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1 Introduction 

1.1 Why is Quantum Gravity Different? 

Fundamental physics has been largely driven by the reductionist program – look at nature with 
better and better magnifying glasses and then build theories based on what you see. In a quantum 
mechanical universe, due to the uncertainty relation, we cannot refine our microscope without using 
correspondingly larger momenta and energies. Hence the proliferation of larger and larger colliders. 
Sometimes when you go to higher energies (shorter distances), physics changes radically at some 

critical energy scale. Theoretical particle physicists get up in the morning to find and understand 
the mechanisms behind new, frontier energy scales. For example, in Fermi’s theory of beta decay 
there was the dimensionful coupling 

1 � �2 
GF ∼ ∼ 7 × 10−17 m (1.1)

(293 GeV)2 

and Fermi’s theory was seen to break down at energies somewhere below 293 GeV. Fermi’s theory 
has been replaced by the electroweak theory, where physics does change drastically before this 
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energy scale – one starts to produce new particles, the W and Z bosons. Even more dramatically, 
when physicists first probed the QCD scale, around a GeV (or 2 × 10−14 m), we found a plethora of 
new strongly interacting particles; the resulting confusion led to the first S-Matrix program, String 
Theory, and one of the first uses of Effective Field Theory in particle physics. But we’ve since 
learned to describe both the QCD and the Weak scale, and much else, using local quantum field 
theories, and they no longer remain a mystery. 
Gravity appears to differ qualitatively from these examples. The point is that if you were to try 

to resolve distances of order the Planck length ` pl ∼ 10−35 meters, you would need energies of order 
the Planck mass, ~/`pl, at which point you would start to make black holes. We are fairly certain of 
this because the universally attactive nature of gravity permits gedanken experiments in which we 
could make black holes without passing through a regime of physics we don’t understand. Pumping 
up the energy further just results in larger and larger black holes, and the naive reductionist program 
comes to an end. So it seems that there’s more to understanding quantum gravity than simply 
finding a theory of the “stuff” that’s smaller than the Planck length – in fact there is no well-defined 
notion of smaller than ` pl. 
In hindsight, we have had many hints for how to proceed, and most of the best hints were decades 

old even back in 1997, when AdS/CFT was discovered. The classic hint comes from Black Hole 
thermodynamics, in particular the statement that Black Holes have an entropy 

A 
SBH = (1.2)

4`2 
pl 

proportional to their surface area, not their volume. Since you can throw anything into a black 
hole, and entropies must increase, this BH entropy formula should be a fundamental feature of the 
universe, and not just a property of black holes. The largest amount of information you can store in 
any region in spacetime will be proportional to its surface area. This is radical, and differs from 
generic non-gravitational systems, e.g. gases of particles. 
So spacetime has to die – at short distances it stops making sense, and it doesn’t seem to store 

information in its bulk, but only on its boundary. What can we do with this idea? Well, since 
the 60s it has been known that gravitational energy is not well-defined locally, but it can be made 
well-defined at, and measured from, infinity. But energy is nothing other than the Hamiltonian. 
So in gravitational theories, the Hamiltonian should be taken to live at infinity. Perhaps there’s 
a whole new description of gravitational physics, with not just a Hamiltonain but all sorts of 
infinity-localized degrees of freedom... a precisely well-defined theory, from which bulk gravity 
emerges as an approximation? 

1.2 AdS/CFT – the Big Picture 

AdS/CFT is many things to many people. 
For our purposes, AdS/CFT is the observation that any complete theory of quantum gravity 

in an asymptotically AdS spacetime defines a CFT. For now you can just view AdS as ‘gravity in 
a box’. By ‘quantum gravity’ we simply mean any theory that is well-approximated by general 
relativity in AdS coupled to matter, i.e. scalars, fermions, gauge fields, and perhaps more exotic 
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stuff too, such as membranes and strings. AdS/CFT says that the Hilbert spaces are identical 

HCF T = HAdS−QG (1.3) 

and all (physical, or ‘global’) symmetries can be matched between the two theories. In particular, 
the spacetime symmetries or isometries of AdSd+1 form the group SO(2, d) and these act on the 
CFTd as the conformal group1 , containing the Poincaré group as a subgroup. All states in both 
theories come in representations of this group. We will explain why quantum field theories in AdS 
produce CFTs, and we will (hopefully) explain which CFTs have perturbative AdS effective field 
theory duals. 
An incomplete theory of quantum gravity in AdS, such as a gravitational effective field theory 

(e.g. the standard model of particle physics including general relativity), defines an approximate or 
effective CFT. Finding a complete theory of quantum gravity, a ‘UV completion’ for any given EFT, 
amounts to finding an exact CFT that suitably approximates the effective CFT. Among other things, 
this means that we can make exact statements about quantum gravity by studying CFTs. General 
theorems about CFTs can be re-interpreted as theorems about all possible theories of quantum 
gravity in AdS. 
When placed in AdS, quantum field theories without gravity define what we’ll refer to as 

Conformal Theories (CTs). These are ‘non-local’ theories that have CFT-like operators with 
correlators that are symmetric under the global conformal group and obey the operator product 
expansion (OPE), but that do not have a local stress-energy tensor Tµν . By thinking about simple 
examples of physics in AdS, we can understand old, familiar results in a new, holographic language. 
A famous and revolutionary fact is that (large) black holes in AdS are just CFT states. This 

means that AdS quantum gravity should be a unitary quantum mechanical theory. Roughly speaking, 
the temperature and entropy of AdS black holes correspond with the temperature of the CFT 
and the number of CFT states excited at that temperature, respectively. This suggests that the 
universality of black hole formation in AdS is dual to the universality of finite temperature physics. 
Another famous and important thought experiment explains how one obtains QCD-like confinement 
from strings that dip into AdS. 
The purpose of these lectures is to explain these statements in detail. In the next two subsections 

we will make some philosophical and historical comments; hopefully they will provide some perspective 
on holography and QFT, but don’t feel discouraged if you do not understand them. They can be 
skipped on a first pass, especially for more practically or technically minded reader. 

1.3 Quantum Field Theory – Two Philosophies 

Why is Quantum Field Theory the way it is? Does it follow inevitably from a small set of more 
fundamental principles? These questions have been answered by two2 very different, profoundly 

1In d = 2 there are many more symmetries (although no more isometries), and these form the full 2-d conformal 
group, with Virasoro algebra, as originally shown by Brown and Henneaux. 

2There’s a third and oldest viewpoint which is also important, and plays a primary role in most textbooks. It 
lacks the air of inevitability, although it’s very practical: one just takes a classical theory and ‘canonically quantizes’ 
it. This was how QED was discovered – we already knew electrodynamics, and then we figured out how to quantize 
it. This viewpoint is certainly worth understanding; Shankar’s text gives a quick explanation of classical → quantum. 
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Figure 1: This figure shows how the AdS cylinder in global coordinates corresponds to the CFT in 
radial quantization. The time translation operator in the bulk of AdS is the Dilatation operator in 
the CFT, so energies in AdS correspond to dimensions in the CFT. We make this mapping very 
explicit in section 5.2.2. 

compatible philosophies, which I will refer to as Wilsonian and Weinbergian. 
The Wilsonian philosophy is based on the idea of zooming out. Two different physical systems 

that look quite different at short distances may behave the same way at long distances, because 
most of the short distance details become irrelevant. In particular, we can think of our theories as 
an expansion in ` short/L, where ` short is some microscopic distance scale and L is the length scale 
relevant to our experiment. We study the space of renormalizable quantum field theories because 
this is roughly equivalent to the space of universality classes of physical systems that one can obtain 
by ‘zooming out’ to long distances. Here are some famous examples 

• The Ising Model is a model of spins on a lattice with nearest-neighbor interactions. We can 
zoom out by ‘integrating out’ half of the spins on the lattice, leaving a new effective theory for 
the remainder. However, at long distances the model is described by the QFT with action 

Z 
1 � � 

S = dd x (∂φ)2 − λφ4 (1.4)
2 

The details of the lattice structure become ‘irrelevant’ at long distances. 
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• Metals are composed of some lattice of various nuclei along with relatively free-floating electrons, 
but they have a universal phase given by a Fermi liquid of their electrons. Note that the Fermi 
temperature, which sets the lattice spacing for the atoms, is around 10, 000 K whereas we 
are most interested in metals at ∼ 300K and below. At these energies metals are very well 
described by the effective QFT for the Fermi liquid theory. See [1] for a beautiful discussion of 
this theory and the Wilsonian philosophy. Research continues to understand the effective QFT 
that describes so-called strange metals associated with high temperature superconductivity. 

• Quantum Hall fluids seem to be describable in terms of a single Chern-Simons gauge field; one 
can show that this is basically an inevitable consequence of the symmetries of theory (including 
broken parity), the presence of a conserved current, and the absence of massless particles. 

• The Standard Model and Gravity. There are enormous hierarchies in nature, in particular 
from the Planck scale to the weak scale. 

• Within the SM, we also have more limited (and often more useful!) effective descriptions of 
QED, beta decay, the pions and nucleons, and heavy quarks. Actually, general relativity plus 
‘matter’ is another example of an effective description, where the details of the massive matter 
are unimportant at macroscopic distances (e.g. when we study the motion of the planets, it’s 
irrelevant what they are made of). 

So if there is a large hierarchy between short and long distances, then the long-distance physics will 
often be described by a relatively simple and universal QFT. 
Some consequences of this viewpoint include: 

• There may be a true physical cutoff on short distances (large energies and momenta), and it 
should be taken seriously. The UV theory may not be a QFT. Effective Field Theories with a 
finite cutoff make sense and may or may not have a short-distance = UV completion. 

• UV and IR physics may be extremely different, and in particular a vast number of distinct UV 
theories may look the same in the IR (for example all metals are described by the same theory 
at long distances). This means that a knowledge of long-distance physics does not tell us all 
that much about short-distance physics – TeV scale physics may tell us very little about the 
universe’s fundamental constituents. 

• Symmetries can have crucially important and useful consequences, depending on whether they 
are preserved, broken, emergent, or anomalous. The spacetime symmetry structure is essential 
when determining what the theory can be – high-energy physics is largely distinguished from 
condensed matter because of Poincaré symmetry. 

• QFT is a good approach for describing both particle physics and statistical physics systems, 
because in both cases we are interested in (relatively) long-distance or macroscopic properties. 
QFT fails to be a good description when there aren’t any interesting degrees of freedom that 
survive at distances that are long compared to the microscopic scale, e.g. to the lattice spacing. 
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For a classic review of the Wilsonian picture of QFT see Polchinski [1]. A nice perspective between 
high-energy and condensed-matter physics is provided by Cardy’s book Scaling and Renormalization 
[2]. Slava Rychkov’s notes give a CFT-oriented discussion of some of these ideas. 
A natural question: what if we have a theory that does not change when we zoom out? This 

would be a scale invariant theory. In the case of high energy physics, where we have Poincaré 
symmetry, scale invariant theories are basically always conformally invariant QFTs,3 which are called 
Conformal Field Theories (CFTs). It’s easy to think of one example – a theory of free massless 
particles has this property. One reason why asymptotic freedom in QCD is interesting is that it 
means that QCD can be viewed as the theory you get by starting with quarks that are arbitrarily 
close to being free (they have an infinitesimal interaction strength or coupling), and then zooming 
out. This makes it possible to rigorously define QCD as a mathematical theory. 
It seems that all QFTs can be viewed as points along an Renormalization Flow (or RG flow, this 

is the name we give to the zooming process) from a ‘UV’ CFT to another ‘IR’ CFT. Renormalization 
flows occur when we deform the UV CFT, breaking its conformal symmetry. QCD was an example 
of this – we took a free theory of quarks and ‘deformed it’ at high energies by adding a small 
interaction. This leads to a last implication of the Wilsonian viewpoint as applied to relativistic 
QFTs: 

• Well-defined QFTs can be viewed as either CFTs or as RG flows between CFTs. We can 
remove the UV cutoff from a QFT (send it to infinite energy or zero length) if it can be 
interpreted as an RG flow from the vicinity of a CFT fixed point. 

So studying the space of CFTs basically amounts to studying the space of all well-defined QFTs. 
And as we will see, the space of CFTs also includes all well-defined theories of quantum gravity that 
we currently understand! 
The Weinbergian philosophy [3] finds Quantum Field Theory to be the only way to obtain a 

Lorentz Invariant, Quantum Mechanical (Unitary), and Local (satisfying Cluster Decomposition) 
theory for the scattering of particles. Formally, a “theory for scattering” is encapsulated by the 
S-Matrix 

Sαβ = hαin|S|βouti (1.5) 

which gives the amplitude for any “in-state” of asymptotically well-separated particles in the distant 
past to evolve into any “out-state” of similarly well-separated particles in the future. Some aspects 
of this viewpoint: 

• Particles, the atomic states of the theory, are defined as irreducible representations of the 
Poincaré group. By definition, an electron is still an electron even if it’s moving, or if I rotate 
around it! This sets up the Hilbert space of incoming and outgoing multi-particle states as 
a Fock space of free particles. The fact that energies and momenta of distant particles add 
suggests that we can use harmonic oscillators ap to describe each momentum p, because the 
harmonic oscillator has evenly spaced energy levels. 

3This statement is still somewhat controversial, and hasn’t been rigorously proven for d > 2 dimensions. 
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• The introduction of creation and annihilation operators for particles is further motivated by 
the Cluster Decomposition Principle4 . This principle says that very distant processes don’t 
affect each other; it is the weakest form of locality, and seems necessary to talk sensibly about 
well-separated particles. Cluster decomposition will be satisfied if and only if the Hamiltonian 
can be written as 

!ZX X 
H = d3 qid

3kiδ qi hmn(qi, ki)a †(q1) · · · a †(qm)a(k1) · · · a(kn) (1.6) 
m,n i 

where the function hmn must be a non-singular function of the momenta. 

• We want to obain a Poincaré covariant S-Matrix. The S operator defining the S-Matrix can 
be written as 

� Z ∞ � 
S = T exp −i dtV (t) (1.7) 

−∞ 

Note that this involves some choice of t, which isn’t very covariant-looking. However, if the 
interaction V (t) is constructed from a local Hamiltonian density H(x) as 

Z 
V (t) = d3 ~x H(t, ~x) (1.8) 

where the Lorentz-scalar H(x) satisfies a causality condition 

[H(x), H(y)] = 0 for (x − y)2 spacelike (1.9) 

then we will obtain a Lorentz-invariant S-Matrix. How does this come about? The point is 
that the interactions change the definition of the Poincaré symmetries, so these symmetries do 
not act on interacting particles the same way they act on free particles. To preserve the full 
Poincaré algebra with interactions, we need this causality condition. 

• Constructing such an H(x) satisfying the causality condition essentially requires the assembly 
of local fields φ(x) with nice Lorentz transformation properties, because the creation and 
annhiliation operators themselves do not have nice Lorentz transformation properties. The 
φ(x) are constructed from the creation and annihilation operators for each species of particle, 
and then H(x) is taken to be a polynomial in these fields. 

• Symmetries constrain the asymptotic states and the S-Matrix. Gauge redundancies must be 
introduced to describe massless particles with a manifestly local and Poincaré invariant theory. 

• One can prove (see chapter 13 of [3]) that only massless particles of spin ≤ 2 can couple in a 
way that produces long range interactions, and that massless spin 1 particles must couple to 
conserved currents Jµ, while massless spin 2 particles must couple to Tµν . This obviously goes 
a long way towards explaining the spectrum of particles and forces that we have encountered. 

4In AdS/CFT we can prove that this principle holds in AdS directly from CFT axioms, but in flat spacetime we 
have to assume it. This very weak form of AdS locality follows from CFT unitary. 
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In theories that include gravity, the Weinbergian philosophy accords perfectly with the idea of 
Holography : that we should view dynamical spacetime as an approximate description of a more 
fundamental theory in fewer dimensions, which ‘lives at infinity’. Holography was apparently not a 
motivation for Weinberg himself, and his construction can proceed with or without gravity. But the 
philosophy makes the most sense when we include gravity, in which case the S-Matrix is the only 
well-defined observable in flat spacetime. 
One of the eventual takeaway points from these lectures is that Weinberg’s derivation of flat 

space quantum field theory from desired properties of the S-Matrix can be repeated in the case of 
AdS/CFT, replacing S-Matrix → CFT correlators. Specifically, quantum field theory in AdS can be 
derived in an analogous way from properties of correlation functions 

hO1(x1)O2(x2)O3(x3)O4(x4)i (1.10) 

of local CFT operators Oi. Specifically: 

• Objects in AdS arise as irreducible representations of the conformal group. 

• The crossing symmetry of CFT correlators, which gives rise to ‘the Bootstrap Equation’, can 
be used to prove the Cluster Decomposition Principle in AdS, guaranteeing long-range locality. 
AdS cluster decomposition is a consequence of unitary quantum mechanics in CFT. 

• If the correlators of low-dimension operators in the CFT are approximately Gaussian (deter-
mined entirely by 2-pt correlators), then the AdS/CFT spectrum is approximated by a Fock 
space5 of particles in AdS at low energies. 

• Crossing symmetric, unitary, interacting (non-Gaussian) CFT correlators built perturbatively 
on a CFT Fock space will be derivable from an AdS Effective Field Theory description. The 
cutoff of this effective field theory in AdS can be related to properties of the CFT spectrum. 
Symmetries play a similarly important role for AdS/CFT. 

The key point to notice is that the argument for flat space QFT from the S-Matrix is directly 
mirrored by the argument for AdS QFT from CFT correlators. The concepts of Poincaré Symmetry, 
Unitarity, and Cluster Decomposition have been replaced with Conformal Symmetry, Unitarity, and 
Crossing Symmetry. As we will eventually see, transitioning from flat space to AdS brings additional 
complications and challenges, but also certain benefits. 
The relation between the two approaches is no coincidence – in fact, flat space S-Matrices can be 

derived from a limit of CFT correlation functions, where the dual AdS length scale R →∞. From 
this point of view, AdS space simply serves as an infrared regulator for flat space. 
The converse of both Weinbergian arguments is simpler. It is comparatively straightforward (i.e. 

it’s the subject of all standard textbooks) to see that local flat space QFT produces a Poincaré 
covariant S-Matrix. It is also relatively easy to see why AdS QFTs produces good CFT correlation 
functions. Also, since we obviously have an interest in UV completing quantum gravity, it’s interesting 
to understand why gravity in AdS must be a CFT. So this is the plan of attack for most of these 

5The Hilbert space formed from any number of non-interacting particles. 
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lectures – we will start by studying physics in AdS, introducing CFT ideas wherever useful, and 
show how field theories in AdS naturally produce CFTs6 . Only at the end will we return to see how 
AdS EFT actually follows from simple assumptions about the CFT. 

1.4 Brief Notes on the History of Holography 

Some anachronistic and ideosyncratic comments about the history of Holography: 

• In any theory where energy can be measured by a boundary integral, one must have holography, 
because ‘energy’ is just the Hamiltonian. The fact that this is the case in general relativity has 
been known for a long time, dating at least to the 1962 work of Arnowitt, Deser, & Misner [4], 
see for example the classic paper of Regge and Teitelboim [5] for a thorough treatment. Brice 
DeWitt and others were aware [6] in the 60s that the only exact observables are associated 
with the boundary, but they didn’t suggest that a different (local!) theory (e.g. a CFT) could 
live there and compute them. 

• Most famously, holography can and usually is motivated via Black Hole thermodynamics, 
which dates to Bekenstein and Hawking in the 70s. The most important point is that BH’s 
have an entropy proportional to their area, not their volume. The fact that one can throw 
anything into a BH, combined with the 2nd law of thermodynamics, means that information 
in a gravitational universe must follow an area law. 

• Work studying the asymptotic symmetries of GR proceeded in the 70s and 80s, leading to the 
famous Brown and Henneaux result [7] that the asymptotic symmetry group in AdS3 is the 
infinite dimensional Virasoro algebra = the conformal algebra in 2 dimensions. Note that this 
work is quite non-trivial because one has to understand the symmetries of spacetime while 
allowing spacetime to fluctuate. In a certain sense the full Virasoro symmetry of gravitational 
AdS3 is always spontaneously broken to the global SL(2) conformal group. 

• The Strominger-Vafa results on BH entropy, which used a CFT and some Brown and Henneaux-
esque ideas, were also a precursor to AdS/CFT, and are now understood in these terms. 

• ’t Hooft suggested the idea of taking gravity as a boundary theory seriously, and Susskind 
subsequently named the idea holography. ’t Hooft was unfortunate enough to make a specific 
and incorrect suggestion for the boundary theory... both suggested the idea that the boundary 
theory has ‘pixels’. I’m not sure if the intention was to have a local boundary theory. 

• Anomaly inflow, and the basic point of Witten that certain anomalies can be viewed as being 
given by d + 1 dimensional integrals, was also suggestive, although this result only relies on 
the topology and not the specific geometry of the bulk. 

6Actually, only UV complete theories in AdS produce exact CFTs. Effective field theories in AdS only produce 
approximate CFTs, which break down when one studies operators of large scaling dimension. If one side of the duality 
is incomplete, the other must be as well. 
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• Polyakov had some ideas about strings propagating in an extra dimension being dual to 
confinement (see his talk ‘String Theory and Quark Confinement’ from 1997), and (anecdotally) 
these ideas inspired Maldacena’s discovery. 

• Amusingly, Dirac wrote a paper in 1936 on singleton representations in AdS3 (today we 
would call this a scalar boson in AdS with a particular negative mass squared, so that it 
corresponds to a free field in the CFT satisfying ∂2φ = 0); the paper was titled “A Remarkable 
respresentation of the 3+2 de Sitter group”. 

2 Anti-deSitter Spacetime 

So what is Anti-deSitter (AdS) spacetime? 
AdSd+1 is a maximally symmetric spacetime with negative curvature7 . It is a solution to Einstein’s 

equations with a negative cosmological constant. A particularly useful coordinate system for it, 
often referred to in the literature simply as ‘global coordinates’, is given by 

� � � � 
ds2 =

1 �
ρ � dt2 − dρ2 − sin2 ρ

dΩd 
2 
−1 (2.1) 

cos2 R 
R 

In what follows we will set the AdS length scale R = 1. However, it’s important to note that we 
cannot have an AdS spacetime without choosing some particular distance (and curvature) scale. 
Lengths and energies in AdS can and usually will be measured in these units. 
Here the radial coordinate ρ ∈ [0, π 

2 ), while t ∈ (−∞, ∞), and the angular coordinates Ω cover a 
(d − 1)-dimensional sphere. For example, if d = 3 then we can write 

dΩ2 = dθ2 + sin2 θ dφ2 (2.2) 

to cover the familiar S2 . Note that although ρ only runs over a finite range, the spatial distance 
from any ρ < π/2 out towards π/2 diverges, so AdSd+1 is not compact. In global coordinates we can 
picture AdS as the interior of a cylinder, as in figure 2. Note that in these coordinates there is an 
obvious time translation symmetry, and also an obvious SO(d) symmetry of rotations on the sphere. 
By maximally symmetric, we mean that AdSd+1 has the maximal number of spacetime symmetries, 

namely 1
2 (d + 1)(d + 2). This is the same number as we have in d + 1 dimensional flat spacetime, 

where we have d + 1 translations, d boosts, and 1
2 d(d − 1) rotations. The easiest way to see the 

symmetries of AdS is to embed it as the solution of 

dX 
XAX

A ≡ X0
2 + Xd 

2
+1 − Xi 

2 = R2 (2.3) 
i=1 

7The use of d + 1 dimensions is conventional when studying AdS/CFT, because the dual CFT is taken to have d 
spacetime dimensions. 
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�t

⇢

Figure 2: This figure shows AdS in global coordinates. The center is at ρ = 0, while spatial infinity 
is approached as ρ → π/2. The global time coordinate t runs from −∞ to ∞. 

Note again the appearance of the AdS length R. Using the abstruse equation cos2 t + sin2 t = 1 and 
the related equation sec2 ρ = tan2 ρ + 1 we can map the global coordinates into the XA via

8 

cos t 
X0 = R 

cos ρ 
(2.4) 

sin t 
Xd+1 = R 

cos ρ 
(2.5) 

Xi = R tan ρ Ω̂i (2.6) 

The advantage of the XA as a presentation of AdS is that all of the symmetries are just the naive 
rotations and boosts of the XA. In particular, we have 1

2 d(d − 1) rotations among the Xi with 
1 ≤ i ≤ d, we have one rotation between the two timelike directions X0 and Xd+1, and then we have 
2d boosts that mix X0 and Xd+1 with the Xi. All of these transformations can be represented by 

∂ ∂ 
LA = XA − XB 
B (2.7)

∂XB ∂XA 

8To get all of AdS we need to unwrap the XA to their universal cover, so that t and t + 2πR are no longer 
periodically identified. 
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which generate the group SO(2, d) of linear transformations of the XA leaving equation (2.3) invariant. 
The group SO(2, d) is both the group of isometries of AdSd+1 and also the conformal group in d 
dimensions; so we will often refer to it as the conformal group in what follows. Let’s take a look at 
the ‘rotation’ in the timeline directions X0 and Xd+1. Note that 

∂ ∂X0 ∂ ∂Xd+1 ∂ 
= + = L0 (2.8)

∂t ∂t ∂X0 ∂t ∂Xd+1 d+1 

so in other words, L0,d+1 is the generator of time translations in AdS. So it is the Hamiltonian! The 
purely space-like generators Lij just generate the rotations of Ω̂ 

d. These are just the isometries of 
the sphere Sd−1 , and they form the group SO(d). 

2.1 Euclidean Version and the Poincaré Patch 

In many cases it will be useful and important to study the Euclidean version of AdS and the 
Euclidean conformal group, which is SO(1, d + 1). The embedding space becomes 

d+1X 
X0
2 − Xi 

2 = R2 (2.9) 
i 

In this case the dt2 term in equation (2.1) flips sign, and we have cos t → cosh t and sin t → sinh t in 
equation (2.4). This leads to the coordinate identifications in equation (2.10). 
There’s another coordinate system for AdS, called the Poincaré patch (PP). It’s actually used in 

the literatue more often than the global coordinate system. It’s the coordinate system to use when 
studying RS models, holographic QCD, and basically any theory with broken conformal symmetry. 
The reason for its importance is that it makes the d-dimensional Poincaré subgroup of the conformal 
group manifest. 
The Poincaré Patch is a bit easier to understand in Euclidean signature. The relationship between 

Euclidean embedding, global, and Poincaré patch coordinates is 
� � 

cosh τ 1 z2 + ~r2 + R2 

X0 = R = (2.10) 
cos ρ 2 z � � 
sinh τ 1 z2 + ~r2 − R2 

Xd+1 = R = 
cos ρ 2 z 

R 
Xi = R tan ρΩi = ri 

z 

where ~r is a spatial d-vector, and we have written the global coordinate time as τ . Aspects of this 
relationship are pictured in figure 3. Note that z runs from 0 to ∞; this is necessary so that X0 

has a fixed sign, which is itself required by equation (2.9). In the PP coordinates, dilatations are 
generated by 

D = L0,d+1 = z∂z + ri∂ri (2.11) 
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Euclidean AdS

z = z0

⇢

Figure 3: This figure depicts Euclidean AdS. The constant global Euclidean time surfaces are just 
balls at fixed height on the cylinder. In constrast, the constant z surfaces begin at ~r = 0 at some 
fixed τ with ρ = 0, but as ~r →∞ we simultaneously have ρ(r) → π/2 with τ →∞, as depicted on 
the figure. Note that in Euclidean coordinates, both the Poincaré patch and the global coordinates 
cover all of AdS; in contrast, the PP only covers a portion of AdS in the Lorentzian case. 

This operator acts on ~r by stretching the space, as expected. The fact that this is truly L0,d+1 can 
be checked by noting that (z∂z + ri∂ri )Xi = 0, and that 

= Xd+1∂X0z∂z + ri∂ri − X0∂Xd+1 (2.12) 

This is easily seen by writing the differential operator D = z∂z + ri∂ri as D(X
A)∂XA . 

The relationship in the Lorentzian case is basically given by analytic continuation. The geometry 
is depicted in figure 4. It’s most natural to switch the labels of Xd and Xd+1 to satisfy equation 
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(2.3). This gives 
� � 

cos τ z R2 + ~x2 − t2 

X0 = R = 1 + (2.13) 
cos ρ 2 z2 

sin τ R 
Xd+1 = R = t 

cos ρ z 
R 

Xi<d = R tan ρΩi = xi 
z � � 
z R2 − ~x2 + t2 

Xd = R tan ρΩd = 1 − 
22 z 

where ~x is a spatial d − 1 vector, and we have written the global time as τ to avoid confusion. We 
can solve for (t, z, xi) in terms of the global coordinates (τ, ρ, Ω̂ 

i) as 

sin τ 
t = R (2.14) 

cos τ − Ωd sin ρ 
cos ρ 

z = R 
cos τ − Ωd sin ρ 

Ω̂i sin ρ 
~xi = R 

cos τ − Ωd sin ρ 

It should be clear from this that even when t → ±∞ we only cover a finite range in τ , because this 
limit is only achieved by causing the denominators on the RHS to vanish. In these coordinates we 
obtain the metric 

! 
d−1X 

ds2 = 
z 
1 
2 

dt2 − dz2 − dx2 
i (2.15) 

i=1 

where the z coordinate only covers the range 0 < z < ∞. A very commonly used alternative version 
re-writes dy = dz/z so that z = ey. 
We emphasize that in Euclidean signature, the Poincaré patch covers the entire AdS spacetime, 

just like global coordinates. However, in Lorentzian signature, the Poincaré patch only covers a 
small sub-region of the full AdS spacetime, bounded by a causal diamond wrapped around the AdS 
cylinder. 
Generally speaking, the global coordinates make an SO(2) × SO(d) sub-group of the SO(2, d) 

conformal group obvious, while the Poincaré patch makes the d-dimensional Poincaré group obvious 
and dilatations (somewhat) manifest. 

2.2 Gauss’s Law in AdS and Long Range Interactions 

Now let’s consider Gauss’s law in AdS, in order to understand how electromagnetic and gravitational 
fields behave at long distances. 
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Lorentzian AdS

t = 0

t = �1

t = 1

Figure 4: This figure emphasizes the region corresponding to the Poincaré patch, with constant PP 
times labeled. The PP does not cover all of Lorentzian AdS (in contrast to the Euclidean case). 

For this purpose it’s natural to transform to a coordinate κ with dκ = dρ , so that cosh κ = sec ρ 
cos ρ 

and sinh κ = tan ρ. Note that since AdS is maximally symmetric, the point κ = 0 is equivalent to 
all other points. In these coordinates the metric takes the form 

ds2 = cosh2(κ)dt2 − dκ2 − sinh2(κ) dΩd 
2 
−1 (2.16) 

Now consider a constant time surface, such as the surface t = 0, and let’s imagine we have a charge 
sitting at κ = 0. Gauss’s law says that the total amount of flux through any sphere around the 
charge at κ = 0 will be a constant. Note that since gκκ = 1 a point with coordinate κ∗ is literally a 
distance κ∗ from the point κ = 0. The surface area of a sphere of (geometrical) radius κ∗ is just 
[sinh(κ∗)]

d−1 times the area of an Sd−1 with radius one. This means that the potential due to a 
point charge at κ = 0 will fall off with κ as 

Q
V (κ) = (2.17)

[sinh(κ)]d−2 

In the limit that κ � 1, this is just the usual κ2−d potential appropriate to an (approximately) flat 
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d + 1 dimensional spacetime. But for κ � 1 this becomes 

−(d−2)κV (κ) ≈ e (2.18) 

We can derive these results more systematically by studying the equation of motion for a spherically 
symmetric, static electric potential.9 This follows from studying the action for the electromagnetic 
field in AdS, namely 

Z 
dd+1XS = 

√−g 1 Fµν F µν (2.19)
4 

~The equation of motion we want can be most easily derived by writing A = 0 and A0 = V , giving 
� √ � 

tt κκ∂κ g g −g∂κV = δ(κ) (2.20) 

or 

∂κ 
2V + ((d − 1) coth κ − tanh κ) ∂κV = δ(κ) (2.21) 

which has the solution given in equation (2.17). 
These observations have broader implications. For one thing, they imply that IR divergences are 

regulated by the AdS geometry. But at a more basic level, there are implications for the relationship 
between angular momentum and radius of orbit. Since a sphere of radius κ will have an area of 

(d−1)κorder e , to cover such a sphere with AdS scale resolution requires spherical harmonics up to 
(d−1)κ` ∼ e as well. This also means that objects in nearly circular orbits with angular momentum ` 

are only a characteristic distance κ ∼ R log ̀  from the center of AdS. 
As a final point, note that the cosh2(κ)dt2 term in the metric suggests that (at least in the 

Newtonian limit) an objects energy must increase as it ventures away from κ = 0. This means that 
in effect, there is a gravitational force pushing objects in AdS towards the center at κ = 0. This 
makes AdS function like a ‘box’. We will see this more directly in the next section, when we study 
the motion of classical and quantum particles in AdS. 

