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Abstract 

For over a century, academics and market participants have studied two fundamental aspects of 
finance: asset valuation and portfolio construction. Despite the rich body of literature, studies 
tend to focus on only one of these concepts and use relative return volatility over a short time 
period (i.e. days, weeks, or months) as the investment risk metric. In contrast, certain investors 
utilize fundamental analysis and rely on mean-reversion, which occurs over a much longer 
timescale (three to five years). Here we argue that the proper risk metric for longer time horizon 
investments is the variance of the cash flows the asset generates instead of short timescale 
market price volatility. Accordingly, the values obtained for return versus risk take on a 
fundamentally different form. When integrated with Modern Portfolio Theory, this leads to a 
different efficient frontier that does not require as much diversification to obtain optimal 
portfolios – i.e. only six to eight assets. Although there is substantial empirical evidence for small 
portfolios in value investors, private-equity firms, and hedge funds, this represents (to the 
authors’ knowledge) the first quantitative formalism to reach such a conclusion. The authors 
demonstrate this concept in practice with a discounted cash flow model in conjunction with a 
Monte-Carlo simulation to determine the probable variance in cash flows. These results suggest 
that the integration of portfolio construction with fundamental analysis may minimize the risk of 
large losses, while still creating the opportunity for profits without dampening the effect through 
over-diversification. These results call into question the over-diversification of fund portfolios 
and suggest a general strategy for long-term value investing. 
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Introduction 

Like the quest for the Holy Grail, the search for the holy grail of portfolio diversification has 
proceeded with great enthusiasm and many crusaders. As it turns out, the search has been 
underway for centuries. 

Indeed, even William Shakespeare hit on the topic of diversification in The Merchant of Venice 
when Antonio states (Shakespeare (1600)): 

“… I thank my fortune for it: My ventures are not in one vessel trusted, nor in one place, 
nor does my wealth depend upon the fortune of this present year. Therefore, my 
ventures do not make me somber.” Act 1, Scene 1 

Not only does Shakespeare articulate the intuition behind diversification, but implicitly 
suggests the idea of covariance – i.e. diversifying investments requires assessment of how 
prices will fluctuate individually and with respect to one another in the future. 

When it comes to the diversification of securities, Henry Lowenfeld, a Polish émigré who 
settled in London, was one of the first to systematically deal with the problem. It was in London 
that he established the Universal Stock Exchange. He was also an early enthusiast of portfolio 
diversification on a grand scale. In his 1909 book, carrying the imposing title: Investment: An 
Exact Science, he proposed the theory of “Geographical Distribution of Capital”, emphasizing 
not only a division of capital among stocks and bonds to reduce company-specific risks, but a 
division of securities among countries and regions to reduce market-specific risks (Goetzmann 
(2016)). This theme remains as vibrant today as it was when introduced by Lowenfeld (Sindreu 
(2020)). 

Following Lowenfeld, the noted economist Irving Fisher put his stamp of approval on 
diversification (Fisher (1922, 1930)). In his 1922 book, The Making of Index Numbers, Fisher 
found that the variation in a price index declined rapidly as the number of individual prices in 
an index approached 20. From this insight, Fisher concluded that by picking 20 stocks, most 
of the risk of holding an individual stock would be eliminated. 

But, it wasn’t until Nobelist Harry Markowitz published “Portfolio Selection” in 1952 that the 
diversification grail was “found.” Indeed, with Markowitz, diversification was carved in stone. 
Markowitz was then taken a step further by another Nobelist, William Sharp (Sharp (1963)). 

Markowitz (Markowitz (1952)) and Roy (Roy (1952)) were the first to provide formalisms for 
how to diversify investments by utilizing mathematical rigor. Simply put, the portfolio 
construction process involves two major steps. First is the development of future performance 
expectations. Second is the choice of portfolio. The birth of modern portfolio theory (MPT) 
is credited to Markowitz for ascribing a mathematical formalism manifesting that the investor 
desires return while minimizing risk (Markowitz (1952); Markowitz (1959); Markowitz 
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(1999)). This has led to the so called “E-V” rule. In his seminal work, Markowitz tentatively 
suggests that return and risk could be defined as historical relative percent return and variance 
for stocks. In parallel, Sharpe addressed similar questions and proposed the CAPM model 
(Sharpe (1963); Sharpe (1964)). At this juncture, the asset pricing literature parted from the 
portfolio theory literature and there was a foregone conclusion in both fields: relative return 
variance is the proper risk metric as Markowitz had initially suggested (Campbell (1991); Elton 
and Gruber (1977); Evans and Archer (1968); Fama and French (1993); Francis and Kim 
(2013); Lakonishok, Schleifer and Vishny (1994); Sharpe (1964); Statman (2004)).  

