Problem 1 (20 points)

$|\psi\rangle$ is an eigenstate of the angular momentum operators \hat{L}^2 and \hat{L}_z with eigenvalues of $l(l+1)\hbar^2$ and $m\hbar$, respectively. Find $\langle \hat{L}_x \rangle$ and $\langle \hat{L}^2_x \rangle$ for this state.

Problem 2 (30 points)

For a particle in a harmonic oscillator potential described by a coherent state $|\alpha\rangle$, calculate the energy uncertainty ΔE.

Problem 3 (20 points)

Consider a simple harmonic oscillator with mass m and frequency ω. The two lowest energy eigenstates have energies $\frac{1}{2}\hbar\omega$ and $\frac{3}{2}\hbar\omega$, respectively.

(a) Calculate the expectation value of kinetic energy for the state with total energy $\frac{1}{2}\hbar\omega$. (10 points)

(b) Calculate the expectation value of potential energy for the state with total energy $\frac{3}{2}\hbar\omega$. (10 points)

Problem 4 (30 points)

A system of two spin-$\frac{1}{2}$ particles with spin operators \hat{S}_1 and \hat{S}_2 can be described by an effective Hamiltonian

$$\hat{H} = A(\hat{S}_{1z} + \hat{S}_{2z}) + B\hat{S}_1 \cdot \hat{S}_2$$

where A and B are real constants.
(a) Find the energy levels of \hat{H}. (10 points)

(b) The total angular momentum is $\hat{S} = \hat{S}_1 + \hat{S}_2$. Find the matrix representation of \hat{H} in the $|S, M, s_1, s_2\rangle$ basis. (10 points)

(c) Write the $|S, M, s_1, s_2\rangle$ states in terms of the $|s_1, s_2, m_1, m_2\rangle$ basis. (10 points)

Problem 5 (40 points)
A 1-dimensional potential has an infinite wall and a δ-function attractive well,

$$V(x) = \begin{cases} \infty & x < -d \\ -\alpha \delta(x) & x > -d \end{cases}$$

where α is a positive constant.

(a) Find an equation for the bound state energy E. (25 points)

(b) How does the energy of this potential compare to the case where there is only the δ-function and no infinite wall? (15 points)

Problem 6 (30 points)
A system consists of 3 particles. Particles 1 and 2 both have spin $\frac{1}{2}$, while particle 3 has spin 1.

(a) Show that there are two orthogonal states $|\psi_1\rangle$ and $|\psi_2\rangle$ which both satisfy

$$\hat{J}^2|\psi_j\rangle = 2\hbar^2|\psi_j\rangle$$
$$\hat{J}_z|\psi_j\rangle = \hbar|\psi_j\rangle.$$ (20 points)

(b) Can the two states be distinguished by a measurement of \hat{L}^2, where $\hat{L} = \hat{S}_1 + \hat{S}_2$? Explain why or why not. (10 points)

Problem 7 (30 points)
The z-component of an electron’s spin is measured to be $-\frac{\hbar}{2}$. At time $t = 0$ a uniform magnetic field $\mathbf{B} = B_0 \mathbf{x}$ is switched on.

(a) What would be the results of a measurement of the z-component of the electron’s spin at a time T later? (15 points)

(b) What would be the results if we instead measure the x component of spin? (15 points)