3 A Free Particle in AdS 

3.1 Classical Equations of Motion 

Now let’s study the simplest possible example of AdS physics, a free scalar particle in AdS3. The 
most straightforward way to work out its behavior is to write down a Lagrangian for the particle, 
and then study the classical equations of motion and their canonical quantization. The action for a 
free particle of mass m in any spacetime can be written as 

Z Z r 
dXµ(t) dXν (t)

S = m dτ = m dt gµν (X(t)) (3.1)
dt dt 

9It’s worth noting that this differs from the potential for a massless scalar field. In fact, the potential due to a 
2scalar will only agree with this electric potential if the scalar has a slightly negative mass m = −2(d − 2) in AdS 

units, and then it will only agree for κ � 1. Scalars with slightly negative masses can be stable in AdS. 
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AdS CFT

Figure 5: This figure shows an object at rest in AdS and the CFT dual, which is a primary state. 

where τ is the proper time, and in the second line Xµ(t) is the spacetime position of the particle at 
time t. The fact that this is the correct action for a free particle is equivalent to the statement that 
free particles move on geodesics. The action computes the geodesic path length in units of 1/m, 
because that’s the quantum mechanical wavelength of the particle in its own rest frame. 
It’s worth noting an alternative description (see e.g. [9]). Introducing the lagrange multiplier α, 

we can write the action as Z � � 
1 dXµ(t) dXν (t) α 2S = dt gµν (X(t)) + m (3.2)
2α dt dt 2 

The α equation of motion is trivially solved, and substituting the solution back in gives our first 
action. But this second version is useful because it eliminates the square root; for example to study 
massless particles we can just set m2 = 0 from the beginning. 
In the simple special case of AdS3, we can take Xµ(t) = (t, ρ(t), θ(t)) in global coordinates, so 

we obtain the action 

Z
q 
1 − ρ̇2 − θ̇2 sin2 ρ(t) 

S = m dt (3.3) 
cos ρ(t) 
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If we are interested in the classical physics of our free particle, we could proceed to derive the 
Euler-Lagrange equations for this action, but this gets messy10 . 
Instead, let us take a smarter and more elegant approach. We can view AdS as the surface 

XAX
A = R2 , as defined in equation (2.3). So why not view a particle in AdS as a particle in d + 2 

spacetime dimensions constrained to live on this surface? If we write the action for the coordinates 
XA(τ), where τ is an arbitrary wordline parameter, we find11 

Z h i 
S[XA, λ] = dτ Ẋ 

AẊ A + λ(R2 − XAX
A) (3.4) 

where λ is a Lagrange multiplier that we would also integrate over in the path integral. In fact the 
Lagrangian formalism was originally invented for exactly this purpose – to describe the motion of 
objects constrained to live on a surface. 
The equations of motion are 

¨ XA = −λXA (3.5) 

along with the equation of motion from λ, the constraint equation 

XAX
A − R2 = 0 (3.6) 

The solution to the first set of equations depends on our choice for the variable λ, which is effectively 
unconstrained. By rescaling the unphysical worldline coordinate τ , we can multiply λ in equation 
(3.5) by any positive quantity (since the derivative is quadratic). This means that we effectively 
have three choices: λ = 1, 0, or −1. 
These three choices for λ correspond to timelike, null, or spacelike trajectories (geodesics) in 

AdS. Let us focus on the case λ = 1 for now, which corresponds to the motion of a massive particle 
in AdS. Then, setting τ = t from now on, we have the solutions 

XA = vA
c cos t + vA

s sin t (3.7) 

We see that particles in AdS always have periodic trajectories. The other constraint equation becomes 

R2 c cA 2 s c = vAv cos t + vAv sA sin2 t + vAv sA sin(2t) (3.8) 

c sA c cA s sAThis immediately leads to the constraints vAv = 0 and vAv = vAv = R2 . This leaves us with 
2(d + 2) − 3 = 2d + 1 solutions for the motion of a particle in a d + 1 dimensional spacetime. This is 
one too many solutions; however we can eliminate one by trading the parametric t coordinate for 
one of the XA. This gives the correct number of solutions. 
The most trivial solution is 

X0 = R cos t and Xd+1 = R sin t (3.9) 

10One can still easily check that circular orbits (those with ρ̇ = 0) exist iff θ̇ = 1. 
1 α 211We should actually be using Ẋ 2 → Ẋ 2 + m in the action. However, if we make a choice for τ so that2α 2 

m2α2 = Ẋ 2 is a constant, then the effect of including α is simply to rescale λ. We will make such a choice. 
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with all the Xi = 0. This represents a massive particle at rest at ρ = 0. A more interesting solution 
can be easily found by taking 

R cos t 
X0 = 

cos ρ∗ 
(3.10) 

Xd+1 = R sin t 

X1 = R tan ρ∗ cos t 

In this case the particle is oscillating back and forth between ρ = ±ρ∗ in the 1 direction. Another 
canonical example is 

R cos t 
X0 = (3.11) 

cos ρ∗ 

R sin t 
Xd+1 = 

cos ρ∗ 

X1 = R cos t tan ρ∗ 

X2 = R sin t tan ρ∗ 

This represents a particle at fixed ρ = ρ∗ making a circular orbit in the 1-2 plane. Other more 
complicated solutions involving various elliptical orbits can be obtained via some simple algebra. 
The spacelike and null geodesics of AdS can also be obtained. 

One might wonder why we have solutions corresponding to distinct periodic orbits, since AdS is 
a maximally symmetric spacetime – aren’t all trajectories equivalent up to symmetries? In fact they 
are, but by choosing a specific time coordinate t we have chosen some particular center for AdS, and 
according to this t-evolution objects move in orbits. Any given orbit can be transformed into the 
trajectory of a particle at rest via a conformal transformation (an AdS isometry). 
A very non-trivial feature of these solutions is that they all have the same frequency with respect 

to the AdS time t. An immediate consequence of this fact is that when we quantize an AdS free 
particle, we must have energy levels that are integer spaced. In other words, we must find that all 
energy levels satisfy 

E = Δ+ m (3.12) 

for some Δ and for integers m = 0, 1, 2, · · · . This follows from both the WKB approximation, and 
from a consideration of the oscillatory behavior of superpositions of wavefunctions. The only way 
that every semi-classical linear combination of wavefunctions can have equal periodicity is if all 
energy levels are quantized in this way. Let us now turn to the quantum theory and confirm this 
prediction. 

3.2 Single Particle Quantum Mechanics 

Now we would like to study our single particle in AdS quantum mechanically. Note that there are 
two physical scales in the problem – the AdS length scale R and the mass of the particle m, from 
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Figure 6: This figure shows an object moving in AdS and the CFT dual, a descendant state. 

which we can form the dimensionless number mR on which the wavefunction can depend. This 
wasn’t apparent in the classical analysis because particles move on a timelike geodesics, independent 
of their masses. 
We can straightforwardly derive the AdS Schrodinger equation via canonical quantization of 

the action for a free particle (there’s nothing wrong with describing free relativistic particles using 
first-quantized quantum mechanics). Let’s illustrate this for AdS2 for simplicity. The action in 
equation (3.1) in the case of AdS2 is 

Z pm 
S = dt 1 − ρ̇2 (3.13) 

cos ρ 

The canonical momentum conjugate to ρ is 

∂L mρ̇ 
Pρ ≡ = − p (3.14)

∂ρ̇ cos ρ 1 − ρ̇2 
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Using this we can construct the Hamiltonian, which can be written as 
s 

2m 
H = Pρρ̇ − L = + Pρ 

2 (3.15) 
cos2 ρ 

Quantum mechanically, we must impose the canonical commutation relation [ρ, Pρ] = i, which is 
conveniently implemented by Pρ = −i∂ρ in the ρ-basis of states. The Schrodinger equation then 
says that i∂t = H. Applied to the wavefunction for a particle this would say 

s ! 
2d m 

i Ψ(t, ρ) = − ∂ρ 
2 Ψ(t, ρ) (3.16)

dt cos2 ρ 

It’s unclear how to solve this equation, but things become easier if we study instead the square of 
the time evolution operator, −∂t 2 = H2 , which produces an equation that must also be satisfied 
when applied to Ψ. So we would want to solve 

� �
2m −∂t 2Ψ(t, ρ) = − ∂ρ 

2 Ψ(t, ρ) (3.17) 
cos2 ρ 

to describe a single quantum mechanical particle in AdS2. We have derived a relativistic version of 
the single-particle Schrodinger equation for a free particle in AdS2. We will see later on that this is 
also compatible with the Klein-Gordon equation in AdS that we obtain from relativistic field theory. 
In fact, in d > 2 there are operator ordering issues that should be resolved to maintain conformal 
symmetry; the easiest way to do that is simply to use the Klein-Gordon equation (r2 + m2)ψ = 0. 
How do we solve this system? We could just type the differential equation into mathematica, 

and find a bewildering answer involving hypergeometric functions. But to actually understand the 
physics, we need to use symmetry. In AdS2 we actually have 3 symmetry generators, corresponding 
(in the embedding space) to 

L0 (3.18)2 = ∂t 

in the language of equation (2.7), and also L01 and L12. Let’s look at one of the latter transformations. 
In the embedding space with X0

2 + X2
2 − X1

2 = R2 we have 

cos t 
X0 = R (3.19) 

cos ρ 
sin t 

X2 = R (3.20) 
cos ρ 

X1 = R tan ρ (3.21) 

The operator L01 acts as 

X0 → X0 + �X1 and X1 → X1 + �X0 (3.22) 
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We can translate this into a transformation of ρ and t by looking for functions ft and fρ, with 
t → t + �ft and ρ → ρ + �fρ such that 

cos(t + �ft) 
cos(ρ + �fρ) 

tan(ρ + �fρ) 

cos t ≈ + � tan ρ 
cos ρ 

cos t ≈ tan ρ + � 
cos ρ 

(3.23) 

(3.24) 

The solution to these equations is 

ft 

fρ 

= 

= 

− sin t sin ρ 

cos t cos ρ 

(3.25) 

(3.26) 

This tells us that the symmetry generator 

L01 = − sin t sin ρ∂t + cos t cos ρ∂ρ (3.27) 

Similarly we find that 

L12 = cos t sin ρ∂t + sin t cos ρ∂ρ (3.28) 

These generators should have the SO(2, 1) commutation relations; in fact we find 

[L02, L 01] = −L12, [L02, L 12] = L01, [L01, L 12] = L02 (3.29) 

as the commutation relations of these vector fields. This means that if we define D = L02, P = 
1 
2
(L01 + iL12), and K = 1 

2
(L01 − iL12) then we find 

[D, P ] = iP, [D, K] = −iK, [K, P ] = iD (3.30) 

This is great – it means that we can choose to label our states as eigenstates of D, so that 

D|ψi = Δ|ψi (3.31) 

and with respect to this eigenvalue, P acts as a raising operator while K acts as a lowering operator. 
In particular, the ground state satisfies 

K|ψ0i = 0 (3.32) 

and all of the other states can be built by applying the operator P to this state. Note that, very 
explicitly, we have 

K =
1 
e −it (−i sin ρ∂t + cos ρ∂ρ) (3.33)
2 

for this operator acting in the (t, ρ) basis of states. 
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So the ground state of our system must obey the equation 

−i sin ρ∂tψ0(t, ρ) + cos ρ∂ρψ0(t, ρ) = 0 (3.34) 

Taking ψ0 = eiΔtχ(ρ) with Δ the eigenvalue of D, we see that 

Δχ = − cot ρ(∂ρχ) (3.35) 

with the solution 

Δ ρψ(t, ρ) = e iΔt cos (3.36) 

This is the ground state. Now every other state in the system can be obtained by acting with the 
operator 

P =
1 
e it (i sin ρ∂t + cos ρ∂ρ) (3.37)
2 

which is the raising operator for our quantum mechanical system. This explains the fact that all AdS 
orbits have the same period. Note that flipping t → −t just exchanges P and K. It turns out that 
the nth energy level has a wavefunction that can be written explicitly in terms of hypergeometric 
functions, but we will wait to introduce those until we talk about general AdSd+1. 

General Dimensions 

The fact that all classical solutions oscillate with integer period implies that the energy levels are 
E = Δ+ n for integers n. Let us understand this fact quantum mechanically. The conformal algebra 
SO(d, 2) can be re-written in a conventional form as 

[Mµν , Pρ] = i(ηµρPν − ηνρPµ), [Mµν , Kρ] = i(ηµρKν − ηνρKµ), [Mµν , D] = 0 

[Pµ, Kν ] = −2(ηµν D + iMµν ), [D, Pµ] = Pµ, [D, Kµ] = −Kµ (3.38) 

where we have the index µ = 1, 2, ..., d. Referring to the generators LAB from equation (2.7), 
the ‘dilatation operator’ D ≡ −iL0,d+1, while the ‘momentum generator’ Pµ ≡ iLd+1,µ + L0,µ and 
‘special conformal generators’ Kµ ≡ iLd+1,µ − L0,µ . The rotation generators Mµν are just the SO(d) 
generators −iLµν . 
Recall that D = −iL0,d+1 = −i

∂t 
∂ . In other words, the dilatation operator D is actually the 

Hamiltonian for AdS physics, since it is the generator of time translations. For now you can just 
think of it as the AdS Hamiltonian; soon we’ll learn what role it plays in conformal field theories 
and thereby understand its name. So what does equation (7.9) mean physically? The first line just 
indicates that Pµ and Kµ transform as vectors under rotations, while the dilatation operator D 
is a scalar. Since D commutes with Mµν , we can simultaneously diagonalize D and the angular 
momentum generators. So we can label states by their energy (D eigenvalue) and their angular 
momentum. 
The second line of equation (7.9) gives us even more crucial information. It says that with 

respect to the Dilatation operator D, Pµ acts as a raising operator while Kµ acts as a lowering 
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operator. This should remind you of the creation and annihilation operators for the harmonic 
oscillator. It immediately explains the fact that the energy levels of one-particle states are integer 
spaced (since energies are just the D eigenvalues). Furthermore, since D is the Hamiltonian, there 
must be one-particle state with minimum eigenvalue Δ. This state cannot be lowered, so it must be 
annihilated by all d of the Kµ generators. This gives us an equation 

Kµ|ψ0i = 0 (3.39) 

where ψ0 is called (again using CFT terminology) a primary state. From the point of view of AdS 
quantum mechanics, ψ0 is simply the lowest energy state for our particle, and it has energy Δ. Once 
we have the primary/ground state ψ0, we can construct general states of the form12 

� �n|ψn,`i = Pµ 
2 Pµ1 Pµ2 · · · Pµ` |ψ0i (3.40) 

These states have energy En,` = Δ+ 2n + ` and angular momentum `. These form a basis for all 
one-particle states in AdS. 
We can compute ψn,` as wavefunctions in AdS by writing out Kµ explicitly as a differential 

operator. This is a straightforward exercise using the coordinate transformations from equation (2.4), 
the definitions of LAB from equation (2.7), and the fact that Kµ ≡ iLd+1,µ − L0,µ as we discussed 
above. For example, in AdS3 

� � 
1 

ie−it±iθK± = sin ρ∂t + i cos ρ∂ρ   ∂θ (3.41)
sin ρ � � 
1 

ieit±iθP± = sin ρ∂t − i cos ρ∂ρ ± ∂θ (3.42)
sin ρ 

where K± = K1 ± iK2 and similarly P± = P1 ± iP2. The ground state ψ0(t, ρ) will be independent 
of θ so it must satisfy 

(sin ρ∂t + i cos ρ∂ρ) ψ0(t, ρ) = 0 (3.43) 

and this means that it takes the form 

ψ0(t, ρ) = e iΔt cos Δ(ρ) (3.44) 

as expected, with m2 = Δ(Δ − d). All of the higher states can be constructed by acting on this 
state with the differential operators P±. The state and these methods also generalize to higher d. In 
complete generality, the wavefunctions ψn,` in AdSd+1 can be written in terms of a hypergeometric 
function as 

� � �� 
ψn,`J (t, ρ, Ω) = 

1 
e −iEn,`tY`J (Ω) sin ` ρ cos Δ ρ 2F1 −n, Δ+ ` + n, ̀  + 

d
, sin2 ρ (3.45)

NΔn` 2 

12This equation is rather schematic for ` > 0, because we need to arrange the indices to form definite irreducible 
representations of SO(d), but this is the basic idea. 
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where NΔn` is a normalization factor and En,` = Δ+2n+`. The J quantum number just encapsulates 
other angular momentum quantum numbers, e.g. ‘m’ for AdS4 with Y`m spherical harmonics. In the 
case of Euclidean AdS, we have t → it. 
The easiest way to determine the general solutions in equation (3.45) is to solve a corresponding 

Schrodinger equation for AdSd+1. We would like to use the symmetries of the problem to our 
advantage. There are no non-trivial 1st order differential operators that commute with all of the 
conformal generators D, Kµ, Pµ,Mµν , so we will not be able to find a fully symmetric 1st order 
equation. However, just as in the d = 1 case we solved explicitly above, we can find a 2nd order 
differential operator that commutes with all of the conformal generators. This is the quadratic 
Casimir of the conformal group, which takes the form 

2D2 +
1
(P · K + K · P ) + Mµν M

µν = rAdS (3.46)
2 

when the conformal generators are expressed as isometry generators on AdS. The fact that this is 
the Laplacian is no surprise – the conformal Casimir is unique, and we know that the laplacian is 
the only isometry-invariant 2nd order differential operator. 
Thus we want to solve (r2 + m2)ψ = 0 as the Schrodinger equation in AdSd+1. We can 

immediately separate variables into a radial wavefunction and an angular wavefunction. The latter 
will just take the form of a d-dimensional spherical harmonic Y`J , which are the eigenfunctions of 
the Laplacian on the sphere Sd−1 with eigenvalue `(` + d − 2). We can then write a Schrodinger 
equation for the the ρ-dependent part of the wavefunction ψ`(ρ), which has energy ω2 . It takes the 
form 

� � 
1 − d `(` + d − 2) m2 

−ψ00(ρ) + ψ0(ρ) + + ψ(ρ) = ω2ψ(ρ) (3.47) 
cos ρ sin ρ sin2 ρ cos2 ρ 

We can simplify this equation by defining 

d 
2ψ(ρ) = χ(ρ) sin(ρ)[cot(ρ)] (3.48) 

to give the equation for χ(ρ) 
� � 
1 (2` − 3 + d)(2` − 1 + d) 4m2 + d2 − 1 −χ00(ρ) + + χ(ρ) = ω2χ(ρ) (3.49)
4 sin2 ρ cos2 ρ 

We can interpret this equation using intuition from non-relativistic quantum mechanics. The term 
in parentheses represents an effective potential with an angular momentum barrier and a potential 
that diverges as ρ → π/2. 
It’s not especially obvious how to solve this equation exactly. However, it turns out that if we 

choose the ` = 0 mode for simplicity, and take m2 = Δ(Δ − d) and ω = Δ, there is a very simple 
solution for the ground state 

ψ(ρ) = cos Δ(ρ) (3.50) 
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which we already found. Quantization and the determination of Δ follows as usual from boundary 
conditions – the wavefunction must vanish as ρ → π/2 and it must have ψ0(0) = 0 to avoid cusps, 
since ρ is a radial coordinate. Physically, we see that ψ0(ρ) has its largest support at small ρ and 
falls to zero as ρ → π/2. For Δ ∼ 1 the particle has been confined to a region of order one size R, 
the AdS length scale. When Δ � 1 we have 

−Δ ρ
2 

2ψ(ρ) ≈ e when Δ � 1 (3.51) 

so we see that the particle is an approximately Gaussian state so that it is confined to a region of√ 
size R/ Δ due to the AdS curvature. 
Actually, there is a slick way of deriving the relation between bulk mass and Δ. We already 

derived the form of the ground state using the lowering condition Kµψ0 = 0. Once we know its form, 
we can simply plug it back into the (more complicated) Schrodinger equation, noting that ω = Δ. A 
quick computation shows that this equation can then only be satisfied with m2 = Δ(Δ − d). 

A Comment on Multiparticle Quantum Mechanics in AdS 

Nothing stops us from studying simple examples of multi-particle quantum mechanics in AdS. For 
example, consider a hydrogen atom. In the usual description in flat space, its wavefunction can be 
specified in terms of the position of the proton and the position of the electron. Usually it makes 
more sense to break these up into a center of mass degree of freedom (which is somewhat trivial) and 
a coordinate representing the relative position between the electron and proton. Then we compute 
the wavefunctions, energy levels, etc. 
We can repeat this same process in AdS, and we could even go on to compute the wavefunctions 

and binding energies due to the Coulomb attraction. According to what we’ll soon learn about 
AdS/CFT, we could then interpret the results in terms of the scaling dimensions and correlation 
functions of operators in a putative CFT. We won’t take this approach here (although you can read 
about a very similar approach in [10]), but it’s worth emphasizing that even the most elementary 
results from quantum mechanics can be applied in the AdS/CFT context. Via AdS/CFT we can 
reinterpret many familiar ideas holographically. 

4 Free Fields in AdS 

In the previous section we discussed AdS geometry and the physics of a classical or quantum free 
particle in AdS. Now let us see how to describe any number of quantum free particles in AdS. 
The key feature of states constructed from many free particles (Fock space states) is that their 

quantum numbers are just the sum of the quantum numbers of the individual particles. In particular, 
their energy (for us the D eigenvalue) is just the sum of the energies of the individual particles. This 
is why the Hilbert space of free quantum field theory is built using harmonic oscillator creation and 
annihilation operators – the harmonic oscillator has evenly spaced energy levels, so any two states 
can be combined by just adding their energies. 
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For this reason, to describe any number of free particles in AdS we simply introduce the creation 
and annihilation operators an`J and an`J 

† with the usual commutator 

[an`J , an`J 
† ] = 1 (4.1) 

A basis for many particle states can be constructed as usual; a generic k-particle state is 

† † † a a · · · a |0i (4.2)n1 ̀  1J1 n2 ̀  2J2 nk ̀  k Jk 

where |0i is the vacuum, which has no particles. In terms of these operators, the AdS Hamiltonian 
D is simply 

X 
D = (Δ + 2n + `)a † (4.3)n`J an`J 

n,`J 

because it sums the energy of all the particle, and a † is the number operator that counts then`J an`J 

number of particles with quantum numbers n, ̀ , J . The other conformal generators can also be 
expressed in terms of the creation and annihilation operators. So we have an infinite collection of 
harmonic oscillators in AdS. 
It’s straightforward to see that this is just what we get from quantizing a free scalar field in AdS, 

with action 
Z � � √ 

dd+1S = x −g 1
(rAφ)

2 − 
1 
m 2φ2 (4.4)

2 2AdS 

Before we explain why, let’s detour to review everything you ever wanted to know about free fields 
but were afraid to ask. 

4.1 Classical and Quantum Fields Anywhere – Canonical Quantization 

Here we will review, at a rather formal level, how one goes about solving for the time evolution 
of a classical field. Then we will explain how this relates to quantization. These ideas are worth 
understanding for reasons that go beyond AdS – for example, they are an elementary ingredient in 
Hawking’s derivation of black hole evaporation. 
Let us study a scalar field theory in a completely general spacetime, with free action 

Z � 
2 � √ 1 m 

S = ddxdt −g gµν rµφrν φ − φ2 (4.5)
2 2 

This action implies the usual equations of motion 

gµν rµrν φ + m 2φ = 0 (4.6) 

Let us imagine that we find the general solutions to this equation, functions fn(t, x) labeled by an 
index n that may be discrete or continuous. Here ‘solving the equation’ is a less precise way of saying 
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µν 2that we have diagonalized the differential operator g rµrν + m , obtaining its eigenfunctions and 
iωt i~k·~xeigenvalues. For example in flat spacetime we usually take13 n = ~k and fk(t, x) = e e with 

ω2 = ~k2 + m2 . In AdS we find solutions labeled by n, ̀ , J . 
Even if we are only solving the theory at a classical level, we would still like to be able to write a 

general solution as (we will get to quantization below) 

X� � 
φ(t, x) = cnfn(t, x) + cn 

† fn 
†(t, x) (4.7) 

n 

˙given some initial data consisting of φ0(0, x) and φ0(0, x) on the t = 0 surface. The initial data 
just corresponds to the initial position and velocity of the φ field. We need to know both initial 
conditions to solve for φ(t, x) because its equation of motion is second order. 
We know that φ(t, x) can be expressed as a sum over the modes fn(t, x). But given some initial 

condition, how do we solve for the cn coefficients? We need an inner product defined on spacelike 
surfaces at fixed time. A natural place to start is with the equations of motion, since these are the 
equations we have diagonalized. One often obtains inner products by noting that some integral R R 
fdg = − dfg, and if the operator “d” can be diagonalized, then this integral must vanish unless 

f and g have the same eigenvalue under the action of d. 
Therefore for any two functions ψ1 and ψ2 on spacetime (vanishing sufficiently fast at spatial 

infinity) we can define the integral 
Z h � h� i i� � 

ψ† µν 2 µν 2 ψ†ddxdt 
√−g g rµrν − m ψ2 − g rµrν − m (4.8)1 1 ψ2 

Ω 

over some region Ω. Let’s imagine that Ω spans all of space, but ends at some finite times ti and tf 

on Cauchy surfaces Σi and Σf . We can re-write this integral as a boundary integral 
Z h � � i 

dd 00 ψ† x 
√−gg 1rtψ2 − rtψ1 

† ψ2 (4.9) 
Σf −Σi 

where we assumed that the t direction is orthogonal to Σ, for simplicity, and we took t pointing 
forward in time for both surfaces. If both ψ1 and ψ2 obey the equations of motion, then our original 
integral must vanish, so we see that 

Z Zh i h i 
dd 00 ψ† dd 00 ψ†hψ1, ψ2i ≡ i x 
√−gg 1rtψ2 − ψ2rtψ1 

† = i x 
√−gg 1rtψ2 − ψ2rtψ1 

† (4.10) 
Σf Σi 

defines a conserved inner product. In particular, if we normalize hfn, fmi = δmn and hfn 
†, fmi = 0 at 

some time then this normalization will be time independent. This gives the usual normalization 

13Actually, the t dependence should technically be forced to be either cos(ωt) or sin(ωt) so that the solutions are 
real, assuming we are studying a real scalar field. Then we would express the full solution as a sum over sines and 
cosines, instead of complex exponentials with complex coefficients. The real case is simpler, but the complex case is 
more useful and standard. It’s also noteworthy that if the t direction points along a Killing vector, then we have a 
time translation symmetry, and so the time dependence will always just be e±iωt . 
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√1 eik·x for modes in flat spacetime (noting that in that case, since k is continuous, we get a delta 
2k0 

function in place of δmn). 
If we write φ(t, x) as in equation (4.7) then the cn will be time independent, as desired. More 

importantly, it means that we can compute the cn from 
Z h i 

00 cn = hφ(0, x), fni = i dd x 
√−gg φ0 

† (x)ḟ  
n(x) − fn(x)φ̇ 

0 
† (x) (4.11) 

Σf 

using our inner product along with both the φ(0, x) and φ̇(0, x) initial conditions. So we see that our 
inner product automatically knows how initial conditions work in classical theories. At the classical 
level, if we the kinetic term had been a higher order differential operator, then we would end up 
with an inner product involving higher time derivatives, in keeping with expectations for the initial 
value problem. 
Now consider the canonical momentum 

pδL 00(x) ˙π(x) = = −g(x)g φ(x) (4.12) 
δφ̇ 

In either the classical or the quantum theory we need to satisfy the canonical commutation relations 
(or Poisson brackets) 

[π(x), φ(y)] = −iδd(x − y) (4.13) 

and as usual, when dealing with the quantum theory we can write 

X 1 � � 
φ(t, x) = fn(t, x)an + fn 

†(t, x)an 
† (4.14)

Nn n 

in terms of anniliation and creation operators an and an 
† , and a normalization factor Nn that we 

have added in case we need it. When we quantize, the coefficients cn of the nth classical harmonic 
mode has been replaced with creation and annihilation operators for quantum versions of that mode. 
Now we must demand that the field and its canonical momentum satisfy the canonical commuta-

tion relations. A simple computation shows that these will be satisfied if 

h ip X 
00(x)

1 −g(x)g ḟ  
n(0, x)fn 

†(0, y) − ḟ  
n 
†(0, x)fn(0, y) = −iδd(x − y) (4.15) 

n 
Nn 
2 

However, this can be re-interpreted as an expression for the coefficients cn that would be obtained if 
the function δd(x − y) (viewed as a function of y, with x serving as a fixed paramter) is expanded in 
the fn(0, y) basis. This means we can use the inner product to write 

Z p p
00(x)

1 00(y)δd(x − y)ḟ  
n−g(x)g

N2 
ḟ  
n(0, x) = dd y −g(y)g (0, y) 

n p 
00(x)ḟ  

n = −g(x)g (0, x) (4.16) 
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in this very special case. This determines that all the normalization constants Nn = 1 if we work 
in terms of modes fn normalized with our inner product as hfn, fmi = δmn. So we have obtained 
a canonically quantized scalar field φ(t, x) – it obeys the correct EoM, and it has the correct 
commutation relations. 
Note that the choice of time coordinate t played an essential role in our logic. Had we chosen a 

different notion of time, we would have had different mode functions, a different inner product, and 
a different quantization. Hawking originally derived black hole radiation by comparing the different 
natural quantizations that exist before and after black hole formation. 

4.2 Canonical Quantization of a Scalar Field in AdS 

Let us return and consider the AdS3 example for concreteness. Then the action is 
Z � �

2sin ρ 1 1 m 
S = dtdρdθ φ̇2 − (∂ρφ)

2 − (∂θφ)
2 − φ2 (4.17) 

cos ρ 2 sin2 ρ cos2 ρ 

The canonical momentum conjugate to φ is 

δL sin ρ ˙Pφ = = φ (4.18) 
δφ̇ cos2 ρ 

So we will want to impose the canonical commutations relations 

[φ(t, X), Pφ(t, Y )] = i(2π)2δ2(X − Y ) (4.19) 

We will do this by first solving the equations of motion for φ, and then writing φ in terms of a sum 
over harmonic oscillator modes. As we discussed in generality above, the canonical commutation 
relation then gives a normalization condition for the modes. Note that we are working in global 
coordinates; we would obtain different modes, with a different interpretation, if we worked in the 
Poincaré patch using its notion of time. 
The equations of motion are 

2 ρ 2cos � � 1 m¨ ∂2φ − ∂ρ sin ρ cos −2 ρ∂ρφ − θ φ + φ = 0 (4.20)
sin ρ sin2 ρ cos2 ρ 

Taking φ = eiωt+i`θψ(ρ), we have 
� � 

`2 

ψ0(ρ) + + 
2 ρ

ψ(ρ) = ω2ψ(ρ) (4.21)−ψ00(ρ) − 
1 m2 

cos ρ sin ρ sin2 ρ cos 

which is just the equation for a one-particle wavefunction in d = 2 that we obtained previously. The 
solutions were given in equation (3.45). 
The quantized field which obeys canonical commutation relations is 

X 
φ(t, ρ, Ω) = ψn`J (t, ρ, Ω)an` + ψ ∗ 

n` 
† , (4.22)nlJ (t, ρ, Ω)a 

n,` 
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with the wavefunctions ψn` that were defined in equation (3.45). To find the normalizations of the 
ψn` we impose 

Z √ hψn`, ψn0`0 i = δnn0 δ``0 = dd x −gg 00(ψn`∂tψn0`0 − ∂tψn`ψn0`0 ) (4.23) 
AdS 

which translates in AdS3 to 
Z 

1 †1 = dρdθ sin ρ 2(Δ + 2n + `)ψn`(ρ, θ)ψn`(ρ, θ) (4.24)
(NΔn`)2 

It is easy to see that modes with different ` are orthogonal, as the θ integral then vanishes. The 
orthogonality of modes with different n can be verified directly. One finds that the normalizations 
of the ψn`J are 

s 
n!Γ2(` + d )Γ(Δ + n − d−2 )

NΔn` = (−1)n 2 2 . (4.25)
Γ(n + ` + d 

2 )Γ(Δ + n + `) 

by a direct computation. This can be checked by hand for small n and `. 
A crucial condition obeyed by φ(x) is that, as in flat spacetime, [φ(x), φ(y)] = 0 whenever x and 

y are spacelike separated in AdS. This means that if we construct local interactions V[φ(x)] then 
we will also have [V(x), V(y)] = 0 outside the lightcone. Weinberg [3] showed (see section 3.5 of his 
book) that this condition was necessary for QFT to produce a sensible Poincaré invariant S-Matrix. 
In section 2.4 of [10] this reasoning was generalized to AdS and the conformal algebra. 
We saw in section 3.2 that a single free particle in AdS transforms under an irreducible 

representation of the conformal group. The particle’s ground state is a primary state of the 
conformal algebra, because it is annihilated by all the ‘lowering operators’, the special conformal 
generators Kµ. All the other states can be built with Pµ, the momentum generator or ‘raising 
operator’ with respect to D. Soon we will discuss analagous statements for the quantum field φ(x). 

