
QFT Problem Set 1 - Due Sept. 15, 2015 

You should read the first two chapters of the book. The problems surrounded by stars, e.g. *2.5*, are 
extra credit (but you should definitely read them and think about them a bit). Graduate students 
in theoretical physics who are taking QFT for the first time should attempt these problems. 

1. Units Show that we can convert between energy, momentum, inverse length, and inverse 
time by multiplying by various factors of ~ and c. Thus these dimensionful quantities are 
all directly comparable once we choose units where ~ = c = 1. What is a length scale and 
time scale associated with one GeV = 109 eV? What are the units of the Newton constant of 
gravity, and what is its value expressed in terms of powers of GeV? 

2. Textbook Problems: 2.1, 2.3, 2.4, 2.6, *2.5* 

3. Asymptotic Series and a Toy Integral You are probably most familiar with series (e.g. 
Taylor or Laurent) that converge. In QFT we will spend much of the course studying series 
expansions that do not converge, but that are useful anyway. These are called asymptotic 
series, and there is a rich and fascinating mathematical literature on their behavior. 

Compute the integral Z ∞ 2 

2σI0 = dx e− x 
(1) 

−∞ 

in some nice way, e.g. by squaring it and then being clever. 

Now consider the more general integral Z ∞ 2 41 − λ x
2 4I(λ) = √ dx e− x 

(2)
2 −∞ 

If we imagine a situation where λ is a very small number, then it makes sense to try to expand 
the integral in a power series in λ. Show that if we expand the integrand to nth order in λ 
and perform the integral we find a series 

∞ � �X 1Γ 2n + 
2 λnI(λ) → (−1)n (3) 

n! 
n=0 

What is the radius of convergence of this series in λ? Now evaluate the integral (e.g. in 
Mathematica) at λ = 0.02 and compare it to the sum of the first M terms, for M = 
0, 1, 2, · · · , 30 (a good strategy is to plot the logarithm of the difference between the exact 
result and successive terms in the series). What do you notice, and what happens as you 
change the value of λ? How many terms should we keep to get the best possible approximation 
for a given value of λ � 1? 

The integral you’ve studied is a toy version of the path integrals we encounter in QM and 
QFT; here λ plays the role of ~. We will see that perturbation theory in QFT provides an 
asymptotic series expansion directly analogous to what you’ve just found. 
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4. Balls and Springs in More Dimensions In class we studied a 1d lattice. Consider a square 
lattice of balls and springs in 2 space dimensions, with a Lagrangian1 " # 

N � �2 � �2X m
φ̇2 m 2 φv,h − φv+1,h m 2 φv,h − φv,h+1

L = − c − cH (4)v,h V2 2 a 2 a 
v,h=1 

Compute the equations of motion and diagonalize them with a Fourier transform in both 
the horizontal and vertical coordinate directions. You should find a spectrum of decoupled 
harmonic oscillators, labeled by horizontal and vertical momenta. What is the dispersion 
relation? Now consider the continuum limit, where a → 0. What is the meaning of the 
constants cV and cH , and what is special about cV = cH ? 

5. *A Thin Layer of Atoms as an Extra Dimension* Now consider the same setup as 
above, except with only two lattice sites in the vertical direction (but N � 1 in the horizontal 
direction). Phrased purely in terms of the horizontal direction and horizontal momenta, what 
does the spectrum look like? You should find more than one type of wave propagating in the 
horizontal direction, with the massive relativistic dispersion relation ω2 = m2 + c2 

hk
2 for some 

values of m which you should compute, including one mode with m = 0. What would happen 
if we had 3, 4, or k lattice sites in the vertical direction? This is an elementary example where 
we have a ‘small extra dimension’ and a ‘Kaluza-Klein tower of states’. 

6. *Classical Limit of Canonical Quantization* Given a classical system, we are 
confronted with a very general problem – how can we find a quantum mechanical system that 
turns into this classical system in ‘the classical limit’, when ~ → 0? There is no completely 
general solution to this problem. However, for virtually all examples of relevance to modern 
physics, there is a standard way to proceed, called ‘Canonical Quantization’. You can consult 
Weinberg’s Quantum Mechanics, chapter 9, to read about the general story. 

Let’s consider the classical limit of a canonically quantized classical system. So consider a 
1 2 − 1 ω2 2quantum harmonic oscillator, i.e. the system with L = 
2 ẋ 2 x . Now consider a state r 

1 (x−x0)
2 

4 − +ik0x/hψ(x0, k0; x) = e 2σ2 (5)
πσ2 

What are the expectation values and variances of x and p in this state? Show that the 
commutator [F (x,ˆ p̂), G(x,ˆ p̂)] for general functions F and G of the operators x̂ and p̂  is 
proportional to the Poisson bracket {F, G}x,p. Note how this can be generalized whenever 
the canonical commutation relations apply. Find a limit where we can simply view F (x,ˆ p̂) as 
F (hxi, hpi) so that we recover classical mechanics. 

1In the real world we would want φ to be a vector quantity, encoding both the magnitude and direction of the 
displacement, but here we have chosen to make φv,h is a scalar quantity for simplicity – so it doesn’t truly describe 
the displacement of the atoms. 
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