where yi = (0, · · · , 0, 1, 0, · · · , 0) is a vector with a 1 in the position of the digit and 0s elsewhere. 
This is often called a ‘one-hot’ vector. 

1.9 Open Problems 

At the empirical level, one might argue that there’s a single, predominantly important open 
problem, namely that of sample efficiency. Although it varies from case to case, most experts 
would agree that ML algorithms tend to need far more data than humans and animals to learn a 
complex task. The most extreme example is perhaps Dota, where OpenAI’s Dota agents play the 
game for the equivalent of hundreds of years in order to achieve human pro level performance. And 
a more practically relevant example is robotics, where the main problem is that physical robots need 
too much real-world experience to learn complex manipulation tasks like folding laundry. Most of 
the more specific open problems below are reflected in poor sample efficiency. 

• Fundamentals: Our basic theoretical understanding of all forms of learning could be significantly 
improved. Even in the case of SL for computer vision, the well-known ‘adversarial example’ 
problem suggests we could be missing something big. In the case of RL and UL, our 
understanding is even more preliminary, and these fields are still viewed as incomplete. 

• Generalization: We do not have a good understanding of when and why models generalize, nor 
do we know how to make models that extrapolate beyond the distribution they were trained 
on. This will be important for robustness (eg adversarial examples) as well. 
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• Transfer Learning: When humans learn one task, they can usually transfer that knowledge to 
a host of related tasks, so that they do not need as much experience to learn. This is closely 
tied to generalization and sample efficiency. 

• Meta-Learning and One-Shot Learning: Can ML models ‘learn how to learn’? Relatedly, when 
they encounter a single new example (for instance an agent encounters a new source of reward), 
do they immediately learn to seek out similar instance in the future? We are just beginning to 
build models that can accomplish these feats. 

• Model-Based RL: We plan for the future, and imagine future states in order to make decisions 
now. Most RL agents do not do this, rather they just collect a ton of experience and reinforce 
successful behaviors while discouraging poorly performing behaviors. But incorporating 
planning and a ‘world model’ into RL is a major open problem that many researchers are 
currently focusing on. 

To be clear, the relative importance and meaning of these problems is debated. Most researchers 
view them as fundamental, but it’s not impossible that they could be partially resolved by simply 
training larger models on larger and more varied data distributions. 

Another large and multifacted open problem is safety. We can break it down into components: 

• How can we teach agents about complex human values and goals, which are very difficult 
to specify in terms of a simple reward function? How can we make sure they pursue those 
goals, accounting for specific safety constraints, even when encountering new situations and 
environments? 

• How can we design robust agents, which have a clear ‘understanding’ of what they know and 
why, so they can adapt correctly to new information, ‘off the training distribution’... or at 
least behave cautiously? Can we remove (sufficiently simple?) adversarial examples? 

• How can we ensure that as AI gets deployed in more and more domains, it’s used altruistically, 
rather than to eg maximize the balance of a bank account or the dominance of a nation state? 

1.10 Probability and Random Variables (Mostly Notation) 

Before moving on, let’s establish some notation. Much of this is pretty standard, but it’s easy to 
work as a physicist without really internalizing it. And it’s useful to be explicit about the distinction 
between a sample of data and abstract random variables representing that sample. 

We’ll often discuss probability distributions. Sometimes I’ll write them as p(X), which suggests 
the full distribution; other times I’ll write p(x), which instead suggests ‘the probability of a given 
x ∈ X’. But I can’t promise I’ll be wholly consistent. If I have a joint probability over X and Y , I 
can write p(X, Y ). Note then that I can get a distribution over just X by marginalizing, so that 

p(x) = 
 

y 

p(x, y) (1.10.1) 
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Conditional probabilities are written p(x|y) = ‘the probability of x, given y’. Note that 

p(x, y) = p(x|y)p(y) = p(y|x)p(x) (1.10.2) 

and this is/gives Bayes rule (we get the usual Bayes rule by dividing by one of the probability 
distributions). Marginalization makes sense in words when performed over these decompositions, ie 

p(x) = 
 

y 

p(x|y)p(y) = 
 

y 

p(y|x)p(x) (1.10.3) 

The first equality means that the probability of x is given by the probability of x, given y, times 
the probability of each y, once we sum over y. The second says that since p(y|x) is a probability 
distribution for y by itself, when we sum it over y with fixed x, we get 1. 

We will often talk about ‘random variables’, which are algebraic variables representative of a 
distribution p(X). Typically a (literal) number or vector is written x ∼ p which reads as ‘x drawn 
from the distribution p’, whereas the abstract random variable itself is written as X. The latter is 
something we can do algebra with, without taking an expectation value over the distribution. So we 
can talk about X3 or eX , and compute things like X2(1 + Y 2) for different random variables X and 
Y . Very often if we talk about X and Y we will assume they are independent, but they may not 
always be, ie they could be drawn from some p(X, Y ) = p(X)p(Y ). Note though that expectations 
are always linear, so 

X + Y  = 
 

dxdy(x + y)p(x, y) = X + Y  (1.10.4) 

even if X and Y are not independent. But of course XY  = XY  if they are dependent! 
Note that it’s common to study many random variables Xi where i = 1, · · · , N drawn from the 

same distribution p(X). In this way we can use the Xi as abstract representatives of a concrete 
dataset {xi} composed of literal numbers. Then we can take an expectation over all of the Xi to see 
how various functions of a literal, finite sized dataset will be expected to behave. 

2 Information Theory Background 

There are actually two somewhat different types of information theory – that which deals with 
communication (as developed by Shannon), and that which deals with the intrinsic information in 
an object or sequence (as discussed by Kolmogorov). Both are very interesting to consider in the 
context of ML, but in this section we will focus on the first type, which has many more practical 
applications. It is also closely connected with probability theory and statistics. 

2.1 Entropy in Information Theory 

In statistical physics we think of entropy as simply 

S = log Ω (2.1.1) 
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where Ω is simply the multiplicity of possible states, presumed to be otherwise equally likely. But 
for a variety of reasons, it’s more useful to think of entropy as a function of the probability 
distribution rather than as depending on a number of states or configurations. 

If we have Ω states available, and we believe the probability of being in any of those states is 
uniform, then this probability will be 

pi = 
1 
Ω 

(2.1.2) 

for any of the states i = 1, · · · , Ω. So we see that 

S = − log p (2.1.3) 

for a uniform distribution with all pi = p = 1/Ω. But notice that this can also be viewed as 

S ≡ − 
 

i 

pi log pi (2.1.4) 

since all pi are equal, and their sum is 1 (since probabilities are normalized). We have not yet 
demonstrated it for distributions that are not uniform, but this will turn out to be the most useful 
general notion of entropy. It can also be applied for continuous probability distributions, where 

S ≡ − 
 

dx p(x) log p(x) (2.1.5) 

Note that 0 log 0 = 0 (this is what we find from a limit). 
This definition of entropy arises in information theory as follows. Say we have a long sequence 

· · · 011100101000011 · · · (2.1.6) 

If this is truly a fully random sequence, then the number of possibilities is 2N if it has length N , 
and the entropy is just the log of this quantity. This also means that the entropy per bit is 

Sbit = 
1 
N 

log 2 N = log 2 (2.1.7) 

But what if we know that in fact 0s occur with probability p, and 1s with probability 1 − p? For 
a long sequence, we’ll have roughly pN of the 0s. And by the central limit theorem, we’ll be much 
less likely to have sequences with significantly more or fewer 0s. So this means that the number of 
such messages will be 

N ! 
(pN)!((1 − p)N)! 

≈ 
NN 

(pN)pN (N − pN)N−pN 

= 

 
1 

pp(1 − p)1−p 

 N 

= e NSbit (2.1.8) 
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where we see that 

Sbit = −p log p − (1 − p) log(1 − p) (2.1.9) 

So the entropy S that we’ve studied in statistical mechanics, ie the log of the number of possible 
sequences, naturally turns into the definition in terms of probability distributions discussed above. 

This has to do with information theory because NS quantifies the amount of information 
we actually gain by observing the sequence. Notice that as Warren Weaver wrote in an initial 
popularization of Shannon’s ideas: “The word information in communication theory is not related 
to what you do say, but to what you could say. That is, information is a measure of one’s freedom 
of choice when one selects a message.” 

2.2 Choice, Uncertainty, and Entropy 

Shannon showed in his original paper that entropy has a certain nice property. It characterizes how 
much ‘choice’ or ‘uncertainty’ or ‘possibility’ there is in a certain random process. This should seem 
sensible given that we just showed that entropy counts the amount of information that a sequence 
can carry. 

Let’s imagine that there are a set of possible events that can occur with probabilities p1, · · · , pn. 
We want a quantity that measures how much ‘possibility’ there is in these events. For example, if 
p1 = 1 and the others are 0, then we’d expect there’s no ‘possibility’. While if n  1 and the pi are 
uniform, then ‘almost anything can happen’. We want a quantitate measure of this idea. 

We will show that entropy is the unique quantity H(pi) with the following natural properties: 

1. H is continuous in the pi. 

2. If all pi are equal, so that all pi = 1/n, then H should increase with n. That is, having more 
equally likely options increases the amount of ‘possibility’ or ‘choice’. 

3. If the probabilities can be broken down into a series of events, then H must be a weighted 
sum of the individual values of H. For example, the probabilities for events A, B, C 

{A, B, C} = 

 
1 
2
, 
1 
3
, 
1 
6 

 

(2.2.1) 

can be rewritten as the process 

{A, B or C} = 

 
1 
2
, 
1 
2 

 

then {B, C} = 

 
2 
3
, 
1 
3 

 

(2.2.2) 

We are requiring that such a situation follows the rule 

H 

 
1 
2
, 
1 
3
, 
1 
6 

 

= H 

 
1 
2
, 
1 
2 

 

+ 
1 
2 
H 

 
2 
3
, 
1 
3 

 

(2.2.3) 

We will formalize this soon using the conditional entropy. 
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We will show that up to a positive constant factor, the entropy S is the only quantity with these 
properties. 

Before we try to give a formal argument, let’s see why the logarithm shows up. Consider 

H 

 
1 
4
, 
1 
4
, 
1 
4
, 
1 
4 

 

= H 

 
1 
2
, 
1 
2 

 

+ 2 
1 
2 
H 

 
1 
2
, 
1 
2 

 

= 2H 

 
1 
2
, 
1 
2 

 

(2.2.4) 

Similarly 

H 

 
1 
8
, · · · , 1 

8 

 

= 3H 

 
1 
2
, 
1 
2 

 

(2.2.5) 

and so this is the origin of the logarithm. To really prove it, we will take two fractions, and note 
that 1

sn ≈ 1
tm for sufficiently large n and m. The only other point we then need is that we can 

approximate any other numbers using long, large trees. 
Here is a formal argument. Let 

A(n) ≡ H 

 
1 
n 
, · · · , 1 

n 

 

(2.2.6) 

for n equally likely possibilities. By using an exponential tree we can decompose a choice of sm 

equally likely possibilities into a series of m choices among s possibilities. So 

A(s m) = mA(s) (2.2.7) 

We have the same relation for some t and n, ie 

A(t n) = nA(t) (2.2.8) 

By taking arbitrarily large n we can find an n, m with sm ≤ tn < sm+1 , and so by taking the 
logarithm and re-arranging we can write 

m 
n 

≤ 
log t 
log s 

≤ 
m 
n 

+ 
1 
n 

(2.2.9) 

which means that we can make    m 
n 

− 
log t 
log s 

   <  (2.2.10) 

Using monotonicity we have that 

mA(s) ≤ nA(t) < (m + 1)A(s) (2.2.11) 
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So we also find that    m 
n 

− 
A(t) 
A(s) 

   <  (2.2.12) 

and so we conclude via these relations that 

A(t) = K log t (2.2.13) 

for some positive constant K, since we can make  arbitrarily small. 
But now by continuity we are essentially done, because we can approximate any set of probabilities 

pi arbitrarily well by using a very fine tree of equal probabilities. 
Notice that the logarithm was picked out by our assumption 3 about the way that H applies to 

the tree decomposition of a sequence of events. 

2.3 KL Divergence or Relative Entropy, and the Fisher Metric 

The relative entropy, called the Kullback–Leibler (KL) Divergence in the ML community, provides 
one measure of the similarity between two probability distributions. However, the KL is not a true 
distance metric, since it’s not symmetric and does not satisfy the triangle inequality. 

The KL is the answer to the question ‘if I have data described by a probability distribution p, 
and a theory for that data q, what’s the rate at which data collection will inform me that my theory 
differs from the true distribution’? 

To see this, let us consider the concrete example of a binomial distribution. If we observe N 
examples from a true distribution with probabilities p and 1 − p, then the number of possible 
sequences is roughly N choose pN . But the model with probabilities q and 1 − q will assign a 
probability to this outcome given by 

N ! 
(pN)!((1 − p)N)! 

× q Np(1 − q)N(1−p) ≈ 
NN qNp(1 − q)N(1−p) 

(pN)pN(N − pN)N−pN 

= 

 
q 
p 

p  
1− q 
1− p 

 1−p 
 N 

= e−NDKL(p||q) (2.3.1) 

The ‘rate’ idea comes from the dependence on N data points. More generally we will find that 

P = 2−N 
 

i pi log pi × 
 

i 

q Npi 
i = 2−N 

 
i pi log(pi/qi) (2.3.2) 

which can be demonstrated using a multinomial expansion. So the KL divergence is 

DKL(p||q) = 
 

i 

pi log 

 
pi 
qi 

 

(2.3.3) 

As long as p and q are valid probability distributions we have 

DKL(p||q) ≥ 0 (2.3.4) 
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with equality only when p = q. Non-negativity follows from our original expression for the total 
probability P , because choosing q = p decreases the total probability, increasing DKL. Minimizing 
DKL is the same thing as maximizing the likelihood of the data given the model q. 

Let’s think a bit more about the two reasons why the KL isn’t a metric – failure of the triangle 
inequality, and asymmetry: 

• Triangle Inequality: If we take binary models with p = 1, p = 1/2, p = 0 then the KL divergence 
between the first and last is infinite, but the KL divergence between each and the p = 1/2 
model is finite. 

• Asymmetry: Consider some distribution p which is a linear combination of two Gaussians, so 
it looks like ‘two bumps’, ie a bi-modal distribution. Let’s think briefly about the choice of 
Gaussian q minimizing DKL(p||q) vs DKL(q||p). 
In the former case, we pay a huge penalty if there are any points x where p(x) is non-negligible, 
but where q is tiny. This suggests that the q minimizing DKL(p||q) will be a broad distribution 
encompassing both components of p. 

In the latter case where we are instead minimizing DKL(q||p), we pay a huge penalty if p is 
tiny when q is significant. That means that in between the two bumps, where p is tiny, we 
need q to be tiny as well. This suggests that q will tend to be identified with one of the bumps 
of p, and ignore the other one. 

This toy thought experiment shows that the asymmetry of the KL has a dramatic effect on 
the kind of results we obtain when we minimize it. 

Fisher Information Metric 

Now let’s think a bit more about the dependence of the KL on continuous parameters. If our 
probability distribution qθ(x) depends on θ, then its natural to investigate how 

DKL(qθ0 ||qθ) (2.3.5) 

behaves for small θ − θ0. Interestingly, the first term in the expansion vanishes as  
dx qθ(x)∇θ log qθ(x) = ∇θ 

 
dx qθ(x) = 0 (2.3.6) 

The second derivative (Hessian) is not zero, but it is symmetric! It is the Fisher matrix 

F µν ≡ ∇µ∇νDKL(q0||qθ) 

= − 
 

dx q0(x)∇ µ∇ν log qθ(x) 

= − 
 

dx q0(x) 

 
∇µ∇νqθ(x) 

qθ(x) 
− 

∇µqθ(x)∇νqθ(x) 
qθ(x)2 

 

= 
 

dx q0(x) (∇µ log qθ(x)∇ν log qθ(x)) (2.3.7) 
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Note that since DKL(q0||qθ) is positive, we know that F is positive definite. It is both the covariance 
of ∇µ log qθ(x) and the Hessian of the DKL(q0||qθ). If we call 

S = log qθ(x) (2.3.8) 

the score, then the Fisher is the covariance of the gradient of the score. This is another way of 
immediately seeing that it is positive definite. 

The Fisher matrix is interesting because it provides a local, coordinate independent metric on 
the space of probability distributions qθ. From a statistics/experimental point of view, it provides us 
with an idea of the local ‘resolving power’ of the data X, as it tells us how much we have to change 
the parameters to get a significantly different prediction for the data. 

Note though that the Fisher really is only local – we cannot obtain DKL(p||q) by integrating the 
Fisher, because once q differs from p more than infinitesimally, further changes in q relative to p are 
not captured by the Fisher matrix. This is a funny fact. If we have 

DKL(pθ||pθ+δθ1 ) + DKL(pθ+δθ1 ||pθ+δθ2 ) + DKL(pθ+δθ2 ||pθ+δθ3 ) + · · · + DKL(pθ+δθn−1 ||pθ+δθn ) 

Then it would seem that we obtain a ‘distance’ 

δ1F0δ1 + δ2F1δ2 + · · · δnFn−1δn = 
 

dθn̂(θ)F (θ)n̂(θ) (2.3.9) 

Where equality fails because the LHS is quadratic in the infinitesimals. We can instead define 
something more like  

dθ 

 

lim 
→0 

1 
 

 
DKL(pθ||pθ+n̂(θ)) 

 

= 
 

dθ 
 
n̂i(θ)F ij(θ)n̂j(θ) (2.3.10) 

which would produce a kind of dimensionless distance along n̂(θ). Furthermore, we could specify that 
ˆ n was parallel transported along itself, so that we’d obtain a geodesic distance. But the magnitude 
of this distance is neither the KL nor the square root of the KL between start and finish. 

Another thing one can define is a kind of coordinate independent volume element 

dV = d D Θ 
√ 
det F (2.3.11) 

This is a natural way of measuring volumes on parameter space; it is coordinate independent. These 
properties make it a naturallly ‘ignorant’ prior. Specifically we can take the prior probability that 
parameters will lie in dDΘ to be 

dDΘ 
√ 
det F  

dDΘ 
√ 
det F 

(2.3.12) 

assuming the denominator is finite. This is called the Jeffrey’s Prior. 
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Concrete Example 

Let’s look at the KL between two Gaussians. WLOG we can assume the true distribution has mean 
0 and σ = 1. Then the KL will be  

dx 
1 √ 
2π 

e−
x 2 

2 

 

− 
x 2 

2 
+ 

(x − µ)2 

2σ2 
+ log σ 

 

= 
µ2 

2σ2 
+ 

1 
2σ2 

− 
1 
2 
+ log σ (2.3.13) 

Though it’s not entirely obvious, the expression on the right is positive, and only vanishes for µ = 0 
and σ = 1. The Fisher wrt σ, µ is simply a diagonal matrix with eigenvalues 2 and 1. 

2.4 Maximum Entropy: Boltzmann and Gaussian Distributions 

Many of the simple probability distributions that we encounter in statistics (and in physics) can be 
derived from a maximum entropy principle – they are the distribution with maximum entropy given 
some simple constraint. This is a fairly standard way of deriving the Boltzmann distribution, but it 
also provides a very elegant way to think about the central limit theorem. Many other distributions 
(not covered here) can be derived in a similar way. 

Botlzmann Distribution 

Boltzmann factors can be derived in a simple and principled way – they are the probabilities that 
maximize the entropy given the constraint that the average energy is held fixed. We 
can formalize this with some Lagrange multipliers, as follows. 

We want to fix the expectation value of the energy and the total probability while maximizing 
the entropy. We can write this maximization problem using a function (Lagrangian) 

L = − 
 

i 

pi log pi + β 

 

E − 
 

i 

piEi 

 

+ ν 

  

i 

pi − 1 

 

(2.4.1) 

where we are maximizing/extremizing L with respect to the pi and β, ν; the latter are Lagrange 
multipliers. 

Varying gives the two constraints along with 

− log pi − 1 − βEi + ν = 0 (2.4.2) 

which implies that 

pi = e ν−1−βEi (2.4.3) 

Now ν just sets the total sum of the pi while β is determined by the average energy itself. So we have 
re-derived Boltzmann factors in a different way. This derivation also makes it clear what abstract 
assumptions are important in arriving at e−βE . 
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Boltzmann Factors and the KL 

Let’s say I have a probability distribution p(X) and I re-weight it so that q(x) = p(x)eµ−βE(x) . If 
we fix the zero-point (overall constant shift) of the ‘energies’ E(x) so that the distribution remains 
normalized, and work in units where β = 1, then 

1 = 
 

dx q(x) = 
 

dx p(x)e−E(x) (2.4.4) 

and the KL is 

DKL(p||q) = 
 

dx p(x) log 
p(x) 

p(x)e−E(x) 

= 
 

dx p(x)E(x) 

= E p (2.4.5) 

So the KL divergence is the expectation value of E(x) in the old distribution (given that E(x) 
includes an overall shift so that probabilities remain normalized). 

Gaussian Distributions and the Central Limit Theorem 

In fact, we can understand many other common distributions as the consequence of a simple 
constraint + maximum entropy. 

For example, the Gaussian distribution has maximum entropy given the constraint of 
a fixed mean and variance. If we write down the ‘action’ for the function p(x) as 

S = 
 

dx 
 
−p(x) log p(x) + λ1(p(x)x − µ) + λ2(p(x)x 2 − σ 2) + ν (p(x) − 1) 

 
(2.4.6) 

then we find ab ‘equation of motion’ from varying p(x) as 

log p(x) − 1 + λ1x + λ2x 2 + ν = 0 (2.4.7) 

which implies that 

p(x) = N e λ2x 2+λ1x (2.4.8) 

so that it must be a Gaussian, where λ1, λ2 are simply fixed by the fact that the mean is µ and the 
variance σ2 . The normalization is fixed in the obvious way. 

Note that this provides a very elegant way to think2 about the central limit theorem, which 
we will prove in a much more formal way when we discuss probability. The idea is that if we add 
together many different random variables drawn from various distributions, we should expect the 
resulting distribution to have (in essence) as much entropy as possible. And in this section we 
just showed that the distribution with maximum entropy, given a fixed mean and variance, is the 
Gaussian. This is pretty close to a proof that a sum of a very large number of random variables 
much approach a Gaussian distribution, ie the central limit theorem! 

2I thank Brice Menard for emphasizing this perspective. 

20 



2.5 Conditional Entropy and Mutual Information 

Here are two other interesting notions of entropy or information. 

Conditional Entropy 

The condition entropy is the expectation over y of a conditional probability distribution p(x|y). In 
math this means 

S(X|Y ) ≡ − 
 

x,y 

p(x, y) log p(x|y) 

= − 
 

y 

p(y) 
 

x 

p(x|y) log p(x|y) (2.5.1) 

Note that this is highly asymmetric in x ↔ y. In the simplification we have used p(x|y) = p(x, y)/p(y), 
ie Bayes rule. The conditional entropy is non-negative.3 

Note that with these definitions we have the factorization rule 

S(X, Y ) = S(Y ) + S(X|Y ) (2.5.2) 

This is just a restatement of our most non-trivial ‘axiom’ for the entropy itself. 