5 Approaching the Boundary of AdS 

Now we would like to consider the asymptotic structure of AdS, or the ‘boundary at infinity’. First 
we will discuss what the boundary is and how it inherits structure from the bulk (the inside) of 
the spacetime. Then we will discuss how the boundary inherits a full fledged theory, with its own 
correlation functions, from the bulk. This is actually more familiar than one might think – the usual 
method of obtaining a flat space S-Matrix from a bulk QFT can be interpreted in the same spirit. 

5.1 Asymptotia and Penrose Diagrams 

The purpose of a Penrose diagram (or ‘causal diagram’ or ‘conformal diagram’) is to encapsulate the 
causal structure of the entire infinite spacetime in a compact picture. To make a Penrose diagram, 
we (vastly) distort the geometry in order to map the entire spacetime into a finite region, while 
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maintaining the notions of timelike, spacelike, and null separations between points. Penrose diagrams 
are also useful for understanding the structure of (or ‘boundary at’) infinity because they turn 
infinity into a finite codimension one region with a causal structure that is inherited from the bulk. 
How can we distort the geometry without affecting causality? An easy way is to multiply the 

entire metric by a Weyl factor f(x), sending gµν (x) → f(x)gµν (x). 

5.1.1 The Penrose Diagram for Flat Spacetime 

Let’s review how this works in flat spacetime. If we write the flat space metric as 

2dΩ2ds2 = dt2 − dr2 − r (5.1) 

then we can introduce coordinates 2 tan U = t + r and 2 tan V = t − r so that U and V run from 
−π/2 to π/2. In these coordinates the metric takes the form 

4dUdV 
ds2 = + (tan U − tan V )2dΩ2 (5.2) 

cos2 U cos2 V 

We can perform a Weyl transformation and multiply by cos2 U cos2 V . Now using the new coordinates 
T = U + V and R = U − V and a trig identity, we find 

ds2 = dT 2 − dR2 + sin2(R)dΩ2 (5.3) 

with T and R only running over a finite diamond. This is the derivation of the usual diamond 
shaped Penrose diagram for flat spacetime. 
The boundary (or ‘conformal infinity’) is a null diamond. There are special points where time-like 

and space-like geodesics terminate, and then the null surfaces where all light rays approach infinity. 
Notice that the boundary is not a nice spacetime; for example, it does not inherit a Lorentzian 
metric with timelike directions. This explains why it is non-trivial to find a holographic description 
of flat spacetime – the holographic theory cannot be a conventional QFT, since it would have to live 
on a bizarre (null) spacetime. 

5.1.2 The Penrose Diagram and the Boundary of Global AdS 

When we study AdS/CFT we will constantly refer to the boundary of AdS. The factor of 1/ cos2(ρ) 
multiplies the entire metric in equation (2.1), so we can determine the AdS Penrose diagram by 
simply dropping it (or more precisely, by multiplying the AdS metric by the Weyl factor cos2(ρ)). 
This gives a new metric 

ds2 = dt2 − dρ2 − sin2(ρ)dΩ2 (5.4) 

Since 0 ≤ ρ < π/2, we can now draw a spatially finite Penrose diagram. Time still runs from −∞ 
to ∞, and we cannot alter this fact while maintaining the feature that light rays move at 45 degree 
angles in the t-ρ plane. 
In terms of the global coordinates that cover the entirety of the AdS manifold, the boundary of 

AdS is the cylinder R × Sd−1 that we obtain by taking ρ → π 
2 , its limiting value at spatial infinity. 
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We can simply use the coordinates t and Ω to parameterize this boundary cylinder. Note that unlike 
in the flat case, the boundary of AdS is a nice spacetime with a metric that inherits the signature of 
the AdS metric. 

5.1.3 What About the Poincaré Patch? 

Recall that in the Poincaré Patch coordinates the AdS metric is 
! 

d−1X1 
ds2 = 

2 
dt2 − dz2 − x 2 (5.5)i z 

i=1 

where the z coordinate only covers the range 0 < z < ∞. 
Clearly if we multiply by the Weyl factor z2 we simply have the metric for a flat d + 1 dimensional 

spacetime, so the Penrose diagram must look the same as that for half of Minkowski spacetime. In 
other words, it will look like a half-diamond. 
What does this mean for the boundary of the Poincaré patch? Well, the surface z = 0 must be 

part of the boundary, since the Penrose diagram abruptly ends there. From the identification in 
equations (2.13) we see that z → 0 corresponds with ρ → π/2, as expected. We also see that z →∞ 
corresponds to ρ → π/2, but only at the unique point on the boundary cylinder where Ωi = 0 and 
τ = 0 (in global coordinates). If we take some combinations of ~x and t to infinity we can reach the 
end of the Poincaré patch, but not the boundary of the spacetime, because we are free to extend the 
spacetime past this ‘infinity’, which can actually be reached in a finite proper time. 
But the real punchline is that by taking z → 0, we find a different (but only partial) boundary for 

the AdS Poincaré patch. This boundary is parameterized by (t, ~x), and it just looks like it inherits 
the geometry of a d-dimensional Minkowksi spacetime. 

5.1.4 Cosmology and DeSitter Space 

Let us make a couple of comments about cosmology, which naturally transpires (during the early 
epoch of inflation) in quasi-deSitter spacetime. dSd+1 is the hyperboloid 

d+1X 
X0
2 − Xi 

2 = −R2 (5.6) 
i=1 

Setting R = 1 (in other words, the Hubble constant is 1) and applying sinh2 t − cosh2 t = −1 we can 
parameterize dS as 

ds2 = dt2 − cosh2(t)dΩ2 (5.7) 

Now using tan(η/2) = tanh(t/2) we can re-write this metric as 

1 � � 
ds2 = dη2 − dΩ2 (5.8) 

cos2 η 
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Note the similarity to AdS in global coordinates. Now we have a metric that has an obvious Penrose 
diagram. Note that spatially there is no boundary, and the spacetime only ends in time, at η = ±π/2. 
This is the origin of the usual statement that deSitter space only has a boundary in the infinite 
past and infinite future. The absence of any notion of time on the boundary is one (mild) reason to 
worry about attempts at holography in deSitter spacetime... the deeper problems are that dS is 
unstable to bubble nucleation, that classically there will be a spacelike singularity in the past (due 
to the singularity theorems), and that dS behaves like a thermal system, so it is ‘asymptotically hot’ 
– fields at infinity never cease their fluctuations. 

5.2 General Approaches to the Boundary 

Penrose diagrams describe the causal structure of the bulk and boundary. Now let us see how in the 
case of AdS, we can also ascribe a metric to the boundary. We will see that the boundary metric is 
not uniquely determined, but can be multiplied by an arbitrary Weyl factor that depends on how 
we approach infinity. 

5.2.1 Lessons from the Poincaré vs Global Approach 

It seems we have two different ways to approach the boundary – in global coordinates, we naturally 
obtain a cylinder parameterized by (τ, Ω̂) when we take ρ → π/2 at the same rate for all (τ, Ω̂). In 
contrast, in the Poincaré patch coordinates we find a Minkowksi space parameterized by (t, ~x) when 
we take z → 0 at the same rate for all (t, ~x). Actually, there are infinitely more possibilities. 

The idea is that in the global coordinate metric of equation (2.1), we can approach different points 
on the boundary, parameterized by (t, Ω̂ 

i), at different rates. This effectively allows us to perform 
further Weyl transformations as we take ρ → π/2 in order to alter the geometry of the boundary. � � 
Specifically, we can choose some function f t, Ω̂ 

i in the neighborhood ρ = π/2 − �f(t, Ω̂ 
i) with 

small �, and then take � → 0. This results in an effective metric on the boundary set by 

1 � � 
ds2 = dt2 − sin2(ρ)dΩ2 

cos2(ρ(�, f)) i 

1 � � 
≈ dt2 − (1 − �)2dΩ2 

i�2[f(t, Ω)]2 

h � �i−2 � � 
→ f t, Ω̂ 

i dt2 − dΩ̂2 
i (5.9) 

which is related to the metric on the cylinder by a Weyl transformation. So by taking the limit as 
we approach the boundary in different ways, we can obtain a CFT on any conformally flat manifold, 
a.k.a. any manifold related to flat spacetime by a Weyl transformation. Note that a cylinder is 
conformally flat since we can take f(t, Ω̂ 

i) = e−t and switch to the coordinate r = et to find a flat 
space metric (in Euclidean signature). 
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5.2.2 The Euclidean Version 

We parameterized Euclidean AdSd+1 using global or Poincaré coordinates as 
� � 

cosh τ 1 z2 + ~r2 + R2 

X0 = R = (5.10) 
cos ρ 2 z � � 
sinh τ 1 z2 + ~r2 − R2 

Xd+1 = R = 
cos ρ 2 z 

R 
Xi = R tan ρΩi = ri 

z 

where ~r = (~x, t). Note that this means that ~ri = Ω̂ 
ie
τ sin ρ and z = eτ cos ρ. A nice thing about the 

Euclidean version is that as z → 0, we have ρ → π/2 with a coordinate mapping 

τ/2 ˆe Ωi ri p
π = √ (5.11)− ρ z 
2 

This naturally produces a flat spacetime metric ds2 = d~r2 for the boundary. 
We can also see this directly in global coordinates without using the Poincaré patch description – 

as we approach the boundary of Euclidean AdS we naturally obtain a flat space metric in polar 
coordinates (which we will soon associate with radial quantization of CFT). In particular, with the 
metric 

� � 
ds2 =

1 
dτ 2 + sin2 ρdΩ2 (5.12) 

cos2 ρ 

we can simply approach the boundary as 

ρ = 
π − �e−τ (5.13)
2 

with � → 0. Then we find the effective boundary metric 

ds2 → e 2τ (dτ 2 + dΩ2) → dr2 + r 2dΩ2 (5.14)∂AdS 

with r = eτ . We see that r = 0, the origin of the Euclidean plane, maps to t = −∞, the infinite 
past in Euclidean AdS, while r = ∞ corresponds to the infinite future. 

5.2.3 Getting a DeSitter Boundary Geometry 

Finally, note that the d-dimensional deSitter metric from equation (5.8) is also conformally flat, so 
by approaching the boundary of AdSd+1 in an appropriate manner, we obtain a deSitter boundary 
metric. If we choose 

π 
ρ = − � cos(t) (5.15)

2 
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Then we find 

1
(dt2 − sin2 ρdΩ2) → 

1
(dt2 − sin2 ρdΩ2) (5.16) 

cos2 ρ(�; t) cos2 t 

This is precisely the metric for global deSitter space, where in equation (5.8) we called t the variable 
η. In particular, now we only have −π/2 < t < π/2. This scaling makes it possible to obtain a 
CFT living in a deSitter spacetime background! We could use this to study a holographic CFT 
present during inflation. It is equally easy to find an f that makes the boundary look like an FRW 
cosmology. 

5.2.4 Lorentzian Poincaré Patch Version 

Finally, let us see how we could obtain the Lorentzian Poincaré patch from a boundary limit of 
the global coordinates via an appropriate choice of f(t, Ω). The boundary of the Poincaré patch is 
obtained by taking z → 0 with fixed t, ~x, so let us translate this into the global coordinates ρ, τ, Ω̂. 
Using the relations of equation (2.13), we see that if we take the coordinate ρ towards π/2 at a rate 
dictated by 

ρ(z; τ, Ω̂ 
i) = 

π − 
z 
(cos θ − cos τ) as z → 0 (5.17)

2 R2 

where θ is the complement of the angle Ωd. This means that in the limit as we approach the boundary 
we obtain the metric 

ds2 = 
1

(dτ 2 − dθ2 − sin2 θdΩ2 
d−1) (5.18)

(cos θ − cos τ)2 

This is familiar from our discussion of the Penrose diagram for flat spacetime – if we first define 
2U = −θ + τ and 2V = θ + τ then we obtain a new metric 

1 � � 
ds2 = dUdV − sin2(U + V )dΩ2 

d−1 (5.19)
sin2 U sin2 V 

Now we can define cot u = U and cot v = V so that the metric becomes simply 

(u + v)2 

ds2 = dudv − dΩ2 
d−1 (5.20)

4 

Finally, we can write this in terms of 2t = u − v and 2r = u + v and see that it is in fact the flat 
spacetime metric. 

5.2.5 Embedding Space Coordinates and the Projective Null Cone 

It is natural to translate all of these statements into the more abstract embedding space coordinates, 
where the full conformal symmetry is manifest. For convenience, we recall that the identification of 
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coordinates in Euclidean signature is 
� � 

cosh τ 1 z2 + ~r2 + R2 

X0 = R = (5.21) 
cos ρ 2 z � � 
sinh τ 1 z2 + ~r2 − R2 

Xd+1 = R = 
cos ρ 2 z 

R 
Xi = R tan ρΩi = ri 

z 

The limit ρ = π 
2 − �f(τ, Ω) with � → 0 sends all of the XA to infinity. We can obtain a finite limit 

by fixing the null projective cone with coordinates 

PA ≡ �XA (5.22) 

in the limit � → 0. Since XAX
A is fixed, the null projective coordinates satisfy 

PAP A ∼= 0 and PA = λPA (5.23) 

where the second statement means that the PA and λPA are identified – the overall positive rescaling 
is a redundancy of description, or a ‘gauge symmetry’. The conformal group SO(1, d + 1) acts on 
the PA in the obvious way inherited from the XA. 
Note that the redundant rescalings by λ have the effect of sending � → �/λ. So PA → λPA 

rescales the boundary metric by an overall factor, enacting a global dilatation. This means that 
the λ-redundancy can be used to determine the overall scaling of a function f(PA). If f has overall 
scaling dimension Δ, then f(λPA) = λ−Δf(PA). If f does not transform homogeneously in this way, 
then it is not a conformally invariant function. To be concrete, in a conformal theory 

1 hO(P1)O(P2)i = (5.24)
(P1 · P2)Δ 

scales by λ−2Δ , as it should. In this example we also see another very useful feature of the embedding 
coordinates, namely that the only invariant that can be formed is P1 · P2. 
In the Euclidean case where the conformal group is SO(1, d + 1), the PA can be identified with 

flat space, or any conformally flat manifold. For example, using our choice 

ρ = 
π − �e−τ (5.25)
2 

with � → 0 means that 

PA = (P+, P−, Pµ) = (e 
2τ , 1, Ωie 

τ ) (5.26) 

where P± = P0 ± Pd+1 and we used the identifications of the XA above. If we take ri = eτ Ωi, where 
ri is a coordinate in Euclidean flat spacetime, then we obtain flat space as a section of the null 
projective cone. This terminology just means that we are studying the intersection of the hyperplane 
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P− = 1 with the null projective cone, fixing the projective λ-redundancy and obtaining d-spacetime 
coordinates.14 In general we explicitly obtain 

cosh τ 
P0 = 

f(τ, Ω) 
sinh τ 

Pd+1 = 
f(τ, Ω) 
Ωi

Pi = (5.27)
f(τ, Ω) 

in the Euclidean case, with the equation cos ρ = f determining the section of the cone, ie the surface 
that intersects the cone to fix the geometry. 

5.3 Implementing Holography 

The basic idea of holography is that physics in d + 1 dimensions can be reproduced by a ‘hologram 
at infinity’, in d or fewer dimensions. It’s always a good idea to take ideas very seriously, make them 
as concrete and specific as possible, and then see where you are led. Now that we have constructed 
a quantum field φ(x) depending on the AdS coordinate x, we can do just that – we can study φ(x) 
in the limit that x approaches infinity and see what we find. Why is this a reasonable guess? If 
there exists a holographic dual to effective field theory in AdS, then it must reproduce at least some 
of the familiar observables in AdS. Correlation functions of operators φ(x) as x →∞ would be a 
reasonable starting point, since they can be easily computed in the AdS QFT, while they are also 
sensible data ‘at infinity’. The S-Matrix is a flat space analog of these observables. 
Let us begin with an even broader approach by studying φ as an quantum operator with x →∞. 

For this purpose we will use the Euclidean version of AdS. We saw in section 5.1 that the boundary 
of AdS (aka ‘infinity’) is just the limit ρ → π/2 in global coordinates. Being a bit more careful, we 
saw in section 5.2.2 that we need to take this limit as 

ρ(�) = 
π − �e−τ (5.28)
2 

with � → 0 in a coordinate independent way in order to recover a Euclidean flat spacetime metric 
on the boundary. 
Before we consider φ(t, ρ, Ω) in the limit ρ → π/2, let us think about how we expect φ to behave 

near infinity. As usual in QFT, we have been assuming that φ → 0 as ρ → π/2 – were this not the 
case, then φ would not be normalizable. Thus naively we expect φ = 0 ‘at’ ρ = π/2. However, in 
the presence of sources with finite energy and charge, we expect φ to have a universal asymptotic 

14Sometimes it is claimed that knowledge of the CFT on one spacetime allows us to ‘lift’ the correlators to the 
projective null cone, and then to change to a different section, transforming the CFT to some other manifold related 

2Ω(x)to the original one by a Weyl transformation, gµν → e gµν . In fact, this procedure is ambiguous for CFTs in d > 2 
dimensions. Knowledge of the CFT correlators on e.g. flat spacetime does not uniquely determine the correlators 
on other conformally flat manifolds. General Weyl transformations are not part of the global conformal group, so 
conformal symmetry is insufficient for determining how the correlators transform. 

39 



AdS CFT

∆t

ρ

exp

�
∆t

R

�

Figure 7: This figure shows how the AdS cylinder in global coordinates corresponds to the CFT in 
radial quantization. The time translation operator in the bulk of AdS is the Dilatation operator in 
the CFT, so energies in AdS correspond to dimensions in the CFT. We made this mapping very 
explicit in section 5.2.2. 

behavior near infinity. For example, in flat spacetime gauge fields fall off as 1/r in 3 + 1 dimensions, 
whereas massive fields fall off exponentially. So we can define a non-vanishing field ‘at infinity’ by 
multiplying by a compensating factor, and only then taking the asymptotic limit. 
As we can see from the explicit wavefunctions in equation (3.45), as ρ → π/2 we have ψn`J → 0 as 

cosΔ ρ. One can interpret this as the statement that finite energy particles in AdS have a vanishing 
probability of making it to a specific point on the boundary, due to the AdS curvature. In other 
words, the response of the field φ(x) to finite energy sources/objects/φ-particles in the bulk leads to 
a cosΔ ρ profile for φ near infinity. 
Thus we can define a new quantum operator O(t, Ω), ‘dual to φ’, or more accurately, representing 

φ ‘at infinity’, via15 

φ(t, ρ(�), Ω)O(t, Ω) ≡ lim (5.29)
�→0 �Δ 

15Note that we are not rescaling φ with cos ρ, but only with �. This is necessary to preserve the conformal (AdS 
isometry) transformation properties of φ, so that they are inherited by the CFT operator O. 
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which is finite on the boundary of AdS. Computing this limit for the wavefunction ψn`J we note that 

sin(ρ) → 1 (5.30) 

cos(ρ) → �e−τ Δ (5.31) 

which means that since 
� � �� 

ψn`J ∝ e −En,`τ Y`J (Ω) sin ` ρ cos Δ ρ 2F1 −n, Δ+ ` + n, ̀  + 
d
, sin2 ρ (5.32)
2 

we have 
� � 

d1 −(2Δ+2n+`)τ Y`J (Ω) 2F1ψn`J → e −n, Δ+ ` + n, ̀  + , 1 (5.33)
NΔn` 2 � � 
1 d† (2n+`)τ Y †ψn`J → e `J (Ω) 2F1 −n, Δ+ ` + n, ̀  + , 1 (5.34)

NΔn` 2 

Note that the factors of cosΔ(ρ) are responsible for a shift in the t-dependence. Also, a useful fact 
about hypergeometric functions is that 

� � dd Γ(` + 
2 )Γ(

d 
2 − Δ) 

2F1 −n, Δ+ ` + n, ̀  + , 1 = 
d (5.35)

2 Γ(n + ` + 
2 )Γ(

d 
2 − n − Δ) 

This means that the operator O inherits a normalization 

!−1/2 
1 (−1)nΓ(` + d )Γ(d − Δ) n!Γ2(` + d )Γ(Δ + n − d−2 )

2 2 2 2∝ (5.36)
NOn` Γ(n + ` + d )Γ(d − n − Δ) Γ(n + ` + d )Γ(Δ + n + `)

2 2 2 s � � � � 
Γ(Δ + n + l)Γ Δ+ n − d− 

2
2 Γ 

2 
d 

= � � � 
d 

� (5.37)
Δ − d−2 n!Γ(Δ)Γ 

2 Γ 
2 + n + l 

q 
where in the second line we multiplied by a constant factor of Γ(Δ + d− 

2
2 )/Γ(Δ) so that O will 

have a 2-pt correlator with a simple normalization. Now we can write the quantum operator 
� �X 1 −(2Δ+2n+`)τ Y`J (Ω)an` + e(2n+`)τ Y † †O(t, Ω) = e (Ω)a (5.38)`J n`NOn`

n,` 

living on the boundary of AdS, in the coordinates determined by our specific choice of approach to 
the boundary. Let us now see why this operator has the correlators of a local CFT operator in flat 
spacetime. 

5.4 Correlators 

Now let us look at the correlation function of our new operator O. Then in the next section we will 
study its conformal transformation properties, the operator state correspondence, and the OPE. 
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5.4.1 Computation from AdS 

In the limit of large distances (which is all we need because we are taking an asymptotic limit in 
AdS), the 2-pt correlator of φ is 

Γ(Δ) −Δσ(X,Y )hφ(X)φ(Y )i ≈ � �e (5.39)
Γ Δ+ 1 − d 

2 

where σ(X, Y ) is the geodesic distance between X and Y in AdS. One can compute this 2-point 
correlation function in many ways, e.g. by directly summing over modes created by the oscillators 
an`J . We will give a version of that calculation below. It is also guaranteed to take this form at large 
distances (up to a normalization) due to the AdS isometries and basic facts about the behavior of 
solutions to the Klein-Gordon equation. R ρ πGeodesic distances in the ρ direction are just given by an integral sec(ρ)dρ. With ρ = 

2 − �e−τ , 
in the � → 0 limit this is just log(π/2 − ρ(�)) ≈ τ − log �. Without loss of generality we can take X 
and Y to be on opposite sides of the Euclidean AdS cylinder at some fixed time τ . This gives a 2-pt 
correlator for O 

Γ(Δ) exp [−Δ(2τ − 2 log �)] Γ(Δ) 1 hO(x1)O(x2)i = � � = � � (5.40)
Γ Δ+ 1 − d 

2 
�2Δ Γ Δ+ 1 − d 

2 
e2Δτ 

Restated in terms of the boundary points x1 = Ω̂eτ and x2 = −Ω̂eτ and dropping the normalization 
factor for simplicity, this is 

1 1 hO(x1)O(x2)i ∝ = (5.41)
(x1 − x2)2Δ (2P1 · P2)Δ 

where we have also stated the result in terms of the projective null cone coordinates. Although we 
computed this result directly, the result actually follows entirely from conformal symmetry. The only 
conformal invariant that can be made from P1 and P2 is P1 · P2, and then the power of Δ follows 
from the D transformation properties that O inherits from φ. 
Note that since we were studying a free theory in AdS, all correlators of the φ field can be reduced 

to Wick contractions leading to products of 2-pt (Gaussian) correlators. So in fact we already know 
all correlation functions of O(x) as well, for the same reason. 

5.4.2 Computation from the CFT Operator 

As we will soon see, O inherits conformal transformation properties from the AdS isometry 
transformations of φ. In particular, it certainly inherits translations, so WLOG we can compute 

hO(~r)O(0)i (5.42) 

t ˆwith, as usual ~r = e Ω. However, note that 
! X 1 −(2Δ+2n+`)tY`J (Ω)an` + e(2n+`)tY † †O(0)|0i = e (Ω)a |0i`J n`NOn`

n,` 

= a † 0,0|0i (5.43) 
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This follows because all the annihilation operators destroy the vacuum, while the other creation 
operators are multiplied by positive powers of ~r = 0. Now evaluating the correlator is extremely 
easy, because the only term that survives is proportional to a0,0a0 

† 
,0, and we simply find 

1 hO(~r)O(0)i = (5.44)
2Δr 

which is exactly what we expected. Notice that it was crucial that we scaled ρ appropriately to 
obtain O from φ – if we had simply taken ρ → π/2 uniformly then O would have been proportional 
to an additional e−tΔ; this would have given the correct correlators on a cylinder, but not in flat 
spacetime! 

6 Generalized Free Theories and ‘AdS/CT’ 

In this section we will show how our Generalized Free Theory, defined by the holographic limit of 
the AdS bulk field φ, satisfies and in many cases physically illustrates the general abstract properties 
expected for a local operator in a conformal theory. We refrain from using the words “CFT” because 
the conformal theory we are discussing lacks a stress-energy tensor. 

6.1 The Operator/State Correspondence 

First of all, what are these so-called operators? 
Clearly we have the object O(~r) that we defined previously in terms of the AdS field φ. To study 

the question in general, let us specialize for convenience to the case of AdS3. The reason is that we 
can significantly simplify the notation in that case by writing 

~r = (x, y) (6.1) 

in terms of 

z = x + iy and z̄ = x − iy (6.2) 

Since we are studying the boundary of Eucliean AdS3 as the 2-dimensional Euclidean plane, the 
angular coordinate Ω → θ just parameterizes a single circle. In terms of z and z̄  we have 

z2 2iθ r = zz̄  and e = (6.3) 
z̄  

i`θand the Y` = e . Therefore we can write 
" # � � ` � � `X |`| |`| 21 z z̄  

z)−(Δ+n+ ) z)n+ † 
2 2O(z, z̄) = (z¯ 

2 
an` + (z¯ an` (6.4)

NO z̄  zn,`n,` 
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AdS CFT

O|0i

O|0i

| O(t)i

| O(t)i

Figure 8: This figure portrays radial quantization in the CFT, while also providing the corresponding 
picture in AdS. The insertion of an operator at the origin in the CFT defines a specific AdS/CFT 
state; interpreted in AdS this sets up an initial state in the infinite past that evolves to ψO(t) at 
a finite time. Note that et ∼ |~r|, so the global coordinate time is the logarithm of the radius of a 
circle about the origin in the CFT. 

When we work in terms of z and z̄, it’s simpler to define the operator in terms of integers h and h̄ 

with 
∞X h i1 ¯−h̄ h †O(z, z̄) = 

NO (zz̄)−Δ z −h z̄  ah,h̄ + z h z̄  a
h,h̄ (6.5) 

h,h̄ 
h,h̄=0 

where 2n + |`| = h + h̄ and ` = h − h̄, so that n = min(h, h̄). 
Above we saw that when we act O(0) on the vacuum, we obtain the state 

O(0)|0i = a † 0,0|0i (6.6) 

Now let us consider what we get from Pµ acting on O. We can simply write the momentum operator 
in terms of a basis as Pz = ∂z and Pz̄  = ∂z̄  (we will derive the fact that Pµ acts on O in this way in 
the next section). Thus we find 

1 
(PzO)(0) = a † |0i (6.7)¯ 

h=1,h=0
NO h=1,h=0 

¯ 
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Similarly, we can act with any number of Pz and Pz̄  on O. So we have a whole host of operators of 
the form 

� � 
(∂z)

h(∂z̄)
h̄ O (6.8) 

z,z̄=0 

These create all of the states a † ! Crucially, these are just the one-particle states in AdS3 labeled by
h,h̄ 

n and `. So we see that all one-particle states can be created by some particular CT operator! This 
is the beginning of the operator/state correspondence; it’s not an abstract idea but a very concrete 
concept that can be visualized directly in AdS. 
What about multipartcle states? We would like to define an operator like 

O2(0) (6.9) 

and we would expect it to create 2 AdS particles, both in their ground state. But if we evaluate this 
directly, there appears to be a singularity. For example, if we look at 

⎛ ⎞ 
∞ h iX ⎝ 1 

z)−Δ −h ¯−h̄
 h ¯h̄

 † ⎠O(z, z̄)O(w, w̄) = (z¯ z z ah,h̄ + z z a 
NO h,h̄ 
h,h̄ 

h,h̄=0 ⎛ ⎞ 
X h i∞ 

1 −h̄ h̄ †× ⎝ 
NO (ww̄)−Δ w −h w̄ ah,h̄ + w h w̄ a

h,h̄ 
⎠ (6.10) 

h,h̄ 
h,h̄=0 

then we have singularities from the limit of ω → 0 in the second operator, as well as singularities 
that arise when the annhilation operators in O(z, z̄) hit the creation operators in O(w, w̄). Thus we 
can define O2(0) as the normal ordered object (annihilation operators artificially moved to the right, 
without using the commutation relations) with these singularities removed, so that we get 

!2 � � 1 O2 † †(0) ≡ a0,0a0,0 (6.11)
NO 

¯0,0

Simillarly, we can define 

!3 � � 1 † † †O3 (0) ≡ a0,0a0,0a0,0 (6.12)
NO 

¯0,0

and also the operator 
! 

1 
(OPzO) (0) ≡ a † † (6.13)0,0a1,0NO NO 

¯ ¯0,0 1,0 

We can proceed to define operators with an arbitrarily long string of Pz, Pz̄, and Os. Again, the 
crucial point is that by acting with general linear combinations of such operators on the vacuum |0i, 
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we can obtain every single state in the theory – in particular, there is a one-to-one correspondence 
between AdS/CFT states in the Hilbert space and local operators acting at the origin, z = 0. This is 
the operator/state correspondence for the CT defined by a free field in AdS. From the CT point of 
view, this system is called a Generalized Free Theory, a Gaussian CFT, a CFT at infinite N , or a 
mean field theory. I will usually stick with the first term. 
In closing, we should note that throughout this section we have used radial quantization without 

drawing much attention to it. This is the natural quantization scheme in mapping from AdS in 
global coordinates to a CFT on a plane. 

