
QFT Problem Set 4 - Due April 16 

You should read chapters 24, 25, 26, 28. As usual, *problems* are for extra credit seekers, although 
everyone should look at them. 

1. Equivalent photon approximation Consider the process in which electrons of very high 
energy scatter from a target. In leading order in α, the electron is connected to the target by 
one photon propagator. If the initial and final energies of the electron are E and E 0 the photon 
will carry momentum q such that q2 = −2EE 0(1 − cos θ). In the limit of forward scattering, 
whatever the energy loss, the photon momentum approaches q2 = 0; thus the reaction is highly 
peaked in the forward direction. It is tempting to guess that, in this limit, the virtual photon 
becomes a real photon. Let us investigate in what sense that is true. 

(a) The matrix element for the scattering pro cess can b e written as 

−igµν
M = −ieū(p 0)γµu(p) 

2 
M̂ ν (q) (1) 

q 

M̂ ν 0where represents the coupling of the virtual photon to the target. Let q = (q , q~) and 
define q̃ = (q0 , −~q). Expand 

µū(p 0)γµu(p) = Aqµ + Bq̃ + C�µ 
1 + D�µ 

2 (2) 

where �I are unit vectors transverse to ~q. Dot this with q and show that B is at most of 
order θ2 , so we can ignore it henceforth. Why is the coefficient A irrelevant? 

(b) Working in the frame with p = (E, 0, 0, E), compute 

ū(p 0)γ · �iu(p) (3) 

explicitly using massless electrons, where ū and u are spinors of definite helicity, and 
�i are unit vectors parallel and perpendicular to the plane of scattering. We only want 
to keep the terms of order θ. Note that for �1 in the plane of scattering, the small 3̂ 

component of � also contributes. 

(c) Now write the expression for the electron scattering cross section, in terms of |M̂ µ|2 and 
the integral over phase space on the target side. This expression must be integrated over 
the final electron momentum p0 . The integral over p03 is an integral over the energy loss 
of the electron. Show that the integral over p0⊥ diverges logarithmically as p0⊥ or θ → 0. 

(d) The divergence as θ → 0 appears because we have ignored the electron mass everywhere. 
Show that reintroducing the electron mass in the expression 

2 0 2 q = −2(EE 0 − pp cos θ) + 2m (4) 

cuts of the divergence and gives a factor of log(s/m2) in its place. 
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(e) Assembling all the factors, and assuming that the target cross sections are independent 
of photon polarization, show that the largest part of the electron-target cross section is 
given by considering the electron to be the source of a beam of real photons with energy 
distribution in x = Eγ /E: 

dx α s 
Nγ (x)dx = (1 + (1 − x)2) log (5)

2x 2π m 
This is the Weizsacker-Williams equivalent photon approximation. It is a precursor to 
the theory of jets and partons in QCD. Note that it allows us to study photon-photon 
scattering using e+e− collisions. 

2. Rosenbluth Formula Consider our formula for the effective photon-charged particle vertex � � 

ū(p2) γ
µF1(q 

2) + 
iσµν qν 

F2(q 
2) u(pq) (6)

2m 

where q = p2 − p1. If the fermion is strongly interacting, e.g. the proton, then Fi(q
2) can be 

quite non-trivial (hard or impossible to calculate) functions determined by the interal structure 
of the object. However, these form factors can be determined experimentally. Show that if 
an electron scatters off a proton (at rest) with energy E � me then we find an elastic cross 
section h i 

(F 2 q qπα2
1 − 

4m 

2

2 F2
2) cos2 θ − 

2m 

2

2 (F1 + F2)
2 sin2 θ 

dσ 2 2 
= � � (7)

d cos θ 2E2 1 + 2E sin2 θ sin4 θ 
m 2 2 

where θ is the lab-frame scattering angle and Fi are evaluated at the associated q2 . 

3. Yukawa Couplings in QED Consider QED with a Dirac spinor field ψ supplemented by a 
Yukawa interaction 

Lyukawa = λφ ̄  (8)ψψ 

where φ is a real scalar field. Verify that the contribution to Z1 from the vertex diagram with 
a virtual φ equals the contribution to Z2 from the diagram with a virtual φ. Now consider the 
renormalization of the φ ̄ψψ vertex. Show that the rescaling of this vertex is not canceled by 
the correction to Z2 (you only need to compute short-distance divergences, or 1/� poles in dim 
reg, in order to find this). 

4. Lie Algebras and SU(3) From the Gell-Mann matrices (on page 485 of the book, for 
example), work out the weights of the fundamental representation of SU(3). Now work out 
the roots and draw the root lattice. 

Show that the three Gell-Mann matrices λ2, λ5, λ7 generate an SU(2) sub-algebra of SU(3). 
How does the fundamental of SU(3) transform according to this SU(2)? How does the adjoint 
of SU(3) transform according to this SU(2), or in other words, what irreps of SU(2) does it 
break up into? 

5. Book Problems 24.1, *26.3* 
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