Mutual Information 

The mutual information is 

I(X, Y ) = S(X) + S(Y ) − S(X, Y ) 

= 
 

x,y 

p(x, y) log 
p(x, y) 
p(x)p(y) 

= S(X) − S(X|Y ) 

= S(Y ) − S(Y |X) (2.5.3) 

This is a measure of how much one random variable knows about another. It’s always non-negative, 
is symmetric in x ↔ y, and only vanishes if the variables are independent. Note that we can interpret 

I(X, Y ) = DKL [p(x, y)||p(x)p(y)] (2.5.4) 

which provides a demonstration that the mutual information is non-negative. 

3In the quantum mechanical generalization, we replace probabilities with density matrices, and we obtain classical 
information theory in the limit of diagonal density matrices. The general case is more subtle, and quantum conditional 
entropy isn’t necessarily positive. 
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Monotonicity of KL Divergence 

The KL divergence tells us about the rate at which we learn that our model q is not the same as 
the ground truth distribution p. This suggests that if we have joint distributions q(x, y) and p(x, y), 
then this rate is larger as compared to if we only observe X from q(x), p(x). This implies 

DKL(p(x, y)||q(x, y)) ≥ DKL(p(x)||q(x)) (2.5.5) 

called the monotonicity of relative entropy. We can prove it mathematically by noting that the 
difference between the two sides is  

i 

p(xi) 
 

j 

p(xi, yj) 
p(xi) 

log 

 
p(xi, yj)/p(xi) 
q(xi, yj)/q(xi) 

 

= 
 

i 

p(xi)DKL(p(Y |xi)||q(Y |xi)) ≥ 0 (2.5.6) 

where its positive because its a positive combination of KL divergences of conditional probability 
distributions. Using the relation between the KL and the mutual information, we can use this prove 
the strong sub-additivity4 inequality SXY + SY Z ≥ SY + SXY Z . 

2.6 t-SNE 

This is a famous technique for projecting high-dimensional data in X into a lower-dimensional space 
Y while preserving some of the structure, particularly its local structure and clustering. SNE stands 
for ‘Stochastic Neighbor Embedding’. The method works using basic ideas from information theory. 
You should play with visualizations of it here (https://distill.pub/2016/misread-tsne/). 

In t-SNE, the similarity of datapoints i and j is given by the conditional probability pj|i that 
datapoint i would pick datapoint j as its neighbor if neighbors were picked in proportion to their 
probability density under a Gaussian centered at xi. That is 

pj|i = 
e 
− 

(xj −xi)
2 

σ 2 
i  

k =i e 
− 

(x k−xi)
2 

σ 2 
i 

(2.6.1) 

where σ2 
i is a variance. 

We can try to preserve these probabilities in the lower-dimensional space Y , so that 

qj|i =
e−(yj −yi)

2  
k =i e

−(yk−yi)2 (2.6.2) 

If the map from X → Y correctly models this notion of similarity, then qj|i = pj|i. Since these are 
probability distributions, it’s natural to try to make them similar by minimizing the KL Divergence 

L = 
 

i 

DKL(Pi||Qi) = 
 

i,j 

pj|i log 
pj|i 
qj|i 

(2.6.3) 

4 These proofs are very simple for classical probability distributions, relying only on conditionalization. In the 
quantum case the analogous statements remain true, but are much less obvious. 
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This is biased towards maintaining the local structure in the data, because distant points have small 
pj|i and thus do not contribute much to the KL. 

But how do we determine σi? We would like smaller σi in dense regions, and larger σi in sparse 
regions. t-SNE chooses each σi in order to fix the entropy of the distribution pj|i (or equivalently its 
perplexity, which is the exponential of the entropy): 

Perp(Pi) = 2 S(Pi) (2.6.4) 

where base 2 entropies are used by convention. It’s typical to choose this parameter between 5 and 
50 in applications. Perplexity should be interpreted as a smooth measure of the number of neighbors. 

We can choose the σi right at the start by computing the perplexities of the pj|i distributions in 
the original, high-dimensional space X. Then we can use optimization to minimize the KL-divergence 
loss – we just start t-SNE with a random initialization of the map f : X → Y and minimize the loss 
through gradient descent. 

2.7 Aside: Limits on Computation 

In practice, computation has a number of inefficiencies. Despite decades of progress, my impression 
is that most of the waste is still due to electrical resistance and heat dissipation. We’ll perform a 
relevant estimate in a moment. But what are the ultimate limits on computation? 

We have seen several times that irreversible processes are those that create entropy. Conversely, 
for a process to be reversible, it must not create any entropy. 

However, computers tend to create entropy, and thus waste, for what may be a surprising reason 
– they erase information. For example, say we add two numbers, eg 

58 + 23 = 81 (2.7.1) 

We started out with information representing both 58 and 23. Typically this would be stored as an 
integer, and for example a 16 bit integer has information, or entropy, 16 log 2. But at the end of the 
computation, we don’t remember what we started with, rather we just know the answer. Thus we 
have created an entropy 

S = 2 × (16 log 2) − (16 log 2) = 16 log 2 (2.7.2) 

through the process of erasure! 
Since our computer will certainly be working at finite temperature, eg room temperature, we 

will be forced by the laws of thermodynamics to create heat 

Q = kBT (16 log 2) ≈ 5 × 10−20 Joules (2.7.3) 

Clearly this isn’t very significant for one addition, but it’s interesting as its the fundamental limit. 
Furthermore, computers today are very powerful. For example, it has been estimated that while 

training AlphaGo Zero, roughly 

10 23 float point operations (2.7.4) 
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were performed. Depending on whether they were using 8, 16, or 32 bit floating point numbers (let’s 
assume the last), this meant that erasure accounted for 

Q = kBT (32 log 2) × 10 23 ∼ 8000 Joules (2.7.5) 

of heat. That’s actually a macroscopic quantity, and the laws of thermodynamics say that it’s 
impossible to do better with irreversible computation! 

But note that this isn’t most of the heat. For example, a currently state of the art GPU like the 
Nvidia Tesla V100 draw about 250 Watts of power and perform at max about 1014 flop/s. This 
means their theoretical minimum power draw is 

Q = kBT (16 log 2) × 10 14 flop/s ∼ 10−5 Watts (2.7.6) 

Thus state of the art GPUs are still tens of millions of times less efficient than the theoretical 
minimum. We’re much, much further from the theoretical limits of computation than we are from 
the theoretical limits of heat engine efficiency. 

In principle we can do even better through reversible computation. After all, there’s no reason to 
make erasures. For example, when adding we could perform an operation mapping 

(x, y) → (x, x + y) (2.7.7) 

for example 

(58, 23) → (58, 81) (2.7.8) 

so that no information is erased. In this case, we could in principle perform any computation we like 
without producing any waste heat at all. But we need to keep all of the input information around 
to avoid creating entropy and using up energy. 

3 Probability and Maximum Likelihood 

Our goal is to understand how ideas from information theory and probability combine to help 
us choose natural loss functions for a wide variety of ML tasks. As we will see, the maximum 
likelihood principle plays a predominant role. Maximum likelihood is very closely connected to 
the KL divergence, which we discussed in the last section. We’ll also show how these ideas can be 
partially justified from a Bayesian perspective. 

3.1 Setup and Some Philosophy 

A large portion – probably the significant majority – of machine learning tasks5 are set up in such 
a way that we have a model pθ(X) for the probability distribution over the data X that depends 

5Another option is that our models provide a way to make a decision, but don’t have a probabilistic interpretation, 
usually because imposing a probabilistic interpretation would require normalizing an intractable distribution. This is 
like knowing which state has the lowest energy without knowing the full partition function... and in fact such models 
are usually called ‘Energy Models’. 
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on parameters θ. We have a finite set of data points {xi}, and we want to learn some sort of ‘best 
estimate’ for the parameters θ that ‘explain’ the distribution of the data X. In this framing, we 
usually imagine that there is some ‘ground truth’ underlying distribution P (X) from which our data 
sample is drawn, but we can only access it via sampling. 

Furthermore, we’ll almost always approach this problem by identifying some sort of objective or 
loss that depends on both X and pθ, which we may write as L(X; pθ) or more concretely L(xi; θ) as 
a function of literal data points. Our goal will be to optimize for this objective, ie to minimize the 
loss L. If we’re searching for specific θopt, then these choices result in the choice of an estimator for 
θ. 

We could also try to learn a distribution over the θ themselves – this is like learning a probability 
distribution over the ‘worlds’ θ that we may be living in. The distinction between a point estimate 
and a distribution over θ is associated with the complicated and somewhat fuzzy frequentist vs 
bayesian discussion. 

Given this framing, there are a number of questions about how to proceed; some rather practical, 
others rather philosophical: 

1. What should our goal be – to determine a fixed parameter value θopt that’s best, or should we 
be learning (more generally) a probability distribution q(θ) that best matches the data? 

2. How should we choose the loss function? What does this choice depend on? 

3. How do we optimize θ or the distribution over Θ to determine the best possible values? 

4. What aspects of this process are stochastic vs deterministic? Is it the data X that’s random, 
or the value of the parameters θ, or neither/both? 

5. The parameters θ are usually quite arbitrary. As theorists, we may in fact prefer to think 
about p(X) as some sort of infinite dimensional space of possible probability distributions, 
where the θ just parameterize a subset of that space. This makes us wonder: 

• Is there a more natural basis for p(X), and thus for θ? Natural with respect to what? 

• What sort of bias are we introducing by choosing the subset of all p(X) parameterized by 
a neural network pθ(X)? 

We’ll be able to address some of these questions. 
The probabilistic approach has some limitations, most importantly that we may be able to 

accomplish many tasks without ever defining a normalizable probability distribution. For instance, if 
I want to classify an image, I don’t need to output a probability distribution over labels – I just need 
to choose one! And similarly, if I want to generate an image, I don’t need to know its probability – I 
just want a pretty picture! But despite these observations, the philosophy we have outlined remains 
the dominant paradigm. And it can’t hurt to build a probabilistic model, when it’s possible, even if 
we don’t always need one. 
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3.2 Central Limit Theorem 

It’s fun to derive the centrally important Central Limit Theorem. First let’s give some formal setup 
to make it easy to do in general. The formalism will be useful for other purposes as well. Aside for 
fun and importance, this is a good exercise to get comfortable with random variables. 

Cumulants and Generating Functions 

Given any probability distribution p(X) for a variable x, we also say that x ∼ p for the words ‘x is 
a random variable drawn from the distribution p’. The moments of x are 

Xn = 
 

dx p(x)x n (3.2.1) 

and these are generated by the Fourier Transform of p, also called the characteristic function 

p̃(k) = 
 

dx p(x)e−ikx (3.2.2) 

The moments are generated in the sense that the nth derivative of p̃(k) wrt k produces moments 
when evaluated at zero. The cumulant generating function is just the log of p̃, that is 

G = log p̃(k) (3.2.3) 

It has the nice property that it only generates the connected part of the moments, which are called 
the cumulants, so that 

G = 
∞ 

n=1 

(−ik)n 

n! 
Xnc (3.2.4) 

So for example the variance of the original distribution is simply X2c. This pattern of phenomena 
may be familiar from the Free Energy in Statistical Mechanics and from expansions in QFT. 

To prove the fact that G generates the connected part, it’s easiest to work backward. If we 
had an G generating the connected part, then it’s easy to see that eG would generate all possible 
correlations, connected or disconnected, so that eG = p̃. We see this diagrammatically at kth order 
by drawing k points and grouping them together in all possible ways, and then counting the number 
of such groupings. In equations this is 

∞ 

n=1 

(−ik)n 

n! 
Xn = exp 

 
∞ 

n=1 

(−ik)n 

n! 
Xnc 

 

= 

n 

 

pn 

 
∞ 

n=1 

(−ik)npn 

pn! 

 
Xnc 

n! 

 pn 
 

(3.2.5) 

Matching powers of k gives 

x m = 

{pn} 

 

n 

1 
pn!(n!)pn 

x npn 
c (3.2.6) 

and leads to the graphical interpretation. 
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Quick Examples 

Note that a delta function is a distribution with non-trivial mean, but vanishing n > 1 cumulants. A 
Gaussian distribution is the unique distribution with general mean and variance, but vanishing n > 2 
cumulants. Our formalism makes this obvious because it dictates that F must be quadratic. Similarly, 
distributions with vanishing n > k moments are just the Fourier transform of the exponential of a 
polynomial! 

If we have two random variables X ∼ p and Y ∼ q (read ‘x drawn from p’), where p and q are 
independent distributions, then obviously 

X + Y  = X + Y y (3.2.7) 

Cumulants are defined in such a way that they continue this property to all orders, so that 

(X + Y )n c = Xnc + Y nc (3.2.8) 

for the cumulants (but obviously not for the expectation values!). To see this, it’s sufficient to simply 
note that Gpq = Gp + Gq. In particular, we learn the well-known and elementary fact that the 
standard deviation of a sum of random variables is the RMS of the individual standard deviations. 

Central Limit Theorem 

The proceeding discussion was useful because it makes it very easy to prove the central limit theorem. 
Let’s imagine we have a random variable 

X = 
N 

i=1 

Xi (3.2.9) 

where Xi are some independent random variables. Then the distribution for X is 

p(X) = 
 

d N xp(xi)δ(X − 
 

i 

xi) (3.2.10) 

and so the characteristic function is simply 

p̃X (K) = 
 
e−ik 

 
j xj 
 
= p̃i(ki = K) (3.2.11) 

and we can compute the moments of X from it. 
This immediately tells us that 

Xc = 
N 

i=1 

Xic, X 2 c = 
N 

i,j=1 

XiX j c, · · · (3.2.12) 

If the variables xi are independent then all cross cumulants vanish, and so 

Xnc = 
N 

i=1 

Xn 
i c (3.2.13) 
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If all variables come from the same distribution then this is just NXnc. 
In the limit that N is large, this proves the central limit theorem. This follows because if we 

rescale to the variable 

y = 
X − NX1c √ 

N 
(3.2.14) 

we find a random variable with zero mean, and all its cumulants scale as N1−n/2 . So at large N only 
the variance is non-vanishing, and thus we have a Gaussian distribution. 

Our methods make it clear when the central limit theorem would apply to N non-independent 
random variables – what we need is that the sum over the correlated cumulants is sub-leading as 
compared to the independent terms 

N
i=1Xn 

i c, which grow linearly with N . 

3.3 Estimators, Bias, and Variance 

Let’s imagine that we believe that some data X was generated by randomly drawing samples from 
a probability distribution P (X|θ), where we view θ as parameters for our model. An estimator is 
a function or algorithm that produces a map f : X → θ that ‘estimates’ the parameters θ (or a 
sub-set of them, or a function of them) using a data sample X. 

This approach is very useful practically. Philosophically, it tends to be associated with Frequentist 
(in contrast to Bayesian) statistics. With the latter we would instead determine a probability 
distribution over θ reflecting what we know about θ from our prior and the data. 

We are discussing estimators for the obvious reason that in ML, the learning process is simply 
an algorithm to take the data and turn it into a prediction for the NN parameters θ. A difficulty 
that we’ll almost always gloss over is that real world data simply was not drawn from a distribution 
P (X|θ) parameterized by NN parameters. Presumably the world is much, much more complicated, 
and our NN models will merely approximate it in a largely uncontrolled way. 

Intuitively, we would like our estimators to be unbiased, so that as we accumulate more and more 
data, they actually converge towards the correct underlying value of the parameters. Furthermore, 
we would like them to have a small variance, so that they have as little ‘noise’ as possible. Concretely, 
we want to minimize variance so that we can predict θ as precisely as possible with as little data as 
possible. 

A major topic discussed in ML is the tradeoff between bias and variance. This may seem sort of 
trivial for now, though it’ll become more involved when we study Reinforcement Learning. Let’s 
clarify via some simple examples. 

3.3.1 Defining an Estimator as a Random Variable 

Let’s say we have a sample of N datapoints {xi}, regarded as literal sampled data values. An 
estimator will be a function f that predicts the parameters θestimated = f(xi). 

To analyze our estimator, it’s convenient to think of the xi as separate, abstract random variables 
Xi drawn from the data distribution P (X) from the ‘world’. In this sense we can talk about the 
estimator as a random variable 

Θest = f(Xi) (3.3.1) 
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since a function of random variables can itself be regarded as a new random variable. Note that f 
can depend both directly and indirectly on N , ie we have a different estimator for each value of N . 

3.3.2 Bias of an Estimator 

The bias is just Θest − θtrue, or in slightly more detail 

Θest − θtrue = f(Xi) − θtrue (3.3.2) 

To be clear, let’s consider the most elementary example, a Gaussian. If 

p(x) = 
1 

σ 
√ 
2π 

e− (x−µ)2 

2σ 2 (3.3.3) 

then we’d like to estimate µ, σ from a finite set of data samples. The ‘obvious’ way to do this is to 
compute the mean via 

µest = 
1

N 

N 

i 

Xi (3.3.4) 

It’s expectation is 

µest = 
1

N 

N 

i 

Xi = 
N 
N 

 
dx 

x 

σ 
√ 
2π 

e− (x−µ)2 

2σ 2 

= µ (3.3.5) 

so we see that this is an unbiased estimator of the mean µ. Note that in the second step we used 
the fact that expectation values are linear. 

If we’re not careful, we might estimate σ in a biased way. You might think that we can estimate 

σ 2 
naive = 

1

N 

N 

i 

 

Xi − 
1

N 

N 

j 

X j 

2 

(3.3.6) 

It’s expectation is 

σ 2 
naive  = 

1 
N 

 
N 

i=1 

⎛ ⎝X 2 
i + 

1 
N2 

  

j 

X j 

 2 

− 
2 
N 
Xi 

 

j 

Xj 

⎞⎠ 

 

= 
1 
N 

 
N 

i=1 

 

1 + 
N 
N2 

− 
2 
N 

 

X 2 
i + 

 

j =i 

XiXj 

 
2 
N2 

− 
2 
N 

 

= 
N − 1 
N 

X 2  − 
N − 1 
N 

X 2 

= 
N − 1 
N 

(X − µ)2  (3.3.7) 
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but as you can see, this gives a biased estimate of the variance. For any finite value of N , we will 
estimate that the variance is too small by a factor of 1 − 1 

N
. The correct (unbiased) estimator is 

instead 

σ 2 
unbiased = 

1 
N − 1 

N 

i 

 

Xi − 
1

N 

N 

j 

X j 

2 

(3.3.8) 

This has an intuitive interpretation in terms of ‘degrees of freedom’. The mean is the ‘center of 
mass’ of the Xi, and so it doesn’t contribute to the estimate. That’s why our σnaive was wrong; it 
didn’t account for the fact that the variance is being computed with respect to this center of mass. 
This is a famous and very basic result in statistics called the ‘Bessel correction’. 

3.3.3 Variance of an Estimator 

The variance of an estimator is just the variance of θest. Note that the variance of the estimator is 
not the same thing as the variance of the underlying true distribution. But it’s easy to get confused. 

The variance of our estimator for µ would just be 

Var(µest) ≡ µ2 
est  − µest 2 

= 

 
1

N 

N 

i 

Xi 

2 

− 

 
1

N 

N 

i 

Xi 

2 

= 
1 
N 
σ 2 (3.3.9) 

However, we can more clearly separate out the ‘variance’ of the distribution and that of the estimator 
by considering the variance of the estimator σ2 

est 

Var(σ 2 
unbiased) = 

⎛ ⎝ 1 
N − 1 

N 

i 

 

Xi − 
1

N 

N 

j 

X j 

2 
⎞⎠ 

2 

− σ 4 (3.3.10) 

where we note that the second term is the square of the expectation of the variance estimator, which 
(since it’s unbiased) is (σ2)2 . We can write ⎛ ⎝ 1 

N − 1 

N 

i 

 

Xi − 
1

N 

N 

j 

X j 

2 
⎞⎠ 

2 

= 
1 

(N − 1)2 
v ia v ib vjcvjdXaXbXcXd (3.3.11) 

where vij = δij − 1 
N
. Note that 

xaxbxcxd = (δabδcd + δacδbd + δadδbc) σ 4 + · · · (3.3.12) 
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where the ellipsis involves the mean, which cancel when contracted with vij . So we find 

σ4 

(N − 1)2 

 
(v ia v ia)2 + 2(v ia v ib vjavjb) 

 
= 

σ4 

(N − 1)2 

 
(N − 1) 2 + 2(N − 1) 

 
= 

 

1 + 
2 

N − 1 

 

σ 4 (3.3.13) 

which is amusingly reminiscent of the large N expansion. To evaluate the terms, we note that vij is a 
matrix with eigenvalues consisting of N − 1 ones and 1 zero, so the first term is (Tr[v2])2 = (N − 1)2 

while the second term is Tr[v4] = N − 1. So we find 

Var(σ 2 
unbiased) = 

2 
N − 1 

σ 4 (3.3.14) 

for a Gaussian. This makes it clear the the variance of an estimator is different from the variance of 
the original distribution. 

3.3.4 Unclean Denoising 

As an application of these ideas, consider the problem of ‘denoising’ – we have a large set of images, 
but they have been corrupted in some way by ‘noise’. The goal is to process them into clean images, 
without the noise. 

The naive approach would be to learn a map from noisy images to clean images. But this requires 
having clean versions of all of the images. What if we don’t have any clean images? 

Actually, if we simply try to learn a map from one noisy image to a different noisy image of the 
same object, in the process we’ll learn a map from noisy images to clean images! Do you see why? 
(Depending on the type of noise, we may need to select somewhat different sorts of loss functions.) 
The point is that while the noisy outputs may have high variance, as long as they’re essentially 
unbiased, the best map we can learn will be one that removes the noise. This simple observation 
was the basis of an NVIDIA ‘Noise2Noise’ paper in early 2018. 

3.4 Why Optimize a Particular Loss Function? 

It’s very often the case that our neural network pθ(x) computes a probability distribution on the data 
space X. For example, the NN may compute a probability that the next word in a sentence is ‘the’, 
or that a particular configuration of pixels is really in the dataset. Alternatively, the network may 
compute the probability that a datapoint x ∈ X has some property y, so that pθ(x) is the probability 
distribution over Y . For instance, the NN may assign a probability that an image contains the 
numeral ‘7’. 