6.2 Conformal Transformations of Operators 

We obtained the Conformal Theory operator O(~r) from a limit of φ(t, ρ, Ω), a free field in AdS with 
an action symmetric under the AdS isometries aka conformal transformations. This means that O 
naturally inherits conformal transformation properties from AdS - so what are they? The intelligent 
way to approach this question would be to use the embedding space coordinates. However, we can 
also be somewhat less clever and see how it works directly in the global coordinate system. 
We already computed the dilatation operator D as the AdS Hamiltonian, it is 

X 
D = (Δ + 2n + `)a † (6.14)n`J an`J 

n,`J 

and by definition, since in AdS there was no explicit time dependence, we have that 

[D, φ(t, ρ, Ω)] = ∂tφ (6.15) 

in Euclidean signature. Let’s compute its action on O in two different ways. Note that if we had 
defined O by simply taking ρ → π/2 in a t-independent way, then we would find that O obeys the 
same relation as φ. That would be the correct result for a CFT living on the cylinder R × Sd−1 . 
However, in order to obtain a CT in flat Euclidean space, we took ρ = π/2 − �e−t , producing an 
extra explicit t-dependence. 
In particular, an infinitesimal shift t → t + a leads to 

� � 
d φ(t, ρ(�; t), Ω) ∂ρ ∂ φ(t, ρ(�; t), Ω)

[D, O(t, Ω)] = lim − 
�→0 dt �Δ ∂t ∂ρ �Δ 

d ∂ρ φ(t, ρ, Ω)≈ O(t, Ω) − lim ∂ρ
dt �→0 ∂t �Δ � � 

∂ ≈ Δ+ O(t, Ω) (6.16)
∂t 

with ρ(�; t) = π/2 − �e−t as usual. The crucial step comes in the first line, where we recognize that 
time derivatives acting on φ(t, ρ(�; t), Ω) will also act on ρ(�; t), and so we have to subtract the 
second term to compensate. A similar procedure will be necessary for Pµ and Kµ. The final result 

t ˆcan be written in ~r = e Ω coordinates as 
� � 

∂ 
[D, O(~r)] = Δ+ r O(~r) (6.17)

∂r 
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This is the correct conformal transformation rule for a CFT operator of dimension Δ living on the 
plane. The lesson is that radial time derivatives on O act both explicitly (via partial derivative) and 
with a shift of Δ in order to cancel the t dependence that arises through ρ = π/2 − �f(t, Ω). We can 
also compute this a different way, using our explicit formula for O and D in terms of oscillators in 
AdS3/CFT2. We find 

⎡ ⎛ ⎞⎤ 
X X∞ h i 

† −h̄ h̄ †⎣ (Δ + h + h̄)a ⎝ 1
(zz̄)−Δ z −h z̄  h z̄  a ⎠⎦ 

h,h̄ ah,h̄ ,
NO ah,h̄ + z 

h,h̄ 
h,h̄ 

h,h̄ h,h̄=0 

∞X h i1 −h̄ h̄ † = −(Δ + h + h̄)(zz̄)−Δ z −h z̄  h + (Δ + h + h̄)z h z̄  a 
NO ah,¯ 

h,h̄ 
h,h̄ 

h,h̄=0 

= (Δ + z∂z + z∂¯ z̄)O(z, z̄) (6.18) 

as promised, so the two methods agree. 
In AdS3 there is only one angular momentum generator, proportional to ∂θ. This does not change 

when we take it to the boundary, and so we just find 

1 
L = −i∂θ = (z∂z − ¯ z) (6.19)z∂¯ 

2 

in the 2-dimensional plane. 
In AdS3 we looked at the momentum operator P±. Converting to the Euclidean case, it is 

� � 
i−t±iθP± = e sin ρ∂t + cos ρ∂ρ ± ∂θ (6.20)

sin ρ 

We cannot immediately drop cos ρ∂ρ because it scales as a constant as ρ → π/2. This term just 
produces −Δ when acting on φ. This cancels with a shift of Δ from converting ∂t from an action 
on φ to an action on O, equivalent to that which we observed when we examined the dilatation 
operator. So as we approach the boundary, we simply find that it acts on O as 

P± → e t±iθ (−∂t ± i∂θ)� �� �± 11 z 1 1 
= √ 

2 
(z∂z + z∂¯ ¯)   (z∂z − z∂¯ ¯) 

zz̄  z̄ 2 z 
2 z 

= ∂¯ (6.21)z/z 

This just translates into the statement that P− = Pz and P+ = Pz̄. So the Pµ isometry of AdS just 
turns into the translation operator, as we would expect. 
Finally, we can consider the special conformal generators, which take the form 

� � 
i 

K± = e t±iθ sin ρ∂t − cos ρ∂ρ   ∂θ (6.22)
sin ρ 
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in AdS3. Here the contribution of cos ρ∂ρ does not cancel, instead it contributes additively with the 
shift in ∂t. Otherwise this operator behaves similarly to the translation operator, and we find 

K± → e t±iθ (∂t + 2Δ   i∂θ)� �� �± 1√ z 1 1 
= z¯ 

2 
(z∂z z∂¯) + 2Δ ± (z∂z − ¯ z) (6.23)z + ¯ z z∂¯ 

z̄ 2 2 

This leads to 

K+ = z 2∂z + 2zΔ (6.24) 

which is the correct result, up to an overall normalization. Note that the holomorphic and anti-
holomorphic parts of the algebra can be decoupled from each other. We have derive the action of all 
of the conformal generators on our CT operator O(z, z̄). 
To summarize, we have found that the 2d global conformal algebra SO(1, 3) acts as 

� � 
1 1 

[D, O(x)] = Δ+ z∂z + z∂¯ ¯ O(z, z̄) (6.25)
2 2 z 

[Pµ, O(x)] = ∂µO(z, z̄) (6.26)� � 
[Kz, O(x)] = 2zΔ+ z 2∂z O(z, z̄) (6.27)� � 
[Kz̄, O(x)] = 2z̄Δ+ z̄2∂z̄  O(z, z̄) (6.28) 

1 
[L, O(x)] = (z∂z − ¯ z z) (6.29)z∂¯) O(z, ¯ 

2 

We derived all of these relations from AdS. When we study general CFTs in the next section, 
these relations will take on a fundamental character – in fact, one way of defining a CT is as a 
theory of abstract operators O(z, z̄) transforming in exactly this way. But we have understood these 
transformation properties as an inevitable consequence of AdS physics. 
We can also write these symmetry generators in terms of ah,h̄ , just as we did for D. There is an 

algorithm to do this – we just need to find the conformal generators in terms of the AdS field φ, and 
then use the expansion of that field in creation and annhilation operators. We can also try to get 
the answer by guessing. For example, to obtain P I find we need to take 

qX 
Pz ≡ − min(h, h̄)(Δ + min(h, h̄) − 1)a † h̄ 

h,h̄ ah−1, 
h,h̄ 

qX 
Pz̄  ≡ − min(h, h̄)(Δ + min(h, h̄) − 1)a † 

h,h̄ ah,h̄−1 (6.30) 
h,h̄ 

Note that (crucially!) these operators also satisfy the commutation relations [D, Pµ] = Pµ and 
[Pz, Pz̄] = 0. It’s fairly trivial to find an operator Pz that acts on O(z, z̄) as ∂z, the property 
that actually makes this a Conformal Theory is that the operators D, Pµ, Kµ, and Mµν that act 
appropriately on O(x) also satisfy the commutation relations of the conformal algebra. 
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Finally, note that in Lorentzian AdS we had the relation Pµ 
† = Kµ. This has a simple meaning 

in AdS – it just says that since complex conjugation sends it → −it, conjugation exchanges the 
past and future. This is what we are used to in Quantum Mechanics; for example when considering 
scattering we have 

(|ini)† = hout| (6.31) 

as usual. However, when we go from AdS → CFT, we went to Euclidean space and took r2 = zz̄ = e2t . 
Thus in the CFT, t → −t means 

1 
r → (6.32) 

r 

or in other words, complex conjugation corresponds to performing a spacetime inversion about the 
origin. The states built at the origin transform like 

O(0)|0i → lim r 2Δh0|O(r) (6.33) 
r→∞ 

under this transformation. More generaly, for a primary operator O we have 
� � 
~r−2ΔO∗ [O(~r)]† = r 
2 

(6.34) 
r 

where the ∗ means that we take a → a† . The reason for the factor of r can be seen explicitly in 
equation (5.38). There we see that the an`J annihilation operators are accompanied by this factor, 
whereas the creation operators are not, so we need to multiply by r−2Δ to insure that the operator 
is Hermitian, ie that [O(r)]† = O(r). 

6.3 Primary and Descendant Operators 

In our earlier discussions we noted that states in a theory with conformal symmetry can be classified 
as primary or descendant. Primary states have the property that 

Kµ|ψ0i = 0 (6.35) 

so they are annihilated by all the special conformal (or lowering) operators. One example of a 
primary states is a † 0,0|0i; this corresponds to a free particle in its quantum mechanical ground state 
in AdS3. States formed by acting on this state with Pµ are descendants. 
But there are many many more primaries. One example is 

� �k 
Ok(0)|0i = a0 

† 
,0 |0i (6.36) 

but this is just the beginning. This can be interpreted as a condensate of k particles in AdS3, all in 
their ground state. 
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Let us pause to recall why this is a primary operator. In AdS, note that the CoM wavefunction is 

ψk(tCoM , ρCoM ) = hφk(tCoM , ρCoM )Ok(0)i (6.37) 
−kΔtCoM = e cos kΔ ρCoM (6.38) 

So we see it has the correct form for a primary wavefunction with dimension = kΔ. In particular, it 
will be annihilated by all the SCT Kµ in AdS, which act as differential operators in the variables 
tCoM and ρCoM . In the CFT, we can test if this state is primary by computing 

KµOk(0)|0i = 0 (6.39) 

We can calculate this by commuting Kµ through so that it hits the vacuum, where we obtain 0. So 
in other words, this state will be a primary if 

� � 
Kµ, Ok(0) = 0 (6.40) 

This is the condition for an operator to be a primary. Note that the operator must be evaluated 
at the origin. A primary operator is just an operator that creates a primary state when it acts 
at the origin. The converse is also true, namely if O(0)|0i is a primary state, then we must have 
[Kµ, O(0)] = 0, because this commutator must have vanishing correlators with other local operators. 
A more interesting and non-trivial example is the state 

[∂zO∂z̄O −O∂z∂z̄O] |0i (6.41) 

where the operators O are normal ordered. One can check that this is always a primary state by 
using the conformal commutation relations. Note that 

∂zO = [Pz, O] (6.42) 

and so this state takes the form 

([Pz, O][Pz̄, O] −O[Pz, [Pz̄, O]) |0i (6.43) 

To check that it is a primary we need to show 

Kz/z̄  ([Pz, O][Pz̄, O] −O[Pz, [Pz̄, O]) |0i = 0 (6.44) 

and this will be true iff 

[Kz, ([Pz, O][Pz̄, O] −O[Pz, [Pz̄, O]) (0)] = 0 (6.45) 

and similarly for z → z̄, since the conformal generators act on commutators via the Lie algebra 
commutator. Note that the operator we wish to show is primary is evaluated at the origin. We 
could also compute this directly in AdS using the known wavefunctions. 
Carrying out the computations using [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0, we find that 

[Kµ, [Pz, O][Pz̄, O]] = 2ΔO (δzµ z, O] + δ¯ [Pz, O]) (6.46) [P¯ zµ 
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while a similar computation gives 

[Kµ, O[Pz, [Pz̄, O]] = 2ΔO (δzµ z, O] + δ¯ [Pz, O]) (6.47) [P¯ zµ 

so the linear combination we wrote down is in fact a primary operator. Note that it was crucial 
for these computations that we are dealing with a generalized free (or quadratic) theory. This 
assumption was used whenever we assumed that 

lim[A, O(x)O(0)] = [A, O(0)]O(0) + O(0)[A, O(0)] (6.48) 
x→0 

an identity we used implicitly above. We also implicitly normal ordered the operators to subtract 
off the identity contribution. 
This state corresponds to 2 particles in AdS3 in an excited state with ` = 0 and with their 

center of mass degree of freedom in its ground state. However, this state has a non-trivial s-wave 
momentum, so neither particle is expected to be in its ground state. Because the center of mass 
degree of freedom in AdS3 is at rest, this state is primary – from the AdS point of view, that’s the 
physical definition of primary-ness. Acting on this state with Pµ will generate descendant 2-particle 
states. 
We already established a one-to-one operator/state correspondence. So we see that not only states, 

but also operators can be classified as either primaries or descendants. Usually this classification 
is stated in terms of the conformal transformation properties of operators, but the operator/state 
correspondence and AdS provide an alternate physical picture. 
Primary operators transform according to the rules similar to those we derived above for O(z, z̄); 

we will give the general story below. Descendants do not transform as simply because they take the 
form 

Odesc ∼ [Pµ1 , [Pµ2 , [· · · , [Pµx , Oprim(x)] · · · ] (6.49) 

and so the conformal generators act on them in a relatively complicated way. In general CFTs 
primary operators are often defined as the operators with the ‘best’ or ‘simplest’ transformation 
properties. 
In a unitary quantum mechanical theory, all states must have positive normalization. However, 

since different states are connected by raising and lowering using P and K, the norm of one state 
can be computed in terms of the norm of another, and this puts restrictions on the theory. Unitarity 
bounds follow from evaluating the matrix element (for a scalar state/operator) 

hΔ|KαK
αPµP µ|Δi (6.50) 

and demanding that it is positive definite, since it must be the norm of a physical state. Note that 
this follows because Pµ 

† = Kµ; this relation must hold so that e.g. 

(Pµ|ψi)† = hψ|Kµ (6.51) 

and raising and lowering work correctly. Let us derive the unitarity relation. First we consider 

hΔ|KαP µ|Δi = hΔ|P µKα + 2ηαµD + 2Mαµ|Δi (6.52) 

= 2ΔhΔ|Δi (6.53) 
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and from this we learn something – namely that Δ ≥ 0 is required in order to have a positive 
(or zero) norm descendant. Note that in fact Δ = 0 is allowed – this is the case of the identity 
operator 1, which clearly does not have any descandents at all, since [Pµ, 1] = ∂µ1 = 0. The identity 
transforms in the trivial representation of the conformal group. 
We will now see that if Δ 6= 0 then we must have a stricter bound. Let us go on and evaluate 

the norm of a 2nd level descendant. This is 

hΔ|KαK
αPµP µ|Δi = hΔ|KαPµK

αP µ + 2Kα(ηµαD + Mµα)P µ|Δi (6.54) 

= hΔ|2KαP µ(ηµαD + Mµα) + 2K · P (Δ + 1 + (1 − d))|Δi (6.55) 

= 2(2Δ + 2 − d)hΔ|K · P |Δi (6.56) 

by assumption the matrix element in the last line must be positive, and we assume that hΔ|K · P |Δi 
is positive since if it was not then the theory already would not have been unitary at the first level. 
This means that we must have 

d − 2 
Δ ≥ (6.57)

2 

as promised in order to have a unitary representation. For operators/states with spin ` a similar 
analysis shows that 

Δ ≥ d − 2 + ` (6.58) 

X 

for unitarity. 

6.4 The Operator Product Expansion 

Finally, we are ready to discuss one of the other key attributes of a conformal theory – the Operator 
Product Expansion (OPE), as applied to generalized free theories. The idea behind the OPE in 
AdS/CFT is pictured in figure 9. 
Let us examine the general operator quantity 

∞ 
⎛
⎝ 

⎞
⎠ 
ih1 h h †(zz̄)−Δ z −h z̄−

¯ 
h + z h z̄  

¯ 
aah,¯O(z, z̄)O(w, w̄) = 
h,h̄NO 

h,h̄ 

X 
⎛
⎝ 

h,h̄=0 

∞ 
⎞
⎠ 
ih1 h h †(ww̄)−Δ w −h w̄−

¯ 
ah,h̄ + w h w̄ 

¯ 
a (6.59)× 
h,h̄NO 

X 

h,h̄ 
h,h̄=0 

We cannot say much about this quantity that is useful, in general. However, if it is the case that 
between these two operators the CFT is in its vacuum state, then we can translate w → 0 for 
simplicity and note that this operator product creates the linear combination of states 

∞ 
⎞
⎠ 
ih1 −¯ ¯h h †h z̄ †(zz̄)−Δ −h ¯z zO(z, z̄)O(0)|0i = |0i (6.60)ah,h̄ + z a a

h,h̄ 0,0NO 

⎛
⎝ 

h,h̄ 
h,h̄=0 
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AdS CFT

| 12i
O1O2

|0i

| 12i O1
O2

|0i

Figure 9: This figure shows how the OPE can be derived in the CFT, and how the derivation is 
mirrored in AdS. The final point left off the diagram is that the state ψ12 can be created by a local 
operator acting at the origin in the CFT, corresponding to an operator in the infinite past in global 
coordinate AdS. This follows from the operator/state correspondence of radial quantization. 

That’s quite a bit simpler! 
The AdS picture is the following: assume that the theory is in its vacuum state in the infinite 

past. Then if we insert two operators before some time t = log(zz̄) we obtain a state |ψ12(t)i. But 
then we can evolve that state all the back to t = −∞, replacing |ψ12(t)i with |ψ12(−∞)i. All matrix 
elements of the operator product with local operators that appear at times t > log(zz̄) can be 
computed as matrix elements with this new initial state |ψ12(−∞)i. 
Now we can ask what linear combination of local operators, acting at the origin, creates the 

state |ψ12(−∞)i? We already saw that every CFT state is associated with an operator, so can write 
the answer to this question in terms of a sum over primary and descendant operators. Since all 
descendants are just ∂z or ∂z̄  acting on a primary, we must have that 

X 
O(z, z̄)O(0) = z, ∂z, ∂¯)On,`) (0) (6.61)(Cn,`(z, ¯ z 

primary n,` 

as an operator statement, for some coefficient function Cn`. The On,` are just the primary operators 
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made from two of the fundamental O operators. This is the OPE in a generalized free theory. The 
coefficients Cn,` can be computed once and for all, as they are determined by conformal symmetry, 
up to a constant (which can also be determined once and for all in generalized free theories). 
Let us go back and look at the generalized free theory result more explicitly. We can write 

∞ 

∞X 

X 
⎛
⎝ 

⎞
⎠ 
ih1 −¯ ¯h h †h z̄ †(zz̄)−Δ −h ¯z zO(z, z̄)O(0)|0i |0i (6.62)ah,h̄ + z= a a

h,h̄ 0,0NO 
h,h̄ 

h,h̄=0 ⎡ ⎛
⎝ 

⎞
⎠ 
⎤ 

1 1 h̄ † †h z̄= ⎣

" 

⎦ |0i+ z a
h,h̄ a0,0NO 

h,h̄
(zz̄)Δ 

h,h̄=0 # 
1 1 z̄  z 

= + O2(0) + O∂z̄O(0) + O∂zO(0) + · · · |0i 
(zz̄)Δ NO NO NO 

¯ ¯ ¯0,0 0,1 1,0 

so we can explicitly see various operators appearing. Note also the appearance of the identity 
operator ≡ 1, from the Wick contraction. 
In fact, the OPE has a much more precise structure determined by conformal symmetry. The 

point is that once we write down the OPE as a sum over all of the various operators that can appear 
on the RHS, including both primaries and descendants, we can then act with conformal symmetry 
generators on both sides to find relations among the coefficients. In fact, the only free coefficients 
are those in front of the primary operators! We will return to explain this fact in detail when we 
discuss general CFTs. 

6.5 Conformal Symmetry of Correlators in GFT 

Recall that in d Euclidean dimensions, a free scalar boson has the 2-pt function 

1 hφ(x)φ(0)i = (6.63) 
xd−2 

All of the other correlators are just obtained from this one by Wick contraction. Another way to 
discover generalized free theories is to define (really just make up!) a theory that generalizes this in 
a simple and conformally invariant way. It will be a theory whose entire Hilbert space is generated 
by the action of a local operator O(x) that has purely ‘Gaussian’ correlators – in other words, all 
correlation functions of O(x) will be determined by its 2-pt function via Wick contraction. To be 
specific, the 2-pt function has the form 

1 hO(x)O(0)i = 
2Δ 

(6.64) 
x 

where Δ ≥ d 
2 − 1 is a number that we are free to specify. The 3-pt correlator of O vanishes, as do 

all correlators with an odd number of Os. The 4-pt correlator is 
1 1 1 1 1 1 hO(x1)O(x2)O(x3)O(x4)i = + + (6.65)
2Δ 2Δ 2Δ 2Δ 2Δ 2Δx x x x x x12 34 13 24 14 23 
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Working out any n-pt correlator is just an exercise in combinatorics. These correlators show why 
this is a ‘generalized free theory’ – in a free theory we would have Δ = 

2 
d − 1, but here we are letting 

the exponent be a general parameter. 
So how do we see the conformal symmetry of these correlators? Obviously these correlators are 

invariant under translations and rotations. To study the other transformations, we can use the 
conformal algebra directly, recalling that [D, O] = (Δ + r∂r)O so that we have 

0 = hDO(r1)O(r2)i (6.66) 

= h[D, O(r1)]O(r2)i + hO(r1)[D, O(r2)]i (6.67) 

This means that the 2-pt correlator must obey 

(r1 · ∂r1 + r2 · ∂r2 ) hO(~r1)O(~r2)i = −2ΔhO(~r1)O(~r2)i (6.68) 

which is exactly what we find. Special conformal symmetries can be checked in the same way. In the 
next section we will use the projective null cone coordinates to make conformal invariance manifest. 

6.6 Connection to Infinite N 

Many physicists would refer to a Generalized Free Theory as ‘a CFT at infinite N ’. There are a 
whole host of examples. For instance, we might have 

• A large N gauge theory with gauge field Aµ 
ab, as well as matter in the adjoint such as ψab 

and Φab fields, or vector-like matter ψa, perhaps with flavor quantum numbers. The classic 
AdS/CFT example is the maximally supersymmetric N = 4 SYM Theory. 

• A vector-like theory such as the O(N) model, with scalar fields φa and an O(N) symmetry. 

• Any other theory with a large N Lie Group symmetry forcing the observables to take a� � 
(F absymmetric form, such as φaφa or Tr µν )

k . 

Let us understand why large N relates to AdS/CFT. Consider a free theory of an SO(N) matrix 
valued field φab where these indices a, b run from a = 1, 2, · · · , N . The action will simply be 

Z X 
S = dd x 

1 
∂µφab∂

µφab
2 

a,bZ 
= dd x 

1 
Tr [∂µφ∂

µφ] (6.69)
2 

Thus the φab fields have extremely simple correlation functions, namely 

δacδbd + δadδbc 

(x − y)d−2 

hφab(x)φcd(y)i = 
(x − y)d−2 

(6.70) 

or it can be written as 

hφA(x)φB (y)i = 
δAB 

(6.71) 
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where A indexes the generators Tab
A of SO(N), since φ is in the adjoint representation. None of these 

details matter much for our purposes here. All of the n-pt correlators of φ are just built on these 
via Wick contraction, since this is just a free theory with N2 free fields. 
The interesting point is that now we can consider more general operators made out of φ. For 

example, consider 
� X1 � 1 O2(x) = √ Tr φ2(x) = √ φab(x)φ

ba(x) (6.72)
N 2 N 2 

ab 

What is the 2-pt correlator of O2? It is easy to compute 

1 hO(x)O(y)i = (6.73)
(x − y)2(d−2) 

This is the form of a generalized free field with dimension Δ = (d − 2). If we were to consider� � 
Ok = Tr φk then we could get any Δ = k(d − 2)/2. 
But now let’s consider a 4-pt correlator 

1 1 1 1 1 1 hO2(x1)O2(x2)O2(x3)O2(x4)i = = 
2Δ + 

2Δ + 
2Δ2Δ 2Δ 2Δx x x x x x12 34 13 24 14 23 

1 
+ (· · · ) (6.74)
N 

In the limit that N → ∞, the 4-pt correlator of O2, and in fact of all properly normalized Ok, 
will be given entirely by evaluating pairs of 2-pt functions. Thus in the large N limit, this theory 
reproduces what we wanted – a generalized free theory with many choices for Δ, the dimension 
of the operator. It’s that last point that differentiates perturbation theory in 1/N from the more 
familiar examples of perturbation theory in a small coupling. For further reading, Witten’s ‘Baryons 
and the Large N Expansion’ [11] is a great intro to the 1/N expansion. 
An interesting point to note here is that the quantum mechanical expansion of φab is in terms 

of free field oscillator modes, which are not much like the AdS oscillator modes of a generalized 
free field. So the relationship between an operator like tr[φk] and O isn’t straightforward quantum 
mechanically. 

7 General CFT Axioms from an AdS Viewpoint 

Now we will discuss general CFTs from a bottom-up, or ‘axiomatic’ point of view. The reader should 
compare and contrast the properties of general CFTs with those of the generalized free theories 
analyzed in the previous section. Here is a list of the main ideas: 

• Conformal transformations consist of the Poincaré group of transformations, plus scale 
transformations and special conformal transformations. The extra symmetries can be most 
quickly derived by demanding Poincaré invariance plus an additional symmetry under inversions 
about a point, where xi → xi/x2 . They are best understood as coordinate transformations 
that do not leave the metric invariant, but rescale it by an overall spacetime-dependent factor, 
ie the symmetries are conformal killing vectors. 
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• CFTs can be quantized in the standard way, along flat spacelike surfaces that evolve with time. 
However, an alternative radial quantization in Euclidean space is often more useful, and will 
play a large role in what follows; in this quantization we start at a point and evolve outwards 
on expanding spheres. This idea is pictured in figure 7. 

• Radial quantization associates the entire Hilbert space of CFT states with an arbitrarily small 
region about a point. Associating states on arbitrarily small circles with operators at the center 
of these circles leads to the operator-state correspondence. This can be made very explicit 
when there is a path integral description of the CFT, but the existence of a path integral is 
not necessary. 

• Using conformal symmetry we can classify states according to irreducible representations of 
the conformal group, SO(1, d + 1) in Euclidean space, and therefore describe every state as a 
linear combination of primaries and their descendants; the latter are obtained from primaries 
by acting with the momentum generators. 

• The conformal symmetry allows us to move these operators around, so that from O(0) at the 
origin we obtain O(x) at any point x. The correlators of any 2 or 3 CFT operators are entirely 
fixed by symmetry, up to a finite set of constants. 

• As usual in a quantum mechanical theory, we can multiply any two operators to obtain some 
other (new) operator. So what about operators at different points in space? The operator-state 
correspondence applied to a product O1(x1)O2(x2) leads us to the Operator Product Expansion 
(OPE), which has a finite radius of convergence in any CFT. This can be made very explicit 
when there is a path integral description of the theory (see e.g. Weinberg Volume 2), but the 
existence of a path integral is not necessary. Operator products and OPEs in general CFTs 
are more subtle than in the generalized free theories we studied in the previous section. 

• Local conserved currents are special and extremely important. Spin-1 currents Jµ satisfying 
∂µJµ = 0 generate global symmetries, while the spin-2 conserved current Tµν is even more 
special. Conventionally a theory is only defined to be a CFT if a conserved Tµν exists; if there 
is no conserved spin 2 current the lore holds that the theory is ‘non-local’,16 as we will discuss. 

7.1 What is a C(F)T? 

Although later on we will take a more abstract point of view, let’s review the standard approach to 
CFTs. Conventionally, conformal isometries are defined as a change of coordinates or diffeomorphism 
xµ → x0 µ(x) such that the metric 

dx2 → dx02 = Ω2(x)dx2 (7.1) 

where Ω(x) is an arbitrary function of the coordinates. This specification preserves angles, but not 
distances. This means that in the Lorentzian case, it always preserves the causal structure of the 
spacetime. 

16in quotes because this phrase is vague... different physicists use it to mean very different things. 
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Thinking infinitesimally, we have x0 = xµ + vµ(x), where we treat vµ as small. The new metric isµ 

dx0 αdx
0α = dxµdxν (ηµν + ∂µvν + ∂ν vµ + · · · ) (7.2) 

and so we must have ∂µvν + ∂ν vµ = ω(x)ηµν , where Ω = 1 + ω/2. This immediately gives the 
equation 

∂µvν + ∂ν vµ − 
2 
∂αv αηµν = 0 (7.3)
d 

A well-known fact is that in 2-dimensions there are infinitely many solutions, whereas in d > 2 
dimensions there are only a finite number of solutions, the transformations that form the conformal 
group SO(2, d) (in Lorentzian signature). 
Note that there is a significant difference between a Weyl transformation gµν (x) → W (x)gµν (x), 

where we are changing the physical metric, and a conformal isometry, which is a change of coordinates 
(diffeomorphism) xµ → x0 (x) such that in the new coordinates the metric takes the form of the old 
metric multiplied by some 

µ 

function Ω2(x). 
To make this all clearer, let’s consider why a free massless scalar field theory is invariant under a 

conformal isometry. We have φ(x) → φ(x + v) ≈ φ(x) + vµ(x)∂µφ(x). Then the free Lagrangian 

2 

transforms as 

δL = ∂µφ(x)∂
µ(vα(x)∂

αφ(x))� � 
= ∂µvα ∂µφ∂αφ − 

1 
ηµα(∂φ)

2 = ∂µvαT µα (7.4) 

When we take vµ = λxµ, corresponding to a dilatation, or the more complicated vµ = bµx2 − 2xµb · x 
for a special conformal transformation, we find that δL ∝ Tµ

µ, the trace of the energy momentum 
tensor, as expected. 
You might notice that Tµν for the scalar is only traceless in d = 2 spacetime dimensions; this is 

because we have automatically (and in general incorrectly) assigned φ a scaling dimension of 0 under 
dilatations. This can be fixed by adding a local improvement term to Tµν , namely some multiple of 
the conserved total derivative (∂µ∂ν − ηµν ∂

2)φ2 . The point is that the scale and special conformal 
transformations can involve a combination of Tµν and other local conserved currents; see [12] for 
more details. For example, for the case of dilatations as long as we can define 

Sµ = x ν Tµν − Vµ (7.5) 

with Tµ
µ = ∂µVµ then the current Sµ is a scale current, which generates dilatations as we desire. In 

the case of a free theory we have Vµ ∝ ∂µφ2 . 
This can be understood more directly. When we computed Tµν above we assumed that φ(x) → 

φ(x + v) ≈ φ(x) + vµ(x)∂µφ(x), but this is not correct for e.g. dilatations for any choice of vµ. We 
know that φ will be a primary operator of dimension Δ = d 

2 − 1, and so it should transform as 
δφ(x) → (Δ + x · ∂x)φ(x). But taking vµ = �xµ does not lead to this transformation rule. To obtain 
a scale current we therefore want to take δφ → �(x)(Δ + x · ∂x)φ. This leads to a scale current 

� � 
Sµ = x ν ∂µφ∂αφ − 

1 
ηµα(∂φ)

2 − Δφ∂µφ (7.6)
2 
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which accords with the form we found above by the inclusion of an explicit improvement term 
into Tµν . The effect of the improvement term is simply to shift the scaling dimension of φ without 
altering the conservation or symmetry (as a matrix) of the stress-energy tensor. 
It’s worth noting that in the theories we are used to studying, e.g. λφ4 theory, gauge theories, 

etc., the fact that conformal symmetry is broken quantum mechanically means that Tµ
µ ∝ β(λ), 

where β is the usual beta function for the running coupling. This means that these classically 
conformal theories have an anomaly. 
The preceding remarks were an example of how CFTs are usually introduced. We will take a 

rather different and more abstract point of view that follows more naturally from thinking about 
AdS theories. Conformal Theories (CTs) are defined as quantum mechanical theories where 

• All states fall into representations of the d-dimensional conformal algebra: 

[Mµν , Pρ] = i(ηµρPν − ηνρPµ), [Mµν , Kρ] = i(ηµρKν − ηνρKµ), [Mµν , D] = 0 

[Pµ, Kν ] = −2(ηµν D + iMµν ), [D, Pµ] = Pµ, [D, Kµ] = −Kµ (7.7) 

• There are local operators Oi(x) called primaries that transform covariantly. We already saw 
what this means for scalar operators in Generalized Free Theories in the previous section. As 
we will see again in the next section, there is a one-to-one correspondence between all the 
operators at any point x and all of the states in the Hilbert space. 

• We can multiply operators O1(x)O2(y). If the CFT is in its vacuum state throughout the 
space intervening betwen these operators, then the product can be re-written as a convergent 
sum over all the operators in the theory at any point between x and y. This is called the 
Operator Product Expansion (OPE), to be derived in general below. The coefficients of all 
descendant are determined by conformal symmetry and the coefficients of the primaries. 