In either case, there’s an intuitively natural objective – we would like to maximize the 
likelihood that the model assigns to the empirical data. This means that we will use the estimator 

θ opt = argmaxθ [pθ(X)] (3.4.1) 
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Formally this is a product of pθ(xi) over all the data points xi, which we can greatly simplify by 
taking a logarithm, so that we need only perform 

θ opt = argmaxθ 

 
1

N 

N 

i=1 

log pθ(xi) 

 

(3.4.2) 

where we divided by N to compute the mean for simplicity, as the overall scale was arbitrary. So 
we can estimate θ by finding the value that maximizes the likelihood of the data sample; this is 
maximum likelihood estimation (MLE). This translates into a proposal for the loss in models with a 
probability interpretation, ie we should minimize 

L(X; θ) = − 
1

N 

N 

i=1 

log pθ(xi) (3.4.3) 

Before moving on with the discussion, let’s emphasize that this loss is essentially the same as using 
the KL Divergence as the loss. It’s also often referred to as a ‘cross-entropy loss’. To see why, 
note that this could be re-written as 

L(X; θ) = − 
N 

i=1 

P (X) log (pθ(xi)) 

= S(P ) + 
N 

i=1 

P (xi) log 

 
P (xi) 
pθ(xi) 

 

= S(P ) + DKL(P (X)||pθ(X)) (3.4.4) 

where only the KL term has any dependence on θ. This is called a ‘cross-entropy’ because of the 
expression in the first line, which looks like an entropy made from P and pθ. 

We should also emphasize that this framework applies when the data X is divided up into (x, y) 
where eg y represents a label for the data x. In this case it’s very common to use the loss 

L(X; θ) = − 
1

N 

N 

i=1 

log pθ(yi|xi) (3.4.5) 

so that we maximize the likelihood that the model predicts the correct label yi for each xi. This is 
the most common situation in supervised learning, including image classification and autoregressive 
sequence prediction (one of the primary tools in language modeling). 

The maximum likelihood principle should seem intuitively reasonable, but is it really necessary? 
And is it the best we can do? 

3.4.1 Bayesian Perspective 

We can motivate the maximum likelihood principle in a compelling way using Bayesian statistics. 
The Bayesian philosophy of probability and, perhaps more importantly, of decision theory, goes as 
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follows. We begin with some sort of prior expectation pprior(θ) of the distribution over the parameters 
θ. Then, as we gather data, we update our beliefs by Bayes rule, forming the posterior 

pbelief (θ|X) = 
pmodel(X|θ) 
pworld(X) 

pprior(θ) (3.4.6) 

From our point of view as observers, we have no direct information about pworld(X) except through 
sampling. 

If we accept this Bayesian procedure on a philosophical level, then it determines a distribution 
over θ that we should ‘believe in’ after seeing the data X. If we were to fully embrace the Bayesian 
perspective, we would simply compute pbelief itself. 

However in practice we rarely even try to obtain pbelief as a distribution because it’s too 
complicated, ie too computationally expensive. Instead we can try to obtain a point estimate, which 
in the Bayesian context is called a ‘Maximum A Posteriori Estimation’, sometimes abreviated ‘MAP’. 
The most likely single value (or point estimate) of the parameter θ will be the one that maximizes 
pbelief (θ|X), which means that it must maximize 

θ opt = argmaxθ 

 
1 
N 

log pprior(θ) + 
1

N 

N 

i=1 

log pmodel(xi|θ) 

 

(3.4.7) 

where we included some 1/N factors for a nice large N limit. Thus from this Bayesian perspective, 
we can derive the maximum likelihood principle if we assume that pprior(θ) is actually a uniform 
distribution over θ. 

If the prior is not uniform, then we instead find a different principle, which pushes us towards 
values of θ that are favored by the prior. As we will see, this provides a motivation for regularizing 
our models. For instance if our prior is a Gaussian centered at θ = 0, then it effectively punishes us 
for ‘learning’ values of θ that are large numbers. That said, note that a true prior becomes less and 
less important as we see more and more data, whereas typical regularization schemes add a fixed 
constant term to the loss. 

3.4.2 Minimizing the Variance and the Cramer-Rao Bound 

Whatever estimator we use to determine θopt, we would like it to have as small a variance6 as possible. 
In fact it’s pretty easy to show that among estimators, the θopt estimated by maximum likelihood 
has the minimum possible variance. This means that the mean squared error between the estimated 
and true θ will be as small possible. The underlying reason is that the data is itself sampled (we 
assume) from p(X|θtrue), and MLE is making direct use of this parameterization p(X|θ). That’s 
why MLE is more natural and ‘better’ (lower variance) than other estimators. 

To prove this, let us first establish a more general result, and then explain why the minimal 
variance of MLE follows. We can obtain a bound on the variance of an estimator using the general 

6Maximum likelihood is also unbiased. A version of this is the statement that it is ‘consistent’, ie that in the 
infinite data limit we are guaranteed to converge to the correct value of θ, if it is unique. 
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fact (basically the Cauchy-Schwarz inequality) 

Cov(A, B)2 

Var(A)Var(B) 
≤ 1 (3.4.8) 

for any random variables. Here Cov(A, B) is the cumulant ABc (so A, B are mean-subtracted). 
Let’s imagine that we have a set of data X drawn from a distribution p(X|θ) dependent on some 

parameters θ. We have some function φ(θ) that we would like to estimate via φ̂(X), where ˆ φ is our 
estimator. We define the score as 

S = ∂θ log p(X|θ) (3.4.9) 

and note that the expectation value S = 0 because 

S = ∂θ 

 
p(X|θ)dX (3.4.10) 

Now we assume that our estimator is unbiased, so that 

φ̂ = 
 

φ̂(X)p(X|θ)dX = φ(θ) (3.4.11) 

and note that as a consequence ∂θφ(θ) is related to the score via 

∂θφ(θ) = 
 

φ̂(X)S(X)p(X|θ)dX = Cov(S, φ̂) (3.4.12) 

With a single parameter θ, we can then write the inequality 

Cov(S, φ̂)2 

Var(φ̂)Var(S) 
= 

(∂θφ)
2 

Var(φ̂)F 
≤ 1 (3.4.13) 

where F =Var(S) is the Fisher. When θ has many dimensions, we find in general that 

Var( ̂φ) ≥ (∇ i θ φ̂
α)F −1 

ij (∇ j θ φ̂α) (3.4.14) 

which follows from the one-dimensional case if we work in a basis that diagonalizes F . 
We have proved the Cramer-Rao inequality. It gives us a lower bound on the variance of any 

estimator. This is interesting because we would like our estimators to have as small variance as 
possible. The proof of the bound also tells us that in order to have minimal variance, an estimator 
must be ‘aligned’ with the score S, ie it must be that ˆ φ varies in proportion with S. 

Conclusions from Cramer-Rao 

But the MLE is trying to maximize log p(X|θ), and the score is just the derivative of this quantity. 
So the MLE is perfectly aligned with the score. The conclusion is that the MLE of equation (3.4.2) 
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has minimum possible variance. This provides another reason to use maximum likelihood for our 
loss function. 

However, the logic isn’t quite as straightforward as it may seem. What we have shown is that 
given a sample of N datapoints, if we actually find the θ that maximizes the likelihood, then MLE 
will minimize the variance of the θ will be minimum among estimators. But this doesn’t necessarily 
tell us much about the variance of the process of optimizing θ by maximum likelihood, eg the process 
of gradient descent from some initial θ0 to a final θ. For instance, it doesn’t tell us how many 
samples we need to estimate the gradient for gradient descent, or even that the maximum likelihood 
loss has minimal gradient variance among possible loss functions. It only tell us that MLE has 
minimal variance for the final result of θ. 

Another caveat to this analysis is that in the real world, p(X|θ) is just a model, and the real 
world does not actually correspond to any choice of the parameters θ. In this situation it’s unclear 
to what extent our argument holds. 

3.4.3 Regression Losses from Maximum Likelihood 

You’ve almost certainly performed regression with a mean squared error loss: 

L(θ) = 
1

B 

B 

i=1 

(fθ(xi) − yi)
2 (3.4.15) 

This loss is just the result of applying maximum likelihood in a situation where you know ahead of 
time that the errors will be Gaussian. 

That is, if we know that the data is distributed as y ∈ N (µ = F (x), σ) for a constant σ, then 
the likelihood is 

p(y|x) = 
1 √ 
2πσ 

e− 1 
2σ2 (y−F (x))2 

(3.4.16) 

and so the log likelihood will be 

L(θ) = 
1

B 

B 

i=1 

 
(fθ(xi) − yi)2 

2σ2 
− log σ 

 

(3.4.17) 

Since the variance σ2 is constant over the data, we can just ignore the last term. 
If we know instead that the data has a different error, then we should use another loss. In most 

cases, the errors will have larger spread than a Gaussian, which means that our loss function should 
not penalize large deviations as heavily. For example, if the errors are distributed as e−|x| then we’d 
want an L1 type loss 

L(θ) = 
1

B 

B 

i=1 

|fθ(xi) − yi| (3.4.18) 
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And if the errors are distributed according to a power law, such as the rather extreme case of 1 
x2+σ2 

(extreme because it will have very large tails, so that its variance is infinite) then we would expect 

L(θ) = 
1

B 

B 

i=1 

log 

 

1 + 
(fθ(xi) − yi)2 

σ2 

 

(3.4.19) 

to be the best choice of loss function. 
In practical applications in ML, the differences among these choices are not obviously important, 

but they’re worth keeping in mind. Occassionally a ‘Huber loss’ is used, which interpolates between 
Gaussian and exponential errors, ie between quadratic and linear behavior (linear dominating at 
large error, corresponding to an exponential, rather than Gaussian tail). 

3.4.4 Calibrated Probabilities? 

Will the probabilities from our models be well-calibrated? That is, when the model says that it 
assigns a probability of 99% that a given image contains a cat, will it be right 99/100 times? 

Very naively yes, assuming that we hold ‘everything else’ constant, so that the model isn’t 
changing in other ways while it learns probability assignments. For example, if a model actually 
gets the label cat correct a fraction f of the time, then after collecting a lot of data it will be trying 
to minimize a loss function associated with cats 

L = −f log pcat − (1 − f) log(1 − pcat) (3.4.20) 

This function is minimized for pcat = f , which means that the model should eventually learn to 
assign probabilities that reflect the frequencies with which it is successful on the training data. 

However, this analysis holds a lot constant that isn’t really constant at all, so it’s not necessarily 
a good guide to the performance of real models. 

3.4.5 Comments on Regularization 

Regularization is the process of mitigating overfitting. 
We mentioned that from a Bayesian perspective, it’s natural to include a regularization term in 

the loss corresponding to the prior... but that in fact, this regularization term should become less and 
less important as we accumulate more data. That said, we can sort of justify a fixed regularization 
term by noting that when training, we will go over the full dataset many many times (a pass over 
the full dataset is often called an ‘epoch’ of training), and we should not view the nth pass over the 
data as providing more information. Thus when training for many epochs, as is typical, even from a 
Bayesian perspective it’s reasonable to include regularization terms. 

Typical regularization terms are 

L reg = λ(W )α (3.4.21) 

where α = 1, 2 are most common. These can be interpreted as Gaussian or exponential priors on 
the parameters W . It’s less typical to regularize the bias terms b, though it can be done. Note that 
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α = 2 and α = 1 have rather different effects; the former only tends to suppress particularly large 
parameters, while the latter continues to exert ‘pressure’ on the parameters all the way to W = 0, 
and can thus help to induce a sparser spectrum of NN parameters. 

There is another, very different approach to regularization – we can insert stochasticity into the 
training process to enhance robustness. SGD already does this, in a sense, via sub-sampling of the 
data distribution. We might also add noise to the data itself. But the most popular, and perhaps 
(nearly?) best form of regularization is a very simple method called Dropout. 

With dropout, at each iteration of training, we simply zero out a fraction p of the NN activations. 
To avoid biasing the network, we then multiply the value of the remaining activations by 1 

1−p . 
Another option is to replace the second step with a factor of p in all activations post-training. 

I don’t think it’s well-understood to what extent Dropout works better than other similar methods 
one might imagine, and if so, why. Though my impression from the lore is that adding noise to the 
parameters of a NN is significantly better than simply adding noise to the inputs. 

3.5 Aside: Inserting Random Sampling into NNs 

In ML, its absolutely crucial to be able to differentiate the loss or goal with respect to the NN 
parameters. But naively, if the output of a network is a discrete decision, this would seem to be 
impossible. We have already implicitly solved this problem in the case of discrete classification, 
by having the network output continuous probabilities, rather than discrete decisions, and by 
formulating a loss that’s also a continuous function of those probabilities. But there are some other 
situations where it’s useful to use ‘tricks’ to preserve differentiability. 

The simplest version is the ‘Reparameterization Trick’ – it’s rather trivial. Say we want our NN 
function to depend in part on some random numbers inserted into the middle of a computation. 
Naively we can’t differentiate through this process, since the computation gets ‘interrupted’ by 
the insertion of the random values. But it remains differentiable if we instead insert the randomly 
sampled numbers at the beginning of the computation, and then have the neural network itself 
transform their distribution. So for example, the random numbers may be sampled from a Gaussian, 
and the NN maps that to a new Gaussian with mean and variance (µ(X), σ2(X)) where X is the 
(non-random) data, and µ and σ2 are learned functions. 

That is, we can draw a random variable from a learned Gaussian by sampling z ∼ N (0, 1) and 
then computing 

µ(X) + σ(X)z (3.5.1) 

to produce a random variable drawn from N (µ(X), σ(X)). Below we will develop a version of this 
trick for discrete distributions. 

Gumbel Distribution – Sampling Without a Softmax 

Let’s begin with a more-or-less natural question. Say we have a vector of n real numbers xi. We can 
map this to a discrete distribution via the softmax 

pi =
exi  
j e

xj 
(3.5.2) 
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so that the pi are positive and sum to 1, and so form a probability distribution over n discrete 
possibilities. Now if we like we can sample from this distribution of pi. But we might ask... is there 
a way to sample from this discrete distribution without ever computing the pi? 

Specifically, we would like to sample by simply taking 

argmaxi{xi + zi} (3.5.3) 

for a noise vector zi drawn from a to-be-determined distribution g(z), chosen so that the resulting 
discrete choices are distributed according to the pi above. 

Thus we would like to choose a distribution g(z) so that 

pk =
e xk  
j e

xj 
= 
 

dzkg(zk) 
n 

j =k 

 
dz jg(z j)Θ(xk + zk − x j − z j) 

 

(3.5.4) 

where Θ(x) is a step function which is 1 for x > 0 and 0 otherwise. Rather than evaluate the 
integrals, a natural way to proceed is to differentiate this expression with respect to all the xj for 
j = k. This turns the n − 1 step functions into delta functions, and acts simply on the LHS as well, 
giving 

(n − 1)! 
e 
 n 

j=1 xj  
j e

xj 

 n = (n − 1)! 
n 

j=1 

pj = 
 

dzkg(zk) 
n 

j =k 

g(xk + zk − x j) (3.5.5) 

It turns out that the Gumbel distribution7 

g(z) = e−z−e−z 
= ∂z 

 
e−e−z 

 
(3.5.6) 

satisfies this relation! It’s straightforward to verify this via direct computation. Choosing k = 1 
WLOG, the RHS of our relation above is  

dzg(z)g(x12 + z)g(x13 + z) · · · g(x1n + z) = 
 

dze−z−e−z 
e−z−x12−e−z−x12 · · · e−z−x1n−e−z−x1n 

Changing variables to ez = y, this is  ∞ 

0 
dy y n−1 e−ye x12−ye−x12 · · · e x1n−ye−x1n = e−x12−···−x1n 

 ∞ 

0 
dy y n−1 e−y(1+e−x12 +···e−x1n ) 

and the last integral is easy to perform, yielding the desired result. 
So we can either compute the pi from the xi and then sample from them, or alternatively, we 

can add Gumbel-distributed noise to the xi, and then simply take the argmax of xi + zi. 

7The cumulative distribution G(z) = e−e−z 
has the property that [G(z)]n = G(z − log n). It’s one of only three 

families of distributions that can ‘stably’ characterize the probability distribution associated with the maximum of a 
set of n random variables. For info see eg http://www.math.nus.edu.sg/ matsr/ProbI/Lecture12.pdf 
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Differentiable Almost-Discrete Distributions 

The last section was fun, but the real reason to introduce the Gumbel distribution is to fix a problem 
with sampling. If we compute pi from the xi, and then sample from the pi distribution, there’s 
no way to differentiate the result with respect to xi. Note that here we are imagining that the xi 

themselves are actually the output of a NN acting on some other underlying data, so what we’re 
really interested in doing is taking derivatives with respect to some NN parameters that xi secretly 
depend on. But to do that, we have to be able to differentiate with respect to xi to even get started 
(via the chain rule). 

We can use the Gumbel distribution to create a fully differentiable discrete stochastic distribution. 
That is, if we sample zi ∼ g(zi) from the Gumbel and compute 

fi(x; z; β) = 
e β(xi+zi)  
j e

β(xj +zj) 
(3.5.7) 

then the result is a fully differentiable function of the xi which samples from the pi distribution 
determined by the xi. It may seem very strange that we have re-introduced the softmax, but we’ve 
also included a parameter β because in the limit that β → ∞, we simply recover softmax → argmax 
(in its one-hot version). 

So you should think of fi as a regulated version of argmax, with β a free parameter. In this form, 
fi implements a ‘re-parameterization trick’ for discrete distributions. 

3.6 Aside: Measures of Distance Between Probability Distributions 

The KL Divergence plays an extremely prominent role in ML because of its connection to maximum 
likelihood. Even more generally, the KL is useful because if we can sample data x from an underlying 
distribution P , then we can easily estimate the KL between P and some model q via 

DKL(P ||q) = 
 

dxP (x) log 

 
P (x) 
q(x) 

 

≈ 
1

N 

N 

i=1 

log 

 
P (xi) 
q(xi) 

 

= −S(P ) − 
1

N 

N 

i=1 

log (q(xi)) (3.6.1) 

where the constant entropy S(P ) does not depend on our model q. 
My sense is that in ML we only favor the KL over other measures of distance between probability 

distributions because it is so easy and convenient to compute via sampling. Thus its interesting to 
consider other measures of distance between probability distributions p and q: 

• We can modify the KL rather trivially by symmetrizing it, but the result still doesn’t satisfy 
the triangle inequality. But we can go further and define the Jensen-Shannon divergence 

JSD(p||q) = 
1 
2 
DKL 

 

p|| 1 
2
(p + q) 

 

+ 
1 
2 
DKL 

 

q|| 1 
2
(p + q) 

 

(3.6.2) 
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Apparently one can prove that the square root of the JSD satisfies the triangle inequality, 
which means that it’s actually a metric on the space of probability distributions. 

• The KL is part of a family of distance measures with the property that the local metric is the 
Fisher information. These are called ‘F-divergences’. 

• Another famous distance measure is the ‘Earth Mover Distance’ or the Wasserstein metric. But 
to define it, we must specify a geometry on the underlying space X that p(X) is a distribution 
over. (This wasn’t a requirement for the KL or the JSD.) The reason for the name is that we 
can visualize the probability distributions as ‘lumps of dirt’, and the EMD effectively computes 
the minimum amount of work we do to ‘move the dirt’ to turn one lump into the other. This 
explains the EMD’s dependence on the geometry of X – moving the dirt further means doing 
more work, leading to a larger EMD. 

Undoubtably there are problems with using the KL as a distance metric, and there have been 
interesting suggestions in the literature that using other metrics can lead to be better ML results. 

4 Optimization 

In this section we will discuss optimization – the specific process we use to ‘optimize’ the NN 
parameters in order to ‘learn’ to get to a minimum of our chosen loss function. 

4.1 Intro to ‘Optimizers’ 

‘Optimizers’ are simple algorithms for finding a minimum of the loss function. 
We will often write update rules associated with the nth update in terms of gradients 

g
(n) 
i = 

∂L(X; θ) 
∂θi 

   
θ=θ(n) 

= ∇iL(X; θ) (4.1.1) 

The gradient is usually the primary source of information about how to improve the model and 
learn. We always average g(n) i over a batch of B data points xi sampled from the training set X, but 
below we won’t explicitly indicate this unless its relevant. Some comments: 

• As physicists, its natural to think about the continuum limit of these optimizers, where the 
steps become infinitesimal. But the continuum limit is a very undesirable limit for optimization. 
We want to be as computationally efficient as possible, which means that we’d like to take 
very large (discrete) steps. In particular, ideally the ‘information’ in sequential updates should 
be as independent as possible, as otherwise we’re being wasteful. Concretely, this would mean 
that gradients & updates on subsequent steps shouldn’t be very correlated. This is as far as 
possible from the continuum limit. 

• It’s worth keeping track of dimensional analysis – if the loss L and the NN parameters θi had 
units, what units would the other parameters in the optimizer need to have? We’ll see that 
this provides a fair bit of insight into the behavior of various optimizers. 

40 



• The ‘Stochastic’ in Stochastic Gradient Descent refers to the fact that we use batches smaller 
than the full dataset to do optimization. We’ll talk more about this later on, but it’s ‘stochastic’ 
because there’s randomness associated with these sub-samples of the data. Note that when 
we choose the batch size B, we’re deciding how much noise is in the gradient signal. Naively, 
larger batches may be better because they’re less noisy, but too-large batches are just a waste. 
And small batches could be good if noise is somehow beneficial, as some have argued. 

Let’s begin by briefly noting two optimizers that are rarely used, but fairly natural: 

Evolution 

Perhaps the most naive algorithm is to simply explore in random directions in parameter space, and 
keep some combination of the updates that do best. This is a good baseline to have in mind; we’d 
expect it to be a lot worse than the methods below, since they utilize the gradient of the loss as an 
indicator of how to best update the parameters. 

Newton’s Method 

Using the Hessian of the loss H, this is the update rule for parameters 

θ(n+1) = θ(n) −  
 
H(n) 

−1 
g(n) (4.1.2) 

where the learning rate   1 is a free parameter. In the quadratic limit with  = 1, we simply jump 
to the minimum immediately. 

Note that Newton’s method is dimensionfully correct, so  is just a dimensionless number. 
However, in NNs H will not necessarily be a positive definite matrix, so its meaning here is unclear. 

When  < 1 it’s interesting to see what happens in the toy case of a quadratic 1-d potential. If 
L(θ) = 1 

2
λθ2 , then we have 

θ(n+1) = θ(n) −  
λθ(n) 

λ 
= (1 − ) θ(n) (4.1.3) 

so that we converge towards the minimum exponentially fast, with a rate set by (1 − ). Note that 
in the absence of noise or higher order terms, we never overshoot the minimum if  < 1. 

The obvious downside of this method is that if H has small eigenvalues, then some updates may 
be enormous. This could be dangerous if H and gn are noisy, or if higher order terms are important. 

At the moment, few researchers use second order optimization methods (especially this one; 
we’ll see a slightly more popular choice later on) due to their high computational cost (and coding 
complexity) vs apparent benefits. 

4.2 Stochastic Gradient Descent (SGD) 

The simplest update rule would seem to be 

θ(n+1) = θ(n) − g(n) (4.2.1) 
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but there’s more to this than meets the eye. Note that the learning rate  has units of 

[] = 
[θ]2 

[loss] 
(4.2.2) 

which is a bit odd. It implies that we will need different  if we parameterize our network differently, 
or if we rescale or re-parameterize the loss function. 