From these properties many others follow, for example that the correlators must take a very 
constrained form, and for the theory to be unitary all operators have to have scaling dimensions 
(eigenvalues of the dilatation operator D) greater than the unitarity bound, as derived in the previous 
section. 
For a theory to be a Conformal Field Theory (CFT): 

• The theory must contain in the spectrum of operators a spin 2 tensor Tµν with dimension 
Δ = d, the spacetime dimension, or equivalently, this stress tensor must be conserved. This 
stress tensor certainly was not present in the Generalized Free Theory we studied in the last 
section, except when Δ = d 

2 − 1, in which case the GFT reduces to an ordinary free scalar 
theory. 

We will discuss below why Tµν is so uniquely important, and how its special properties relate to the 
universality of gravity. For now it should at least be apparent from our discussion above that Tµν is 
related to implementing the conformal symmetries in a way that is manifestly local in spacetime 
(‘local’ because the symmetries are expressed in terms of Tµν (x), which is localized at the point x). 
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7.2 Radial Quantization and Local Operators – A General Story 

Let us start with some general comments on the Hilbert space construction in QFT.17 This procedure 
is linked to the choice of foliation of spacetime with fixed time surfaces. Time evolution connects 
states on one surface to states on the other surfaces. 
Each leaf of the foliation becomes endowed with its own Hilbert space. We create in states ψin by 

inserting operators or directly specifying a wavefunction in the past of a given surface. Analogously 
we deal with out states by inserting operators or directly specifying the wavefunction in the future. 
The overlap of an in and out states living on the same surface hψout|ψini is equal to the correlation 
function of operators which create these in and out states (or to the S-matrix element if the in and 
out states consist of well-separated particles). 
In standard textbook discussions of QFT, states are defined on flat spacelike surfaces in Minkowski 

spacetime. The time evolution operator is ‘P0’, the momentum generator in the time direction. Since 
the momenta all commute, states can be classified according to their total momentum and energy. 
To summarize 

• States are defined on flat spacelike surfaces in Minkowski spacetime 

• Since the momenta all commute 

[Pµ, Pν ] = 0 (7.8) 

states can be classified according to their total momentum and energy. 

• The time evolution operator is ‘P0’, the momentum generator in the time direction. Via 
Lorentz transformations we can consider other compatible (boosted) notions of P0. 

In CFTs we additionally have the symmetries D = dilatations and Kµ = special conformal 
transformations. Could still use standard picture, but more natural to think about states in a new 
way – Radial Quantization. CFT algebra: 

[Mµν , Pρ] = i(ηµρPν − ηνρPµ), [Mµν , Kρ] = i(ηµρKν − ηνρKµ), [Mµν , D] = 0 

[Pµ, Kν ] = −2(ηµν D + iMµν ), [D, Pµ] = Pµ, [D, Kµ] = −Kµ (7.9) 

Some implications 

• Simultaneously diagonalize D and Mµν = angular momentum. Label states by Δ or τ = Δ − ̀  
and angular momentum `, so have 

D|τ, ̀ Ji = (τ + `)|τ, ̀ Ji (7.10) 

• Pµ is raising, Kµ lowering operator wrt D. 

• Define primary as state killed by Kµ. Get discrete spectrum. 

17One can find a very similar discussion in Slava’s notes. 
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• Radial quantization with Hamiltonian is D, unitarty evolution via eiDτ with τ = log r. 

The vacuum |0i is annihilated by all the conformal generators, since we assume conformal symmetry 
is unbroken. Associated to each primary state is a primary operator O(0) with twist τ and angular 
momentum `, so that acting on the vacuum 

O(0)|0i = |τ, ̀ i (7.11) 

This is the local operator/state correspondence (isomorphism or identification). 
Note that radial quantization and the operator/state correspondence can be treated in a natural 

way in the path integral formalism. In that case we define states by wave functionals on Cauchy 
surfaces, and the path integral allows us to evolve from one Cauchy surface to another. Radial 
quantization is then immediate. The operator/state correspondence follows if we evolve back in 
time towards a point. Then the wave functional at the origin is equivalent to some insertion of a 
functional of the fields directly into the path integral, and this insertion is itself the desired operator. 
Let us now see how the conformal transformation properties of O(0) completely determine the 

transformation properties of O(x), and therefore define the operator everywhere. This is interesting 
because it means that once we know about the primary state O(0)|0i we can derive everything we 
would like to know about the corresponding local operator at any point in spacetime. The conformal 
generators act on O(0) according to 

[Kµ, O(0)] = 0 (7.12) 

[D, O(0)] = −iΔO(0) (7.13) 

[Mµν , O(0)] = −iΣ ` O(0) (7.14)µν 

Along with the assumption that 

[Pµ, O(x)] = −i∂µO(x) (7.15) 

this entirely determines the action of the conformal algebra on the local operator O(x), assuming 
the commutation relations of the conformal group. At a general point in flat Euclidean space, we 
have the commutators 

[D, O(x)] = −i(Δ + xµ∂µ)O(x) (7.16) 

[Pµ, O(x)] = −i∂µO(x) (7.17) 

[Kµ, O(x)] = −i(2xµΔ+ 2x αΣαµ + 2xµx α∂α − x 2∂µ)O(x) (7.18) 

[Mµν , O(x)] = −i(Σµν + xµ∂ν − xν ∂µ)O(x) (7.19) 

where Δ is the scaling dimension of O and Σµν is a finite dimensional spin matrix encoding the 
angular momentum representation of O. 
For fun let us derive the first infinitesimal approximation of the first equation above. We know 

from equation (7.15) that we can write 

O(�) ≈ O(0) + �µ∂µO(0) + · · · 
= O(0) + i�µ[Pµ, O(0)] + · · · (7.20) 
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Now if we act the dilation operator on O(�) we find 

[D, O(�)] ≈ [D, O(0)] + i�µ[D, [Pµ, O(0)]] 
= −iΔO(0) + i�µ ([[D, Pµ], O(0)] − [Pµ, [O, D]]) 
= −iΔO(0) + i�µ ([−iPµ, O(0)] − iΔ[Pµ, O(0)]) 
= −iΔO(0) + i�µ (−∂µO(0) − Δ∂µO(0)) 
≈ −i(Δ + �µ∂µ)O(�) (7.21) 

so we have derived the first of the equations (7.16) when x = � is near to 0. 
The AdS dual of radial quantization is pictured in figure 7 – it’s just ordinary quantization in 

AdS global coordinates. Specifically, ‘ordinary quantization’ in global coordinates means that we 
use the global time t to define our clocks, and so the dilatation operator D is the Hamiltonian (the 
generator of time translations). The Cauchy surfaces in AdS on which states are defined are just the 
constant t surfaces, parameterized by the coordinates ρ and Ω. 

7.3 General CFT Correlators and the Projective Null Cone 

We already saw some non-trivial examples of the way that conformal symmetry acts on and 
constrains CFT correlators. In general, all two-point correlators are completely determined up to a 
normalization, while 3-pt correlators are determined up to a finite number of coefficients (in the 
case of three scalar operators, there is only one overall coefficient). Higher point correlators can only 
depend on the conformal cross ratios. 
We can study the conformal transformation properties in an elegant fashion by using the projective 

null cone coordinates PA, which satisfy PAP A = 0 and are identified under PA ∼ λPA. Since we have 
been thinking about CFTs from the AdS point of view, it is natural to understand CFT correlators 
as expressed in terms of the PA with reference to AdS. 
Recall that we defined a CFT operator O in terms of an AdS field φ(XA) as 

φ(t, ρ(�; t, Ω), Ω)O(t, Ω) = lim (7.22)
�→0 �Δ 

where for e.g. scalars m2 = Δ(Δ − d) relates the AdS mass and CFT dimension, and ρ(�; t, Ω) = 
π 
2 − �f(t, Ω) controls the way we approach the boundary of AdS. Furthermore, using our coordinate 
identifications we can write 

cosh t cosh t 1 
X0 = R → = P0 (7.23) 

cos ρ �f(t, Ω) � 
sinh t sinh t 1 

Xd+1 = R → = Pd+1 
cos ρ �f(t, Ω) � 

Ωi 1 
Xi = R tan ρΩi → = Pi

�f(t, Ω) � 

62 



The choice of function f(t, Ω) here represents a choice of a section of the null cone. Note that with 
−tour favorite f = e we obtain 

� � 
e2t + 1 e2t − 1 

(P0, Pd+1, Pi) = , , e tΩi (7.24)
2 2 

as usual for Euclidean flat space. 
Now in general, instead of taking ρ = π 

2 − �f(t, Ω) we could have equivalently taken ρ(�; t, Ω) → 
π − 1 
2 λ �f(t, Ω) for a constant λ > 0. This has precisely the effect of sending PA → λPA in our 
definition. But we also know from the definition of O that this would transform 

O(λPA) = λ−ΔO(PA) (7.25) 

for a conformal primary operator obtained from an AdS theory. Note that we could use a different 
λ for each operator in a correlator – we do not have to rescale them all in the same way, since we 
can use a different � for each operator. 
Furthermore, one can reverse the logic, and show that this transformation rule must obtain for 

any CFT primary expressed in terms of the null projective cone, regardless of whether it comes from 
AdS. It accords with all the results we have derived before by other means. 
This puts powerful constraints on CFT correlation functions when we combine it with the fact 

that only Pi · Pj are conformally covariant objects. In particular, it enforces that 

hO1(P1)O2(P2)i = 0 if Δ1 6= Δ2 (7.26) 

and that this correlator takes the conventional form otherwise. Furthermore, in the case of 3-pt 
correlators of scalars it implies 

C123hO1(P1)O2(P2)O3(P3)i = (7.27) · P2)α12,3 (P2 · P3)α23,1 (P1 · P3)α13,2(P1 

where we must have 

Δi +Δj − Δk
αij,k = (7.28)

2 

to achieve the correct scalings under Pi → λiPi for each i = 1, 2, 3. 
In general, it’s much easier to work using the projective null cone coordinates. Conformally 

invariant correlators can only be a function of the conformal cross ratios 

(Pi · Pj )(Pk · Pl) 
uijkl ≡ (7.29)

(Pi · Pk)(Pj · Pl) 

that are invariant under scalings of the individual Pi. In particular, when we study the 4-pt correlator, 
we only have two cross ratios, conventially called u and v 

(P1 · P2)(P3 · P4) (P1 · P4)(P2 · P3) 
u = and v = (7.30)

(P1 · P3)(P2 · P4) (P1 · P3)(P2 · P4) 
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Note that in terms of these variables, our generalized free theory correlator can be written as 

1 � � 
hO(x1)O(x2)O(x3)O(x4)iGF T = u −Δ + 1 + v −Δ (7.31)

(P1 · P3)Δ(P2 · P4)Δ 

The factor out front just encodes the necessary kinematical data associated with the scaling dimension 
of O, while the terms in parentheses contain all of the dynamical information about the theory. In a 
general theory this correlator would take the form 

1 hO(x1)O(x2)O(x3)O(x4)i = A(u, v) (7.32)
(P1 · P3)Δ(P2 · P4)Δ 

where the function A(u, v) cannot be determined from symmetry alone. 

7.4 Deriving the OPE from the CFT, and from an AdS QFT 

A key property of all local quantum field theories is the existence of an Operator Product Expansion. 
In CFTs this expansion converges in a finite region, and so it can be used to make various exact 
statements. Let us first understand18 what the OPE is and what it has to do with locality. Then we 
will show that any field theory in global AdS gives rise to CFT correlators that satisfy an OPE. The 
idea of the derivation is pictured in figure 9. 
The OPE says that for any local operators φ1 and φ2 we have 

X 
φ1(x)φ2(0) = C(x, ∂)O(0) (7.33) 

O 

This relation is derived via path integral methods in Weinberg V2 [13], although it can be easily 
derived without any explicit action for the CFT. Let us review it, and then we will show that any 
local QFT in AdS will give rise to CFT correlators that satisfy an OPE. As we will see, the derivation 
of the OPE in AdS is very similar to the derivation in the CFT. 
To derive the OPE in the CFT, we consider two operators O1(x1) and O2(x2). Now draw a circle 

around x1 and x2, centered at some point x – the circle should have a radius r larger than |x − x1| 
and |x − x2| so that it contains both points, but does not contain an insertion of any other operators. 
Choose to radially quantize the CFT about x. If we imagine the radial evolution from x outwards, 
we start with the vacuum and then we eventually hit the operators O1 at x1 and O2(x2). Thus on 
the circle of radius r, we have some state 

|ψ12(r)i = O1(x1)O2(x2)|0i (7.34) 

because the CFT was in its vacuum at x. This state will be some linear combination of all of the 
states in the Hilbert space. By the operator state correspondence, there exists some local operator 

(x) such that Oψ12 

Oψ12 (y)|0i = |ψ12(r)i = O1(x1)O2(x2)|0i (7.35) 

18In Weinberg V.2 the OPE is derived from the path integral, and in Slava’s notes its derived from radial quantization. 
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The operator Oψ12 will certainly not have a definite dimension or spin – it’s an extremely abstract 
object. However, we can express Oψ12 as a sum over all of the primary operators of the theory and 
their descendants, and categorized according to their dimension and spin. This gives the OPE 

X 
O1(x1)O2(x2) = λΔ,`CΔ,`(x1 − y, x2 − y, ∂y)OΔ,`(y) (7.36) 

Δ,` 

Note that we are free to use translation symmetry to take x1 = y = 0 for convenience, in which 
case the function on the RHS just becomes fΔ,`(x1, ∂). In fact, this function is entirely determined 
by conformal symmetry, so the only non-trivial information in the OPE is the value of the OPE 
coefficients cΔ,`, which are labeled entirely by the dimension and spin of the primary operators in 
the theory. However, there are still an infinite number of these OPE coefficients. If this is your first 
sight of the OPE, then it probably seems very abstract, and in fact there’s much more to say about 
and do with it, but before any of that let’s discuss how it’s derived from QFT in AdS. 
In fact, the AdS derivation mostly copies from the CFT version, as pictured in figure 9. The key 

point is that the Hilbert space of the theory lives on complete spacelike Cauchy surfaces in AdS. As 
t → −∞ in global AdS coordinates, the theory is in the vacuum. If we insert some operators O1(x1) 
and O2(x2) at some finite times, then we can always study a time t in the future of x1 and x2. On 
this time slice we will find a wavefunction ψ12(t), where the radius of the corresponding CFT circle 
is just r = et in some units. But this state ψ12(t) could just as well have been created by setting it 
up at some point arbitrarily far into the past. In the limit that we setup ψ12 in the infinite past, we 
can just create it by acting with a local operator at the origin in the CFT. This local operator can 
be written as a sum over primary operators of definite dimension (AdS energy) and spin, and this 
expansion reproducies the OPE for the CFT. 
Now let us look at the OPE in a more refined way, in order to relate the OPE coefficients of 

descendants to the coefficients of their associated primary operator. For example, let us consider 
some particular term associated with a primary operator O 

c O1(x)O2(0)|0i = [OΔ,`(0) + · · · ] |0i + other primaries (7.37) 
xp 

One might immediately guess that the power p is fixed the dimensions Δ1, Δ2, and Δ. We can verify 
this by acting on both sides with the dilatation operator (and ignoring other contributions), giving 

DO1(x)O2(0)|0i = (Δ1 + x · ∂x)O1(x)O2(0)|0i +Δ2O1(x)O2(0)|0i 
c 

= (Δ1 +Δ2 − p) [OΔ,`(0) + · · · ] |0i (7.38) 
xp 

However, we can also compute this directly as an action on O, giving 
c c 

D [OΔ,`(0) + · · · ] |0i = [ΔOΔ,`(0) + · · · ] |0i (7.39) 
xp xp 

so we find that p = Δ1 +Δ2 − Δ for consistency. More interesting relations can be obtained by 
considering not just the primary OΔ,` but also the descendants that make up the ellipsis. The next 
term will be 

c O1(x)O2(0) = [OΔ,`(0) + κxµ∂µOΔ,`(0) + · · · ] |0i (7.40) 
xp 
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and we can determine the coefficient c using conformal symmetry. Let us act on this equation with 
Kµ. Note that this SCT annhilates O2(0) because its primary, so we find 

KµO1(x)O2(0)|0i = (2xµΔ1 + 2x αΣαµ + 2xµx α∂α − x 2∂µ)O1(x)O2(0)|0i (7.41) 
c 

= (2xµΔ1 + 2x αΣαµ + 2xµx α∂α − x 2∂µ) [OΔ,`(0) + κxµ∂µOΔ,`(0) + · · · ] |0i 
xp 

This must match with the action of Kµ directly on the RHS, but this is 

c c 
Kµ (OΔ,`(0) + κxα∂αOΔ,`(0) + · · · ) |0i = (κxα[Kµ, [Pα, OΔ,`]](0) + · · · ) |0i (7.42) 

xp xp 

where we note that Kµ annihilates the primary operator O(0), and we have written the last part 
very explicitly in terms of the conformal generators to emphasize that it can be evaluated just using 
the algebra. 
To match the two sides, note that in equation (7.41) the first two terms in Kµ actually cancel 

against the action of the derivative operators on x−p, so that all terms proportional to OΔ,`(0) drop 
out. Then for ` = 0 we are left with the first term as 

2κΔxµOΔ,0 = (2Δ1 − p)xµOΔ,0 (7.43) 

so we find that 

1 Δ1 − Δ2
κ = + (7.44)

2 2Δ 

for the first coefficient. In principle we can compute all subsequent coefficients this way, although it 
would be rather laborious. 
Finally, now that we have demonstrated that the appearance of descendant operators in the 

OPE is entirely determined by the appearance of primaries, let us consider how to compute the 
primary OPE coefficients. Actually, this is easy, and also provides a way to compute C(x, ∂). The 
method is to take the OPE expansion and compute its correlator with a single operator OΔ,`, giving 

* + X 
λ12hOΔ,`(z)O1(x)O2(y)i = OΔ,`(z) Δ,`C(x − y, ∂y)O(y) (7.45) 

primary O 

where in our current notation λ12Δ,` is the OPE coefficient. Now note that CFT 2-pt functions 
always vanish unless the operators have the same dimension, charge, and spin, so on the RHS 
we have projected out the 2-pt function of a single primary operator OΔ,`. On the LHS we just 
have a CFT 3-pt function, and these are fixed up to a finite number of constants (in the case of a 
scalar-scalar-spin ` correlator there is a unique answer kinematically, so we only have one overall 
constant). Considering the scalar case for simplicity, we find that 

1 112 = λ12 c C(x − y, ∂y) (7.46)Δ,`=0 Δ,0(x − y)α12Δ (z − y)α2Δ1 (x − z)α1Δ2 (z − y)2Δ 

12So we see that there is a very simple relationship between the coefficient cΔ,0 of the 3-pt function 
and the OPE coefficient λ12Δ,0. Furthermore, we can also determine the function C(x − y, ∂y) by 
matching the kinematics on both sides of this equation. 
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7.5 The Conformal Partial Wave Expansion and the Bootstrap 

We derived the OPE in the case of generalized free theory, and then we explained that in fact the 
OPE exists with a finite radius of convergence in any CFT. Crucially, we found that all coefficients 
for descendant operators in the OPE are determined kinematically in terms of the coefficients of 
primary operators. We also saw how one can derive the OPE directly by thinking about the AdS 
field theory description. 
Let us now see what happens when we apply the OPE to a 4-pt CFT correlator. This is 

straightforward; we see that 
X 

hφ(x1)φ(x2)φ(x3)φ(x4)i = λτ,`Cτ,`(x12, ∂1)hOτ,`(x2)φ(x3)φ(x4)i 
τ,`X X 

= λτ,`Cτ,`(x12, ∂2) λτ 0,`0 Cτ 0,`0 (x34, ∂4)hOτ,`(x2)Oτ 0,`0 (x4)i 
τ,` τ 0,`0 X 

= λτ,` 
2 [Cτ,`(x12, ∂2)Cτ 0,`0 (x34, ∂4) hOτ,`(x2)Oτ,`(x4)i] 

τ,` 

X1 
= λτ,` 

2 gτ,`(u, v) (7.47)
(x1 − x3)2Δ(x2 − x4)2Δ 

τ,` 

In the first line we applied the OPE in 12, while in the second we applied it in 34. In the third line 
we simplified by noting that 

hOτ,`(x2)Oτ 0,`0 (x4)i ∝ δττ 0 δ``0 (7.48) 

so this term is only present when τ = τ 0 and ` = `0 . In the last line we noted that 

1 
gτ,`(u, v) ≡ (Cτ,`(x12, ∂2)Cτ 0,`0 (x34, ∂4)hOτ,`(x2)Oτ,`(x4)i) (7.49)

(x1 − x3)2Δ(x2 − x4)2Δ 

is entirely determined by conformal symmetry – in other words, this conformal partial wave is a 
purely kinematic quantity. The conformal block coeffs are squares of OPE coeffs: 

λ2 (7.50)τ,` > 0 

This is how Unitarity shows up. 
Another equivalent way to think about it is via the insertion of complete set of states in the 

middle. Organize according to irreps of conformal symmetry. This is the same thing as using the 
OPE, as is obvious from the radial quantization derivation. Contribution of a single irrep is a 
conformal partial wave or conformal block : 

! Xgτ,`(u, v) 
2 2 = hφ(x1)φ(x2) |αihα| φ(x3)φ(x4)i (7.51)

(x13x24)
Δφ 

τ,` irrep 

This is an even easier way of explaining these conformal partial waves – it is just what we get when 
we insert 1 into the correlator as a sum over a particular set of states. 
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structure constants of the schematic form
X

k

f12kf34k(. . .) =
X

k

f14kf23k(. . .) . (3.3)

The (. . .) factors are functions of coordinates xi, called conformal partial waves. They are
produced by acting on the two-point function of the exchanged primary field �k with the
di↵erential operators C appearing in the OPE of two external primaries. Thus, they are also
fixed by conformal invariance in terms of the dimensions and spins of the involved fields.

f12k f34k

f14k

f23k

�k

�1

�2 �3

�4

X

k

= �k

�1

�2 �3

�4

X

k

Figure 1: The conformal bootstrap condition = associativity of the operator algebra.

The dream of the conformal bootstrap is that the condition (3.3), when imposed on four-
point functions of su�ciently many (all?) primary fields, should allow one to determine the
CFT data and thus solve the CFT. Of course, there are presumably many di↵erent CFTs,
and so one can expect some (discrete?) set of solutions. One of the criteria which will help
us to select the solution representing the 3D Ising model is the global symmetry group,
which must be Z2.

Our method of dealing with the conformal bootstrap will require explicit knowledge of
the conformal partial waves. In the next section we will gather the needed results.

4 Conformal Blocks

In this paper we will be imposing the bootstrap condition only on four-point functions of
scalars. Conformal partial waves for such correlators were introduced in [7] and further
studied in [9, 10]; they were also discussed in [12]. Recently, new deep results about them
were obtained in [13–15]. Significant progress in understanding non-scalar conformal partial
waves was made recently in [43] (building on [44]), which also contains a concise introduction
to the concept. Below we’ll normalize the scalar conformal partial waves as in [15]; see
Appendix A for further details on our conventions.

Consider a correlation function of four scalar primaries �i of dimension �i, which is fixed
by conformal invariance to have the form [3]

h�1(x1)�2(x2)�3(x3)�4(x4)i =

✓
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Figure 10: This figure illustrates the bootstrap equation relating the conformal partial wave 
expansion in two different channels. We see the explicit appearance of varoius OPE coefficients in 
the different channels. 

The conformal partial wave expansion is in all respects analgous to the partial wave expansion of 
scattering amplitudes. The analogy connects angular momentum to angular momentum, while the 
twist τ or dimension Δ = τ + ` plays the role of the center of mass energy. 
The conformal blocks are known (complicated) functions in many, but not all cases. For example, 

for CFTs in d = 2 dimensions the conformal partial waves are 

gτ,`(z, z̄) = kτ +2`(z)kτ (z̄) + kτ +2`(z̄)kτ (z) (7.52) 

where u = zz̄  and v = (1 − z)(1 − z̄) and 

k2β (x) = x β 
2F1(β, β, 2β; x) (7.53) 

where this is the hypergeometric function. The reason for the notation of z and z̄  is that if we take 
the correlator 

hφ(0)φ(z)φ(1)φ(∞)i (7.54) 

then we see that 

x2 2 (zz̄)∞2 
12x34 u = = → zz̄  (7.55)
2 2 12∞2x13x24 

and we obtain a similarly simple result with v. So z and z̄  are literally complex coordinates in a two 
dimensional plane. 
Recall that in the previous section we noted various identities between CFT correlators when we 

exchanged 2 ↔ 3 and 2 ↔ 4. The bootstrap equation uses this crossing symmetry to equate the 
conformal partial wave expansions in different channels: 

X X 
−Δφ −Δφ −Δφ −Δφu + u Pτ,` gτ,`(u, v) = v + v Pτ,` gτ,`(v, u) (7.56) 

τ,` τ,` 
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This is pictured in figure 10. Let us now see how the conformal partial wave decomposition works in 
our favorite example, that of a Generalized Free Theory. In the next section we will study what 
happens when we add AdS interactions. 
The GFT the 4-pt correlator can be written as 

� � 
1 1 1 hO(x1)O(x2)O(x3)O(x4)i = + 1 + (7.57)

2 2 z)Δ(x (zz̄)Δ (1 − z)Δ(1 − ¯ 13x24)
Δ 

We want to equate this with the conformal block decomposition, so in other words we are looking for 

X1 1 
Pτ,` gτ,`(z, z̄) = 1 + (7.58)

(zz̄)Δ (1 − z)Δ(1 − z̄)Δ 
τ,` 

where we have already canceled off the contribution of the identity operator on both sides. Now let 
us expand the RHS at small z and z̄; we find 

1 Δ(Δ + 1) 21 + ≈ 2 + Δ(z + z̄) + (z + z̄2) + Δ2(zz̄) + · · · (7.59)
(1 − z)Δ(1 − z̄)Δ 2 

Notice that all of the powers that appear are integral. However, note that the terms on the LHS 
with the conformal partial waves behave as 

1 � �τ −Δ ` ` 
2gτ,`(z, z̄) = (zz̄) z + z̄ + · · · (7.60)

(zz̄)Δ 

So matching both sides around z, z̄  ∼ 0 immediately implies that we must always have τ = 2Δ + 2n 
for a generalized free theory. We have just re-discovered the fact that the only operators that can 
appear in the OPE of O(x)O(0) are 

O(x)O(0) ∼ 1 + aO2(0) + bO∂2O + · · · (7.61) 

so that they involve O∂2n∂µ1 · · · ∂µ` O and have dimension 2Δ + m. By matching both sides of 
equation (7.60) we can compute the conformal partial wave coefficients (and therefore the OPE 
coefficients) for a generalized free theory. When we add AdS interactions in the next section we 
will see that the various operators get anomalous (shifted) dimensions proportional to the coupling 
constants. Note that shifting τ produces (zz̄)γ ≈ 1 + γ log(zz̄), so anomalous dimension appear as 
logarithms in CFT correlators. 

8 Adding AdS Interactions 

Let us compare the conformal partial wave expansion with various perturbative methods. The 
reader is likely already familiar with Feynman diagram perturbation theory in QFT, and perhaps 
also with ‘Old Fashioned Perturbation Theory’. Let us compare these descriptions of correlators to 
the Conformal Partial Wave (aka Conformal Block) decomposition and the bootstrap equation. 
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Feynman Diagram Perturbation Theory aka Witten Diagrams in an AdS context, provide a 
perturbative expansion that keeps the spacetime symmetries (conformal symmetry) manifest 
at every step of the calculation. However, Feynman diagrams obscure which physical states 
contribute to a given process. 

Specifically, both single and multi-particle states are exchanged even in tree-level diagrams. 
This feature of perturbation theory is not very prominent in flat spacetime, where partial 
waves are continuous functions of the scattering energy, but it is manifest in AdS/CFT. 

Old Fashioned Perturbation Theory is another perturbative method that’s closely connected 
to conventional quantum mechanical perturbation theory. It requires an explicit choice of time 
slicing, with an accompanying specification of the Hilbert space of states on those constant 
time surfaces. As a consequence, OFPT breaks spacetime symmetries that explicitly involve 
time. However, OFPT has the advantage of being formulated directly in terms of physical 
states. 

The Conformal Partial Wave Expansion aka the conformal block decomposition of a CFT 
correlation function – this is a non-perturbative expansion that keeps all spacetime symmetries 
manifest, and that only involves physical states. When combined with crossing symmetry, 
the conformal block decomposition leads to the bootstrap equation, which provides powerful 
constraints on correlators, but unlike the previous methods, it is not a systematic technique 
for solving the theory order-by-order in an expansion parameter. 

However, given a correlator computed in perturbation theory, one can always decompose it into 
conformal partial waves. This leads to a clear specification of which states (operators) appear 
in various OPEs. Note that the identity operator, which is dual to ‘free propagation’ in AdS, 
has a very non-trivial conformal partial wave decomposition in other channels. This means 
that it’s not always easy to isolate ‘free propagation’ from ‘interactions’ in the conformal block 
decomposition. 

Now let us see how an interacting QFT in AdS spacetime give rise to an interacting C(F)T. Then 
we will see how abstract CFT data like OPE coefficients and anomalous dimensions can be computed 
in AdS/CFT, and then we will translate these ideas into the much more mundane-sounding physics 
of wavefunction overlaps and the binding energies between particles. 

8.1 Anomalous Dimensions from Basic Quantum Mechanics 

In the following sections we will discuss AdS Feynman diagrams and perform some computations 
in λφ4 theory. For now we will discuss a simpler, old-fashioned perturbation theory approach [10] 
that basically amounts to an application of undergraduate quantum mechanics. This approach is 
actually easier and more efficient than Feynman diagrams in many cases. 
Consider a situation where we have a free Hamiltonian D(0) that we have diagonalized, and we 

add a small interaction Hamiltonian DI . Everyone knows that to first order in perturbation theory, 
the energy of a D(0) eigenstate |ψi simply changes by 

γψ = ψ|DI |ψ (8.1) 
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We can apply this formula directly in the case of λφ4 theory in AdS in order to compute the energy 
shifts of 2-particle states in AdS. Recall that 2-particle states in AdS are created by the CFT 
operators [OO]n` where O = limρ→π/2 φ as usual. So computing the energy shifts of these states is 
equivalent to computing the ‘anomalous dimensions’ of these operators. 
Let us consider λφ4 theory in AdS3 for simplicity. The (Lorentzian) action is 

Z � � √ 1 m2 λ 
S[φ] = d3 x −g (rφ)2 − φ2 − φ4 (8.2)

2 2 4!AdS 

We derive the Hamiltonian as usual, by defining canonical momenta and computing D = P q̇ − L. 
This gives the Hamiltian (Dilatation operator) for the free theory plus an interaction part, which is 

Z 
DI (t) = 

λ
d2 x 
√−gφ4(t, x) (8.3)

4! AdS 

This interaction vanishes except for the scalar or ` = 0 partial wave, so [OO]n` do not receive 
anomalous dimensions from λφ4 for ` > 0. This is directly analogous to the fact that λφ4 interaction 
only contributes to the ` = 0 partial wave when we study scattering in flat spacetime. Specializing 
to the case of ` = 0 we want to compute the matrix element 

γ(n) = hn, 0|DI |n, 0iZ 
= 

λ
d2 x 
√−g hn, 0|φ4(x)|n, 0i (8.4)

4! AdS 

where 

|n, ̀ i = [OO]n`|0i (8.5) 

is the primary state corresponding to two particles in AdS. Now we can evaluate this matrix element 
directly. In order for it to be non-vanishing, two of the φ(x) operators must destroy the initial state 
particles while two destroy the final state particles, so we find 

Z πZ 2πλ sin ρ 
γ(n) = dθ 

2 

dρ hn, 0|φ2(ρ, θ)|0ih0|φ2(ρ, θ)|n, 0i (8.6)
4 cos3 ρ0 0 

However, note that these states are scalar primaries, and φ2(x) is a scalar operator, so by symmetry 
we must have 

1 it cos ρ)2Δ+2nh0|φ2(ρ, θ)|n, 0i = √ (e (8.7)
2π 

since these are primary wavefunctions that are annhilated by Kµ. Note that this matrix element 
would vanish for ` > 0 – this is how one can see that λφ4 does not produce anomalous dimensions 
at first order for ` > 0 operators. The correct normalization can be computed [10], although the 
calculation is a bit non-trivial. I have simply written the correct result for AdS3. Performing the 
integrals gives 

λ 
γ(n) = (8.8)

8π(2Δ + 2n − 1) 

so we have computed the anomalous dimension of all [OO]n` in λφ4 theory in AdS. As we have 
emphasized before, anomalous dimensions are just AdS energy shifts due to interactions. 
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8.2 Perturbative Interactions and λφ4 Theory 

Interacting QFTs in AdS can be studied in exactly the same way that we study such theories in 
flat spacetime. In particular, we can expand perturbatively in the coupling constants and compute 
using AdS Feynman diagrams. To derive the Feynman rules we can use either an operator or a path 
integral formalism, as usual; the result are rules for propagators, which are just the 2-pt functions of 
AdS fields, and vertices, which follow as direct generalizations of those of flat spacetime. A significant 
technical difference is that in AdS spacetime we lack a set of commuting translation operators, and 
so we cannot use the Fourier transform to momentum space to simplify computations. Conceptually 
this may almost be an advantage, but computationally it means that AdS Feynman diagrams are 
much more cumbersome to calculate. 
Let us consider a standard example, that of λφ4 theory in AdS. We have an AdS path integral 

Z 
Z = Dφe−S[φ] (8.9) 

where the Euclidean action is 
Z � � √ 1 m2 λ 

dd+1S[φ] = x −g (rφ)2 + φ2 + φ4 (8.10)
2 2 4!AdS 

The bulk-to-bulk propagators have a simple expression in terms of the geodesic distance σ(X, Y ) 
between X and Y : 

GΔ(X, Y ) = CΔz Δ/22F1(Δ, h, Δ+ 1 − h, z), (8.11) 

−2σ 19where z = e . The factor CΔ = Γ(Δ)/(2πhΓ(Δ + 1 − h)) with h = d/2. This propagator can 
be obtained as usual as the solution to the Klein Gordon equation in Euclidean AdS with a delta 
function source, namely 

� � 
rX + m AdS (X − Y )2 2 GΔ(X, Y ) = (2π)d+1δd+1 (8.14) 

It is also given as a sum over modes if we compute 

hφ(X)φ(Y )i = GΔ(X, Y ) (8.15) 

using the expansion of φ(X) in terms of creation and annihilation operators with corresponding 
wavefunctions. 
19This normalization of the bulk-to-bulk propagator differs from that in e.g. [10] by a factor of CΔ. Other useful 

representations of the bulk-to-bulk propagator are 

Δ/2y Δ Δ 1 
GΔ(X, Y ) = CΔ 2F1( , + , Δ+ 1 − h, y) (8.12)

2Δ 2 2 2 
CΔ 1 4 

= 
uΔ

2F1(Δ, Δ − h + , 2Δ − 2h + 1, − ), (8.13)
2 u 

− 1 u
2where u = (X − Y )2 and y = cosh σ = 1 + 2R2 .R 
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The Feynman rules for the theory are identical to the position space Feynman rules for λφ4 

theory in flat spacetime, except that we replace flat space propagators with GΔ(X, Y ), and we 
integrate over AdS. For example, the 4-pt correlator of φ to first order in λ is 

Z √ 
dd+1Yhφ(X1)φ(X2)φ(X3)φ(X4)i = λ −gGΔ(X1, Y )GΔ(X2, Y )GΔ(X3, Y )GΔ(X4, Y ) (8.16) 

AdS 

If we had a gφ3 theory instead we would have 
Z p

2 dd+1Y1hφ(X1)φ(X2)φ(X3)φ(X4)i = g −g(Y1)GΔ(X1, Y1)GΔ(X2, Y1) (8.17) 
ZAdS 

p
dd+1Y2× −g(Y2)GΔ(Y1, Y2)GΔ(X3, Y2)GΔ(X4, Y2) 

Loops can be calculated in the same way, with an AdS position-space integral for every vertex, and 
a propagator for each line. 
Now that we know how to compute correlators of fields in AdS, we can apply our usual dictionary 

to compute the correlation functions of CFT operators. We need only apply our formula 
� � 

φ t, π − �f(t, Ω), Ω O(t, Ω) = lim 2 (8.18)
�→0 �Δ 

for each of the AdS fields in an AdS correlator. Applying this formula to any of the examples above, 
we immediately notice the appearance of the function 

� �1 π 
GB∂ (t, Ω; Y ) = lim GΔ t, − �f(t, Ω), Ω; Y (8.19)

�→0 �Δ 2 

which we refer to as the bulk-boundary propagator. For example, to compute the CFT 4-pt correlator 
at tree level in λφ4 theory in AdS, we use the formula 

Z √ 
dd+1YhO(~r1)O(~r2)O(~r3)O(~r4)i = λ −gGB∂ (~r1, Y )GB∂ (~r2, Y )GB∂ (~r3, Y )GB∂ (~r4, Y ) (8.20) 

AdS 

This is an example of how to use AdS/CFT to compute non-trivial CFT correlation functions. 
Fortunately, the bulk-boundary propagator GB∂ is much simpler than the bulk-bulk propagator 

GΔ. In terms of the projective null cone coordinates P , we simply have 

−σ(X,Y (�))CΔe 2F1(Δ, h, Δ+ 1 − h, e−2σ(X,Y (�)))
G(P, X) = lim , (8.21)

�→0 �Δ 

where in this limit Y → 1 
� P becomes the boundary point. In this limit the geodesic distance goes to 

infinity, and we simply obtain 
Z ∞1 dtCΔ Δ −2tP ·XGB∂ (P, X) = = t e (8.22)

(2P · X)Δ Γ(Δ − h + 1) 0 t 
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where as usual 

Γ(Δ)CΔ = (8.23)
2πhΓ(Δ − h + 1) 

The last formula in terms of a t integral is useful for computations. 
This formula for GB∂ was essentially forced on us by conformal symmetry – the bulk boundary 

propagator could only depend on the conformal invariant P · X, and the scaling relation O(λP ) = 
λ−ΔO(P ) forces the power-law relation that we derived. In this normalization the 2-pt function is 

CΔhO(P1)O(P2)i = (8.24)
(2P1 · P2)Δ 

for an operator of dimension Δ. This could be derived by taking the point X → P2 on the boundary 
of AdS. 
Let us now try to compute the 4-pt correlator to first order in λφ4 theory. This is 

Z 4 ZY ∞λ
dd+1Y 

dti Δ −2tiPi·YhO(P1)O(P2)O(P3)O(P4)i = ti e (8.25)
[2πhΓ(Δ − h + 1)]4 tiAdS 0i=1 

Now we can exchange the orders of integration to write 

4 Z ZY ∞ Pλ dti Δ dd+1Y e −2( tiPi)·YihO(P1)O(P2)O(P3)O(P4)i = ti (8.26)
[2πhΓ(Δ − h + 1)]4 0 ti AdSi=1 

We can do the integral over AdS most easily using the Euclidean Poincaré patch coordinates. We 
can use conformal symmetry to rotate so that the only non-vanishing component of Q is Q0, and we � � 

2 2+R21 z +~rhave Y0 = 
2 z , so that in this frame 2Q · Y = |Q|(1 + z2 + r2)/z, leading to 

Z Z ∞ Z 
2 

dd+1Y e 2Q·Y dz −d dd −(1+z +r2)|Q0|/z= z ~re 
zAdS 0 Z ∞ dz 

πh (z|Q|)−h −(1+z2)|Q0|/z= e 
zZ0 

∞ dz −h −z+Q2/zπh = z e (8.27) 
z0 

where we note that Q20 = Q2 and we have now restored manifest conformal symmetry. This means 
that 

4 Z ZY ∞ ∞λ dti dz P4Δ −h −z+ 
z i,j=1hO(P1)O(P2)O(P3)O(P4)i = ti z e 
1 titj Pi·Pj(8.28)

[2πhΓ(Δ − h + 1)]4 0 ti 0 z 
i=1 

√ 
Now we can rescale ti → ti z and factor out the z dependence completely. Then we find that 

Z 4∞ Y dti Δ − 
P4 hO(P1)O(P2)O(P3)O(P4)i ∝ ti e i,j=1 titj Pi·Pj (8.29) 

0 tii=1 
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This last integral can be written using the Symanzik ‘star formula’. This formula arises by noting 
Z i∞ 

−x −δ e = dδ Γ(δ)x (8.30) 
−i∞ 

−titj Pi·PjInserting this identity for each of the e term and performing the ti integrals leads to 
Z ∞ n Z i∞ nY P Ydti Δ titj Pi·Pj 1 dδij

i,j=1 · Pj )−δijt e − n 

= Γ(δij )(2Pi (8.31)
2 2πi 0 ti

i 
−i∞i=1 i<j 

where the δij are constrained by 

nX 
δij = Δi (8.32) 

j 6=i 

although in this case all Δi = Δ, the dimension of O. Note that if we imagine that δij = pi · pj , 
then these constraints are just what we would find from momentum conservation plus the on-shell 
condition p2 

i = Δi. One should think of the δij as analogous to the Mandelstam invariants sij for a 
scattering amplitude. 
This last form for the correlator has transformed it into ‘Mellin space’, where the δij variables 

parameterize the Mellin space. The Mellin amplitude is defined through 

Z 4Y dδijhO(P1)O(P2)O(P3)O(P4)i = Γ(δij )(2Pi · Pj )−δij M(δij ) (8.33)
2πi 

i<j 

where M(δij ) is the Mellin Amplitude. Here we have found that a λφ4 interaction in AdS space 
leads to a Mellin amplitude 

M(δij ) = λ (8.34) 

so it is simply a Mellin space-independent constant. This should remind you of the simplicity of 
momentum space scattering amplitudes. 
We can also re-write the Mellin form by eliminating the extra δij variables, giving the non-trivial 

part of the correlator as 
Z i∞ dδ12dδ14 Δ−δ12 −δ14A(u, v) = M(δ12, δ14)Γ

2(δ12)Γ
2(δ14)Γ

2(Δ − δ12 − δ14)u v (8.35) 
−i∞ (2πi)

2 

We see that the Mellin amplitude is just the transform in the conformally invariant cross-ratios. For 
general reference, the Mellin transform of a function f(x) is 

Z ∞ 

M(s) = x s−1f(x)dx (8.36) 

f(x) = 

0Z i∞ ds 
x −sM(s)

2πi −i∞ 
(8.37) 
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with the inverse also listed. Note that this is basically just a Fourier transform in the logarithm of 
the usual variables. So for the 4-pt correlator the Mellin amplitude is just a Mellin transform in the 
cross-ratios u and v. 
What about the position-space correlator? In general, it is a special function referred to in the 

literature as a ‘D-function’, which are usually written as DΔ1Δ2Δ3Δ4 as they depend on the external 
dimensions. The dependence on the spacetime dimension d only comes about through an overall 
normalization factor. The choice 

� �� � � � 
1 1 z̄(z−1)2Li2 − 2Li2 + log(zz̄) log 
z̄  z z(z̄−1)

D1111(z, z̄) = (8.38) 
z − z̄  

can be expressed in terms of logarithms and dilogarithms. The other D-functions with integer Δi 

can be computed in terms of this one by taking derivatives, but in general for non-integral Δi there 
is no such simple expression. Here zz̄ = u and (1 − z)(1 − z̄) = v as usual. 

8.3 Conformal Partial Waves and λφ4 

Let us consider λφ4 theory in AdS, and see how the interaction effects the CFT. For concreteness, 
let us imagine that we are working in AdS4, so d = 3, and we have fixed the squared mass of the φ 
field to be m2 = Δ(Δ − 3) = −2/R2 , so that Δ = 1. Then the correlator of the operator O obtained 
from taking φ to the boundary is 

� � 
1 1 1 hO(x1)O(x2)O(x3)O(x4)i = 1 + + (8.39) 

x2 2 zz̄  (1 − z)(1 − z̄)13x24 ⎛ � � � � � �⎞ 
1 1 z̄(z−1)2Li2 − 2Li2 + log(zz̄) log N z̄  z z(z̄−1)⎝ ⎠−λ 

x2 2 z − z̄  13x24 

where N is a normalization constant that just depends on our choice Δ = 1 and d = 3. We chose 
these parameters so that we could utilize the simplest non-triival D-function. 
In section 7.5 we discussed the conformal partial wave expansion of correlators, and the specific 

partial waves that appear in the case of a generalized free theory. Now we would like to see how 
the conformal partial wave expansion changes due to the λφ4 interaction. We are interested in this 
because it tells us about the change in the OPE coefficients that are proportional to 3-pt functions 
such as 

hO(x1)O(x3)[OO]n,`(y)i (8.40) 

where [OO]n,` is the primary operator that would have dimension 2Δ + 2n + ` and spin ` in the 
generalized free theory. It can be viewed schematically as 

� �2n↔ ↔ ↔ 
[OO]n,` ∼ O ∂ ∂ µ1 · · · ∂ µ` O (8.41) 
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although there are a lot of combintorial coefficients and traces to remove to get the precise primary 
operator. 
Furthermore, the correlator also tells us about the anomalous dimensions γ(n, ̀ ) of these 

operators – this is the shift in their dimension due to the interaction. Recall that these operator 
simply correspond to 2-particle states in AdS, and that the dilatation operator is the AdS Hamiltonian, 
so an anomalous dimension in this context is simply the interaction energy (attractive or repulsive) 
between the two particles. As we will see, this can be computed directly using old-fashioned quantum 
mechanical perturbation theory. 
Let us expand the correlator in z, z̄  near 0, since this is the OPE limit. Ignoring the normalization 

factor and just keeping track of the parametric dependence on λ, we find 

1 λ A(z, z̄) = + 2 + z + z̄  − (4 + z + z̄  − (2 + z + z̄) log(zz̄)) + · · · (8.42) 
zz̄ 2 

where the ellipsis denotes higher order terms in z, z̄. Recall that conformal partial waves behave as 

1 � �τ 
2 −Δφ ` ` gτ,`(z, z̄) = (zz̄) z + z̄ + · · · (8.43)

(zz̄)Δφ 

The terms that are independent of λ are just what we have in a generalized free theory. But let us 
examine the order λ terms more closely. The correlator contains 

A(z, z̄) ⊃ (2 − 2λ + λ log(zz̄)) (8.44) 

Recall that the OPE in a generalized free theory begins (at small z, z̄) with 
" # 

1 1 z̄  z O(z, z̄)O(0) = + O2(0) + O∂z̄O(0) + O∂zO(0) + · · · (8.45)
(zz̄)Δ NO NO NO 

¯ ¯ ¯0,0 0,1 1,0 

The terms we have found in the correlator A are of order z0z̄0 , so we can identify them as 
corresponding to the operator O2(0). In other words, this is the operator [OO]n,` with n = ` = 0. 
We see that in the generalized free theory the conformal block coefficient was simply 2, but we have 
found that this has shifted from 2 → 2 + 2λ. This also means that the OPE coefficient has shifted – 
since the conformal block coefficient is the square of the OPE coefficient, we have 

√ √ 2 
c0,0 = 2 − λ (8.46)

2 

so that (c0,0)2 gives 2+2λ, the conformal block coefficient (although recall that the precise numerical 
coefficient isn’t meaningful since we didn’t keep track of the normalization N ). 
Now let us consider the λ log(zz̄) term in A. Note that 

λ log(zz̄) ≈ (zz̄)λ − 1 (8.47) 

in perturbation theory in λ. In other words, we should interpret this logarithm as a shift in the 
scaling dimension of O2(0). From this logarithm we can compute the anomalous dimension γ(n, ̀ ) 
for n = ` = 0, namely 

γ(0, 0) = (z∂z + z∂¯ z̄) [λ log(zz̄)] = 2λ (8.48) 
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Note that the anomalous dimension is positive for positive λ, so the dimension of O2 has increased. 
This is due to the fact that the corresponding 2-particle state in AdS is experiencing a repulsive 
force. 
Let us now revisit the utility of the Mellin amplitude representation of the correlator. We noted 

that for the 4-pt correlator we can write the contour integral 
Z i∞ dδ12dδ14 Δ−δ12 −δ14A(u, v) = M(δ12, δ14)Γ

2(δ12)Γ
2(δ14)Γ

2(Δ − δ12 − δ14)u v (8.49) 
−i∞ (2πi)

2 

We have just seen that perturbative AdS interactions shift the OPE coefficients and operator/state 
dimensions in the CFT, and that these shifts can be extracted by looking at the coefficients of power-
law monomials in A(u, v). Furthermore, we have seen that anomalous dimensions are associated 
with logarithms. 
Note that a single pole in an integral of the form 

Z i∞ dδ 1 
u −δ = u Δ (8.50)

2πi δ +Δ −i∞ 

while a double pole gives 
Z i∞ dδ 1 d 

u −δ = u Δ = u Δ log u (8.51) 
−i∞ 2πi (δ + Δ)2 dΔ 

So the OPE coefficients and anomalous dimensions in a CFT are associated with the residues of 
poles in the Mellin integrand. Much of the power of Mellin space is that it allows us to use complex 
analysis for the study of AdS/CFT correlators. 

8.4 Generalities About AdS Interactions and CFT 

We will discuss expectations for the behavior of AdS interactions, a formal proof that (appropriate) 
perturbative interactions in AdS do not destroy conformal symmetry, and the meaning of EFT in 
AdS for the CFT. 

8.4.1 Physical Discussion of AdS/CFT with Interactions 

In perturbation theory the free propagator plays a crucial role. Let us examine various physical 
limits of the bulk-to-bulk propagator GΔ(X, Y ). In the short distance limit, it must agree with the 

−2σ(X,Y ) ≈ e−2r/RAdSflat spacetime propagator in d + 1 dimensions. This is the limit where z = e 
where r � RAdS , 1/m is the distance between X and Y . Note that 

� �d−1
1 RAdS 

2F1(Δ, h, Δ+ 1 − h, e−2r/RAdS ) ∝ (8.52)
Γ(Δ) r 

where I have dropped some factors of 2 and π, and approximated the hypergeometric function near 
1. Thus we find that in the very short distance limit 

� �d−1
RAdS

Gshort(r) ∝ (8.53) 
r 
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which is what we would expect for a field in d + 1 dimensional flat spacetime at very short distances. 
At very long distances z � 1, and we find that 

r 

Glong(r) ∝ e −Δ 
RAdS (8.54) 

which falls off very quickly at long-distances in AdS, due to the mass and AdS curvature. There is 
also a more delicate intermediate regime, where Δ � RAdS � 1 in which the usual Yukawa potential 

r 
is reproduced. This can be obtained from a saddle-point approximation to the hypergeometric 
function at large Δ. 
Let us consider whether the interactions disturb the limit where we take AdS QFT operators 

towards the boundary. There is an analogous question in flat spacetime. When we construct the 
flat spacetime S-Matrix, a key physical point is that we can study initial and final states composed 
of asymptotically well-separated particles. This is actually rather subtle, and in fact there are 
well-known IR divergences in four and fewer dimensions that must be treated with great care. 
In AdS/CFT the question is whether when we take bulk operators φ(t, ρ, Ω) to the boundary in 

an interacting theory, the interactions effectively shut off. The answer is yes – in fact, interactions 
shut off in AdS much more robustly than in flat spacetime, due to the AdS curvature. Recall that in 
section 2.2 we showed that even massless fields in AdS decrease exponentially fast at large distances 
from their sources. This means that well-separated sources in AdS decouple very quickly at large 
distances, i.e. as we approach the boundary of AdS. 
In particular, we would like to see that as we take our AdS fields to the boundary, their interactions 

are dominated by points deep within the bulk (i.e. not arbitrarily close to the boundary). Note 
that when we approach the boundary we take φ(t, ρ(�; t, Ω), Ω) with � → 0 but with fixed t, Ω. This 
means that when we have a correlator 

hφ1(t1, ρ(�; t1, Ω1), Ω)φ2(t2, ρ(�; t2, Ω2), Ω2) · · · φn(tn, ρ(�; tn, Ωn), Ωn)i (8.55) 

as we take � → 0, the geodesic distance σ(Xi, Xj ) between Xi and Xj will always go to infinity. In 
other words, any two distinct points on the boundary of AdS are infinitely far from each other. This 
by itself does not prevent us from having interactions near the boundary, since we are rescaling the 
φi by �−Δi to obtain CFT operators. 
However, consider some interaction vertex (from a Feynman diagram) localized at Y in AdS. If Y 

follows Xi as Xi → Pi on ∂AdS, then the vertex at Y will be further and further from all of the other 
vertices, and so bulk-to-bulk propagators connecting it to the rest of the AdS Feynman diagram 
will be exponentially suppressed. This is the reason that non-trivial interactions do not follow our 
bulk fields out to the boundary. Note that if all interaction vertices move together out towards the 
boundary then there is no suppression, but this uniform displacement does not lead to non-trivial 
interactions at infinity. This is analogous to the fact that in flat spacetime, the integration over the 
center of mass coordinate just leads to an overall momentum conserving delta function enforcing 
translation invariance. 

8.4.2 A Weinbergian Proof of Conformal Symmetry 

We saw by explicit computations that free fields in AdS give rise to Generalized Free Theories, which 
are conformal theories. Now we are studying AdS field theories with interactions, so how can we be 
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sure that the boundary theory is a conformal theory? 
This is not so obvious. In a free theory we have the conformal symmetry generators D(0), Pµ 

(0) 
, 

(0) (0)
Kµ , and Mµν . But when we add interactions we are changing the dilatation operators = bulk 
Hamiltonian by 

D = D(0) + DI (8.56) 

where DI represents the effects of interactions. The free generators may have satisfied the conformal 
algebra, but now the presence of DI will (naively) ruin it. In order to restore conformal symmetry 
we need to deform the other generators. 
If we are dealing with a local relativistic QFT in AdS spacetime, then the preservation of the 

conformal algebra including interactions is actually pretty easy to see. The point is that the AdS 
isometries20 are explicitly a symmetry of the action, and so we can use Noether’s theorem to compute 
the symmetry generators as classical or quantum operators. Then these operators also act naturally 
on the fields when we take them to the boundary of AdS, φ → O, and the discussion of section 
8.4.1 shows that in fact the interactions decouple so that the CFT operators O transform just as we 
found in the free AdS theory. 
Let us make this argument in a more general and formal way. We expect the interaction to 

satisfy 

[DI ,Mµν ] = 0 (8.57) 

so that we do not need to deform the AdS rotations, and we can continue to use angular momentum 
quantum numbers. This should not be surprising, since angular momentum is a discrete quantum 
number, so it would be difficult to imagine deforming it continuously. However, the generators Pµ 

(0) 

and Kµ 
(0) 
do not commute with D(0) and so we should expect that they will need to be deformed by 

Pµ
I and Kµ

I in the presence of the interaction DI . Specifically, if we consider Kµ we must have 
� � 
D(0) + DI , K(0) + KI = −K(0) − KI 

µ (8.58)µ µ µ 

so we need to define Kµ
I and ensure that this commutation relation holds. We already know that 

the zeroth order commutation relations work, so we need 
� � � � � � 
D(0), KI DI , K(0)+ + DI , KI = −KI 

µ µ µ µ (8.59) 

Let us assume that 
Z 

DI (t) = 
√ 

dd x −gV(t, x) (8.60) 
AdS 

where we have included the t dependence to emphasize that the integral is a spatial integral at some 
fixed time t. In the interaction picture, the time evolution of V is given by 

∂tV(t, x) = −i[D(0), V(t, x)] (8.61) 

20Note that in the case of AdS3 in the presence of gravity, we have more symmetries than just the AdS3 isometries, 
but this more subtle point can only be seen by studying the asymptotic symmetry group of the spacetime. 
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So now let us look at the commutator of Kµ 
(0) 
with DI . We worked these generators out explicitly 

for AdS3, so specializing to that case note that 
Z � � 

sin ρ 1(0) −it±iθ[K± , D
I ] = −i d2 x e sin ρ∂t + i cos ρ∂ρ   ∂θ V(t, ρ, θ) (8.62) 

cos3 ρ sin ρ 

We can replace the first term with the commutator, while integrating the last two terms by parts 
gives 

Z √ � �(0) 
[D(0)[K± , D

I ] = − d2 x −g sin ρ e−it±iθ , V(t, x)] + V(t, x) (8.63) 

This means that if we define 
Z 

K± 
I = d2 x 

√−g sin ρ e−it±iθV(t, x) (8.64) 

then we will satisfy the desired commutation relations if the term [DI , Kµ
I ] vanishes. This will be 

possible if 

[V(t, x), V(t, y)] = 0 (8.65) 

This is the condition we wanted to derive – we can preserve the conformal symmetry if the interaction 
density commutes with itself outside the lightcone. Weinberg derived precisely this condition in order 
to ensure the Poincaré invariance of the flat spacetime S-Matrix; here we see that it is necessary 
to preserve the conformal invariance of a theory living in AdS spacetime. The same condition is 
sufficient to preserve the interacting commutators of the Pµ generators. 

8.4.3 Effective Conformal Theory and the Breakdown of AdS EFT 

Thus far we have been talking about quantum field theory in AdS as though it is immutable and UV 
complete. However, in most cases21 it is more sensible to view QFT as an effective field theory that 
breaks down at an energy scale Λ, or (more physically) at a short-distance scale 1/Λ. So it becomes 
natural to ask how the cutoff scale Λ in AdS translates to the CFT. Roughly speaking, one gets the 
answer immediately by noting that an AdS energy scale Λ is an eigenvalue of the AdS Hamiltonian 
D, so it must translate into a dimension ΛRAdS in the CFT. An AdS field theory with a UV cutoff 
Λ corresponds to a CFT where we only keep states and operators with dimension Δ < ΔΛ with 
ΔΛ = ΛRAdS. 

As a more detailed comment – to discuss EFT in an invariant way, we would like to talk about 
integrating out states with large invariant mass. This means that if we have some AdS/CFT state 
|ψi and some AdS operator that creates it, then we have a wavefunction 

rAdS 
2 h0|ΦAdS (X)|ψi ∝ M2h0|ΦAdS (X)|ψi (8.66) 

21In the case of AdS/CFT this is always true, because once we involve gravity the QFT description can only be an 
approximation. 

81 



But the rAdS 
2 operator is just a combination of conformal generators, in fact it is the conformal 

Casimir operator 

2 = D2 rAdS +
1
(K · P + P · K) + Mµν M

µν (8.67)
2 

and so states of definite invariant mass have definite conformal Casimir, where the eigenvalues of 
this operator are M2 = Δ(Δ − d) + `(` + d − 2) for general spins. So integrating out the high mass 
states means integrating out operators/states with large conformal Casimir. Since single particles 
typically have small spin, large Casimir naturally corresponds to large dimension Δ. 
We know from experience that EFTs neglecting higher dimension operators are a good systematic 

approximation for lower-energy physics. This translates into the statement that corrections to 
correlators involving operators of dimension Δ from neglected higher dimension effects should be 
suppressed by powers of Δ/ΔΛ. In fact, some recent results show that the approximation can be 
even better than this. For example, consider the conformal partial wave expansion of a correlator 

ΔΛX1 hφ(x1)φ(x2)φ(x3)φ(x4)i = λΔ
2 
,`gΔ,`(u, v) (8.68)

(x13)2Δ(x24)2Δ 
Δ,` 

where instead of summing over all Δ, `, we have restricted the sum to Δ < ΔΛ. One can prove 
[14] that in the Euclidean region this results in an exponentially good approximation to the CFT 
correlator. This is better than one might have expected from effective field theory in AdS, where 
corrections are generally power-laws. The reason it is better is that we are assuming that the OPE 
coefficients and operator dimensions are exactly correct for Δ < ΔΛ, and that all corrections come 
from dropping the conformal partial waves with larger dimension. In an EFT description we do not 
simply leave out the states with large energy – we also miss power-law corrections to the low-energy 
states. This is (most-likely) why dropping high dimension partial waves gives a better approximation 
than one might guess from EFT. 
One can see AdS EFT directly by studying theories with massive particles, moving the cutoff, 

and integrating these heavy states out. Then the CFT correlators, OPE coefficients, and anomalous 
dimensions can be matched between the high-energy and low-energy description. This analysis was 
carried out explicitly in [10]. 

8.5 Gravitational Interactions in AdS3 

We studied a λφ4 interaction in the previous sections. Unfortunately, studying even that simple 
interaction required an involved calculation in AdS resulting in a not-very-illuminating special 
function. To get more intuition, let us study an important example that’s also soluble – gravitational 
interactions between a heavy source and a light probe in AdS3. 
We will be studying a 4-pt correlator of two CFT2 operators OH and OL, which we write as 

hOH (∞)OL(1)OL(z, z̄)OH (0)i (8.69) 

Conceptually, we will be computing the effects pictured in figure 11. But instead of using Feynman 
diagrams, we will simplify the calculation in a series of steps. 
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OH(0)

OH(1)

OL(1)

OL(z)

Figure 11: This figure provides a suggestive depiction of how graviton exchanges in AdS build up 
the classical field experienced by a light probe. 

First of all, note that |OH (0)i and hOH (∞)| correspond to primary states, which means that 
they represent an object at rest in the center of global AdS. So we can interpet our calculation as the 
evaluation of the OL(1)OL(z) 2-pt correlator in a background determined by OH . We are allowing 
OH and OL to interact gravitationally, but that just means that OH will create a gravitational field, 
and then the AdS dual of OL will move in that non-trivial field. In other words, we can compute 
the correlator by solving for the gravitational field created by OH , and then solving for the 2-pt 
function of OL in that perturbed geometry. 
There are many strategies that we can use for the second step, where we compute OL(1)OL(z) 

in the gravitational background. One method would be to quantize a field φL(X) in the appropriate 
geometry, compute its 2-pt correlator, and then extrapolate to the boundary. But since we are 
treating φL as a free field, its 2-pt correlator is simply the solution to a differential equation 

r 2K(X, Y ) = δd+1(X − Y ) (8.70) 

So a natural method is to just solve this equation in the appropriate geometry, taking care of the 
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boundary conditions. Then the correlator will just be (we re-labeled OL → O) 

K(z, ρX (�); 1, ρY (�))hOH (∞)O(1)O(z)OH (0)i = lim (8.71)
�2Δ�→0 

Another method follows from the fact that we are neither creating nor destroying φ particles, so we 
can use a first quantized action for φ. As we discussed for the pure AdS case, the first quantized R 
action is just m dτ , the mass times the proper time in the particle’s frame. In the semi-classical 
limit that ΔL ∼ (mRAdS ) � 1 the correlator will be dominated by a saddle point, giving 

−mS[z,1]hOH (∞)O(1)O(z, z̄)OH (0)i = e (8.72) 

where S[z, 1] is the length of a geodesic stretching through the bulk from the boundary points z and 
1. Thus the computation of the correlator can be reduced to that of a geodesic in the background 
created by OH . 
Let’s proceed with the calculation; we will first find the background, and then we will just 

compute K(X, Y ) by using the method of images. The state |OH (0)i has an AdS wavefunction 
centered on the origin. It will give rise to a spherically symmetric vacuum solution of Einstein’s 
equations, the AdS-Schwarzschild solution. In AdS3 this is simply 

� � dr2 

ds2 = − r 2 + 1 − µ dt2 + + r 2dφ2 (8.73) 
r2 + 1 − µ 

where the case µ = 0 corresponds to the AdS vacuum. We can write 

ΔH 24hH 
µ = 8GN MH = 12 = (8.74) 

c c 

where c is the central charge of the dual 2d CFT and ΔH is the dimension of OH . We will discuss 
central charges like c and their relationship with gravity in later sections; for now it’s enough to 
know that c sets the strength of AdS3 gravity via c = 

2G 
3 
N 
. 