I mentioned Newton’s method before SGD because it already suggests a solution to the ‘problem’ 
of the dimensionality of . Namely that we really need some sort of metric on the space of gradients. 
Or at the very least, we should be cognizant of the fact that we have already implicitly chosen such 
a metric. To see this, note that we can re-interpret the gradient via 

−∇θL(θ) 
|∇θL(θ)| 

= lim 
→0 

1 
 
arg min 

|δ|≤ 
L(θ + δ) (4.2.3) 

Here the Euclidean metric on parameter space appears twice, on both the left and right sides... but 
there’s nothing particularly special or natural about that metric. 

4.3 Momentum and Why It Helps 

The momentum update keeps a running velocity with update rule 

v(n+1) = mv(n) + g(n) (4.3.1) 

where m  1 is the ‘momentum’; a typical value is m = 0.9. Then the parameter update is 

θ(n+1) = θ(n) − v(n) (4.3.2) 

So we’re updating the parameters with a smeared combination of the current gradient and, roughly 
speaking, the last 1

1−m gradients. Dimensional analysis here is the same as with SGD, and m is a 
pure (dimensionless) number. 

Why8 is this useful? Let’s contrast it with an approach that might seem equally good – we could 
just increase the batch size by a factor of 1

1−m , and also increase the learning rate 9 by the same 
factor. What’s better about momentum as compared to this approach? Naively it might seem that 
momentum should be strictly worse, since it’s updating the parameters using old, and potentially 
‘stale’ information about the loss landscape. 

At least in very simplified cases, such as convex optimization (NN learning landscapes are not 
convex), momentum actually helps a lot in the important and challenging case where the optimization 
problem is ill-conditioned, meaning that there’s a large range of Hessian eigenvalues. The intuition 
here is simple – by averaging over a sequence of updates we can smooth out our evolution through a 
‘canyon’ in the loss function. 

8For a beautiful and extensive discussion, see: https://distill.pub/2017/momentum/ 
9 To be clear, I’m assuming gradients are averaged within a batch, not summed. 
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In a quadratic potential 1
2 λθ

2 , the gradient is 

g = λθ (4.3.3) 

and so pure SGD updates are 

θ(n+1) = θ(n) − λθ(n) = (1 − λ)θ(n) (4.3.4) 

This has three phases, involving exponential divergence, and same-sign or alternating exponential 
convergence. The range of  where we converge is 

0 <  < 
2 
λ 

(4.3.5) 

This means that if we have a high-dimensional problem with a range of different λ – what we’re 
really interested in – then our  will be limited by the largest λ. That’s why SGD doesn’t work so 
well for ill-conditioned problems. 

If we instead use momentum, we have a pair of update rules 

θ(n+1) = θ(n) − v(n+1) = (1 − λ)θ(n) − mv(n) 

v(n+1) = mv(n) + λθ(n) (4.3.6) 

We can solve this by viewing the update as a 2 × 2 matrix multiplication by  
1 − λ −m 

λ m 

 

(4.3.7) 

acting on a (θ, v) vector. This matrix has eigenvalues 

e± = 
1 
2 

 
1 + m − λ ± 

 
(m − λ + 1)2 − 4m 

 
(4.3.8) 

and we need to have −1 < e± < 1 for stable convergence. This leads to the bounds 

0 <  < 
2 
λ 
(1 + m) (4.3.9) 

where the case m = 0 is conventional SGD. So momentum naively allows us to increase the step 
size by a factor of 2 without losing convergence. But this improvement is not meaningful, since 
the units and scale of  were arbitrary. For example, we could have re-defined our parameters via 
 → m/(1 + m) and we wouldn’t reap any benefit. However, the convergence rate(s) are more 
meaningful. 

There was a single convergence rate of (1 − λ) in SGD. Here we have two convergence rates e±, 
and we’ll be limited by the slower rate. Thus we can obtain critical (best) convergence by taking 
e+ = e−, in which case 

m = 
 
1− 

√ 
λ 
 2 

(4.3.10) 

43 



and we have an exponential convergence rate of 

e± = 1− 
√ 
λ (4.3.11) 

Note that this is actually meaningfully better than SGD because the dependence on λ has been 
softened, so that the convergence rate depends more weakly on the Hessian eigenvalues λ with 
momentum as compared to SGD. That’s the advantage that momentum can buy us. 

But to really demonstrate this effect, we must imagine that we have at least two dimensions with 
λ1  λ2, and that we’re simultaneously optimizing in both. In this case we want to minimize e± for 
both directions. In fact this occurs when e+ = e− for both directions, which simply requires that 
both discriminants vanish, so that 

(m − λ1 + 1) 2 − 4m = 0, (m − λ2 + 1) 2 − 4m = 0 (4.3.12) 

We can straightforwardly solve these equations for  and m, giving 

 = 

 
2 √ 

λ1 + 
√ 
λ2 

 2 

, m = 

√ 
λ1 − 

√ 
λ2 √ 

λ1 + 
√ 
λ2 

2 

(4.3.13) 

Substituting these values and identifying the largest eigenvalue, we find a convergence rate 
√ 
κ− 1 √ 
κ+ 1 

(4.3.14) 

where κ = λ1/λ2 > 1 is the condition number. In contrast, with gradient descent the convergence 
rate is κ−1 

κ+1 , so with momentum, for purposes of convergence we have effectively taken the square 
root of the condition number! 

Given this analysis, it’s natural to wonder if by using a 3-stage update rule, where we maintain 
both a ‘momentum’ and an ‘acceleration’, we could do even better, and eg take the cube root of 
the condition number. This seems like an amusing toy question. Note that even if we can manage 
this improvement, it’s much less of a gain as compared to the transition from SGD to momentum. 
From this point of view we can interpret Newton’s method as having taken the ‘infinite root’ of the 
condition number, so that it’s always 1 in the quadratic approximation of the loss. 

4.4 RMSProp and Adam 

The idea of RMSProp and Adam is to improve conditioning by suppressing updates in directions 
that have already been updated a lot, and enhancing updates in directions that have not changed 
as much. Intuitively, this is a good idea because highly-updated components tend to correspond 
to oscillations where we are jumping back and forth across a steep ‘canyon’ in the loss. RMSProp 
implements this idea, and Adam essentially just adds momentum to it. Currently Adam is probably 
the most commonly used optimizer in ML. 

In both algorithms we accumulate a total gradient variance during training. That is we define a 
vector of variances in parameter space 

V (n+1) 
i = βV (n) i + (1 − β) 

 
g
(n) 
i 

 2 
(4.4.1) 
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for some β  1, which acts as a ‘momentum parameter’ for the variances. Note that we are 
accumulating the squares of the individual components, not of the vector norm. This is biased 
towards 0 early on, so we can define 

V̂ (n+1) 
i = 

V (n+1) 
i 

1 − βn 
(4.4.2) 

to correct for this problem. (We didn’t bother correcting this bias in the case of momentum.) Note 
that this works because 

V̂ (n+1) 
i = 

 
g
(n) 
i 

 2 

 n−1 
m=0 β

m 
+ βV (n) i 

∼ max 

 
1 
n 
, 1 − β 

 
g
(n) 
i 

 2 
+ βV (n) i (4.4.3) 

Then we define the update 

θ
(n+1) 
i = θ(n) i − 

g
(n) 
i
V̂ (n) i 

(4.4.4) 

where gi n is the gradient. In fact there’s an extra parameter in the denominator to make sure it 
doesn’t get too small; usually this is set to 10−8 or so. Officially, the bias correction wasn’t included 
in RMSProp, which simply came from a slide at a talk, but it is unambiguously included in Adam. 

So dimensionally, in Adam and RMSProp the units are such that 

[] = [θ] (4.4.5) 

as the loss function and parameter scale cancel out of the ratio in RMSProp. This is quite different 
from SGD and Momentum. You might wonder why the denominator has a square root in it. As far 
as I can tell, the power-law in the denominator was set for good empirical performance, and I’m not 
aware of a good theoretical justification. 

What is this doing? Clearly it is discouraging updates to parameter directions where there have 
been, historically, a lot of updates, and encouraging updates in small-parameter-update directions. 
This suggests that it’s helping to fix the conditioning of the loss landscape. But is it really? 

Let’s imagine a toy quadratic model with a Hessian H. If H is diagonal in the basis of 
the parameters, so that literally Hij is a diagonal matrix, then the components will all evolve 
independently. If Hii = λi, then notice that since RMSProp is dimensionless, it will (eventually!) 
remove all dependence on the λi. So in this simple toy scenario, if β isn’t too close to 1, RMSProp 
has the approximate effect of turning 

L(Θi) = 
 

i 

λiΘ 2 
i with RMSProp  L(Θi) = 

 

i 

|Θi| with SGD (4.4.6) 
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as optimization problems, since the updates will be of constant magnitude, set by . In practice the 
parameter β is usually set very close to one, eg β = 0.999 is the default, so this behavior would take 
a long time to set in. So in fact I would not necessarily expect this picture to provide a good guide 
to the true behavior of RMSProp or Adam with default parameters. 

Note that these algorithms help with conditioning in a different way from Newton’s method. 
SGD with L = |θ| converges linearly to within the learning rate  of the minimum in |θ|/ steps, 
after which it oscillates. Newton’s method instead converges exponentially, and doesn’t oscillate. 

It would seem that the benefits of RMSProp depend on alignment of the Hessian and the 
parameters. But note that if H is block diagonal, then RMS prop will still help with stabilizing the 
learning rate between different blocks. This can easily occur if different layers in a NN have different 
scales for their parameters. 

What about Adam? It’s just RMSProp with momentum for the gradients in the numerator. It’s 
not clear if adding momentum to RMSProp provides the same benefits as adding momentum to SGD, 
but it might be interesting to study. In any case, Adam and Momentum are the two predominant 
optimizers in ML research at the moment, with Adam serving as the more flexible and stable choice. 

4.5 Batch Size Selection and the Gradient Noise Scale 

When optimizing, we need to choose a batch size B. How should we do that? The key idea is that 
B determines how noisy the gradients are, and so we want to choose it in such a way that the 
gradients do not have more noise than signal. The reason to choose a larger B (if possible) is to 
have data parallelism, so that we can parallelize the optimization process as much as possible, and 
take as few optimization steps as possible while doing a fixed amount of total computation. That 
way, optimization happens faster at no additional cost. 

We would like to minimize L (θ) using an SGD-like optimizer, so the relevant quantity is the 
gradient G (θ) = ∇L (θ). However, optimizing L (θ) directly would be wasteful if not impossible, 
since it would require processing the entire data distribution every optimization step. Instead, we 
obtain an estimate of the gradient by averaging over a collection of samples from ρ, called a batch: 

Gest (θ) = 
1

B 

B 

i=1 

∇θLxi (θ) ; xi ∼ ρ (4.5.1) 

This approximation forms the basis for stochastic optimization methods such as mini-batch stochastic 
gradient descent (SGD) and Adam. The gradient is now a random variable whose expected value 
(averaged over random batches) is given by the true gradient. Its variance scales inversely with the 
batch size B10: 

Ex1···B ∼ρ [Gest (θ)] = G (θ) 

covx1···B ∼ρ (Gest (θ)) = 
1 
B 
Σ (θ) , (4.5.2) 

10This is strictly true only when training examples are sampled independently from the same data distribution. For 
example, when batches are sampled without replacement from a dataset of size D, the variance instead scales like 
1 
B − 1 

D

 
. For simplicity, we restrict ourself to the case where B  D or where batches are sampled with replacement, 

but our conclusions can be altered straightforwardly to account for correlated samples. 
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where the per-example covariance matrix is defined by 

Σ (θ) ≡ covx∼ρ (∇θLx (θ)) 

= Ex∼ρ 

 
(∇θLx (θ)) (∇θLx (θ)) 

T 
 
− G (θ) G (θ)T . (4.5.3) 

The key point here is that the minibatch gradient gives a noisy estimate of the true gradient, 
and that larger batches give higher quality estimates. We are interested in how useful the gradient 
is for optimization purposes as a function of B, and how that might guide us in choosing a good B. 
We can do this by connecting the noise in the gradient to the maximum improvement in true loss 
that we can expect from a single gradient update. To start, let G denote the true gradient and H 
the true Hessian at parameter values θ. If we perturb the parameters θ by some vector V to θ − V , 
where  is the step size, we can expand true loss at this new point to quadratic order in : 

L (θ − V ) ≈ L (θ) − G T V + 
1 
2 
2 V T HV. (4.5.4) 

If we had access to the noiseless true gradient G and used it to perturb the parameters, then 
Equation 4.5.4 with V = G would be minimized by setting  = max ≡ |G|2 

GTHG . However, in reality 
we have access only to the noisy estimated gradient Gest from a batch of size B, thus the best we 
can do is minimize the expectation E[L (θ − Gest)] with respect to . This expected value can be 
evaluated using Equation 4.5.2: 

E[L (θ − Gest)] = L (θ) − |G|2 + 
1 
2 
 2 

 

G T HG + 
tr(HΣ) 

B 

 

. (4.5.5) 

Minimizing this equation with respect to  leads to: 

 opt (B) = argmin E [L (θ − Gest)] = 
max 

1 + Bnoise/B 
(4.5.6) 

as the optimal step size, which produces an optimal improvement in the loss from the noisy gradient: 

ΔL opt (B) = 
ΔLmax 

1 + Bnoise/B 
; ΔLmax = 

1 
2 

|G|4 

GT HG 
. (4.5.7) 

Above, we have defined the noise scale as: 

Bnoise = 
tr (HΣ) 
GT HG 

, (4.5.8) 

Note that our definition of the noise scale is independent of the size of the full training set. If we 
use a step size larger than twice opt, the loss may increase, leading to divergence. 

We should emphasize that this analysis is best viewed as a constraint on the stability of 
optimization, rather than as a way to choose the optimal step size. In fact, choosing the step 
size via a line search leads to very poor optimization performance. 
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Implications and Simplifications 

Equation 4.5.7 implies that when the batch size is much smaller than the noise scale, B  Bnoise, the 
second term in the denominator dominates the first, so increasing the batch size B linearly increases 
the progress in loss. This is the small batch regime, where increases in batch size linearly speed up 
training. By contrast, when B  Bnoise, then the first term dominates, so that increasing B has 
almost no effect on the progress in loss. This is the large batch regime where increases in batch 
size do not speed up training and simply waste computation; the switch between the two occurs at 
B ≈ Bnoise. 

The situation gets even simpler if we make the (unrealistic) assumption that the optimization is 
perfectly well-conditioned – that the Hessian is a multiple of the identity matrix. If that is the case, 
then Equation 4.5.8 reduces to: 

B simple = 
tr(Σ) 
|G|2 

, (4.5.9) 

which says that the noise scale is equal to the sum of the variances of the individual gradient 
components, divided by the global norm of the gradient – essentially a measure of how large the 
gradient is compared to its variance. It is also a measure of the scale at which the estimated and 
true gradient become close in L2 space (having non-trivial dot product) – the expected normalized 
L2 distance is given by: 

E 
 
|Gest − G|2  

|G|2 
= 

1 
B 
tr(Σ) 
|G|2 

= 
B simple 

B 
, (4.5.10) 

In practice, we find that Bsimple and Bnoise typically differ only by a small constant multiplicative 
factor, particularly when we employ common training schemes that improve conditioning. 

Predictions for Data/Time Efficiency Tradeoffs 

Thus far our analysis has only involved a single point in the loss landscape. But equation 4.5.7 
nevertheless predicts the dependence of training speed on batch size remarkably well, even for full 
training runs that range over many points in the loss landscape. By averaging Equation 4.5.7 over 
multiple optimization steps, we find a simple relationship between training speed and data efficiency: 

S 
Smin 

− 1 = 

 
E 

Emin 
− 1 

−1 

. (4.5.11) 

Here, S and Smin represent the actual and minimum possible number of steps taken to reach a 
specified level of performance, respectively, and E and Emin represent the actual and minimum 
possible number of training examples processed to reach that same level of performance. Since 
we are training at fixed batch size, we have Etot = BStot. We define the critical batch size by an 
empirical fit to the above equation, as 

Bcrit = 
Emin 

Smin 
. (4.5.12) 

Our model predicts Bcrit ≈ Bnoise, where Bnoise is appropriately averaged over training. Note that 
the noise scale can vary significantly over the course of a training run, so the critical batch size also 
depends on the level of performance to which we train the model. 
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The resulting tradeoff curve in serial time vs total compute has a hyperbolic shape. The goal of 
optimization is to reach a given level of performance with minimal S and E – but there are tradeoffs 
involved, as very small S may require very large E, and vice versa. When we choose B = Bcrit, 
the two sides of Equation 4.5.11 are both 1, so that training takes twice as many passes through 
the training data as an optimally data-efficient (small-batch) run would take, and twice as many 
optimization steps as an optimally time-efficient (large-batch) run would take. 

4.6 Natural Gradients 

We have encountered two significant esthetic issues with optimization: 

• The learning rate  is dimensionless in Newton’s method, but not in the case of 1st order 
gradient descent algorithms. This means that we have to know something about the scale of 
the loss and of the parameters to choose  appropriately. 

• Gradient descent implicitly involves a choice of metric on the space of parameters, but the choice 
of an L2 metric seems to be arbitrary, and would not be invariant under a re-parameterization 
of the NN parameters. 

Let’s illustrate the second point explicitly. Then we will see how these problems can be ‘naturally’ 
resolved. (The best reference I’ve found on this subject is https://arxiv.org/abs/1412.1193, and I 
recommend it as a first resource if you’d like to learn more.) 

Explicit Illustration of Coordinate Dependence 

Consider what would happen if we re-parameterize our network in terms of some new parameters Φ 
via general functions 

θi = fi(Φ
µ) (4.6.1) 

A simple SGD update on Φ would be 

Φ(n+1) 
µ = Φ(n) 

µ − ∇iL 
 
f i (Φµ) 

 
(∇ µf i) (4.6.2) 

This means that if we perform gradient descent on Φ, the induced update of Θ will become 

θ
(n+1) 
i = θ

(n) 
i −  

∂fi 
∂Φµ 

∂L 
∂θj 

∂f j 

∂Φµ 

= θ
(n) 
i −  

 
∂fi 
∂Φµ 

∂f j 

∂Φµ 

 
∂L 
∂θj 

= θ
(n) 
i −  

 
∇µfi∇µf j 

 
∇j L (4.6.3) 

This is a different update rule! We found a new update because in effect, the inverse metric on the 
parameters has changed from 

δij → δµν 

 
∂f i 

∂Φµ 

∂f j 

∂Φν 

 

(4.6.4) 
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This is what we would expect as a consequence of the diffeomorphism f . Because the SGD update 
rule does not have any natural geometric properties, it is not invariant to changes of coordinates on 
‘model space’. But our choice of coordinates was essentially arbitrary, so this should be disturbing! 

The choice of SGD assumes that the metric on NN parameters is simply L2 , ie δθ2 . But given 
any other inverse metric M we could perform an update 

θ
(n+1) 
i = θ

(n) 
i − M j i g

(n) 
j (4.6.5) 

where SGD corresponds to M ij = δij , and Newton’s method using M = H−1 (which isn’t a metric, 
and perhaps doesn’t exist). Let’s formalize these ideas. 

Formalization of Metric Dependence 

Our NN model itself (or any model) is some function pθ : X → Y . The loss is a function 

L(X, Y ) = L[X, pθ(X)] (4.6.6) 

In fact it’s a functional when written in this way, since it maps the space of functions pθ to numbers. 
But it’s just a function if we parameterize our NN with a finite set of parameters θi. As usual, we 
estimate it by sampling from X. 

Additionally, we may choose a distance metric 

D[pθ, pΦ] ≥ 0 (4.6.7) 

that measures how different two models are. We expect that D[pθ, pθ] = 0 and in a perfect world, D 
would also satisfy the triangle inequality 

D[p, q] + D[q, t] ≥ D[p, t] (4.6.8) 

and be symmetric. If so it gives us a metric on the space of models. When we tried to define SGD, 
we were implicitly picking the metric 

DL2 [pθ, pΦ] = 

  

i 

(θi − Φi)2 (4.6.9) 

for NN models with the same set of parameters. This is definitely a metric, but there’s nothing 
particularly natural about it, other than its simplicity. 

Now we can use our metric to formalize the extraction of an update rule as 

δθ = arg min 
D[pθ,pθ+δθ]≤ 

L(θ + δθ) (4.6.10) 

where we assume  to be infinitesimal, so that this really means 

δθ = arg min 
δθT Mδθ =  

g T δθ (4.6.11) 
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for a local metric M . It’s very easy to see by studying a Lagrangian 

L = λ(δθ T Mδθ − ) + g T δθ (4.6.12) 

where λ is a Lagrange multiplier, that this leads to an update 

δθ ∝ −M−1 g (4.6.13) 

The Newton’s method update would arise with M = H, though recall that H isn’t a metric. 

Natural Gradients from a Natural Metric 

Our analysis shows that gradient descent necessarily involves a choice of metric, and that conventional 
SGD presumes a Euclidean metric on the NN parameters (in the whatever parameterization is 
chosen). But if we had a natural metric on model space, then we could perform gradient descent in 
a more natural basis. 

We have already discussed various metrics on model space, with our largest focus on the KL 
divergence 

DKL(p||q) = 
 

dx p(x) log 

 
p(x) 
q(x) 

 

(4.6.14) 

As we’ve discussed, this is not a metric, but it does measure a kind of distance or separation on 
model space. Furthermore, infinitesimally it is a metric, that is 

DKL(pθ+δθ||pθ) = 
 

dx pθ+δθ(x) log 

 
pθ+δθ(x) 
pθ(x) 

 

≈ 
1 
2 
δθ i δθjF ij(θ) (4.6.15) 

where Fij is the positive-definite and symmetric Fisher information matrix, and we recall 

F ij(θ) = 
 

dx pθ(x) (∇i log pθ(x)∇ j log pθ(x)) (4.6.16) 

concretely in terms of our model pθ(x). This can be evaluated approximately by sampling x from 
the data distributions. Note that F is manifestly positive semi-definite. 

The natural gradient method uses F as a metric, giving an update 

δθ = −F−1 g (4.6.17) 

with a dimensionless learning rate . 
One reason for interest in the natural gradient is that F makes no reference to the parameter 

space or its representation. Thus it will be coordinate re-parameterization invariant. A second 
reason to like the natural gradient update is that, in fact F has a close relationship to a certain 
approximation of the Hessian, the Gauss-Newton matrix. This means that the natural gradient 
update can often be viewed as an approximation to Newton’s method. 

If you’re interested in exploring natural gradients for NN optimization, you’ll want to read about 
‘KFAC’, an approximate implementation that, with some work, can be used in tensorflow. 
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(Watch Out for) the Empirical Fisher 

You might be tempted to compute a matrix that looks like the Fisher via sampling from the empirical 
data distribution, ie we can write a pseudo-Fisher or ‘empirical Fisher’ matrix as 

F̃ = 
 

dxP (x) (∇i log pθ(x)∇ j log pθ(x)) (4.6.18) 

where P (x) is the ground truth distribution for the data. Note that this is not the same thing as 
the Fisher, because the data is being sampled from the ground truth distribution P rather than the 
model pθ. This will be positive definite, but it’s not the correct matrix to use for natural gradients. 

4.7 Aside: More on 2nd Order Methods 

In the wider world of (convex) numerical optimization, second order methods are quite popular. 
These can mostly be viewed as more efficient versions of Newton’s method. Let’s take a look at how 
they work. In all cases we’ll think about expanding the loss as 

L = L0 + θig i + 
1 
2 
θiθ j H

ij + · · · (4.7.1) 

(where we WLOG set the initial point to θ = 0) and work with the Hessian and gradients. To this 
order, if we assume that H is positive definite, then we are searching for a solution to 

Hθ = g (4.7.2) 

When H is not positive definite, as is typical, our goal is less clear. 

4.7.1 Gauss-Newton Matrix 

We ran into the problem that H isn’t positive definite. One way to deal with this for certain types 
of loss functions is to use the Gauss-Newton matrix in place of the Hessian. Let’s assume that our 
loss function is 

L = 
 
(y − fθ(x)) 

2  (4.7.3) 

where the expectation is over (x, y) in the dataset. In this case the Hessian with respect to θ will 
contain two terms 

Hαβ = ∇αfθ∇βfθ + (yi − fθ(xi)) ∇α∇βfθ (4.7.4) 

The first term is the Gauss-Newton matrix, which is guaranteed to be positive semi-definite. So if we 
like, we can use it in place of the full Hessian. Hopefully this will also provide a more conservative 
approach, since in theory it’s less likely to have nearly vanishing eigenvalues. 
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4.7.2 Conjugate Gradients 

If H is positive definite, we can view it as a local metric on the parameters. In this sense we can 
imagine having a list of vectors vi that are mutually orthogonal with respect to H. Then the problem 
we want to solve can be decomposed so that 

θ = αivi (4.7.5) 

and we need only solve 

αiHvi = g (4.7.6) 

which we can do by dotting into vi so that 

αi = 
v† 
i g 

v † 
i Hvi 

(4.7.7) 

which determines the αi. This is all rather trivial; we’re just working in a basis set by the vi. 
We can turn this into an algorithm by choosing to move in conjugate directions. So to start out 

we simply take a gradient step to the new point 

θ1 = 0 − δ0 = −g (4.7.8) 

since θ0 = 0. On the next step, naive gradient descent suggests moving by 

−g − H(−g) = Hg − g (4.7.9) 

However, instead we will insist that this step is orthogonal to the original step in the H metric. For 
this its useful to define the kth residual 

rk = −g − Aθk (4.7.10) 

and then the kth step is 

δk = rk − 
 

i<k 

δ† 
i Hrk 

δ† 
i Hδi 

δi (4.7.11) 

which is simply the Graham-Schmidt orthogonalization of the sequence (r0, r1, · · · , rk) in the metric 
H. The update rule is 

θk+1 = θk + αkδk (4.7.12) 

where 

αk = 
δ† 
k rk 

δ† 
k Hδk 

(4.7.13) 

In the limit where g is a sum of a few eigenvectors of H, we are just taking a few steps. 
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4.7.3 (L-)BFGS (Broyden–Fletcher–Goldfarb–Shanno) 

This is an algorithm to approximate Newton’s method without directly computing the Hessian. 
The basic idea is to approximate the Hessian using information gained from successive parameter 

values and gradients. Notice that 

∇iLk+1 ≈ ∇iLk + (θk+1 − θk)
jH ij (4.7.14) 

where this is only approximate because we have expanded in small |θk+1 − θk|. Given the parameter 
values and gradients, we can re-interpret this equation as an approximate formula for the Hessian 
itself via 

(θk+1 − θk)
jH

(k+1) 
ij = ∇iLk+1 − ∇iLk (4.7.15) 

Of course this does not even come close to determining the full H. Rather, we can try to build up 
such a formula via successive updates 

H(k+1) = H(k) + δH(k) (4.7.16) 

We only learn a little about H on each update. 
To simplify notation, we will write 

dk = θk+1 − θk 

yk = ∇L(θk+1) − ∇L(θk) (4.7.17) 

To parameterize the information we obtain with each update, we will choose a simple basis for δH 
using 

δH = αuu T + βvv T (4.7.18) 

with u = yk and v = Bkdk. This at least accords with dimensional analysis. 
Now we can just determine α, β. Our defining equation implies that 

dk · (Hk + αyky
T 
k + β(Hkdk)(Hkdk)

T ) = yk (4.7.19) 

which can be solved via 

α = 
1 

yT 
k dk 

β = − 
1 

dT 
k Hkdk 

(4.7.20) 

so that 

Hk+1 = Hk + 
yky

T 
k 

yT 
k dk 

− 
(Hkdk)(dkHk)

T 

dT 
k Hkdk 

(4.7.21) 

Now we can use Hk+1 to compute an update via Newton’s method. For that purpose, it’s useful to 
note that Bk+1 can be inverted in terms of B−1 

k via 

(Hk+1)
−1 = 

 

1− 
dky

T 
k 

dk · yk 

 

H−1 
k 

 

1− 
ykd

T 
k 

dk · yk 

 

+ 
dkd

T 
k 

dk · yk 
(4.7.22) 

This can be computed efficiently without storing extra matrices by directly multiplying it out and 
expressing it in terms of scalars like yT 

k B
−1 
k yk. 
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5 Architectures 

It’s finally time to talk about the Neural Networks themselves! 
In this section we will discuss aspects of NN design that refine our elementary picture in terms 

of affine transformation plus simple non-linearities. Here are some considerations that we should 
expect to be important in NN design: 

• Can the function that we’re interested in learning actually be represented in the form of this 
type of NN? This is necessary, but likely not sufficient. In most cases it’s also not a problem 
that we directly measure or address. 

• Will (the relevant) information be able to propagate through the network with high probability, 
so that training can provide a good signal for learning? At the most basic level, we need to 
make sure that signals do not vanish or explode, so that the loss landscape is relatively smooth. 
This relates to both literal architecture of the NN and the magnitude and distribution of data 
and parameters. So to properly understand it we will need to think about how to initialize the 
parameters. We’ll also need to account for the behavior of the non-linearities, ie the ‘activation 
functions’, and think about how to ‘whiten’ the information at all stages of the computation. 

• Does the most relevant information propagate in a small number of steps? As a concrete 
example, a recurrent network that’s learning to model language has to ‘remember’ all of the 
words in a sentence to understand context, and this means that to read W words intelligently 
it needs to execute W sequential steps. Networks that can correlate words early and late in a 
paragraph without tens or hundreds of steps might be expected to perform better, and do. 

• Does the network have the right symmetries for the data, or are we wasting capacity by forcing 
the network to learn this information? Architecture imposes inductive bias on the problem – 
that is, we are biasing the distribution of all possible NN parameters by presuming that there 
are fixed relations between them. We can view this as a kind of prior on the NN weights. 

• We can view the NN as a function that’s attempting to linearize certain non-linear features, 
and the architecture determines what sort of features this can naturally apply to. 

• Perhaps related to all of the above... can the network efficiently learn to forget irrelevant 
information? Of course there may be tradeoffs here with information propagation. 

• Finally, it’s possible that in the future architectures will be optimized for better scaling, for 
example by exhibiting model parallelism. This could mean that the best architectures at very 
large scales are only optimal because they can be run on a host of GPUs. 

In this section we will consider some of these questions, and what they suggest about NN architecture. 
My discussion of RNNs, LSTMs, and CNNs is rather brief compared to most other sources, since 
these topics are quite simple and have been covered extensively elsewhere. 
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5.1 Info Propagation – Activations, Whitening, Initialization, Resnets 

Let’s first discuss aspects of NN design related to encouraging and channeling the propagation of 
information. This includes activation functions, various ‘norms’ that whiten the activations, and 
parameter initialization. Typically these three topics are discussed separately, but I’ve combined 
them as I view them as component tools for pursuing a unified goal – to represent a rich class of 
functions while maintaining a smooth loss landscape. 

5.1.1 Explicit Activation Functions 

Perhaps the most basic feature of NNs are their activation functions – what non-linearities should 
we choose, and when and why? 

Relatively little seems to be known about this subject. My impression is that this is because 
aside from a few very basic features, activation functions really don’t matter very much. This 
would follow from the theory that NNs are just very general function approximators, and so as long 
the modular pieces from which they’re constructed aren’t pathological, their precise form isn’t so 
important. But it is crucial to avoid certain pathologies that prevent information propagation. 

My sense is that you can succeed in almost all tasks using only these activation functions: 

• ReLU = max(0, x) – this is the default activation function, to be used if there isn’t a reason 
to use one of the others. It’s important that it does not saturate on at least one side, so 
that the network continues to receive gradient signals. This function may also be especially 
useful for the (very common) tasks where we want to distill a lot of information down to a 
low-dimensional decision – eg policies in RL, and classification in SL – since it’s projecting the 
data onto one side of a hyperplane. 

• Trivial/Identity – if you just want a linear transformation. For example, this is relevant for 
embedding spaces that map words to vectors. 

• Tanh – if you want outputs in a fixed range. But note that this saturates on both sides, so it’s 
not a great choice for intermediate layers. 

• Sigmoid – if you want outputs that have a probabilistic interpretation. To be clear, this is the 
function that maps a vector xi to 

σi(x) = 
exi  
j e

xj 
=

e xi−xmax  
j e

xj −xmax 
(5.1.1) 

where the second expression has better numerical stability when the components of x are large. 

Given the issue with saturation, you might expect that a ‘leaky ReLU’ or some function like 
qx + (1 − q)ReLU(x) for some q would be a good choice. It’s sometimes used when it’s important for 
information to continue to propagate through a large number of layers. And a very closely related 
idea is that of ‘ResNets’, or ‘Residual Networks’, which we’ll discuss below. But surprisingly, ‘leaky 
ReLU’ functions are not especially common, and don’t seem to help much with training. 
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Some experts say that in certain situations, modified or smoothed versions of the ReLU can 
perform a bit better, but I don’t know of a simple and empirically-supported reason why they’re 
better. Two examples of these functions are the ‘swish’ and the ‘GeLU’. 

It’s often noted that a network with L layers can encode ∼ NL functions, where N is itself 
some large number. With ReLU’s this is obvious, since we can think of each ReLU activation as a 
hyperplane filter, and composing L of these can slice a high-dimensional space into an exponentially 
growing number of cells. It’s certainly important that NN are highly expressive. However, I don’t 
think that this result (the exponential growth specifically) has all that much to do with the success 
of NNs, because most of these functions are probably extremely difficult or impossible to learn via 
optimization. Instead I’d expect NN performance has a lot more to do with the very special kind of 
data provided by the world, which has a great deal of correlation, structure, and simplicity. But 
maybe I’m wrong! 

5.1.2 Whitening Functions: Weight Norm, Layer Norm, Batch Norm 

One way to encourage information to flow through a network11 is to make sure that at each stage of 
the computation, the distribution of the NN activations follows a ‘reasonable’ distribution, with 
order one mean and standard deviation. If we like, we can simply amend our activation functions to 
do this! That’s the idea behind Layer Norm and Batch norm. When we use these methods we are 
‘whitening’ our data, our model, or combinations thereof. 

The simplest possibility is that we can whiten our model, without worrying about the data itself. 
So we can replace the weights of any given layer be 

W ij = g
vij 

1 
N 

 
ab vab 

(5.1.2) 

where g sets the overall scale of the weights, and is optimized separately. This is called weight 
normalization. Apparently it helps with optimization a bit, though it’s less common than Layer 
Norm and Batch Norm. I only mention it as an appetizer. 

A more interesting and dynamic approach is to whiten the actual activations. We can only do 
this if we have a large sample of data, and so there are two natural directions – we can use all of 
the activations in a given layer, or we can use all of the activations in a given batch (or in principle 
both). With layer norm, after a given layer such as 

X i n = ReLU(W ijXn−1,j + b i) (5.1.3) 

we can compute the mean and variance 

µn = 
1

L 

 

i 

X i n, σ 2 
n = 

1

L 

 

i 

(X i n − µn)
2 (5.1.4) 

11The role of batch norm in smoothing the loss landscape has been demonstrated both theoretically and empirically 
(https://arxiv.org/pdf/1805.11604.pdf) 
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and then replace X i 
n with 

X̂ i n = 
X i 

n − µn 

σn 
(5.1.5) 

That’s the layer norm. Note though that here the i index runs over the activations within a layer. 
Each data point in the batch is treated separately. We can simply think of this as a modified 
definition for the layer itself. 

Usually, once we perform a layer-norm, we will then introduce an additional scale and bias term 
for each activation. But now these are parameters in the NN, so that the mean and variance of the 
activations (within a layer) will be under direct control. 

At its simplest, batch norm uses the same, very basic equations, except that we average over the 
batch for each activation, rather than averaging over all the activations for each datapoint. But then 
batch norm may seem rather confusing... what do we do if we only have a single data point!? 

To solve this problem in batch norm, typically during training we store accumulated means and 
variances (smoothed during training with a momentum-type parameter) for each layer. Then we 
store these values, and use them when testing. This makes it possible to apply batch norm to a 
single data point, once the model has been trained. 

Note that Layer Norm can simply be viewed as a complicated alteration in the function that the 
NN represents. This isn’t true of Batch Norm until we freeze the model, ie it isn’t true until after 
the model is trained. This is an advantage of Layer Norm. 

5.1.3 Initialization 

Neural Networks are at least as complicated as a sequence of many matrix multiplications. But such 
products are dangerous – they may vanish or blow up, depending on the spectra of eigenvalues. So 
we should try to initialize NN weights so that the distribution of the activations and gradients will 
be the same from layer to layer. This makes initialization a natural part of ‘whitening’. 

With ReLU activation functions, from one layer to the next we have 

X i n = ReLU(W i j X j n−1 + b i) (5.1.6) 

The ReLU will kill roughly half of the components. Aside from that consideration, we need to think 
about is how the distribution of W and b affects that of Xn, accounting for the distribution of Xn−1. 
Let’s assume that there are Lm variables Xm, so the weights are Ln × Ln−1 matrices. 

Note that it’s a general fact that for independent random variables 

Var(AB) = (AB) 2  − AB 2 = A 2 B 2  − A 2 B 2 

= Var(A)B 2 + A 2 Var(B) + Var(A)Var(B) (5.1.7) 

since Var(A) = A2 − A2 , which we can use to understand the distribution of W X. Also note 
that if a random variable is symmetric around 0, so that p(x) = p(−x), then 

ReLU(x) 2  = 
1 
2 
x 2  = 

1 
2 
Var(x) (5.1.8) 
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The variance is unclear, since the effect of the ReLU on the mean is undetermined. 
The distribution of X i 

n will have variance 

Var(X i n) = Var(ReLU(W i j X j n−1 + b i )) (5.1.9) 

≈ 
1 
2 
Var(W i j X j n−1 + b i) 

= 
1 
2 
Var(b i) + 

1 
2 

Ln−1
j=1 

 
Var(W i j )X j n−1  2 + Var(X j n−1)W i j  2 + Var(W i j )Var(X j n−1) 

 
≈ 

1 
2 
Var(b i) + 

1

2 

Ln−1 

j=1 

Var(W i j )Var(X j n−1) 

So this gives us a guess for the relation between the variances of subsequent layers. It’s common to 
simply initialize bi = 0 and rely on the random initialization of the weights to distinguish between 
the neurons. 

Now the question is, what do we want or expect from the activations? If we want the activations 
X i 

m to have individual variance 1 for all layers m, then we should choose 

Var(W i j ) = 
2 

Ln−1 
(5.1.10) 

where we have ignored the variance of the biases, assuming that it will be chosen to be much 
smaller. Another possibility is that we would like the variance across an entire layer to be 1, ie 

i Var(X
i 
n) = 1, so that Var(X i 

n) = 1
Ln 

. In that case we should choose 

Var(W i j ) = 
2 
Ln 

(5.1.11) 

to propagate this normalization. The initialization procedure used in tensorflow actually chooses 

Var(W i j ) = 
2 

Ln + Ln−1 
(5.1.12) 

as this was suggested in a paper by Glorot and Bengio. This should be fine for fairly shallow networks, 
but it could be problematic for very deep networks, as it introduces a product over extraneous 
factors of 2. I don’t know why tensorflow doesn’t simply choose 2

Ln 
or 2

Ln−1 
; this seems like a poor 

decision (but maybe I’m naive?). Note that the choice of Ln or Ln−1 is essentially irrelevant, since 
signal propagation through the full network is controlled by their product over n. 

In our analysis we have only studied forward propagation (evaluating the NN function), rather 
than the magnitude of gradients. The analysis of gradients is very similar, and leads to the same 
final result, except with Ln−1 replaced by Ln. See 1502.01852 for some details. 

Also, as a final comment – instead of initializing variables at different scales, one could alternatively 
initialize them all to have an order-one fixed scale, but then multiply the various activation functions 
by the relevant scale, instead. Then everything in the network would be ‘order one’. It’s not obvious 
if this is better or worse than standard practice, but it’s probably worth considering. 
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5.1.4 Residual Connections 

If you’re training a very deep model, you should worry that information won’t propagate through it. 
A simple way to solve this problem is to make your layers (or your blocks of layers) compute 

Xn+1 = Xn + Fn(Xn) (5.1.13) 

where F is some non-trivial NN function, so that your network is implementing the identity plus 
some function at each layer. That way, even if early layers aren’t doing well, later layers still have 
access to (a lot of?) the original information in the data. The paper that first proposed the ‘Resnet’ 
has more citations than the papers that established the standard model of particle physics. 

It is often said that there are two versions of the resnet, where what I wrote above is V2. The 
first version implements 

Xn+1 = φ(Xn + Fn(Xn)) (5.1.14) 

where φ might be an activation function or some norm (like batch norm). This V1 resnet doesn’t 
make a ton of sense if φ is a ReLU, as it would defeat the residual structure (though such networks 
do seem to exist and be in use). 

Virtually all state of the art models for both image processing and language modeling are deep, 
and therefore use residual connections. 

Note that with our nicer ‘V2’ resnet structure, we have, recursively 

Xn = Xn−1 + Fn−1(Xn−1) 

= X1 + 
n−1 

k=1 

Fk(Xk) (5.1.15) 

so that the last layer is the input plus various functions applied to the activations at every prior 
layer. This means that for deep models, the variances can blow up simply because we have so 
many layers, and so many different paths through the network. This can be ‘fixed up’ by dividing 
the initializations by a power of 1 √

L 
where L is the number of residuall blocks, and the power is 

determined by the number of sub-layers within a block. 

5.2 Recurrent Structures 

Our minds maintain memories, and make decisions from moment-to-moment based on a combination 
of memory and present inputs. These decisions determine both the actions we take and the memories 
we subsequently store. Recurrent NNs are basically the simplest possible structure with these 
properties. 

Aside from that motivation, we can also easily motivate RNNs by thinking about how to process 
sequence data, such as language. We read from left to right (in English), processing text letter-by-
letter or word-by-word. If we read aloud, or translate from English to another language, at each step 
we might ‘output’ a result and store a ‘memory’. This makes sense because many sequences, such as 
text, depend in some more or less complicated way on the proceeding tokens (letters or words) in 
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the sequence. We can also use recurrent models in stranger ways, for example by assigning an order 
to the pixels in an image, and ‘reading’ it pixel-by-pixel. 

So without further ado, let’s define the two most common recurrent NN structures. 

5.2.1 RNNs 

Let’s imagine the input sequence comes in the form of ordered tokens xk, which are themselves 
vectors in a dx-dimensional space. Our recurrent model will have a ‘memory’ or hidden state hk 

that’s a vector of dimension dh. The simplest possible model simply produces 

hk+1 = ReLU(W ij(hk, xk)j + b i) (5.2.1) 

where (hk, xk) is simply the concatenation of the two vectors, so that the weight W has dimension 
dh × (dx + dh), and the bias b has dimension dh. That’s all there is to a RNN! 

After producing the hk, we can do whatever we like with them. For example, we could feed them 
into another RNN, which is ‘stacked on top of the first one’. Or we could use the hk to perform 
some language task, such as classifying the sentiment of the sentence the LM just read. 

Note that RNNs have an obvious problem, which is also shared with other very deep models – 
they can easily lose or over-amplify information within their recurrent structure. 

5.2.2 Embedding Matrices 

If our individual tokens are words, then... there’s a lot of words! This is typically handled by using 
an embedding matrix, which is a linear map of dimension demb × dvocab, with typical values like 
dvocab ∼ 104-105 and demb ∼ 500. It’s only after processing text with a learned embedding matrix 
that we would input it into a recurrent model. 

5.2.3 LSTMs 

‘Long Short-Term Memory’ networks modify the very basic RNN structure to better preserve and 
utilize memory. When written out in equations, the modifications look quite involved, but they’re 
quite simple when presented intuitively. There are a host of other options with different design choices, 
but the LSTM has been the most popular choice. I haven’t bothered to write up the details because 
they’re already nicely displayed here (http://colah.github.io/posts/2015-08-Understanding-LSTMs/). 

Note that in terms of parameter counts, LSTMs contain 4 matrices of size dh × (dx + dh), so 
they have 

4dh(dx + dh) (5.2.2) 

parameters, ignoring biases. This is also roughly the number of computations that they perform 
during a forward pass (evaluating themselves as a function) on a single token. 
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Aside: Normalization Prescriptions 

Note that we can’t use batch norm on the recurrent links in an RNN or LSTM. You might think it 
would be OK – we could just use a different norm for each sequential step – but we wouldn’t know 
what to use at test time. But we can use layer norm, since layer norm is really just a change in the 
definition of the activations of a layer, as a function. 

5.3 Convolutional Structures 

Convolutional NNs account for the approximate translation invariance of the world, along with 
(much more approximate) small local diffeomorphism invariance. 

CNNs 

Convolutional NNs slide a set of ‘filters’ over an image. They also either use ‘pooling’ layers or a 
> 1 ‘stride’ for the filters in order to spatially compress an image. For a given convolutional layer, 
there are three parameters to set 

• Filter size, typically 3 × 3, 5 × 5, etc. 

• Stride – do the filters slide over the image in increments of a single pixel (stride = 1), or do 
they skip pixels, thereby compressing the result spatially 

• Number of channels – how many filters do we have? Note that a color image begins with 3 
channels. Typically CNN filters act on all channels in a given layer. 