Note that for µ > 1 the geometry changes dramatically, as there is an event horizon at r2 = 
µ − 1 ≡ r+

2 . This geometry represents a BTZ black hole. In the case µ < 1 there is a deficit angle 
in φ; this can be seen by studying the spatial geometry in the vicinity of r = 0, where there is a 
conical singularity. 
Now we need to compute the correlators in this background. It turns out that locally the BTZ 

metric is just AdS3; it only differs from BTZ by global identifications. This means that it can be 
computed via the method of images. Furthermore, the metric and the relevant results are analytic 
functions r+ or equivalently, µ. For µ < 1 we can re-write the metric as 

� � dr2 

ds2 = −(1 − µ) r 2 + 1 dt2 + + (1 − µ)r 2dφ2 (8.75) 
r2 + 1 
√ 

which makes it manifest that the deficit angle is 1 − µ. Thus we can convert from AdS3 to the 
deficit angle background by using the method of images. This works just as in electromagnetism – 
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we take the free field propagator and add shifted copies of it to itself in order to guarantee that we 
have smooth boundary conditions. 
In fact, we can write the entire BTZ geometry in terms of the hyperoloid coordinates XAX

A = 1, 
by making the identification 

2πr+ (X3 ± X2)X3 ± X2 ∼ e (8.76) 

where we identify our friendly XA with the usual coordinates via 

r 
X3 ± X2 = e ±r+φ (8.77) 

r+√ 
r2 − r+2 

X1 ± X0 = e ±r+t 
r+ 

The limit of pure AdS3 is just r+ = i. Deficit angle metrics have 0 < −ir+ < 1 while real r+ 

corresponds to BTZ. So the propagators are obtained by adding images in order to ensure continuity 
across these identifications. The result for the bulk-to-boundary correlator (from hep-th/0212277) is 

∞X 1 
K(X, b) = � (8.78)√ �Δ 

r2−r2 
n=−∞ − + rcosh(r+δt) + cosh(r+(δφ + 2πn))

r+ r+ 

X 

where X is in the bulk and b is a boundary point, and the sum on n fixes the boundary conditions. 
We want to compute the CFT 2-pt correlator, which comes from the r →∞ limit of this bulk 

correlator, after a rescaling by r2h . In fact, that’s not quite what we want, because we would like to 
study the correlator on the plane, not on the cylinder, and so we also need to multiply by an overall 

−Δτfactor of e . The result is 
∞ Δτe hO(τ, φ)O(0, 0)iBT Z = (8.79) 

n=−∞ (cosh(r+(φ + 2πn)) − cos(r+τ))
Δ 

where we switched to τ = it, the Euclidean time. We also assumed that the operator is a scalar so 
¯that h = h = Δ/2. Now we see that the sum over images simply guarantees that the correlator will 

be periodic in φ. You should also note that the Hawking temperature is 
q 

X 

24hH − 1r+ c 
TH = = (8.80)

2π 2π 

as can seen via the periodicity in Euclidean time. 
We would like to expand this correlator in the O(z)O(0) OPE channel in order to understand 

which operators are being exchanged between O and the heavy operator that has created the black 
hole. For this purpose it’s useful for write 

∞ Δτe hO(τ, φ)O(0, 0)iBT Z = 
Δ (8.81) 

n=−∞ (2 sin (πTH (τ + iφ + 2πin)) sin (πTH (τ − iφ − 2πin))) 
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Now we can write 

−τ +iφ −τ −iφ1 − z = e , 1 − z̄ = e (8.82) 

to translate this into z, z̄  coordinates, where we used 1 − z so that z → 0 corresponds with the OPE 
limit. Note that now each term has an independent z and z̄  dependence, so to understand the OPE 
it suffices to look at 

−h log(1−z)e 
2h (8.83) 

[sin (πTH (log(1 − z) + 2πin))] 

where for convenience we write Δ = 2h. The cases where n = 0 and n =6 0 are very different. The 
series expansions are 

� � 
1 h � � 

2 
2h 1 + 4π2TH 

2 + 1 z + · · · (8.84) 
(πTH z) 12 

for the n = 0 case versus 

1 � � � � 
� �h 1 + hz − 4πhzTH cot 2π

2inTH + · · · (8.85) 
sin2 (2π2niTH ) 

for the n 6= 0 case. Note that final term cancels between n and −n when we sum, so that we would 
be left with 1 + hz + · · · as an overall coefficient. 
We see that there is a clear physical distinction between the two cases. When n = 0, we have a 

singularity 
z 
1 
Δ , signalling the presence of the 1 operator in the O(z)O(0) OPE. The first correction, 

at order z, vanishes, because identity does not have any global conformal descendants, and the 
probe operator O and the black hole do not exchange any fields of dimension 1. However, there is a 
contribution at order z2 , which corresponds to the exchange of one graviton, ie the stress tensor 
quasi-primary state T (0)|0i, between the black hole and the light probe. As expected, the graviton 
has dimension 2 in a CFT2. Also note that 

h � � 2hhH
4π2TH 

2 + 1 = (8.86)
12 c 

which is what we would expect from the various OPEs – the graviton couples to the product of h 
and hH , divided by c/2. Further multigraviton states can be seen if we expand the n = 0 case to 
higher orders. 
In contrast, the n 6= 0 terms begin with a constant – they are not singular in the OPE limit. 

This means that they involve the exchange of operators of dimension 2Δ. These are precisely the 
‘double-trace’ primary operators O2 that we discovered when we studied generalized free theories. 
These operators have descendants, and so we have corrections at every integer order zk . In particular, 
notice that ratio of coefficients between the order z term and the order 1 term is h, which is 
exactly what we should expect from the ratio of first descendant and primary for an operator with 
holomorphic dimensio 2h, ie for O2 . 
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Furthermore, if we looked at higher orders we could also identify other operators corresponding 
to 2-particle states in AdS3, such as O∂2O etc. Matching to the (global) conformal block expansion 
in this channel would allow us to identify the OPE coefficients of general O∂kO primary operators 
with the operator OH that creates and destroys the black hole. We would also find the contributions 
from operators like OOT , OOTT , O∂rOT∂sT , etc involving two O particles accompanied by any 
number of gravitons. 

9 On the Existence of Local Currents Jµ and Tµν 

When we first learn QFT (or perhaps just classical mechanics), one of the earliest lessons is the 
beautiful and important Noether’s theorem, which connects symmetries to conservation laws. When 
we have a Lagrangian description, Noether’s theorem allows us to connect three different ideas: 

1. the existence of a symmetry of the theory 

2. the existence of a local current Jµ(x) (so called because it depends on a point in spacetime, 
and because we usually implicitly assume that it is insensitive to very distant physics) that is 
conserved, so that ∂µJµ(x) = 0 

3. the existence of a charge (no spacetime dependence) Q that measures the conserved quantity R 
associated with the symmetry; if Jµ and Q both exist then we can usually write Q = d3xJ0(x) 

Global symmetry currents Jµ and the stress-energy tensor Tµν form an extremely important class of 
operators in CFTs. As we mentioned above, conventionally CFTs are defined to have a conserved 
Tµν , although one can study ‘CTs’ or ‘almost-CFTs’ that have all the other features of a CFT. So 
let us discuss these operators in more detail in order to understand their physical properties and to 
see why they play such an important role. In particular, we will discuss 

1. The difference between a simple conserved charge Q versus a local symmetry current. It is 
possible to have Jµ without Q or a charge Q without a corresponding Jµ. 

2. How local currents such as Jµ(x) and Tµν (x) generate symmetry transformations that produce 
new states, thereby telling us something about the Hilbert space of the theory. 

3. The fact that when we gauge local symmetries, we identify all these different states, thereby 
‘mod-ing out’ by the symmetry. Gauge symmetries are really redundancies of the description. 

Although we will discuss physics quantum mechanically in this section, all of our statements also 
pertain to the classical phase space of classical theories, and in fact might be more natural and 
elementary in that context. 
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9.1 An SU(2) Example 

To understand these issues very concretely, let’s study a very simple free theory of a pair of complex 
bosons, (Φ1, Φ2) with an SU(2) symmetry. The action is just 

Z 2 � �X
S = dd x ∂µΦ

† 
i ∂

µΦi − m 2Φ† i Φi (9.1) 
i=1 

where i = 1, 2. The local conserved current associated to this SU(2) global symmetry is the operator 
� � 

Jµ(x) = iσij Φ†(x)∂µΦj (x) − ∂µΦ†(x)Φj(x) (9.2)a a i i 

where σa
ij are the SU(2) generators (Pauli matrices). Let’s check that it is conserved 

� � 
∂µJa

µ(x) = iσa
ij ∂µΦ

†(x)∂µΦj (x) + Φ
†(x)∂µ∂

µΦj (x) − ∂µ∂
µΦ†(x)Φj (x) − ∂µΦ†(x)∂µΦj (x)i i i i 

= iσa
ij m 2(Φ† i (x)Φj (x) − Φi 

†(x)Φj (x)) = 0 (9.3) 

Note that the momentum conjugate to Φi is 

δL †˙Πi(x) ≡ = Φi (9.4)
δΦ̇ i 

so that the time component of the current can also be written as 
� � 

J0(x) = iσij Φ†(x)Π†(x) − Πi(x)Φj (x) (9.5)a a i j 

This means that the commutators of Ja 
0(x) can be computed easily using the canonical commutation 

relations, giving 

y)σij[Ja 
0(t, x), Φi(t, y)] = iδd−1(~x − ~ a Φj (t, x) (9.6) 

so as we would expect, the current locally rotates the Φi field in SU(2) space. We can measure a 
total charge using the integrated quantity 

Z 
Qa = dd−1xJa 

0(x) (9.7) 

and note that it is time-independent using the conservation of Ja
µ and the vanishing of fields at 

infinity. 
Although Qa can be used to measure the total charge (in this case, an SU(2) representation) 

associated with a given state, it always adds up the contribution of the entire universe. This severely 
limits the utility of Qa by itself. 
However, the local current Ja

µ is much more powerful, because we can use it to turn one state 
into another. The point is that we can smear J0 over a small region surrounding some isolated 
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sub-system, so that it only transforms that sub-system, but leaves the rest of the universe alone. 
When you pick up an object and spin it around, you are (in some sense) taking advantage of the 
existence of local translation and rotation currents. We will come back to this point directly below 
when we discuss Tµν , but for now let us stick with our SU(2) current. 

For example, say we have a state |ΨK icomposed of K well-separated Φ1 particles, located around 
x1, x2, · · · xK . Then we can immediately construct an SU(2) matrix operator Ra via 

� Z � 
Rij (t) = exp i

π 
dd−1yJ1

0(t, y)σ1 (9.8)
2 Bi⊃xi 

where the region Bi is some compact ball containing only the ith particle, and σ1 is the 1th or xth 
Pauli matrix (chosen as a random eaxmple). Note that [Rij(t), Rkl(t)] = 0 since they are compactly 
supported away from each other. Acting with Rij on the state |ψK i will take the ith particle from 
(1, 0) to (0, 1), but leave the others alone. In other words, out of the state |ΨK i with all the bosons 
in the (1, 0) configuration, we can generate all SU(2) configurations for the isolated bosons! This 
obviously would not be possible with only the global charge Qa. Note that if we had only studied 
an abelian current then all we could do is multiply the state with a phase, which is rather boring – 
this is why we chose an SU(2) current as our example. 
An important feature of Rij is that it takes eigenstates of the Hamiltonian to other eigenstates. 

In other words, it guarantees that if a particle in the (1, 0) state is an eigenstate, then (0, 1) is 
an eigenstate as well. The conservation of Ja

µ is crucial for this, because it means that the time 
derivative of the Ri is 

Z 
∂tRij = Rij 

iπ 
dd−1y∂tJ1

0(y)σ1 

2 Bi⊃xiZ 
iπ 

= Rij dd−1y∂j J1 
j (y)σ1 

2 Bi⊃xiZ 
iπ 

dd−2 j= Rij s n̂j J1 (s)σ
1 (9.9)

2 ∂Bi 

and this last quantity vanishes when it acts on a state where the particles are well-separated, because 
the current will vanish on the surface of the ball Bi. This means that operators like Rij are the 
exponential of local charges that are conserved in states where the particles are well-separated. 

9.2 A Very Special Current – Tµν 

The conserved energy-momentum tensor Tµν plays a special role because it generates the spacetime 
symmetry transformations, including the conformal transformations in CFTs. 
To understand more concretely what we can do with Tµν (x), let’s revisit the ultra-familiar 

symmetry of rotations in the case of a free QFT. If we take a free φ field in 2 + 1 dimensions, we 
have the action 

Z 
1 � � 

2φ2S = dtdrrdθ (∂φ)2 − m (9.10)
2 

89 



In these specially chosen coordinates, rotations are just φ → φ + �∂θφ, and we find that the 0 
component of the current is Tθ 

0 = rφ∂˙ θφ. Note that since the canonical conjugate to φ is π(x) = φ̇(x), 
we can also write this as 

T 0 
θ (t, x) = r∂θφ(t, x)π(t, x) (9.11) 

so that it’s clear what the commutation relations of Tθ 
0(x) are with φ(y), namely 

[Tθ 
0(t, x), φ(t, y)] = iδ2(x − y) [r∂θφ(t, x)] (9.12) 

so clearly Tθ 
0 generates rotations, as desired. The global charge is 

Z 
Q = drdθ rφ∂˙ θφ (9.13) 

However, this charge simply rotates the entire universe. So it isn’t very useful physically – we cannot 
observe that we have rotated the entire universe. 
Fortunately, we can make a local version using Tθ

µ . Using a radius dependent function η(r), we 
can now consider the rotation operator 

Z 
˙R[η] = drdθ η(r)(rφ∂θφ) (9.14) 

As an example, we might have a gas of particles well-inside some sphere of radius R, along with 
some far away gas. So if we choose η(r) = Θ(R − r) then we have a rotation that turns off at R – 
we are just rotating the region inside the sphere while holding the outside universe constant. 
We would now like to check that by performing this transformation we have not changed the 

energy of our state. Since ∂µJµ = 0, we see that 
Z 

∂tR[η] = i [H, Q[η]] = drdθ η(r)∂iJ
i(r, θ) 

Z 
= drdθ [∂rη(r)] J

r(r, θ) 
Z 

= dθ Jr(R, θ) (9.15) 

where the last line follows because the r-derivative of η(r) is simply a delta function. But this 
result makes a lot of sense – we see that R[η] is time independent, and therefore commutes with the 
Hamiltonian, as long as we are working in a state where Jr doesn’t see any particles at the surface 
of the sphere. So we can rotate everything inside a ball separately from the rest of the universe and 
obtain an equivalent but new state as long as there aren’t any particles on the surface of the ball. 
So this is just a spacetime version of the SU(2) operator we defined in equation (9.8). Instead of 

performing an internal SU(2) rotation on everything within a ball, it performs a spacetime rotation 
on the contents of the ball, creating a physically distinct state in the Hilbert space. 
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9.3 Separating Q and Jµ – Spontaneous Breaking and Gauging 

We mentioned above that there are situations where a current Jµ exists but Q does not. This can 
happen when the integral defining Q is not well-defined, because it doesn’t converge in infinite volume. 
A very physically important example of this phenomenon is when the symmetry is spontaneously 
broken. In that case the current Jµ still exists and is conserved, so ∂µJµ = 0, however Jµ does not 
annihilate the vacuum: 

Jµ(x)|0i = |πJµ(x)i 6= 0 (9.16) 

This makes it obvious that if we try to integrate over all of (an infinite) spacetime, the result will 
be ill-defined, assuming we have not also broken translational symmetry. This state |πJµ(x)i is a 
one-goldstone boson state. A more physical state is 

Z 
pµ 

dd−1 ip·xJµ√ |πpi = x e (x)|0i (9.17)
Fπ 2p0 

and up to a normalizaiton, this is just a state consisting of a single goldstone boson with momentum 
p~. The non-existence of Q corresponds with the fact that a goldstone boson state with p~ = 0 is not 
normalizable. Note that current conservation implies that 

Z −ipµpµ 

Fπ 
|πpi = dd−1 ip·x∂µJµx e (x)|0i = 0 (9.18) 

so that we must have 

p 2 = 0 (9.19) 

for a one-goldstone boson state. In other words, we learn that goldstone bosons must be massless. 
This basically shows that Jµ(x) acts on the vacuum to create a one-particle state, so goldstone 
bosons really are single particles. One can read more about all of this in Weinberg V2 [13]. 
There are also situations where Q exists but Jµ does not. The example that is most relevant 

for these notes is the ‘CT’ dual22 of non-gravitational d + 1 dimensional field theories in AdS. In 
these d-dimensional boundary theories we have global symmetry charges associated with the full 
conformal group, enlarging the Poincaré generators, but these do not arise from the integral of a 
local current (these local currents would be made out of Tµν if it existed, but it does not). 
An alternate way to have a charge Q without Jµ is to ‘gauge’ the symmetry corresponding to Jµ. 

This means that we identify all of the states related by the action of Jµ, turning the symmetry into 
a redundancy and eliminating many degrees of freedom. To be precise, in a gauge theory the various 
states related by the action of operators such as the Ri of equation (9.8) would all be viewed as the 
same state. As an example where degrees of freedom really are eliminated from a low-energy theory, 
consider a complex field 

iθ(x)φ(x) = (v + h(x))e (9.20) 

22A theory with conformal symmetry but not a ‘Field Theory’. 
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If v 6= 0 then θ(x) is a true goldstone boson degree of freedom. However, if we gauge the symmetry 
under which θ(x) → θ(x) + �, then we elimnate this degree of freedom, as it is ‘eaten’ by the abelian 
gauge field Aµ(x). 
In the case of gravity, when we gauge spacetime symmetries we remove local spacetime observables 

from the exact quantum mechanical theory; the only well-defined observables are ‘holographic’ – 
they are associated with infinity. Let us be a bit more precise about this. The energy-momentum 
tensor Tµν is really the current for the d different charges Pµ, which correspond to translations (not 
rotations, or dilatations and special conformal transformations – these are associated with currents 
like xν Tµν ). When we place a theory with energy-momentum tensor Tµν in a dynamical spacetime, 
we are therefore gauging, or redundantly identifying, the spacetime translations. Local translations 
occur when one object in spacetime moves with respect to another object. In general relativity, 
distances between objects are gauged, although obviously just as with spin one gauge theories, the 
gravitational field also changes under these gauge transformations (diffeomorphisms). 
These ideas see a concrete realization when one studies membranes (or actually just particles) in 

spacetime. Particles, strings, and membranes can all be thought of as objects that spontaneously 
break translation symmetry! If we have a d − 1 dimensional membrane in d-dimensional spacetime, 
then we can parameterize it using a goldstone boson field 

πd(t, x1, · · · , xd−1) (9.21) 

that tells us that the spacetime position of the membrane is (t, x1, · · · , xd−1, πd). There is a universal 
low-energy action for πµ called the DBI action 

Z p
dd−1T x 1 − ∂µπd∂µπd (9.22) 

which just measures the world-volume of the membrane. The parameter T is the tension of the 
membrane. But the interesting point for us is that when we turn on gravity, thereby ‘gauging’ the 
translation symmetry, the goldstone boson πd gets ‘eaten’ by the gravitational field, just like a 
standard goldstone boson in a spin one gauge theory. How do we see this? Actually, it’s trivial – we 
can always just choose a spacetime coordinate system built on top of the membrane so that the 
membrane is at πd = 0 by definition. With this gauge choice, obviously the membrane fluctations 
have been absorbed into fluctuations of the spacetime metric! 
These statements are also directly related to the well-known Weinberg-Witten theorem [15], 

which says that theories with massless spin-1 particles cannot have an associated conserved current, 
and that theories with massless spin 2 particles cannot have a conserved stress-energy tensor 
transforming appropriately under spacetime symmetries. The point with this theorem is that 
gauging the symmetry in order to include a spin one or spin two massless particle necssarily alters 
the Poincaré transformation properties of the associated current. 
The statement that gauge theories have fewer degrees of freedom may seem counter-intuitive, 

because the gauge theories we usually study have more degrees of freedom – either additional gauge 
bosons or gravitons (viewing gravity as a gauging of the spacetime symmetries). Essentially, this is 
the case because we need to introduce a fluctuating gauge field Aµ or gravitational field gµν in order 
to identify states related by symmetry without sacrificing locality. 
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Finally, we should mention that in the case of theories such as QED and non-abelian gauge 
theories, the existence of Q without Jµ is fairly trivial (sometimes physicists simply neglect its 
existence entirely). The reason is that this global charge is conserved, so once the universe exists 
in an eigenstate of Q the eigenvalue can never change. Thus we can view universes with different 
values of Q as different super-selection sectors, or as different theories entirely – they can never ‘talk 
to each other’. Also, in theories such as Yang-Mills or QCD where charge is confined, a non-zero 
charged state in an infinite spacetime would have infinite energy, so if we are only interested in finite 
energy states, then we must always have Q = 0, rendering Q completely trivial. 

10 Universal Long-Range Forces in AdS and CFT Currents 

The central point of this section is that spin one gauge fields Aa in AdS are dual to spin one conserved 
currents Jµ in the CFT, while the spin two graviton in AdS is dual to the spin two energy momentum 
tensor Tµν of the CFT. So we will begin by explaining how this correspondence works. Then our 
major theme will be that the universality of the interactions of gauge bosons and gravitons in AdS 
translates into the universality of the correlators of Jµ and Tµν in the CFT, due to Ward identities. 
Some of the ideas from the previous section can be stated more formally in terms of Ward 

identities for conserved currents in CFTs. We will derive these CFT identities and then we will 
explain how they relate to the universality of long-range forces in AdS. 

10.1 CFT Currents and Higher Spin Fields in AdS 

Before we discuss symmetries and dynamics, let us note a few kinematic features of conserved 
currents in CFTs and massless particles in AdS. The basic point will be to note how the counting 
of degrees of freedom match between AdS and the CFT. This is essentially a quick version of the 
analysis we went through in the first several sections of these notes for a scalar particle, where we 
showed that one-particle scalar states in AdS correspond to the states created by O(0) acting on 
the AdS/CFT vacuum. Here the point is that Jµ(0)|0i corresponds to a vector particle in AdS 
in its ground state, while Tµν (0)|0i corresponds to a spin two particle in AdS in the ground state. 
Conservation of the currents corresponds to massless particles in AdS, which have fewer degrees of 
freedom due to a gauge redundancy. If the AdS theory is free (corresponding to coupling g = 0 or 
GN = 0) then we just have Gaussian correlators for Jµ or Tµν . Let us give a quick explanation of 
some of these statements. 
Conserved currents satisfy 

∂ν Jνµ2···µ` = 0 or [P ν , Jνµ2···µ` ] = 0 (10.1) 

We will assume that these are symmetric traceless tensors. At the level of the CFT states we have 

P ν Jνµ2···µ` |0i = 0 (10.2) 

In other words, this descendant state and all others that normally would have followed from further 
applications of P µ vanish. This means that a large number of states that would have been present 
for a current that wasn’t conserved have been eliminated from the Hilbert space of the theory. 

93 



For a spin 1 current Jµ, we have d − 1 independent primary DoFs, where we are comparing 
to the case of a scalar operator with 1 DoF. For a traceless spin 2 current Tµν , we naively have 
d(d + 1)/2 − 1 degrees of freedom, but another d are eliminated by the conservation condition, 
leaving us with only d(d − 1)/2 − 1 DoFs. Similar counts can be applied to higher spin currents. 
A simple calculation determines that Δ = d − 2 + ` for conserved currents. This is the CFT 

scaling dimension of a massless spin ` field in AdS. Our prior derivation of the unitarity bound 
proves that if Δ = d − 2 + ̀  then the current must be conserved. For the converse, note that since J 
is primary we have 

0 = [Kα, [Pβ , Jµ1···µ` ]] + [Jµ1···µ` , [Kα, Pβ ]] X 
= [Kα, [Pβ , Jµ1···µ` ]] + 2ΔJ Jµ1···µ` ηαβ + 2 ηαµi Jµ1···β···µ` − ηβµi Jµ1···α···µ` (10.3) 

i 

Now if we take the trace via ηβµ1 then the first commutator term vanishes by conservation, giving 

0 = ΔJ Jαµ2···µ` − (d + ` − 2)Jαµ2···µ` (10.4) 

where the −2 comes from one missing term when i = 1 and a single non-vanishing contribution from 
the first term in the summand, also when i = 1. So we have shown that ΔJ = d − 2 + `. 
The point of these observations is that they agree with the DoF counting for massless fields with 

spin – specifically, a massless gauge boson AA in AdSd+1 containts the same degrees of freedom as 
a conserved current Jµ in a CFTd, and a massless graviton hAB in AdSd+1 has the same degrees 
of freedom as the stress-energy tensor Tµν in a CFTd. In the case of gravitons and gauge bosons, 
the extra degrees of freedom between the massive and massless case are eliminated by the gauge 
redundancy of either a gauge theory with Lie Group symmetry or the diffeomorphism redundancy of 
General Relativity. So to summarize, conserved spin ` CFT currents are dual to massless AdS fields 
of spin ` whose description necessarily involves extra redundancy in order to eliminate unphysical 
degrees of freedom. 
Now let us see more explicitly how the mapping works for a simple example. Chapter 7 of 

Raman’s notes [8] also give a nice discussion. First consider a free massive spin one boson with 
action 

Z � � √ 1 1 
dd+1XS = − −g FABF AB + m 2AB A

B (10.5)
4 2AdS 

where FAB = rAAB −rB AA as usual, and indices are raised and lower with the AdS metric. This 
theory does not have a gauge symmetry. Alternatively, one can view this as a gauge theory that has 
been higgsed and written in unitarity gauge. 
However, as in any theory where the kinetic term comes from F 2 , the component A0 does not 

have a kinetic term (there is no term of the form ∂tA0 anywhere in the action). This means that A0 

is non-dynamical, so we can use its equations of motion to eliminate it, after which point we will 
have d + 1 − 1 = d separate degrees of freedom. Concretely, the AB field can create d distinct states 
corresponding to a single particle at rest; these are the d states created by a general current Jµ(0) in 
the CFT when it acts on the CFT vacuum. 
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The equation of motion for AB is 

r M FMN − m 2AN = 0 (10.6) 

as usual. In the Poincaré patch coordinates for e.g. AdS5 from the equations of motion we obtain 
� � 

Aµz 3∂z 
A 
3 
z 
= ∂µ (10.7) 

z 

so that if we wish we can express the Az component in terms of the others, instead of eliminating 
the A0 component as is conventional. Explicitly, we have 

Z z Aµ(x, w)3 ∂µ
Az(z, x) = z dw (10.8) 

w3 
0 

The utility of this method is that we can write 

Aµ(z, x)
lim 

Δ−1 
= Jµ(x) (10.9) 

z→0 z 

and so these components become the (not conserved) CFT current Jµ of dimension Δ. Note that 
to get a finite result we scale Aµ by its twist τ = Δ − `, not its dimension, as we approach the 
boundary. One can obtain similar results for massive tensor fields. But we also see what happened 
to Az. We have 

(z, xµ) ∂µAµ(z, xµ)
lim 

Az 
= lim = ∂ν Jν (xµ) (10.10) 

z→0 zΔ z→0 zΔ−1 

Az is a redundant degree of freedom which becomes the (also redundant) descendant operator ∂ν Jν 

in the CFT. 
Now let us consider the case of a massless gauge boson in AdS. In this case the action has the 

gauge redundancy under 

AM (X) → AM (X) + rM Λ(X) (10.11) 

for any scalar function Λ(X) on AdS. However, the field strength FMN is gauge invariant in the 
abelian case, and it transforms as an ordinary adjoint field in the non-abelian case. Thus we can use 
its components Fµz to directly define 

Fµz(z, x)
Jµ(x) = lim (10.12)

d−3z→0 z 

Note that here we have that τ = Δ − ` = d − 2, and we removed an additional power of z from the 
denominator in this definition because of the derivatives in Fµz. 
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Another natural way to obtain this result is to fix the gauge Az(z, x) = 0. There is a residual 
gauge symmetry – we can shift Aµ by ∂µΛ(x) independent of z – and so we can also take ∂µAµ = 0 
in the directions orthogonal to z. This immediately implies that if we take 

Jµ(x) = 
Fµz(z, x)

lim 
z→0 zd−3 

= 
∂zAµ(z, x) 

zd−3 

= 
Aµ(z, x) 

d−2z
(10.13) 

and furthermore that we will have ∂µJµ(x) = 0 from our residual gauge condition, so Jµ(x) will be a 
conserved current, as expected. 
A similar analysis applies to massive and massless linearized gravitational fields hMN in AdS. 

See Raman’s notes [8] for the details. 