So for example, a CNN layer with 5 × 5 filters acting on an existing layer with 8 channels and 
mapping to a new set of activations with 16 channels will include NN weight matrices that are 
5 × 5 × 8 = 200 on one side and 16 on the other side, ie the will be 200 × 16 matrices, in effect. It’s 
typical that successive CNN layers reduce image size spatially while adding more and more channels. 

Convolutional NNs are primarily motivated by translation symmetry. One can also argue that they 
are natural from the point of view of small, general distortions interpreted as local diffeomorphisms. 
For example, the latter might motivate maximum-based pooling layers, as max-pooling will decrease 
sensitivity to distortion. These ideas can be formalized in equations (see work by Stephane Mallat 
and others), but as far as I know the results do not help us to choose better architectures, or to 
explain in detail why one CNN architecture is better than another. 

Style Transfer 

NNs can be used to achieve a fairly interesting and impressive effect – a kind of ‘transfer of artistic 
style’ (1508.06576). The idea is to look at the correlations between neurons in different layers when 
a trained CNN processes an image with the desired style. Then, we take a new image (usually 
a photograph) and apply gradient descent to the pixels of the image, with a loss that combines 
preservation of the original image with mimicry of the inter-layer correlations found in the stylized 
image. The results can be very cool. 
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ResNets 

Nearly all nearly state-of-the-art convolutional image-processing models have a ResNet structure as 
described in our information propagation section. These were the first resnets, though the same 
structure is also now used for other networks, such as Transformers. 

5.4 Attention and the Transformer 

Attention is essentially a NN used as a highlighter. 
A successful initial application of this idea was for sequence alignment. For example, say you 

want to understand how to translate from English to French, and you have equivalent sentences 
in each. For a given French word, you’d like to know which English words correspond with it. 
This means that you’d like to be able to point to a French word, and be able to immediately see 
a highlighted version of the English sentence that tells you where to look to find the equivalent 
meaning. 

But perhaps the most important current application is self-attention. For instance, given an 
English paragraph, if I point to a given word, it’s useful to know which other words are particularly 
relevant to the chosen word’s meaning (and vice versa). One might want to process text by providing 
a new version of a sentence with these connections specifically emphasized. Very roughly speaking, 
that’s what a layer in a Transformer does. 

It’s important to note that when we refer to attention we mean ‘soft attention’, where some 
initial vector Vα gets re-weighted by another vector or matrix that we can back-propagate through. 
One can also consider ‘hard attention’, where we make a hard sub-selection, but that’s not the focus 
here. One would probably need to learn hard attention using RL. 

5.4.1 Basic Idea of Attention 

Highlighting portions of data means up-weighting and down-weighting relative importance. This 
naturally translates into the mathematical statement that given a vector of value V i , we map 

V i → σi V i (5.4.1) 

for some weights σi ∈ [0, 1]. We’d like these σ to depend on something relevant. 
In the literature, the dependencies are often referred to as keys and queries, and represented by 

K and Q. The idea is that we submit a query-vector, and it matches up with a key-vector. So if we 
separate out the ‘key’ and ‘query’ from the value, then 

Vα → σα(Q, K)Vα (5.4.2) 

where K is a key associated with the query Q that helps us to decide what value V to highlight. 
It’s easy to come up with examples where the terminology makes sense. For instance, maybe V 

is an image, and what we want is to highlight sections of it. The query might correspond with a 
desire to highlight, say, a particular kind of animal that may be present in the image. Then the 
key will be some piece of information that tells us where the various kinds of animals are within 
the image. In this case (and many others), the key K will likely be the result of some computation 
applied to the image itself. 
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5.4.2 Transformers 

Transformers act on their data through multi-headed self-attention. The ‘self’ here means that the 
K and Q both come from some computation applied to the original data V . 

Another way of thinking about what K and Q do is via selective embedding spaces. The 
transformer takes words in their associated (large) embedding space and projects them into smaller 
embedding spaces which are used for the selection/highlighting/enhancement that may be relevant 
for a specific task (eg finding the objects of verbs). Perhaps different subspaces handle grammar, 
causal relations, vocabulary choice, etc... each of these may correspond to a different head in a given 
Transformer layer. (One can see this happening in some specific examples, but when I talk about 
these categories I’m just making them up.) 

Let’s discuss the version of attention that appears in the Transformer model. In that case we have 
some dseq length list of inputs, eg a sequence of words. Furthermore, each word or token is itself a 
dembedding dimensional vector in an embedding space. So the input will be V , a dseq ×dembedding tensor. 
The original paper chose dembedding = nseq = dmodel, and used dmodel = 512, though significantly larger 
models are in use now. It’s not at all obvious that dembedding = nseq is optimal. 

It would be very computationally expensive to use matrices that act directly on a demb ×nseq > 105 

dimensional vector space of the full V ! Sequence models avoid this problem by only looking at one 
token at a time, and storing the rest in memory (hopefully). What about Transformers? 

Self-Attention 

The idea is that a given self-attention head will have a key and a query for each position in the 
sequence. The data comes in as a matrix V se , where s denotes position in the sequence, and e 
denotes the embedding index. So we will have keys 

K ks = W ke 
K V

s 
e , Q sk = W ke 

Q V
s 
e (5.4.3) 

We also have queries 

Q sk = W ke 
Q V

s 
e (5.4.4) 

where WQ and WK are matrices. Here the dimension of the keys and queries is dk, where in the 
original paper they choose to have 8 attention heads, and so to choose dk = 512/8 = 64 (but this 
isn’t obligatory). You can think of dK as the dimension of a sort of new, per-head embedding space. 
Notice that WK and WQ do not act in the sequence-space at all. 

Taken together, we then have the self-attention map 

Self − Attention(V )s = softmaxs 

 
QskKs 

k √ 
dK 

 

V e 
s (5.4.5) 

where Q and K were defined above, and I put a subscript on the softmax to indicate what axis we’re 
softmaxing over. In the literature the numerator is typically written as QKT . Notice that in fact 

Sss  = softmaxs 

 
QskKs 

k√ 
dK 

 

(5.4.6) 
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is a nseq × nseq matrix of values. The matrix is itself made from a quadratic form acting on V . So 
this is how the words effect each other! Once we determine Sss , we are just multiplying the V s

e 

matrix by it, and acting only on the s-indices, and not on the embedding indices... so far. 
But there’s one more ingredient to keep the dimensionality from getting out of hand. We also 

project the embedding down again after applying self attention, so that 

V se → W ke 
V V

s 
e (5.4.7) 

which is a lower dimensional vector. So the full transformation for one head is 

Headh,sk(V ) = softmaxs 

 
Qh,sk K h,s

 

k √ 
dK 

 

Vs eW h,ek 
V (5.4.8) 

where K and Q were defined above, and I have added an ‘h’ label to them to emphasize that there 
is a different Q, K, and thus a different underlying WQ, WK , for each of the heads. 

To get the full layer, we concatenate the heads back together to give ourselves a new output. 
Finally, we multiply by a matrix W e,(hk) 

O

Z se = W e,(hki) O Concat(headsk1 
1 , head sk2 

2 , · · · , headskn heads 
nheads ) (5.4.9) 

with the same dimension as our input V se , where (hki) denotes both indices (as a tensor product). 
While the original paper chose for Z and V to have the same dimensions, and this is useful 

for layer-stacking, it’s not conceptually necessary. There’s not much of a natural correspondence 
between Z and V , since the ‘e’ index of Z is just made from the concatenation of nheads = dmodel/dk 

different attention heads. Furthermore, we could even have different heads with different sizes. As 
usual in ML, we’re doing violence to our vector spaces. 

Let’s count parameters. We have 3dkdemb parameters in WK , WQ, WV for each head, and then 
d2 
emb parameters in WO, so this leads to 

PMHA = 3(dknheads)demb + d 2 
emb = 4d 2 

emb (5.4.10) 

parameters in the self-attention mechanism. 

Fully Connected Layer 

We also act with a feed-forward network that acts word-by-word independently. And in fact the 
original paper includes two linear transformations with a ReLU in between. So this is just a fully 
connected network acting on the ‘e’ index of the Zse output via 

Zse → W e 
2,xReLU(W xe  

1 Zs 
e + bx 

1 ) + be 
2 (5.4.11) 

In the original paper, they chose the dimensionality of the ‘in between’ layer to be dff = 4dmodel = 2048, 
so this is the range of the x index. This means that there are 

PFC = 2dff demb + dff + demb (5.4.12) 
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parameters in this fully connected layer, where we have also included biases, though they will be 
negligible in practice. Note that 

PFC 

PMHA 
≈ 

dff 

2demb 
(5.4.13) 

but it’s typical to take dff = 4demb, so that there are twice as many FC parameters as MHA 
parameters. 

Building a Transformer 

To finish off a Transformer, we need to give it a Resnet-like structure, add many copies of Layer 
Norm, and include a positional encoding in the initial sequence data. 

The position encoding is necessary because the layers of the transformer do not have any absolute 
or relative reference points. To see this, note that none of the matrices we defined above act on 
the s indices! So for this purpose, we simply add to the initial tensor V se a constant tensor P se . 
One option is to learn this encoding by letting P se be initialized randomly and be learned through 
training. Another option is to choose some fixed P , such as various sines and cosines (as in the 
original paper). The original paper claims these work equally well. 

As for the resnet-esque and layer norm structures... this means that given an initial Z, we 
compute the multi-headed attention operation on V to obtain a Z, and then we simply apply layer 
norm to their sum to give X = LN(V + Z). Next we apply the fully-connected layer to this, add it 
back to itself, and perform another layer norm. So this looks like 

Xn = LN (Vn + MHA(Vn))) (5.4.14) 

and then the output is 

Vn+1 = LN (Xn + FC(Xn))) (5.4.15) 

where LN is layer norm, FC is the fully connected layer described above, and MHA is the multi-headed 
attention layer described above. A transformer with many layers just performs nlayers sequential 
operations of this form. 

Finally, we may take the outputs and perform some final operation to obtain logits and 
probabilities, which can be used to sample or autoregressively predict. 

So including the embedding matrix itself (connecting a vocabulary of tokens to an embedding 
vector space), we have a parameter count 

P ≈ 2n layers demb(dff + 2demb) + dembnvocab (5.4.16) 

where typically nvocab is 10 to 100 times larger than the other dimensions. If we scale all of these 
dimensions together as we increase dseq (not sure if they should!), then the Transformer parameter 
count is cubic in dseq. Transformers processing sequences with ∼ 500 tokens (words) are common in 
the literature, and involve models with much less than a billion parameters. So this suggests that 
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with a trillion parameters it’ll be possible to use contexts of order 10 pages of text, or significantly 
more (!), the length of a short story, assuming we scale up all parameters uniformly. 

Note that as described, we’ve actually only covered a pure-Encoder or pure-Decoder Transformer. 
The original model had an Encoder-Decoder structure, and was used for translation. In this version, 
the Encoder acts as described above, but the Decoder actually has two attention layers, one that’s 
pure self-attention, and another that obtains keys and queries from the Encoder (and inputs), but 
values from the outputs. In that way, when writing a translation, the model could both self-attend 
(ie to the new sequence it’s writing) and also simultaneously attend to the inputs (ie the sequence 
it’s translating from). 

Quantity of Computation 

How much computation is necessary to run a Transformer? 
For the fully connected layers, we multiply by a demb × dff matrix followed by a dff × demb, for 

every vector in the context. That means that we must perform roughly 2nseqdembdff operations to 
evaluate one layer of a Transformer. Note that this dwarfs the operations associated with the biases 
and ReLUs. It’s also noteworthy that this is merely linear in nseq. 

For the self-attention mechanism, we need to compute the Sss matrix for each head. For the Q 
part this requires nseq × demb × dk operations, plus the same number for the K part. Multiplying 
them together takes n2

seqdk operations. Thus computing Sss requires n2
seqd

2
k + 2nseqdembdk operations. 

Acting with WV uses dkdembnseq operations, while WO uses nseqd
2 
emb operations. Acting Sss on WV V 

then requires n2 
seqdk operations. So we see that a single layer of the Transformer requires

Compute = F C + Att (5.4.17) 

≈ 2n seq dembdff + nhead 

 
n 2 
seq dk + 2n seq dembdk + n seq dembdk 

 
+ n seq d 2 

emb 

= 2n seq dembdff + nhead 

 
n 2 
seq dk + 3n seq dembdk 

 
+ n seq d 2 

emb 

= 2n seq demb(dff + 2demb) + n 2 
seq demb 

computations for one layer on the forward pass, where we have only kept the dominant terms, and 
in the last line we set nheaddk = demb. From the perspective of parameter counting, very large nseq 

has very low cost, but it does require significantly greater total computation. Furthermore, it’s 
noteworthy that we can scale up nseq until its of order 12demb without the quadratic term in sequence 
length dominating. 

6 A Toy Model for Generalization and Overfitting 

Can ML algorithms generalize from the specific examples in a dataset in order to really understand 
the underlying data distribution? Practically speaking, this questions is most often addressed by 
comparing performance on the training set to the test set, so that the question of generalization 
amounts to the issue of overfitting. Note that subject of improving generalization and avoiding 
overfitting is called regularization. 
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But there’s more to generalization than just overfitting. Unfortunately, my sense is that we don’t 
know a great deal about it. To get us started, here’s an intermingled list of questions, lore, and 
comments on it: 

• What sort of abstractions or features do NNs learn, in what order, and why? In simple cases 
it’s reasonable to expect that NNs will learn robust features first, as these will correspond 
to larger and more consistent training gradients. But I’m not sure to what extent this... 
generalizes. It’s an interesting research question. 

• An oft-repeated item of lore is that NNs will learn to interpolate, but not to extrapolate. This 
may be true, but it’s not very well-defined. In particular, since our data (and models) live 
in extremely high-dimensional spaces, the data will be very sparsely distributed, eliding the 
distinction. And once we map to some lower-dimensional feature space, it’s less clear why 
extrapolation can’t succeed. 

• A better defined version of “won’t extrapolate” is the question of whether it’s possible for ML 
algorithms to generalize beyond the data distribution that they’ve been trained on. 

• Another item of lore is that wide minimum of the loss generalize better than sharp minima. 
Conceptually, this makes sense because general patterns shouldn’t be as sensitive to small 
changes in the NN parameters. There’s some evidence for this, but typically it’s only studied 
in parameter space, which means that the results aren’t re-parameterization invariant. 

• As we’ve noted before, NNs are typically in a regime where the number of parameters  
number of points in the dataset. Naively, this would lead us to expect dramatic overfitting, 
but that’s not what we observe. In fact, typically larger models generalize better than smaller 
models, as long as the larger models are stopped early. In many cases the worst generalization 
performance occurs when the number of parameters is equal to the number of data points, 
with better generalization away from this regime in either direction. 

• However, it is possible to get NNs to memorize the dataset – classifiers can be trained with 
random labels and get perfect accuracy on the training set (and zero generalization, of course). 
But this typically takes much, much more training than is typical. 

To improve generalization, there are three common techniques for regularization 

• Constrain the capacity of the model, eg by limiting the range of parameters by adding an 
auxiliary loss. 

• Add noise to the data or parameters to avoid overfitting. The most common technique is 
dropout. 

• Simply stop training early, once the validation loss stops decreasing, even if the training loss 
continues to go down. 

Generalization, overfitting, regularization, and early stopping are typically illustrated by drawing 
the train and test loss during training, which has a characteristic form. We’ll study a toy example 
in the next section, which explains many surprising features of NNs and overfitting. 
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A Solvable Linear Student/Teacher Example 

Let’s consider a toy example12 involving a linear regression model. 
For this purpose, we will work in a ‘student teacher’ framework where the student model tries 

to learn to copy the teacher model. So the student has a vector of P weights w(t), where t is the 
training-time, while the teacher has weights w̄. To learn a general lesson, we will average over all 
possible ¯ w drawn from some distribution. Note that this has a major conceptual disadvantage – real 
data isn’t generated by a random model, but by models with a great deal of non-trivial structure, so 
our analysis of generalization will not be sensitive to such structure. 

We will assume that there are D data points x, so that the set of all datapoints is a matrix X of 
DP numbers. The outputs of the teacher network, which are what we want to learn, are 

y = w̄x +  (6.0.1) 

where we will add some noise  to these results. We will assume that both ¯ w and  are drawn from 
Gaussians with variance σw and σ. We will also assume that X are Gaussian distributed with 
zero mean and unit variance. The goal is to learn ¯ w from the noisy data (x, y). We study the 
generalization dynamics averaged over all w̄. 

The objective is just the squared error 

L = 
1

2 

D 

i=1 

(yi − ŷi)
2 = 

1

2 

D 

i=1 

(w · x − w̄x − )2 

= 
1 
2 
(wαwβ + w̄α w̄β − 2wαwβ) X αi X β 

i + iX αi(wα − w̄α) + 
2 

2 
(6.0.2) 

where we are using the full dataset. Here α, β indices range over the P parameters, while i, j indices 
range over the D points in the dataset. The gradient of the loss is 

∂αL = 
 
(wβ − w̄β) X β 

i + i 
 
X i α (6.0.3) 

For convenience we can study the continuum limit of learning where 

ẇα = − 
 
(wβ − w̄β) X β 

i + i 
 
X i α = yiX i α − wβX

β 
i X i α (6.0.4) 

We can solve this differential equation, and then use it to compute the generalization error 

E gen = (y − ŷ) 2 x, (6.0.5) 

for new data points x, . 
First, in the limit of t → ∞, we will obtain 

wβX β 
i X i α = yiX i α (6.0.6) 

12This example is stolen from 1710.03667, though many earlier references come to similar conclusions. 
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so that the wβ are determined by multiplying on the right with the inverse (or pseudo-inverse) of 
the matrix Xβ

i X
i 
α. 

To determine the time-dependence of w, we can diagonalize 

Xβ 
i X i α = Σ β 

α = V βπ Λππ(V T )
π 
α (6.0.7) 

where Λ is diagonal and V is orthogonal. Then we can write 

yiX i α = s̃π(V T )
π 
α (6.0.8) 

where ˜ s is a vector. If we now write w = zV T then we find the simplification 

żV T = yiX i α − wβX
β 
i X i α 

= s̃V T − zΛV T (6.0.9) 

so that 

ż = s̃ − zΛ (6.0.10) 

meaning that we have fully diagonalized the dynamics in terms of the eigenvalues λα of Λ. Note 
that if ¯ z = ¯ wV , then we expect 

yX T = z̄ΛV T + ̃Λ 1/2 V T (6.0.11) 

where ˜  is drawn from a Gaussian with variance σ2 
 , so that 

żα = (z̄α − zα)λα + ̃α 

 
λα (6.0.12) 

where we recall that α = 1, · · · , P has as many values as parameters in the model. 
In our linear model we can study generalization mode-by-mode. In a deep model this would be a 

higher order differential equation, with coupling between the modes. But otherwise the behavior may 
be qualitatively similar. The error in each mode of the linear model will have time dependence 

z̄α − zα = (z̄α − zα(0))e
−λαt − ̃α √ 

λα 

 
1− e−λαt 

 
(6.0.13) 

This means that the time-dependent generalization error will be 

E gen(t) = 
1

P 

 

α 

(z̄α − zα)
2  + σ 2 

 

= 
1

P 

 

α 

  
σ2 
w̄ + σ 2 

w0 

 
e−2λαt + 

σ2 
 

λα 

 
1− e−λαt 

2 
 

+ σ 2 
 (6.0.14) 

where we got the second line by assuming no correlation between , ¯ z, or z0, the initial value of the 
z, which is determined by the initialization scheme for the parameters. 
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This formula for the generalization error is a key result. We see that it’s composed of two terms. 
The first strictly decreases with time at rates set by the eigenvalues of Λ. In the absence of any error, 
and in a model with expressivity to fit the full data distribution, the model improves over time. The 
second term grows at a rate and to a size set by the Λ eigenvalues. It’s responsible for overfitting, 
as the model overfits to the specific features (errors!) in the finite dataset. Thus we see that the 
spectrum of eigenvalues λα is key to the generalization behavior of our model, and this in turn will 
depend on P vs D. Note that vanishing eigenvalues λα = 0 behave rather differently from small, 
finite eigenvalues. The former form a frozen subspace that never learns, and therefore never overfits. 
In contrast, the small positive eigenvalues can lead to bad overfitting problems at late times. 

In the limit where P, D → ∞ with r = D/P is fixed, and the matrix X has random Gaussian 
entries, the matrix XXT has eigenvalues that approach the Marchenko-Pasteur distribution 

ρ(λ) = 
1 
2π 

 
(λ+ − λ)(λ − λ−) 

λ 
+ (1 − r)δ(λ) (6.0.15) 

for λ ∈ [λ−, λ+] or λ = 0, and where λ± = (1 ± 
√ 
r)2 . The second term only contributes when 

r < 1. This distribution then governs the dependence of overfitting on the ratio r = D/P . The very 
interesting fact is that as P → ∞, so that r → 0, all eigenvalues are either 0 or 1! Thus models with 
very, very large number of parameters do not overfit. We also see that if r → ∞, so that P  D, 
there also isn’t much overfitting. Very serious overfitting only occurs when λ ≈ 0 is possible, and 
that’s only the case when r ≈ 1. 

Another nice feature of the model is that we can analytically compare different regularization 
schemes. It turns out that L2 regularization happens to be optimal here (because the noise was 
assumed Gaussian), but that optimal early stopping performs almost as well. Unfortunately I don’t 
think there’s a useful way to mock up the effects of dropout on this model and compare them. 

7 Unsupervised Learning 

On the most abstract level, the goal of UL is to ‘understand the world’, or at least the data, without 
specifying any more specific task. If this could be accomplished, then other forms of learning might 
be trivialized. So in principle, Unsupervised Learning should be the final frontier13 of ML. However, 
in practice researchers have made progress on UL by making it much more concrete, and in many 
cases turning UL into something much closer to SL. 

To formalize UL, the dominant approach is to ask how can we model the data distribution 
P (X)? Note that a model for P (X) will allow us to sample from it, meaning that when we’re doing 
UL, we are typically learning a generative model, ie models that generate new data samples. 
This may be extremely useful (in the near future) for RL, since it allows agents to plan and dream. 

But it’s worth pausing to emphasize how ambiguous P (X) may be. For instance, take the example 
of pictures of cats, which are some sort of sub-space within the space of pixel color intensities. 
Clearly this is a very small subspace – but what’s the role and interpretation of probability? Are 

13 This is quite plausible... at present, we already have examples where we can solve a variety of SL problems by 
learning one UL representation, and then quickly ‘fine-tuning’ it to solve any other given SL task. 
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pictures of cats defined by human consensus, or by the space of images that can be captured by 
pointing a camera at a physical cat? And what would the boundaries of this space actually look 
like... are they defined by human perceptual ambiguity? Do we care if a certain lighting pattern is 
very unlikely for a camera, but could be trivially achieved in a cat image drawn as a cartoon? 

We can also talk about similar questions in language modeling. Here the task is much easier 
to specify – we can ask for the probability distribution of the next word given a previous sequence 
of words. But this could depend a lot on author, subject, etc.. and some statistical properties of 
language are likely very robust (ie a given word-sequence either is or isn’t a sensible sentence) and 
some are quite variable; it’s unclear which to focus on, or how to control that focus. (This could 
probably be stated much more nicely by an NLP expert.) 

These rather philosophical considerations are important for determining our goals. Do we really 
want an explicit probability distribution, or do we just want to be able to randomly sample from it? 
The way we answer that last question provides the most important dichotomy within the space of 
UL models, with VAEs, Autoregressive Models, and Flow-Based models on one side (explicit P (X)), 
and GANs on the other side (only sampling). 

As a final note, there are many classical UL-ish algorithms that extract features from the data, 
or find patterns in it, but don’t provide generative models. Examples include k-means, singular 
value decompositions, and t-SNE. 

7.1 Latent Space – A Beautiful Dream 

Underlying a great mean approaches to UL is the dream of a ‘latent space’ where everything suddenly 
becomes simple. Intuitively, ‘understanding’ something means knowing how to describe it efficiently, 
capturing it’s most important features and ignoring those aspects that are either irrelevant or easily 
inferred. From this point of view, understanding has a lot to do with (mildly lossy) compression. 

Thus a classic NN structure related to UL is the autoencoder, which we typically view as a 
map A : X → X via 

A(x) = pθ(qφ(x)) (7.1.1) 

where qφ : X → Z and pθ : Z → X. In this case Z is the latent space. The key point here is that we 
choose dim(Z)  dim(X), so that the autoencoder is compressing the data. The hope is that Z now 
‘knows’ about the important features of X. The autoencoder objective is simply good reconstruction, 
ie we want A ≈ the identity map on X. 

Latent spaces appear in many, many other contexts. For example, the embedding matrix that 
maps words → vectors is another example. There are a host of ways to learn good word embedding 
vectors; probably the best way is to simply train a powerful language model. But even very simple 
techniques like PCA on the matrix of word correlations (words are correlated if they appear close 
together, see eg the ‘Latent Semantic Analysis’ algorithm), can reveal a surprising amount of 
structure. This is a huge topic with a long, rich history, as well as many recent advances. Images, 
language, and many other types of data can now be embedded into huge vector spaces, where 
‘addition’ and linear interpolation have a clear semantic meaning. 
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Many of the models we discuss below realize some latent space representation for the data, often 
without directly optimizing for it. Many interesting state of the art models involve tweaks that 
improve on latent space representations. 

7.2 Maximizing the Likelihood of the Data 

A large class of generative models simply try to find a model pθ(X) that’s as similar as possible to 
the ground truth P (X). The training objective is typically maximum likelihood of the data 

L = − 
1

N 

N 

i=1 

log pθ(xi) (7.2.1) 

which means that it’s exactly equivalent to minimizing DKL(P ||pθ) by sampling. There are three 
fairly common strategies 

• Autoregressive Models: These models learn to generate data sequentially, by predicting 
pθ(wn+1|wn · · · w1; z) for the ‘words’ wi in a sequence and perhaps some latent variables z. 
This is extremely natural for language. It’s less natural for images, but it can be done by 
choosing an ordering for the pixels... and this actually works quite well. 

• ‘Flow’ Models: These models learn to construct a bijective (an explicitly invertible) map 
f : Z → X from a latent space Z to the data space X, where the probability distribution q(z) 
on the latent space is assumed to be a known, fixed, simple distribution such as a Gaussian. 
Thus pθ(x) is just determined by q(f−1(x)). The main challenge here is learning a sufficiently 
expressive invertible map. 

• Variational Autoencoders (VAE): These models learn a typically uncontrolled, non-invertible 
map f : Z → X. They maximize the log-likelihood of the data by replacing it with a ‘surrogate 
objective’, ie a lower bound on the log-likelihood. Depending on how one explains these models, 
they may seem totally trivial, or much more complicated than the two ideas above... but 
they’re really in the same category. 

Autoregressive models are basically self-explanatory. The only challenge with flow-based models is 
building a flexible, invertible map. So we’ll spend a bit more time on VAEs, since they’re the least 
transparent of the three ideas above. 

7.3 Variational Autoencoders (VAE) 

Our real goal is to learn the probability distribution pθ(X) for the data, and to be able to sample 
from it efficiently. 
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7.3.1 VAEs, Very Pragmatically 

Let’s first start by talking about autoencoders. An autoencoder expresses the identity map 14 on the 
data distribution 

1(y; x) = 
 

dz pθ(y; z)qφ(z; x) (7.3.1) 

where p and q are the decoder and encoder (represented by neural networks), and the latent space 
Z is usually lower-dimensional than X, so that the encoder compresses X → Z. 

Note that autoencoders are usually deterministic, in which case the above clearly makes sense. 
We might instead think about p and q as probability distributions, where for example we sample 
y ∼ pθ(·|z), and z ∼ qφ(·|x). 

We would like to learn θ, φ so that we can use pθ(x; z) to sample x ∈ X by sampling z. If we 
simply train the model to approximate the identity map on the data, we could then try sampling 
random z and the computing pθ(z), or if pθ(Y |z) is a probability distribution, then we can sample y 
from it. Why not just stop there and declare victory? 

The problem is that by itself, our pure autoencoder setup tells us nothing about the distribution 
of the latent variables z. For all we know, the autoencoder will learn a really weird pattern of z 
values associated to datapoints x, and we won’t have any way to interpolate between them, or to 
sample from z in a sensible way. 

We can solve this problem by combining an autoencoder loss (which leads p and q to learn to 
reconstruct the identity map) with an auxiliary loss that forces Z to have a simple and tractable 
distribution, such as a multi-variate Gaussian. That is, we can make the loss be 

Loss = Reconstruction Error + βDKL(qφ(Z|X)||qsimple(Z)) (7.3.2) 

where qsimple(Z) is some very simple, standardized distribution like a Gaussian. Our coefficient β 
just lets us trade off how much we care about good reconstruction vs having a smooth distribution 
over z. When β is large, we know that qφ(Z|x) will be quite smooth and simple in Z, meaning that 
if we sample y ∼ pθ(z) where z ∼ qsimple, then we’ll always get a good interpolation among data 
points. If β is small, then reconstruction will be good, so our samples for z near maxima of qφ(z|x) 
will look good, but we’ll be less certain for other z. 

The thing we just defined was called a β-VAE in the literature. Practically speaking, that’s it. 
But it turns out that we can provide a nice theoretical justification of this construction and pick out 
a natural value β = 1. The idea is to use maximum likelihood, but to maximize a lower bound on 
the likelihood instead of the probability itself. Let’s see how. 

7.3.2 VAEs, More Theoretically 

Before deriving the VAE loss, let’s try to better define the object’s we’ll be manipulating. 
We should first emphasize that latent space Z has been made up by us. What we’re really 

interested in is pθ(X), while the latent space is just a tool to make it easier to study it. Furthermore, 

14In the deterministic limit qφ is a delta-function, and we find pθ(y; qφ(x)). 
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it’s worth reminding ourselves that pθ(X|Z) and qφ(Z|X) are genuine probability distributions over 
X and Z, and not merely deterministic functions from Z ↔ X. That is, for each z the pθ(X|z) is a 
probability distribution. Given that we have a latent space, there’s now a joint distribution pθ(X,Z) 
where 

pθ(X) = 
 

dZ pθ(X, Z) (7.3.3) 

and furthermore, by Bayes rule 

pθ(x, z) = pθ(x|z)pθ(z) = pθ(z|x)pθ(x) (7.3.4) 

Since the latent space was made up by us, we are free to choose pθ(z) to be whatever we like! 
In particular, we can eg choose pθ(Z) to be totally independent of θ, and just use some simple 

Gaussian distribution over Z with fixed mean and variance. Thus we’ll now write pθ(Z) = psimple(Z) 
as a fixed distribution. This means Bayes rule has become 

pθ(x, z) = pθ(x|z)psimple(z) = pθ(z|x)pθ(x) (7.3.5) 

which we will use below. 
Now we will derive a bound on our NN model’s pθ(X) log-likelihood. The idea is to use a 

‘variational’ bound. The word variational means the same thing here as in physics, namely... 
Variational: To physicists, the ‘variational approximation’ is based on the trivial-seeming 

observation that if f(x) is a function for which we know f(x) ≥ 0, and we are interested in 
determining min[f(x)], then by definition min[f(x)] < f(x0) for any x0. So by trying out some 
different values for x0 we can obtain an (uncontrolled) approximation for min[f(x)]. This can seem 
non-trivial when ‘x’ is drawn from a high or infinite dimensional space (eg if x is a ‘set of points’ in 
the space of functions), but it’s still just as simple. 

Variational Bound and Maximum Likelihood: In the VAE context, we are interested in 
the relationship between a latent-space distribution over Z and the data distribution over X. We 
will now introduce an extra learned conditional probability distribution qφ(z|x). We can write 

log pθ(x) = log pθ(z, x) − log pθ(z|x) 
= log pθ(z, x) − log qφ(z|x) + (log qφ(z|x) − log pθ(z|x)) (7.3.6) 

Since this is true for any z where the logs are well-defined, it’s also true if we evaluate its expectation 
on z ∼ qφ(z|x), giving 

log pθ(x) = Ez∼qφ(z|x) [log pθ(z, x) − log qφ(z|x)] + DKL[qφ(z|x)||pθ(z|x)] (7.3.7) 

Since the KL divergence is positive, we can define 

L(φ; x) ≡ Ez∼qφ(z|x) [log pθ(z, x) − log qφ(z|x)] (7.3.8) 

and set a lower bound 

log pθ(x) ≥ L(φ; x) (7.3.9) 
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We can make this look more useful by noting that via Bayes rule 

L(φ; x) = Ez∼qφ(z|x) [log pθ(x|z)] − DKL [qφ(z|x)||psimple(z)] (7.3.10) 

where we have recalled that pθ(Z) = psimple(Z). 
Notice that the first term looks a lot like a log probability of x sampled through the autoencoder. 

We take x, compute qφ(Z|x), then sample a specific z, then compute the log of the conditional 
probability pθ(x|z). If qφ(z|x) was just a delta function, this would just be a reconstruction error 
(literally a log probability of reconstructing the right x). 

Optimizing the VAE means making the lower bound as tight as possible, which means maximizing 
L. Since DKL is positive, we want to minimize it, ie make qφ(z|x) as similar as possible to p(z). 
This variational method is identical to the variational approximation used by physicists for quantum 
mechanical wave-functions and ground states. Instead of maximizing the probability, we are 
maximizing a surrogate loss, a lower bound on the log probability. 

Reparameterization: The original VAE paper states that this bound is difficult to optimize 
on its own due to high-variance. I think what they really mean is that it’s not possible to backprop 
through z if it’s an intermediate layer and is stochastic, but there’s no problem backpropping if 
we use the reparameterization trick and introduce the stochasticity at the level of the graph input. 
Recall we defined the reparameterization trick in section 3.5. 

Anyway, we can approximate conditional distributions z ∼ qφ(z|x) as z = gφ(, x) where  ∼ p() 
is an auxiliary random variable drawn from a simple fixed distribution p(), and gφ : (, x) → z is a 
potentially complicated deterministic function that can eg be parameterized by a neural network. 

In this way writing qφ(z|x) = gφ(, x) and using our original description of L, we now have 

L(φ, θ; x) = Ez∼qφ(z|x) [log pθ(x|z)] − DKL [qφ(z|x)||p(z)] (7.3.11) 

= E∼p() [log pθ(x|gφ(, x))] − DKL [qφ(gφ(, x)|x)||p(gφ(, x))] 

Now the first term is just an auto-encoder loss (though it’s ‘noised’ by , which from the autoencoding 
perspective seems like it’ll make results worse), while the second term can be viewed as a regularizer. 

For example, we can choose gφ(, x) so that a NN maps x → (µφ(x), σφ(x)) for a Gaussian 
parameterized by , where  is drawn from a Gaussian with unit variance. In that case, if we 
assume that p is also e.g. Gaussian, then it’s easy to just directly evaluate the KL divergence term 
analytically. All the KL term does is penalize the autoencoder for the difference between qφ(z|x) 
and a unit variance Gaussian for z. It just regularizes the magnitudes of (µφ, σφ). 

7.4 Fake It ’Til You Make It (GANs) 

Generative Adversarial Networks take a different approach – most importantly, they are not 
maximizing the log-likelihood of the data, or even estimating it explicitly. 

Instead, these models use two networks, a generator and a discriminator. The generator maps 
from a latent space Z to the data space X, as usual. However, the discriminator’s goal is to 
differentiate real data from generated data. Thus as training progresses, it learns ways in which the 
generator ‘looks fake’, and thereby ‘teaches’ the generator what ‘mistakes’ its making. 
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We can formalize this by defining networks Gθ(z) as the generator and Dφ(x) is the discriminator, 
where Dφ(x) produces a probability that x is real. In general, there are many possible choices of 
loss function. Once the loss functions are specified, we can iteratively update the discriminator and 
generator parameters during training. 

For the generator we want a loss that’s minimized when Gθ(z) performs well. One example is 

LG = −Ez log Dφ (Gθ(z)) (7.4.1) 

as this is minimized when G fools D all of the time. Another possibility mentioned in the original 
GAN paper is + log(1 − Dφ(Gθ(z))), but this has the problem that when D(G(z)) ≈ 0, so that the 
discriminator is very confident the generator is a fake, there isn’t much gradient signal. This is a 
problem of saturation. 

For the discriminator we want a loss that’s minimized when it can judge real from fake samples. 
If we view the ‘data’ as the real/fake labels and the ‘model’ as the discriminator’s probability 
estimates, then a natural choice is the cross-entropy loss 

LD = −Ex log Dφ(x) − Ez log (1 − Dφ (Gθ(z))) (7.4.2) 

which (up to a constant) is the KL between the true real/fake distribution and the discriminator’s 
predictions. 

GAN Issues and Suggestions 

The lore is that GANs are very hard to train, and that gain training is often unstable. There are 
several potential issues 

• Training to win the GAN ‘game’ is qualitatively different from other loss functions. We are 
iteratively updating Gθ and Dφ, and they are in direct competition. Thus in theory it’s possible 
for the generator and discriminator to literally chase each other in circles. 

• A more common practical problem is that either the discriminator or generator can gain the 
upper hand and establish permanent dominance. Most likely the discriminator gets better 
than the generator, and the latter never learns to fool it at all. 

• There’s also a risk of mode collapse. Perhaps the generator simply learns to generate a few 
images which are near-identical to images in the training set, and never learns to do anything 
else. In this case the generator has found a trivial, useless solution to the game. 

GANs are nevertheless used because they tend to generate impressively sharp, convincing images. 
The fake images with the greatest wow-factor have mostly been generated with GANs. 

Techniques for improving and stabilizing GANs are hotly debated in the literature. Well-
established advice from the first successful CNN GAN paper, ‘DCGAN’, suggests using all-
convolutional architectures and batchnorm whenever possible. I’m not knowledgeable enough 
to dispense any further wisdom. 
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7.5 Improving the Latent Space 

Can we make the latent space representations accord with our expectations for what information 
about the data should be important? For example, we might like to have a discrete variable that 
specifies which MNIST digit our generative model should make, and then many more ambiguous 
continuous variables representing other properties of the digit. Let’s address this in the GAN context. 

For this purpose, we will decompose the latent space into a ‘code’ vector c and a pure noise 
vector z, where c contains the information we would like to specify. Using a GAN generator, we 
would like to specify that G(z, c). Then we will design a loss function that rewards the generator for 
associating c with the desired data properties. 

Roughly speaking, what we would like is for the mutual information between the code c and the 
generated data x = G(z, c) to be high. Or we want the posterior probability distribution PG(c|x) to 
have low entropy. But we don’t know PG(c|x). Instead, we can use the variational principle to find 
a bound for it. We add a NN Qφ(c|x) and we write 

I(C; Gθ(z, C)) = S(C) − S(C|Gθ(z, c)) 

= S(C) + Ex∼Gθ (z,c) 

 
Ec∼PG(·|x) log P (c |x) 

 
= S(C) + Ex∼Gθ (z,c) 

 
Ec∼PG(·|x) log Qφ(c 

|x) + DKL(P (C|x)||Qφ(C|x)) 
 

≥ S(C) + Ex∼Gθ (z,c)Ec∼PG(·|x) log Qφ(c 
|x) (7.5.1) 

Here we can basically ignore the S(c) as it’s just a constant. This still isn’t good enough because 
(apparently) we need to sample c ∼ PG(c|x). But actually 

Ex∼Gθ (z,c)Ec∼PG(c|x) log Qφ(c 
|x) = Ec∼P (c)Ex∼Gθ (z,c) log Qφ(c|x) (7.5.2) 

so we don’t need the posterior. We can easily show this by noting  
p(x) 

 
p(y|x)f(x, y)dydx = 

 
p(x, y)f(x, y)dxdy 

= 
 

p(y)p(x|y)f(x, y)dxdy 
 

p(x |y)dx  

= 
 

p(y)p(x|y)dxdy 
 

f(x  , y)p(x |y)dx  (7.5.3) 

If we identify c = y and c = y in this algebra, we get the identify above. 
This means that we can add 

−λEc∼P (c)Ex∼Gθ (z,c) log Qφ(c|x) (7.5.4) 

to the GAN loss function with some coefficient λ, as minimizing this will maximize the lower bound 
on the mutual information between the code c and the data x that Gθ(z, c) generates. See 1606.03657 
for details of the implementation. 
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8 Reinforcement Learning 

Although I referred to UL as the ‘final frontier’ of learning, on a more practical level, RL actually 
differs more from SL than the techniques used in practice for UL. So in many respects RL is the 
most subtle and least intuitive area of ML. 

Most pedagogical treatments of RL begin with the classical or ‘tabular’ setting, where all the 
configurations and actions that the agent encounters can be ‘tabulated’, and one can take a direct, 
deductive approach. I will forego this classical preamble and simply discuss NN based RL directly. 
That said, and as always – feel free to consult other sources 15 on this topic! My choice of presentation 
is non-standard. 

To even discuss RL we need to introduce some foundational ideas. We are imagining that our 
ML algorithm is an agent in a world that can be specified in terms of states and actions. Both 
states and actions could be either continuous, or discrete, or a combination of the two. In virtually 
all cases we imagine that time has been discretized into time steps, where on each time step the 
agent has some information about the state, and can choose to take an action. Typically our agent 
moves about and acts until the end16 of an episode, which might eg be a single Atari or Go game. 
The agent receives a reward after each timestep (sometimes it’s always just 0 until the end of 
an episode) and a total accumulated return, and its goal is to choose actions that maximize the 
summed rewards from an episode. 

Here are some famous degenerate limits of RL: 

• Multi-Armed Bandit or Slot Machine: Trivial state space, discrete action space, (typically) 
stochastic rewards. 

• Supervised Learning: Potentially enormous state space, but episodes consist of only a single 
step. There may be a large but finite action space, so that it’s possible to explore all possible 
actions for each state. We’ll discuss this comparison (of RL to SL) more later. 

• Gridworlds: Finite state space, discrete actions, deterministic transitions. 

There are several important distinctions that come up when we discuss RL. The first is a 
distinction between types of algorithms, where the extreme examples are Policy Gradients and 
Q-Learning, and there are many algorithms that interpolate between these two. In the case of 
policy gradients, we learn a NN policy πθ : S → A that produces a choice of action for any given 
state. The problem is then to find a way to update θ so that the policy improves and the agent 
gathers more and more reward as it trains. In contrast, in Q-learning we do not learn a policy, but 
an expected value Q(s, a) associated with taking an action a in a state s. If we really knew the 
optimal value Q(s, a) for all s, a then we could just choose a to maximize Q(s, a) in a state s, and 
thereby derive an optimal policy. But if Q(s, a) isn’t optimal, we may make the wrong choice17 of 

15I particularly recommend spinning up: https://spinningup.openai.com/ 
16If we wish for the agent to exist forever, we might artificially break its infinite life into finite episodes for 

convenience. 
17Really a Q should be associated with some policy, if Q is the expected reward rather than an optimal reward. 
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action. We interpolate between PG and Q-L because it’s often good to have both a policy and some 
idea of the value to be gained by taking various actions. 

The other, related distinction is between on-policy and off-policy learning. With the former, 
we only learn from the experience collected with our current policy. Vanilla PG is on-policy. With 
off-policy learning, we can use experience gained while acting according to one policy in order to 
learn about the consequences of another policy. Q-learning can be off-policy. Clearly off-policy 
learning could be more sample efficient, since we can use data collected long ago, when our policy 
was less developed. But off-policy data must be used carefully as it may be stale, and only relevant 
to some prior, less-developed policy. 

Another distinction is model-free vs model-based RL. Most NN-based RL thus far has been 
model-free, meaning that the agents do not have or learn an explicit model of the ‘world’ in which 
they live. Many researchers are very hopeful about the prospects of model-based RL, where the 
agent does learn a model of the world and can therefore use it to make explicit plans. 

Distinguishing between continuous vs discrete action spaces can be important when it 
comes to the way algorithms are implemented. With discrete actions we can directly enumerate them 
all, whereas with a continuous action space we can only ever sample. Robotics typically involves 
continuous action spaces, while many games only have discrete choices. 

A conceptual mystery throughout machine learning is the problem of attribution – how do 
models know what features in the data are relevant to the decisions they must make? In SL this is 
the question of eg how does a model learn the features of images that come together to distinguish 
airplanes and lawnmowers. In RL the problem’s much greater still, because the model somehow must 
discover which of its actions were relevant for success or failure, and which irrelevant. Ameliorating 
this attribution problem has been a major focus in RL research. 

Finally, another perennial RL concern is explore vs exploit – should we simply act according 
our policy, or take other random (or otherwise chosen) actions in order to further explore the state 
space and perhaps find ever better strategies? The simplest way to explore more is to follow an 
-greedy policy, which just means that  of the time we take a random action, while 1 −  of the 
time we take the action dictated by our policy. Often  decreases according to some schedule during 
training. Other more sophisticated methods try to use curiosity, memory, or state-counting to 
motivate an agent to explore new states. 

8.1 Notation 

The reward an agent receives after timestep comes from a reward function, which in general may be 

rt = R(st, at, st+1) (8.1.1) 

though typically it may only depend on st or at. I’ll write τ for a sequence of time steps {t}, and 
t, T for specific times. We are interested in the total return, which in general could take the form 

Rτ (T, γ) = 
T 

t=0 

γt rt (8.1.2) 
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where γ is called the discount factor, and T is the horizon. We may take T → ∞ or γ → 1 to get an 
infinite time horizon or an undiscounted reward. Aside from convergence, another reason to include 
a finite horizon or a discount factor is (as we’ll discuss later) to decrease the variance of the reward. 