10.2 CFT Ward Identities and Universal OPE Coefficients 

Ward identities are a formal consequence of symmetries as applied to correlation functions in QFTs. 
They play an especially important role in CFTs because they give us a lot of information about the 
interactions of currents Jµ and especially the energy momentum tensor Tµν with other operators in 
the theory. In particular, Ward identities for the CFT currents 

hJµ(y)O1(x1)O2(x2)i and hTµν (y)O1(x1)O2(x2)i (10.14) 

directly relate to the universality of gauge and gravitational forces in AdS. 
The Ward identity states that 

X∂ hJµ(y)O1(x1)O2(x2) · · · (xn)i = −i 
n 

δd(y − xm)hO1(x1) · · · Om )] · · · On )iOn [Gm (xm (xn(10.15)
∂yµ 

m=1 

where Gm enacts (represents in the group theory sense) the symmetry transformation corresponding 
to Jµ on a given operator Om. If Om does not transform under this symmetry, then it does not 
contribute to the right hand side. Let us give the path integral derivation of this Ward identity for 
the conserved current Jµ(x). 
To derive the identity, consider the path integral computation of a correlator 

Z 
−S[φ]hO1(x1) · · · On(xn)i = [Dφ] O1(x1) · · · On(xn)e (10.16) 

where the operators Oi are some general operators in the theory with fields represented by φ. Now 
if we perform an infinitesimal symmetry transformation under which 

δ�Oi = −i�(x)GiOi (10.17) 
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then the action and the operators appearing within the path integral will both transform. By 
assumption, the action would be invariant if �(x) were a constant, and the measure of integration is 
invariant, so we must have 

Z R 
−S[φ]− ddx∂µJµ(x)�(x)hO1(x1) · · · On(xn)i = [Dφ] (1 + δ�) (O1(x1) · · · On(xn)) e (10.18) 

Expanding to first order in � tells us that 
Z 

hδ� (O1(x1) · · · On(xn))i = ddx �(x)∂µhJµ(x)O1(x1) · · · On(xn)i (10.19) 

In order for this identity to hold for any infinitesimal function �(x), we must have the Ward identity 
of equation (10.15). 
If it exists, the conserved charge associated with Jµ is 

Z 
Q = dd−1xJ0(t, x) (10.20) 

This charge will be time-independent because ∂µJµ = 0. We can also use the Ward identity to give 
a formal proof that 

[Q, Om] = −iGmOm (10.21) 

for Lorentzian correlators (where it is more obvious what ‘time’ means). For this purpose let 
Om(tm, xm) have tm distinct from the other ti in any n-pt correlator. Now let us take the Ward 
identity and integrate over the spatial y and between times ty ± � for an infinitesimal �. Let us 
choose m = 1 for convenience. This gives 

h[Q(t1 + �)O1(x1)] · · · On(xn)i − h[Q(t1 − �)O1(x1)] · · · On(xn)i = −ihG1O1(x1) · · · On(xn)i(10.22) 
Since these are Lorentzian correlators, analytically continued from Euclidean spacetime, they will be 
time ordered. Since the other operators appearing in the correlator were completely arbitrary, this 
identity can be interpreted as equation (10.21). 
Our proof of the Ward identity relied on a path integral for the CFT. One can also derive the 

Ward identity more directly from the CFT axioms [16, 17] by expanding the OPE of Jµ(x)Oi(0) 
and constraining the possible terms that appear using conformal invariance. 
Now let us consider the Ward identity for the correlator between an abelian spin one current and 

any number of operators. If we integrate the identity over all y, we find that the LHS vanishes, and 
so we must have that 

X 
qi = 0 (10.23) 

i 

for the correlator to be non-vanishing, where Gi = qi for an abelian current. This also follows from 
the fact that the vacuum is uncharged, so Q|0i = 0. If we apply the Ward identity to a non-vanishing 
3-pt correlator with the current, we see 

� � 
∂µhJµ(y)O(x1)O†(x2)i = −iq δd(y − x1)hO(x1)O†(x2)i − δd(y − x2)hO(x1)O†(x2)i (10.24) 
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Recall that 3-pt functions such as hJOO†i are completely determined by conformal invariance up 
to some overall constant. Once the operator O is normalized, the Ward identity completely fixes 
this constant to be the charge q of O. In other words, the Ward identity tells us that conserved 
currents must have a 3-pt coupling proportional to charge. Of course this 3-pt coupling also sets the 
OPE coefficient for the appearance of Jµ in the OPE of O(x)O†(0). The Ward identity is the CFT 
version of the statement that massless gauge bosons must couple to a conserved charge. 
Now let us consider the analogous statements for the energy momentum tensor Tµν . In this 

T µνcase we have the ‘obvious’ Ward identites associated with the conservation condition ∂µ = 0 
which give information about translations. However, there are also various non-obvious identities 
associated with rotations, dilatations, and special conformal transformations. The first also follows 
from conservation of T µν , but the latter are associated with the tracelessness condition Tµ

µ = 0. This 
is the conservation condition for the scale current 

Sµ(x) = x ν Tµν (10.25) 

We already know that D is the charge associated with the scale current, and so it acts as [D, O(x)] = 
−i(Δ + x · ∂x)O(x). Thus we see that 

T µν (y)O(x1)O†(x2)i∂µhSµ(y)O(x1)O†(x2)i = hTµµ(y)O(x1)O†(x2)i + hyν ∂µ� � 
= −iΔ δd(y − x1)hO(x1)O†(x2)i + δd(y − x2)hO(x1)O†(x2)i (10.26)� � 

−i δd(y − x1)x1 · ∂x1 hO(x1)O†(x2)i + δd(y − x2)x2 · ∂x2 hO(x1)O†(x2)i 

We see that the final term on the first line is equal to the terms on the last line – this identity is just 
the Ward identity for translations. This means that 

� � 
hTµµ(y)O(x1)O†(x2)i = −iΔ δd(y − x1)hO(x1)O†(x2)i + δd(y − x2)hO(x1)O†(x2)i (10.27) 

This identity immediately tells us that the 3-pt correlation function hTµν (y)O(x1)O†(x2)i has a 
universal coefficient proportional to Δ. Note that this 3-pt function exists for all primary operators in 
the theory, since Tµν generates the conformal transformations on all operators/states. This contrasts 
with the abelian current Jµ we considered above, which only acts on the sector of charged states. The 
Ward identity we have derived is the CFT version of the statement that gravity couples universally 
to energy-momentum, whose role is played here by the dimension-charge Δ. 
As a final comment, let us consider the 3-pt correlator 

hTµ1ν1 (x1)Tµ2ν2 (x2)Tµ3ν3 (x3)i (10.28) 

In general d this correlator can involve various tensor structures, and it needs to be normalized. It 
is natural to normalize the 2-pt function of Tµν via 

CThTαβ(x)Tµν (0)i = Iαβ,µν (x) (10.29) 
x2d 

with 

1 1 xaxb
Iαβ,µν (x) ≡ (IαµIβν + Iαν Iβµ) − ηαβ ηµν with Iab ≡ ηab − 2 (10.30)

22 d x 
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A natural normalization of Tµν occurs because various integrals of Tµν give the conformal generators; 
e.g. Pµ which must act on the conformal primaries in a specific way. This fixes CT , a central charge 
of the CFT. Roughly speaking, one can think of CT as counting the number of degrees of freedom of 
the theory. This follows intuitively because the direct product of two CFTs with central charges C1 

and C2 yields a new CFT with central charge C1 + C2, since the energy-momentum tensors in the 
two CFTs are decoupled. 
Once the energy-momentum tensor is normalized the coefficient of each tensor structure in its 

3-pt correlator gives dynamical information about the theory. Since all hTµν OO†i correlators must 
be proportional to ΔO, by looking at the universal energy-momentum 3-pt correlator we can fix 
the proportional constant once and for all for a given theory. For more details of this see [17]. This 
proportionality constant is the inverse square root of a central charge of the CFT. This central 
charge is proportional to a power of MplRAdS in the AdS theory. 
In general d there are several central charges, and they are more conventially discussed as 

coefficients of the expansion of the ‘trace anomaly’, which is hTµµi evaluated when the CFT is placed 
in a general curved spacetime. For example, in d = 4 we have 

c a � � a0 hT µi = WabcdW abcd − RabcdR
abcd − 4RabR

ab + R2 − r 2R (10.31)µ 16π2 16π2 16π2 

where the terms on the right hand side are various curvature tensors for the 4-d spacetime in which 
the CFT is living. Note that WabcdW abcd = RabcdR

abcd − 2RabR
ab + R2/4 is the square of the Weyl 

tensor, and the terms proportional to a are the 4-d Euler density. Also, the quantity a0 is scheme 
dependent, but both a and c are physically meaningful, and a is known to decrease under RG flows. 
These coefficients can also be computed directly from the 3-pt correlator of Tµν in flat spacetime, 
see [17]. In AdS5 theories where gravity has only an Einstein-Hilbert action term, it turns out that 
a = c, and so both are proportional to (M5RAdS)

3 , where M5 is the 5-d Planck scale. 

10.3 Ward Identites from AdS and Universality of Long-Range Forces 

In the previous section we saw how CFT Ward identities imply that conserved spin one currents 
must couple to conserved charges, while the stress-energy tensor must have couplings proportional 
to the dimension Δ. In both cases by a ‘coupling’ we meant the magnitude of the universal 3-pt 
correlators 

hJµ(y)O1(x1)O2(x2)i and hTµν (y)O1(x1)O2(x2)i (10.32) 

which also set the OPE coefficients for the appearance of Jµ and Tµν in the OPE of O1(x)O2(0). 
Note that these operators O1 and O2 were any operators in the theory, not just the operators dual 
to single-particle states in AdS. However, in the case where we have some AdS field theory involving 
a gauge boson Aµ or a graviton hµν coupling to some other field φ, we will have some linearized 
couplings in AdS of the schematic form 

Z Z √ p √ 
dd+1X dd+1Xq −g(φ†∂µφ − ∂µφ

†φ)Aµ or GN −g∂µφ∂ν φh
µν (10.33) 
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Figure 12: This figure illustrates the derivation of the Ward identity for a CFT current from Gauss’s 
Law in AdS. Taking the surface integral towards the boundary of AdS gives the integral form of the 
Ward Identity given in equation (10.34). 

If we compute the AdS correlator hφ(X1)φ(X2)Aµ(X3)i or hφ(X1)φ(X2)hµν (X3)i and then send 
Xi → Pi on the boundary of AdS as usual, then we will recover the 3-pt CFT correlators of a current 
or the stress-energy tensor from equation (10.32). The normalization of these 3-pt correlators will 
then either be the charge or the energy in Planck units, for Aµ and Tµν , respectively. 
Let us give a quick derivation/interpretation of the CFT Ward identity for a gauge field AM 

in AdS in order to better understand the physics. The Ward identity can be re-expressed as the 
statement that 

Z 
dd y 

∂y 
∂ 
µ 
hJµ(y)O1(x1)O2(x2) · · · On(xn)i = −ihO1(x1) · · · [GmOm(xm)] · · · On(xn)i (10.34) 

Bm 

where Bm is a d-dimensional ball containing the point xm and none of the others; we can make the 
ball Bm as small as we like. Now the left hand side can be re-expressed as a surface integral 

Z 
dd−1 sµhJµ(y)O1(x1)O2(x2) · · · On(xn)i = −ihO1(x1) · · · [GmOm(xm)] · · · On(xn)i (10.35) 

∂Bm 

where the normal to the surface of Bm is contracted with Jµ. Now let us use the definition of the 
current from the bulk gauge field, equation (10.13), to write this as 

Z 
3−d dd−1lim z sµhFµz(y, z)O1(x1) · · · On(xn)i = −ihO1(x1) · · · [GmOm(xm)] · · · On(xn)i(10.36) 

z→0 ∂Bm 
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Finally, let us interpret this equation by viewing all of the operators as z → 0 limits of bulk fields 
φi(x, z). In that case, the surface integral, pictured in figure 12, is just 

Z 
dd−1 sAE

A(s, z) = qm (10.37) 
∂Bm 

where the integral is being performed at fixed small z in AdS. This is the integral of the AdS ‘electric 
= F Azfield’ EA around the state created by the mth operator. The other particles/blobs/states are 

irrelevant because they are infinitely far away in the limit that z → 0. So the Ward identity in the 
CFT just corresponds to Gauss’s law in AdS! 
Now we will review an old argument of Weinberg that proves that in flat spacetime, massless 

spin one particles must couple to conserved charges while massless spin two particles must couple to 
energy-momentum. The argument also shows that higher-spin massless particles cannot couple in a 
way that would lead to long-range forces. This classic theorem goes a long way towards explaining 
why the spectrum of elementary particles we observe ends at the spin two graviton. The argument 
itself is independent of AdS/CFT, but it is probably the best general argument one can give in order 
to explain why massless spin one and spin two particles couple in a universal way at long distances. 
We begin by considering some scattering amplitude Mn(pi) for n particles in flat spacetime. 

Given this n-particle process, what is the amplitude for emitting an additional very soft photon with 
momentum q, so that q · pi � pj · pk? This question is of great importance because the exchange of 
particles with small energy and momentum is what leads to long-range forces. 
If the soft photon is emitted from any external line in the scattering amplitude then we find a 

contribution 

nX µempMn(pi) 
m �µ (10.38) 

pm · q − i� 
m=1 

where �µ is the polarization vector for the soft photon, and em is the coupling constant for the 
mth particle. One might also wonder if the photon can couple to vectors made from the spin of 
the mth particle, but this will also not give a pole as q → 0 since multipole moments cannot give 
long-distance effects. There will be other contributions from emission of the photon from internal 
parts of the diagram, but these will not have a pole as q → 0, so they will be subdominant in the 
soft limit. The soft emission amplitude is dominated by contributions from long time periods of 
order 1/q associated with the nearly free propagation of the initial and final state particles. 
The pole we have found literally corresponds to a sum over contributions of the form 

ZR 
iem dtn̂mAµ(x(t)) − 1 µe 

µ ≈ iem dt n̂mAµ(x(t)) + · · · 
Z 

iq·x(t)= iem � · n̂ dtê (10.39) 

which is just the amplitude for a charged particle to source an electromagnetic field, with x(t) = tn̂, 
because the action for such charged particle is just the integral of Aµẋµ(t) along the world-line of 
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the particle. This gives the contribution 

n ZX ∞ 
nm ·qem � · n̂m dteitˆ (10.40) 

0m=1 

where the integral over time proceeds from the scattering process out to infinity, and n̂m is a unit 
vector pointing in the direction of pm. Performing the integral gives the soft emission amplitude. 
Consider the Lorentz transformation properties of this scattering amplitude. In particular, note 

that the polarization tensor �µ for a massless particle does not transform as a vector, instead it 
transforms as 

�µ → Λµ
ν �ν + α(q, Λ)qµ (10.41) 

where α is some function. So in other words, the polarization tensor shifts by qµ under general 
Lorentz transformations. This means that to recover a Lorentz invariant S-Matrix we must have 

n nX µ XempMn(pi) 
m qµ = Mn(pi) em = 0 (10.42) 

pm · q − i� 
m=1 m=1 

The sum of the charges of the scattering particles must vanish. In other words, a massless spin one 
particle must couple to a conserved charge. 
Consider the Lorentz transformation properties of this object. In particular, note that the 

polarization tensor �µ for a massless particle does not transform as a vector, instead it transforms as 

�µ → Λνµ�ν + α(q, Λ)qµ (10.43) 

where α is some function. So in other words, the polarization tensor shifts by qµ under general 
Lorentz transformations. This means that to recover a Lorentz invariant S-Matrix we must have 

nn µX XempMn(pi) 
m qµ = Mn(pi) em = 0 (10.44) 

pm · q − i� 
m=1 m=1 

The sum of the charges of the scattering particles must vanish. In other words, a massless spin one 
particle must couple to a conserved charge. 
In the case of a massless spin two particle, the soft emission amplitude must be 

nX µ νpGmpm mMn(pi) �µν (10.45) 
pm · q − i� 

m=1 

where �µν is the polarization tensor of the graviton, and Gm are its coupling constants. The 
polarization tensor transforms as 

�µν → ΛαµΛν
β �αβ + αµqν + αν qµ (10.46) 
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and so in order to have a Lorentz invariant S-Matrix, we must have 

nX 
Gmpm

µ qµ = 0 (10.47) 
m=1 

But the only way this can be zero for all qµ without putting a restriction on the allowed momenta pµ 

for scattering is if Gm = G is a universal constant, so that the equation is satisfied due to momentum 
conservation. Thus a massless spin two particle must couple universally to energy-momentum. 
Repeating this argument for higher spin massless particles shows that they cannot couple in a way 
that will give rise to long-range forces, which necessarily involve propagators with poles in the soft 
q → 0 limit. 
As promised, we have shown that massless particles must couple to conserved charges or momenta, 

meaning that they couple to both fundamental and composite particles/objects/states with universal 
3-pt vertices. Interpreted in AdS, these universal 3-pt vertices are just Feynman diagrams that give 
rise to universal correlators for Jµ and Tµν with any operators O1 and O2. 

11 AdS Black Holes and Thermality 

Let us begin with a thought experiment. Consider a CFT living on the Lorentzian cylinder R × Sd−1 , 
and let us slowly heat it up. Since the dilatation operator serves as the Hamiltonian, as we increase 
the temperature the CFT will be in a state characterized by larger and larger operator/state 
dimensions. 
Since the AdS Hilbert space is identical to that of the CFT, we can interpret our hot CFT as a 

thermal state in AdS. But what will this state consist of? At low temperatures we will just have a 
thermal gas made up of the light particles in AdS. Due to the AdS geometry, these particles will 
mostly move around near the center of AdS, with only occasional excursions further away. This 
means that as we increase the temperature, we will be cramming more and more energy into a region 
of roughly fixed size. In the presence of dynamical gravity, this cannot go on forever – eventually, at 
some critical temperature Tc, the hot gas will collapse to form a black hole in AdS. Our thought 
experiment shows that black holes in AdS must correspond to a hot CFT! 
Now let us consider the thermodynamics more carefully. We will use the microcanonical ensemble, 

fixing the total energy of the system, as we will see that the microcanonical and canonical ensembles 
look somewhat different in equilibrium, due to the existence of a phase with negative specific heat. 
Let us nevertheless use the notation T to denote the average energy of a graviton in the gas of 

gravitons. In that case the occupation number of the n, ̀  mode will be 

1 RAdS T ≈ (11.1)−β(Δ+2n+`)1 − e Δ+ 2n + ` 

when this ratio is large. For gravitons Δ = d, and there will be of order T d such modes with 
Δ+ 2n + ` < T , so we expect that 

Etot ∼ T d+1Rd (11.2)AdS 
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for a gas of gravitons with T � 1/RAdS . This is what we would expect for a box of size RAdS 

in d + 1 dimensions. As we increase T , Etot will eventually grow so large that its corresponding 
Schwarzschild radius will be of order RAdS , at which point the gas will collapse to form a large black 
hole. In d + 1 dimensional flat spacetime the Schwarzschild radius would be 

1 

RS = (Gd+1Etot) d−2 (11.3) 

where Gd+1 = (Md+1)
1−d is the Newton constant and Md+1 is the d+1 dimensional Planck mass. If we 

are studying a homogeneous gas, collapse will first occur on the largest scales, because gravitational 
effects are cumulative with energy. This suggests that a black hole only forms once RS ∼ RAdS , 
when the energy Etot is within its own Schwarzschild radius, so that 

1 
d+1 

� �− 
Tcollapse ∼ Gd+1R

2 (11.4)AdS 

p
For example, in the case of AdS4 this would be a temperature M4/RAdS , at an intermediate energy 
between the AdS scale and the Planck scale. 
However, this analysis in the microcanonical ensemble has been rather misleading. First of 

all, in most examples considered in the literature there are other regimes aside from the gas of 
gravitons and the large AdS black hole – there is also a Hagedorn stringy regime, and a regime where 
small black holes (much smaller in size than RAdS ) can be produced. Furthermore, the parametric 
relationships change due to the presence of extra dimensions of RAdS size. Finally, this analysis 
was misleading because in actuality, the large AdS black holes have such a large entropy that in 
the canonical ensemble they start to dominate already at T ∼ 1/RAdS . In other words, the huge 
number of different AdS black hole states is able to make up for their e−βE Boltzmann factor. 

11.1 The Hagedorn Temperature and Negative Specific Heat 

Let us briefly discuss the Hagedorn phenomenon, since it is interesting and simple. The canonical 
ensemble partition for any physical system is 

X 
Z[β] = e −βEψ (11.5) 

ψ 

where as usual β = 1/T , and the sum is over all quantum mechanical states ψ in the theory. The 
sum can be re-organized as 

X 
S(E)−βE Z[β] = e (11.6) 

E 

where eS(E) is the number of states with energy E – this defines the entropy as a function of E. Note 
that if S(E) grows faster than β∗E for some β∗ in the limit that E →∞, then this sum diverges 
and partition function is ill defined! 
To understand this phenomenon better, note that the expectation value of the (total) energy is 

∂ hEi = − log Z[β] (11.7)
∂β 
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Let us consider what happens if we have the borderline case S(E) → β∗E in the limit that E →∞. 
Then we find 

Z[β] ≈ 
∞X 

(β∗−β)E e = 
1 

β∗ − β 
(11.8) 

E 

so we find that the expectation value of the energy is 

1 hEi = (11.9)
β∗ − β 

Thus we see that as β → β∗, the expectation value of the energy diverges. Reversing the logic, it 
takes an infinite amount of energy to achieve the temperature T∗ = 1/β∗. This T∗ is the Hagedorn 
temperature, and it is the maximum possible temperature for the system. Hagedorn behavior is 
relevant because it is the thermodynamic behavior of a gas of strings. Thus if a stringy regime exists 
in AdS, then there will be a range of temperatures showing a Hagedorn behavior. 
There is an even more extreme behavior, where S(E) grows more rapidly than β∗E for any fixed 

β∗. For example, in d + 1 dimensional flat spacetime, black holes have an entropy 

Rd−1 

S(RS ) ∼ S (11.10)
Gd+1 

which translates into 

1 d−1 

S(E) ∼ (Gd+1) 2−d E d−2 (11.11) 

This means that S(E) grows with a power of E greater than one. This implies the famous statement 
that flat space black holes have a specific heat 

∂ hEi < 0 (11.12)
∂T 

Increasing the temperature actually decreases the black hole mass, because the black hole entropy 
dominates the free energy. This is relevant to AdS because this is the behavior of ‘small’ AdS black 
holes, with RS � RAdS . So these states can also contribute to the partition function in AdS/CFT. 

11.2 Thermodynamic Details from AdS Geometry 

To make all of this more precise, let us study the Euclidean CFT on S1 × Sd−1 , following [21]. Now 
we will be using the canonical ensemble, so we will be studying states that minimize the free energy, 
which includes the effects of entropy. Compactifying the Euclidean time direction with period β 
corresponds to studying the partition function of the theory on Sd−1 at a temperature T = 1/β, as 
usual. Note that the Sd−1 also has some radius β0 , and since we are studying a CFT, the physics 
only depends on the ratio of β/β0 . For convenience we can fix β0 = 1, although one can also find a 
scaling limit [21] where β0 →∞, so that we get a Euclidean CFT on S1 × Rd−1 . 

105 



We can write Euclidean AdS in the coordinates 
� � 

r2 dr2 

ds2 = + 1 dt2 + + r 2dΩ2 (11.13)AdS R2 2 

AdS R2 
r + 1 
AdS 

This coordinate system follows immediately from our usual global coordinates by taking r = 
RAdS tan ρ. We have introduced this particular coordinate system so that we can naturally write the 
AdS-Schwarzschild solution 

� � 
r2 dr2ωdM 

ds2 = + 1 − dt2 + + r 2dΩ2 (11.14)Sch R2 2d−2 r 
AdS r 

R2 + 1 − ω 
d
d 
− 
M 
2r

AdS 

where M is the physical mass of a black hole, and the constant 

16πGd+1
ωd = (11.15)

(d − 1)Vol(Sd−1) 

is written in terms of the d + 1 dimensionsal Newton constant Gd+1. There is a horizon at the largest 
root r+ of 

r2 ωdM 
+ 1 − = 0 (11.16)

R2 d−2rAdS 

The physical space ends at r+, since after this point the metric is no longer Euclidean. The metric 
for the full S1 × Sd−1 will only be smooth if we must avoid conical singularities in t. In the vicinity 
of r+, we can write r = r+ + δr and the metric looks like 

� � � � 
+ (d − 2)R2 1 R2dr+

2 
AdS AdS r+ 2ds2 ≈ δr dt2 + d(δr)2 + r dΩ2 (11.17)

R2 δr dr2 + (d − 2)R2 + 
AdS r+ + AdS 

√ 
We can define a new coordinate x = 2 δr, in which case we see that we have the metric for a cone 
in x and t. To avoid a conical singularity at x = 0, we must take the periodicity in t → t + β with 

4πR2 
AdS r+β = (11.18)

dr2 + (d − 2)R2 
+ AdS 

This result means that the temperature 1/β is fixed in terms of the black hole mass M . Furthermore, 
β has a maximum as a function of r+, so we see that for β > βmin, which means 

p
1 d(d − 2)

T < Tmin = (11.19)
RAdS 2π 

there is no thermodynamically stable black hole. In other words, when T < Tmin the thermody-
namically stable state of the spacetime will be a gas of particles (and perhaps strings and small 
black holes) in otherwise empty AdS, while for T > Tmin we can also have the AdS-Schwarzschild 
spacetime describing a large black hole. 
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The phase transition between these two states is called the Hawking-Page phase transition. We 
can compute the transition temperature by studying the difference in Free Energies between AdS 
and the AdS-Schwarzschild solution. It is computed in [21], and the result is 

2 d+1Vol(Sd−1)(R2 
AdS r+ − r+ )F = (11.20)

4Gd+1(dr2 + (d − 2)R2 )+ AdS 

We see that in the large r+ limit the free energy of AdS-Schwarzschild dominates. The two free 
energies are equal when r+ = RAdS , so that we have a phase transition temperature of 

1 d − 1 
Tc = (11.21)

RAdS 2π 

In other words, heating up the AdS/CFT system above this temperature (in the canonical ensemble) 
will result in an equilibrium state consisting of a large AdS black hole. 

12 Partition Functions, Sources, and Holographic RG 

12.1 Various Dictionaries 

In these notes we have defined CFT operators directly in terms of limits of bulk fields, via 

φ(t, ρ(�; t, Ω), Ω)O(t, Ω) = lim (12.1)
�→0 �Δ 

where ρ(�; t, Ω) = π 
2 − �f(t, Ω) and the function f(t, Ω) determines the geometry of the boundary on 

which the CFT lives. This allowed us to compute correlators for CFT operators O in terms of limits 
of AdS correlators using AdS Feynman diagrams. 
In fact, there are two AdS/CFT ‘dictionaries’, and our choice has been the less common one 

in the literature. Our choice has the great advantage that it makes it obvious how to identify the 
Hilbert spaces of the AdS and CFT theories, and it also seems more immediate and intuitive to me. 
The moreconventional dictionary has the advantage that it is easier to use when considering finite 
deformations of the CFT. 
The conventional dictionary involves computing the AdS path integral, where the bulk fields 

φ(t, ρ, Ω) → φ0(t, Ω) for some classical field configuration φ0(t, Ω) on the boundary of AdS. This 
gives a partition functional 

Z 
ZAdS [φ0] = Dφ e−SAdS [φ] (12.2) 

φ0 

Alternatively, we could imagine computing a CFT partition function 
Z R 

Dχe−SCFT [χ]+ ddxφ0(x)O(x)ZCFT [φ0] = (12.3) 
CF T 
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where O(x) is a CFT operator and φ0(x) is a classical source for this operator. The claim of the 
usual AdS/CFT dictionary is that 

ZAdS [φ0] = ZCFT [φ0] (12.4) 

In particular, this means that we can compute CFT correlators by differentiating ZAdS with respect 
to φ0 and then setting it to zero, giving 

δ δ hO(x1) · · · O(xn)i = · · · ZAdS [φ0] (12.5)
δφ0(x1) δφ0(xn) φ0=0 

This form of the dictionary is particularly useful because it tells us how to compute the partition 
function of the CFT for finite values of the sources φ0, which we can then interpret as coupling 
constants, since in effect, φ0O has been added to the CFT action. 
Let us see why these two dictionaries are equivalent, following [22]. To make the argument, let 

us use the Poincaré patch for convenience. We will introduce two reference surfaces, one at some 
z = � and another at z = `, with � � ` � 1. The bulk path integral can be broken up as 

Z Z Z 
−Sz<`[φ]ZAdS [φ0] = Dφz<` e Dφ̃ 

z=` Dφz>` e −Sz>`[φ] 
Z 

= Dφ̃ΨUV [φ0, φ̃; �, ̀ ]ΨIR[φ,˜ `] (12.6) 

where φ̃(x) is the field φ(`, x) at the surface z = ` (so it only depends on x, not z), and we have 
written the path integrals over the intervals [�, ̀ ] and [`, ∞] in terms of a ‘UV’ and ‘IR’ wavefunction. 
Only the UV wavefunction knows about φ0. Our usual dictionary is defined by 

Z 
`−nΔ D ̃ ˜ · ˜hO(x1) · · · O(xn)i = lim φΨIRφ(x1) · · φ(xn)ΨUV (12.7) 

`→0 
φ0=0,�=0 

The other dictionary based on partition functions will be equivalent if 
Z � � Z 

lim Dφ̃ΨIR 
δ · · · δ 

ΨUV ∝ lim `−nΔ Dφ̃ΨIRφ̃(x1) · · · φ̃(xn)ΨUV (12.8) 
`→0 δφ0(x1) δφ0(xn) `→0

φ0=0 φ0=0 

The ‘UV’ region plays a simple role – it is only present so that we can differentiate ΨUV to obtain 
the field φ̃ at the intermediate surface at z = `. 
We have previously discussed the fact that AdS interactions become irrelevant as we approach 

the boundary, so we can assume that ΨUV is computed purely from the free theory. In this case we 
can just calculate it directly. It is 

Z � Z �φ(`)=φ̃ ` 1 √ � � 
ΨUV [φ0, φ̃] = Dφ exp − ddxdz −g (rφ)2 − m 2φ2 (12.9)

2φ(�)=φ0�d−Δ � 
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This is just a Gaussian integral, so we can evaluate it by solving the equations of motion for φ with 
the correct boundary conditions and then inputting the solution back into the action. The equations 
of motion 

r 2φ − m 2φ = 0 (12.10) 

will have two solutions, which we can refer to as G�
k(z, x) and G `k(z, x). One can compute these Gk 

in terms of bessel functions in the case of pure AdS. We choose a linear combination of solutions so 
that G�

k(�, x) = 1 and G�
k(`, x) = 0, and vice versa for G `k(z, x). The label k is a momentum label 

for the xµ coordinates, although in principle it could be any label associated with a complete basis 
for solutions. Now the solution for φ(z, k) (we have gone to momentum space for convenience) with 
the desire boundary conditions is simply 

φ(z, k) = φ0(k)�
d−ΔG�

k(z) + φ̃(k)Gk
` (z) (12.11) 

When we evaluate the action with this solution it vanishes up to a total derivative term, and so the 
result only involves boundary terms of the form φrzφ evaluated at � and `. Terms quadratic in φ0 
˜or φ will not contribute when we differentiate ΨUV and then set φ0 → 0. Thus the relevant terms 

will be 
� Z � 
1 � � 

ΨUV [φ0, φ̃] ∝ exp − ddk φ0(−k)φ̃(k) �−Δ rzG `k(�) − `−d rzG
�
k(`) (12.12)

2 

where we note that the z derivatives of the G solutions can be non-vanishing on both ends of the 
interval. Evaluating the derivatives for the actual solutions gives 

� Z � 
ΨUV = exp −(2Δ − d)`−Δ ddxφ0(x)φ̃(x) + · · · (12.13) 

where the ellipsis denotes other terms that either vanish more quickly as ` → 0 or that are quadratic 
˜in φ0 or φ. So we see that 

� � 
1 δΨUV 

= `−Δ(2Δ − d)φ̃(x) (12.14)
ΨUV δφ0 φ0=0 

as desired, and the equivalence between the two dictionaries has been proven. 

12.2 Fefferman-Graham and the Holographic RG Formalism 

12.3 Breaking of Conformal Symmetry 

In AdS/CFT, the conformal symmetry of the CFT is realized geometrically as the group of AdS 
isometries. If we want to use holography to study theories that are not conformally invariant, then 
we must study quantum field theories in spacetimes with less symmetry than AdS. In order to do 
minimal violence to the conformal symmetry, we can study Poincaré invariant theories that are 
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approximately conformal in some regime, for example at very high or very low energies. However, we 
should note that recently AdS/CFT type ideas have been used to attempt to study toy non-relativistic 
systems in order to make contact with condensed matter physics. 
Since we wish to preserve Poincaré symmetry, it is most natural to view AdS in the coordinates 

1 � � 
ds2 = 

2 
dz2 + ηµν dxµdxν (12.15) 

z 

Now we would like to break conformal symmetry. The laziest option is to simply declare, by fiat, 
that there exist membranes, conventionally called either the ‘UV Brane’ and the ‘IR Brane’, that end 
spacetime at some finite positions zUV � zIR. In this case the AdS isometries will only be broken 
by the presence of these membrane, in the same way that a brick wall breaks translation invariance. 
Note that the positions zUV and zIR transform under dilatations 

D = z∂z + xµ∂µ (12.16) 

as lengths, so they specify a short and long distance scale, respectively. These obviously correspond 
to energy scales µUV = 1/zIR and µIR = 1/zIR. 
Let us first consider the case when zIR = ∞, so that the IR brane is absent and we only have a 

UV brane. If we like we can add whatever d dimensional quantum field theory we like by including 
an action localized to the UV brane. We can (roughly) interpret the UV Brane as setting a UV 
cutoff µUV for the CFT, and the fields localized to the UV brane represent some other theory that 
couples to the CFT. In particular, when we quantize gravity in this space, the boundary conditions 
(or UV brane action) for the graviton will be important. If we do not impose Dirichlet boundary 
conditions then the graviton will have a normalizable zero mode, and so our theory will include 
d-dimensional gravity. 
Now let us consider an IR brane at zIR in the absence of a UV Brane. In this case there can 

be no dynamical gravity, or any other degrees of freedom aside from the CFT. However, what we 
do have is some kind of conformal symmetry breaking associated with the energy scale µIR. Since 
this IR brane comes out of nowhere, we do not have any particular insight into the nature of the 
conformal symmetry breaking in the CFT. However, what we can say is that the IR brane will 
fluctuate in position (do to gravitational effects if nothing else), and in the absence of other fields 
these fluctuations will be a massless goldstone boson mode. This mode is often called the radion or 
dilaton; it is the goldstone boson of broken conformal symmetry. 
We can also put d-dimensional quantum fields directly on the IR brane. These can be very 

roughly interpreted as composite or emergent degrees of freedom that arise when conformal symmetry 
is broken. Again, this is rather ad hoc from the CFT point of view. 
With both an IR and a UV brane, we have both a UV cutoff for the CFT and conformal 

symmetry breaking in the IR. In this case the dynamics become a bit more interesting, because we 
can stabilize the position zIR by giving fields in the ‘slice’ of AdS appropriate boundary conditions. 
The idea is that the configuration of the AdS fields will depend on zIR, and therefore the total bulk 
energy will depend on zIR. Minimizing this energy determines the equilibrium value of zIR. The 
original implementation of these ideas was called the Goldberger-Wise mechanism. It was interesting 
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because this setup, when applied to weak-scale physics, is called a Randall-Sundrum model, and it 
has the potential to explain the hierarchy problem. 
One can consider more involved and also much more physically plausible models of conformal 

symmetry breaking where the AdS metric itself is modified to a metric of the form 

1 � � 
ds2 = dz2 + ηµν dxµdxν (12.17)

A(z)2 

where A(z) is some function that asymptotes to A(z) ∼ z for z ∼ 0. Such a model represents 
a theory that is approximately conformal in the UV, where z → 0, but that breaks conformal 
symmetry in a more complex and interesting way. Such models have been studied in great detail in 
the literature, both phenomenologically and as precise string theory backgrounds. 
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