The probability distribution over visited states takes the form 

P [τ ; π] = ρ0(s0) 
T −1 

t=0 

P (st+1|st, at)π(at|st) (8.1.3) 

where π is the policy and P (st+1|st, at) is the transition function from one state to the next. Very 
often P (st+1|st, at) is very complicated, stochastic, and unknown. We included a ρ0 distribution over 
initial states. The policy may be directly specified, or specified implicitly from a Q function. It can 
be stochastic (ie it gives a distribution over a) or deterministic; the latter is just a special case. 

The expected return is 

J [τ ; π] = 
 

DstDat P [τ ; π]R(τ) (8.1.4) 

= 
  

T −1 

t=0 

dstdat 

 

ρ0(s0) 
T −1 

t=0 

P (st+1|st, at)π(at|st) 

 
T 

t=0 

γt R(st, at, st+1) 

 

= R(τ) τ∼π 

where for clarity I wrote it all out explicitly. We are searching for a policy π that maximizes J . This 
function is closely related to a more general on-policy value function 

V π(s) ≡ R(τ) τ∼π,s0=s (8.1.5) 

starting in state s and acting according to a policy π (so it depends crucially on π). We often write 
V ∗(s) as the optimal value function starting in state s, ie the expected value if one were to use the 
optimal policy. We often refine this to the Q function 

Q π(s, a) ≡ R(τ) τ∼π,s0=s,a0=a (8.1.6) 

which gives the value of s, a as the initial state and action. There is also a Q∗ , the optimal state-action 
value function. Typically for us all value and policy functions will be parameterized by NNs. 

8.2 Policy Gradients 

PGs are the way that we learn a policy function πθ : S → A. But why the term ‘gradient’? Because 
we won’t actually learn from a legitimate policy loss; rather we will identify a simple surrogate 
objective whose gradient is equal to the gradient of performance, even though it’s not actually the 
quantity that we want to minimize globally. 
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To derive our surrogate loss, we simply note that 

∇θJ [πθ] = 
 

DstDat ρ0(s0) 
T −1 

t=0 

P (st+1|st, at)∇θπθ(at|st)R(τ) 

= 
 

DstDat P [τ ; π]R(τ) (∇θ log πθ(at|st)) 

= R(τ)∇θ log πθ(at|st) τ∼π (8.2.1) 

so our surrogate loss 

L = −R(τ) log πθ(at|st) (8.2.2) 

has a gradient equal to that of (minus) the expected return. Notice that the second derivative of 
the surrogate loss L is not equal to the second derivative of the expected return J ; this is why our 
algorithm computes ‘policy gradients’, and gradients only! 

Since this is an expectation over trajectories sampled from πθ (and the typically unknown 
transition function), we can estimate it by collecting a sample of taking the mean. That is our 
gradient is 

∇θJ [πθ] ≈ 
1 
B 

B
i=1 

T 

t=0 

R(τi)∇θ log πθ(at|st) (8.2.3) 

for a batch of B trajectories. 
Note that here in RL-land, and unlike in supervised learning, the data distribution depends on 

the policy itself, meaning that the data we see depends on the NN parameters θ. Also, as previously 
emphasized, we have only computed the gradient of the returns from the policy, and so our surrogate 
loss does not provide a measure of performance. It is not necessarily good for the surrogate loss to 
go down! 

Rewards-to-Go and Baselines 

There are two elementary but important improvements we can make to the Vanilla PG above. These 
reduce the variance of the policy gradient without altering its mean; this means that they should 
improve the sample efficiency of RL. The first is to simply subtract a baseline b(st) from the return 
R(τ). The second is to trade total return at a given time for the returns-to-go, ie the returns from 
the future. Intuitively, it seems obvious that we should not need to include rewards from early states 
at time t < t, as these cannot be effected by actions at time t. 

To show that rewards R(st , at , st+1) for t < t can be dropped, it suffices to show that these 
terms are actually zero in expectation. That is we want to study 

f(t, t ) ≡ ∇θ log πθ(at|st)R(st , at , st+1) (8.2.4) 
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and show that f(t, t)τ∼πθ = 0 for t < t. Note that this won’t be true if t > t. To show this, what 
we really care about is 

f(t, t )τ∼πθ = f(t, t )st,at,st ,at ,st+1
(8.2.5) 

= 
 

dstdatdst dat dst+1f(t, t 
)P (st, at|πθ, st , at , st+1)P (st , at , st+1|πθ) 

= 
 

dSt P (st , at , st+1|πθ)R(St ) 
 

dSt∇θ log πθ(at|st)P (St|πθ, St ) 

where in the last line I wrote St = {st, at}, St = {st , at , st+1} for notational concision. The inner 
part of the last expression then gives  

dstdat∇θ log πθ(at|st)P (St|πθ, St ) = 0 (8.2.6) 

because its the gradient of a normalized probability. This last step wouldn’t be possible if t > t 
because then we could not factor the probability using a conditional P (St|πθ, St ). 

So now we need only use the reward-to-go from any given time step until the end of the episode. 
We also want to show that we can take Rt>t0 → Rt>t0 − b(st0 ) without changing the expectation of 
the policy gradient. This is even simpler, as we need only note that 

∇θ log πθ(at|st)b(st) at∼πθ 
= 0 (8.2.7) 

since we are dealing with a normalized probability distribution over at. 
In total, these developments imply that instead of the total return we can use the baseline-

subtracted rewards to go 

T 

t=t 

R(st , at , st+1) − b(st) (8.2.8) 

A typical b(st) to use is a learned value function V π(st) that uses a NN to predict the returns; it’s 
typically trained using a least squares loss for the difference between V π and the returns. 

It’s also worth noticing that 

Q π(st, at) ≡ 

 
T 

t=t 

R(st , at , st+1) 

 

τ∼πθ 

(8.2.9) 

by definition. Sometimes the advantage function 

A π(st, at) = Q π(st, at) − V π(st) (8.2.10) 

is used in place of the return, but really this is equivalent in expectation to using the returns-to-go 
minus a baseline. 
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Generalized Advantage Estimation 

Typically we don’t really want (conceptually) to discount rewards. A better way to think about 
the discount factor γ is as a trade between bias and variance. Since the full rewards-to-go from the 
future can have very high variance, we can get a stabler policy gradient signal if we discount effects 
from the far future. Some large scale applications of RL even anneal γ → 1 as training progresses. 

With this in mind, one can study generalized advantage functions 

A (1) t = −V (st) + rt + γV (st+1) 

A (2) t = −V (st) + rt + γrt+1 + γ 2 V (st+2) (8.2.11) 

etc. The choice A(1) 
t has low variance but high bias, while A(k) 

t can have low bias but high variance. 
The bias decreases with increasing k because it is V (st+k) which biases our estimate of the advantage, 
and this term is becoming more and more suppressed. A(∞) 

t is literally just the empirical return 
minus a baseline. A ‘Generalized Advantage Function’ is 

A GAE(γ,λ) 
t = (1 − λ) 

∞ 

k=1 

λ k−1 A
(k) 
t (8.2.12) 

which allows us to balance bias and variance with a continuous parameter λ. 

8.3 Q-Learning 

The other line of thinking in RL is based on Q-learning, ie learning and improving the Q(s, a) 
function. To learn Q, we use recursive self-consistency equations called the Bellman equations, 
which take the form 

Q π(s, a) = R(s, a) + γ Q π(s  , a ) a∼π,s∼P (·|s,a) (8.3.1) 

where states s are sampled from the transition function, and actions a from the policy. Here γ is 
the discount factor. There is also a Bellman equation for the optimal Q∗ 

Q ∗(s, a) = R(s, a) + γ maxa Q ∗(s  , a ) s∼P (·|s,a) (8.3.2) 

Note that optimal policy may be degenerate. The RHS of these equations are very frequently referred 
to as a ‘Bellman backup’, or perhaps a one-step (in time) Bellman backup. 

To learn Q∗(s, a) as a NN, one can just compute the mean squared error of the Bellman equation, 
and then perform gradient descent. Note that for this purpose we stop the gradients on the Q∗ on 
the RHS. Thus we can just go back and forth collecting experience based on Q∗ and then performing 
gradient descent to improve our estimation of Q∗ . 

It’s worth noting that the Q-learning objective isn’t what we really care about, ie even the gradient 
of Q-learning is not pointing us towards a better policy, but only towards a more accurate knowledge 
of Q for the policy dictated by Q. Lore/experience suggests that Q-learning is more brittle and 
harder to use than PGs, though it can (sometimes) be more sample-efficient. 
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Bias and Double Q 

Our Q function update rule introduces a subtle bias – if there are errors in Q that tend to make 
Q(s, a) too large for a given a, then these will also cause us to select for that a in the maximum. We 
will then tend to over-estimate Q(s, a), because we only see upward fluctuations when we update. 
A common trick to improve Q-learning is to use two Q functions, a standard one and a ‘target’ Q 
function. Then we update the target by copying parameters from the standard Q, but we only do 
this infrequently. This helps to avoid this subtle bias. 

‘DDPG’ and Continuous Action Spaces 

The Q-learning procedure we have outlined may be difficult to apply to continuous action spaces, 
because we need to compute a maximum over actions. We can easily remedy this by learning a 
policy for a = π(s), where we simply train π to find the argmax of Q(s, a). This procedure, where 
we learn both Q and π, is called ‘DDPG’. The name ‘Deep Deterministic Policy Gradients’ is sort of 
unfortunate, meaningless, and misleading; really this is Q-learning even though it has PG in the 
name. 

Distributional RL 

There are many, many other modifications of Q-learning designed to make it learn more efficiently 
or robustly. One simple modification that seems to have significant empirical support is to learn the 
probability distribution of rewards rather than the expected reward given this distribution. But as 
yet I don’t think there’s a satisfying theoretical explanation for why distributional RL works so well. 

Intuition from Tabular Setting and Dynamic Programming 

Imagine that there are a finite number of states and actions, and that transitions are deterministic. 
In that case Q(s, a) can simply be a lookup table of values... and so this is called the tabular setting. 

Here we can solve the Q-learning problem exactly in finite time. The Bellman equation 

Q ∗(s, a) = T Q(s, a) ≡ R(s, a) + γ maxa Q ∗(s  , a ) s∼P (·|s,a) (8.3.3) 

still applies, but now it’s a rule for refreshing entries in the lookup table. And with a finite number of 
states and actions (and deterministic transitions), this process is guaranteed to converge in a finite 
time. Conceptually, this should be intuitive with a bit of thought – each application of T propagates 
us through the finite list of states, taking all possible actions, so in a finite number of steps we cover 
them all, and discover the proper values. The algorithm that simply replaces Q → T Q iteratively is 
called Value Iteration in the RL literature. 

To formally demonstrate the convergence of value iteration, we want to show that the Bellman 
backup operator T is a contraction mapping (in the infinity norm). So we are interested in showing 
that 

max 
s,a 

|T X(s, a) − T Y (s, a)| ≤ γ max 
s,a 

|X(s, a) − Y (s, a)| (8.3.4) 
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since this means that acting with T n will converge as n → ∞. To see this 

max 
s,a 

|maxa X(s  , a ) − maxa Y (s  , a )|s∼P (·|s,a) ≤ max 
s 

|maxa X(s, a ) − maxa Y (s, a )| 

≤ max 
s,a 

|X(s, a) − Y (s, a)| (8.3.5) 

In the last step note if WLOG max f > max g then we have 

max 
x 

f(x) − max 
x 

g(x) = f(x ∗) − max 
x 

g(x) ≤ f(x ∗) − g(x ∗) = max 
x 

|f(x) − g(x)| (8.3.6) 

This demonstrates that our learning process will converge (note that this argument also works with 
non-deterministic transitions). 

There is another algorithm called Policy Iteration where one defines a policy π, computes its 
associated value function V π , then improves the policy using that value function, then iterates until 
the policies stop changing. This is typically faster than value iteration (because we only use the 
present policy to identify the relevant associated value functions, not the optimal value function). 

Value and Policy Iteration are essentially identical to ‘Dynamic Programming’, a more generally 
applied algorithmic method. Perhaps the most famous dynamic programming problem is: given a 
set of items with a weight w and value v, determine the collection of items with largest total value 
given the constraint that the total weight must be less than some fixed, given bound. This is called 
the Knapsack Problem. It is identical to a tabular RL problem where actions correspond to adding 
something to the backpack, and states correspond to states of the backpack. Some actions are not 
be available in some states because there’s only one of each item. 

8.4 Brief Comparison of Supervised Learning to RL 

If we like, we can turn any SL task into an RL task. This provides a bit of intuition. 
Imagine we have a task where there’s a model pθ(y|x) to be learned. We could imagine that 

y is continuous or discrete, but since so many tasks involve discrete labels, we’ll assume that 
y = 1, 2, · · · , nL, and that x is some high dimensional vector, eg an image. The loss function for SL 
will then be a cross-entropy (KL without ground truth entropy) 

LSL = − 
nL 

y=1 

R(y|x) log pθ(y|x) (8.4.1) 

where the most relevant case is the function R(y|x) = 1 for a single y and 0 otherwise (though other 
possibilities would apply if we eg did label smoothing). When we perform SL, we simply differentiate 
with respect to θ. Let’s compare this to RL. 

Policy Gradient 

When we reformulate this in the PG setup, we can use an identical ‘policy’ network pθ(y|x), where 
we view y as an action, and we define the policy 

πθ(x) = argmaxy pθ(y|x) (8.4.2) 
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Furthermore, the reward for that action is literally R(y|x). So the difference between SL and RL is 
that in the RL case, we only see R(πθ(x)|x) on each iteration, whereas with SL we always see which 
label was the correct one. The policy gradient surrogate loss is 

LRL = −R(πθ(x)|x) log pθ(πθ(x)|x) (8.4.3) 

This means that with a random policy 

∇θLSL = ∇θLRLπrandom (8.4.4) 

However, the RL policy gradient is mostly going to be zero on a random policy; it will only give a 
signal on average for a fraction 1/nL images. Thus we should expect that early in training, RL will 
simply be equivalent to SL but with a data-efficiency penalty of 1/nL. 

But later in training, the policy will have better performance, and so it will receive a larger 
fraction of signal. But this will mean that the SL and RL gradients will not be equivalent. More 
specifically 

∇θLSL = − 
nL 

y=1 

R(y|x)∇θ log pθ(y|x) (8.4.5) 

while 

∇θLRL = − 
nL 

y=1 

pθ(y|x)R(y|x)∇θ log pθ(y|x) 

= − 
nL 

y=1 

R(y|x)∇θpθ(y|x) (8.4.6) 

So the SL and RL gradients are quite different – SL maximizes likelihood (products of probabilities), 
while RL maximizes the accuracy, ie the sum of the probabilities. 

Note that with some -greediness we have a guarantee that some part of the signal will always 
imitate SL. And in the limit  → 1, so that the choice of classification labels is random, we find that 
RL turns back into SL with a factor of nL decrease in sample efficiency. So randomized RL looks 
like nL-times less efficient SL. The policy gradient procedure, which maximizes accuracy, will likely 
be more sample efficient than this, but may the price due to ‘poor exploration’. That is, we could 
simply never guess the label ‘cat’ for our images, and never learn that cats exist! 

Q-Learning Version 

We could also just use a Q-learning type loss 

LQ = 
1 
2 
(R(y|x) − pθ(y|x)) 2 (8.4.7) 

where we re-interpret pθ(y|x) as the Q-function, since R is always 0 or 1. Here each sample (xi, yi) 
that we collect provides some useful data. And because the ‘game tree’ is trivial, this data never 
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becomes stale (assuming we store the image as the state, the chosen y as the action, and the R value, 
though this will soon lead to storing the full dataset!). But when our policy isn’t very good, we 
typically just learn what a given image isn’t, rather than what it is, so we’d expect that early on 
learning is slowed down by a factor of nL. It’s somewhat interesting that later on, when we discourage 
bad results, we’ll always be focusing on discouraging the next-most-likely wrong classification. 

8.5 Don’t Walk Off a Cliff: TRPO and PPO 

A potential problem with Policy Gradients is that they may update the policy too aggressively, and 
in unpredictable ways. Unlike in SL where we are trying to minimize a loss that we have in hand, 
with PG we really only have the gradient, so it’s hard to know how large a step we should be taking. 
(Note that both methods discussed in this section can be freely combined with methods for variance 
reduction, ie the inclusion of learned value functions and the use of an advantage in place of the 
return. Real-world applications will almost always use such methods, but they are conceptually 
orthogonal to the value-add of these algorithms.) 

TRPO 

In our discussion of optimization, we already covered methods that should greatly mitigate this 
problem – natural gradients. To explain why... note that it would be eminently reasonable to impose 
a constraint that the updated policy shouldn’t differ very much from the original policy. But ‘differ 
much’ should have an invariant meaning! One way to make it so is to constrain 

DKL(n + 1||n) ≡ DKL (π θ(n+1) (·|s)||π θ(n) (·|s)) s∼π 
θ(n) 

(8.5.1) 

where the expectation just means we’re averaging over states actually visited by the prior policy. 
But if we compute the update as the policy gradient ∇θJ [π] subject to a constraint on the KL, that 
directly means that infinitesimally we should just update 

θ(n+1) = θ(n) − F −1 ∇θJ (8.5.2) 

where F is the Fisher information matrix, ie the 2nd derivative of the DKL(n + 1||n). The TRPO 
algorithm says that this is (almost) how we should update parameters. The only addition is that 
TRPO adds a back-tracking line search, to literally ensure that the DKL constraint is actually 
bounded by some fixed hyper-parameter. 

PPO 

A practical problem with TRPO is that it requires computing F −1 , ie it’s a second order method. 
PPO, which actually comes in various versions (and includes several other practically helpful but 
theoretically not-super-well-justified tricks), solves the problem of taking too-large steps without 
requiring the evaluation of F −1 . All of these methods are less theoretically elegant than TRPO, but 
they end up performing as well or better empirically, it seems. 
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There’s an obvious way to try to accomplish what we did with TRPO – we can just add 
DKL(n + 1||n) to the PG loss with some coefficient, in order to penalize our model for changing the 
policy too quickly. The problem with this is that it’s then hard to determine the right coefficient for 
DKL. So this version of PPO must also come with a dynamical mechanism to scale the coefficient 
during training and keep it in a healthy range. 

Another idea is just to clip the gradients (actually, set them to zero here) when they become too 
large. Thus PPO uses a modified loss function 

L 
 
s, a, θ(n) , θ 

 
= − min 

 
πθ(a|s) 
π θ(n) (a|s) 

A π 
θ(n) (s, a), clip 

 
πθ(a|s) 
π θ(n) (a|s)

, 1 − , 1 +  

 

A π 
θ(n) (s, a) 

 

(8.5.3) 

where Aπ 
θ(n) is the advantage. This looks complicated, but it’s really just dealing with a few different 

cases, where the advantage and/or the change in policy is positive or negative. First, note that the 
ratios are equivalent (for the gradient computed at θ(n)) to just using log πθ. If the ratio is very close 
to 1, then we just use the first term and get the usual PG. If the ratio is large, then we can end up 
using the second term, which clips the loss, and therefore sets the gradient to zero. The signs work 
out because when the advantage is positive we want the policy to increase the probability of taking 
the associated action, whereas when the advantage is negative we want to update the policy in the 
opposite direction. 

PPO implementations include a lot of other details. For instance, they usually use a small replay 
buffer and take several steps using mini-batches drawn from this buffer before refreshing it (note 
that the clipping above has no effect on the first step, since it’s the loss, not the gradient that is 
clipped!). They also typically perform a kind of ‘batch norm’ on the advantages, dividing them by 
the standard deviation within a batch of rollouts (presumably to keep gradient magnitudes of roughly 
fixed normalization to avoid big steps). If you look in detail at various versions and implementations 
of PPO, they may handle these and other subtleties differently. 

8.6 AlphaZero and Self-Play 

AlphaGo and AlphaZero were one of the most impressive examples of ML in the last few years; these 
systems play chess and Go far better than the best humans, and also better than the best prior 
AI (Stockfish, for Chess). These systems combine what we discussed above with two new ideas: 
self-play and Monte Carlo Tree Search. 

The power of self-play as a natural training curriculum may be the most important lasting 
lesson from AlphaZero. And it’s very easy to describe – we simply have multiple versions of our 
ML game-playing agent play against itself over and over again to generate experience. There are a 
variety of more or less sophisticated ways to do this, from simply playing a single version of the agent 
over and over with different random seeds, to including a whole ‘ecosystem’ of agents at various 
levels of abilities. But AlphaZero simply maintains a single network that plays itself, rather than an 
ecosystem. 

AlphaZero uses a neural network that computes fθ(s) = (p, V ) where  p are the probabilities of 
selecting each move – so this is a policy network – and V is a value function, estimating the win 
probability. The network itself is just a ResNet CNN with ReLU non-linearities and batch norm. 
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MCTS 

MCTS uses the neural network to explore a large number of possible future moves, and then deduce 
refined (ie better than the network by itself) evaluations of move probabilities. As it plays it stores 
data (st, πt, rt) including the state, the MCTS-predicted probabilities πt, and the win/loss (ie reward) 
of the game rt. The NN training loss then involves a least-squares error term for the value function 
and a cross-entropy term for the policy, so that 

L = (r − v)2 − 
 

a 

πs(a) log p(a|s) (8.6.1) 

where the policy p(s, a) gives the probability of taking an action a in the state s. Thus the policy 
network is trained to approximate the MCTS rollouts, which are more intelligent, as they involve 
planning. Note that this is only possible because the game dynamics are known and deterministic, 
ie in this case we can really do model-based RL. 

But how do we compute πs(a), the MCTS result? The search involves two functions, an action 
value Q(s, a) and a ‘confidence’ term U(s, a). Both are determined through the search process. We 
define 

U(s, a) ∝ c puctp(a|s) 
 

b N(s, b) 

1 + N(s, a) 
(8.6.2) 

where N(s, a) is a visit-count tracker that we update during the MCTS. The cpuct is a hyper-
parameter. Thus U(s, a) decreases as we visit more and more nodes that follow from the node (s, a), 
so that we become increasingly confident of our determination of the value of (s, a). The Q(s, a) 
function is defined to be 

Q(s, a) = 
1 

N(s, a) 

 

s|s,a→s 

Vθ(s ) (8.6.3) 

where Vθ is the value function of the NN. Thus Q(s, a) is determined by looking ahead and seeing 
what game-state values Vθ(s

) are achieved by following the most likely (well-played) paths from a 
given (s, a), and averaging over them. 

Our decision about which states to explore is determined by the sum of these functions, so at 
any given time during MCTS we choose 

a = argmaxa [Q(s, a) + U(s, a)] (8.6.4) 

as the next state to explore. 
The final πs(a) is then simply assigned as 

πs(a) = 
N(s, a)1/τ  
b N(s, b)1/τ 

(8.6.5) 

where τ is a temperature hyper-parameter. So we try to make moves that take us down game trees 
that we visited a lot, and we visit game trees based on our expectation of their value. 
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