As portfolio diversification developed, more direct questions were asked. Specifically, how 
many stocks does a diversified portfolio contain? Evans and Archer’s early study determined 
that approximately eight stocks were enough to mitigate unsystematic risk (Evans and Archer 
(1968)). Further work from Statmen and Elton further developed this work and concluded that 
30 and even up to 300 securities are required to diversify risk (Elton and Gruber (1977); 
Statman (1987); Statman (2004)). The conclusion from the culmination of academic research 
is clear - it takes a significant number of securities to diversify. This conclusion has been so 
foundational that it has even been incorporated into the modern regulatory structure of mutual 
funds (Brealey, Myers and Marcus (2015); Francis and Kim (2013)). 

But, there can be costs to diversification. Indeed, Robert Aliber has cautioned that excessive 
costs can accompany diversification (Aliber (2011)). However, these costs can be mitigated by 
passive investing in index funds that offer the investor a product that allows them to have their 
cake and eat it, too. With the recent flow of capital from active to passive management 
(Wigglesworth (2020)) it seems to almost be a self-fulfilling prophecy: if one needs to 
minimize risk, then the objective is to diversify to the point of indexation. 

While many, if not most, think the holy grail of diversification has been found, there are serious 
doubters. For example, Warren Buffett, who has asserted that “[d]iversification is a protection 
against ignorance. [It] makes very little sense for those who know what they’re doing” (Lowe 
(1997)). Buffett likes to explain the costs of over-diversification with remarks like: “If you 
have a harem of 40 women, you never get to know any of them very well” (Lowe (1997)). 
Buffett’s long-time partner Charlie Munger also believes that diversification is less of a Holy 
Grail than a crackpot idea. Munger goes so far as to say that “the idea of excessive 
diversification is madness . . . We believe that almost all good investments will involve 
relatively low diversification” (Kaufman (2008)). As for diversification as it relates to 
indexation, Munger has this to say, “I have more than skepticism regarding the orthodox view 
that huge diversification is a must for those wise enough so that indexation is not the logical 
mode for equity investment. I think the orthodox view is grossly mistaken” (Kaufman (2008)). 

Empirical work on the performance of mutual funds lends support to Buffett and Munger’s 
“small is beautiful” idea. This research shows that concentrated mutual funds tend to 
outperform diversified funds and have persistent returns beating their respective benchmarks 
(Carhart (1997); Cremers and Petajisto (2009); Petajisto (2013); Yeung, Pellizzarti, Bird and 
Abidin (2012)). This should come as no surprise for active portfolio managers; to leverage 
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their stock picking ability, concentration is required to obtain excess return above their 
respective benchmark. However, we still arrive at a portfolio construction method that is at 
odds with the bulk of portfolio theory. What could possibly explain this paradoxical 
observation? Do concentrated investors take on excessive risk to construct inefficient 
portfolios or are there other possible explanations? 

This study addresses these questions by returning to one of the fundamental assumptions on 
the subject matter: risk. What is the proper risk metric for an investor? Here we show through 
theory and application that changing the risk metric not only allows for a different fundamental 
form of the efficient frontier, but readily leads to concentrated portfolios. Given that cash flows 
fundamentally determine asset prices (Brealey, Myers and Marcus (2015); Fisher (1974)), we 
argue that cash flow variance and not the variance of relative returns should be used as the 
measure of risk. We explore these results in three main parts. The first section analyzes the 
implications of changing risk on a theoretical level and finds that the efficient frontier takes a 
fundamentally different form when we consider cash flows and the exact correlations between 
companies as opposed to approximations from previous studies. As a result, we yield portfolios 
that are not only smaller in terms of the number of securities but can have cash flow in monetary 
value be the risk measure. We find that this makes more intuitive sense to an individual 
investor – i.e. one who is trying to construct a portfolio that optimizes cash flow generation 
given a specified risk in the form of absolute loss. The second section presents an example of 
how to perform such an analysis in practice and reaches an identical conclusion. We employ 
discounted cash flow models coupled with Monte-Carlo simulations that yield the cash flow 
variance of stocks to develop a portfolio for the S&P 500 similar to previous work in the 
portfolio theory literature. The final section ties together the conclusions we have drawn, 
discusses implications of this study, and areas of future research. These results suggest that 
the integration of portfolio construction with asset pricing may minimize the risk of large 
losses, while still creating the opportunity for profits without the dampening effect of over-
diversification. These results call into question the over-diversification of mutual funds and 
suggest a general strategy for portfolio construction. 

I. Risk and Return Shape Changes the Efficient Frontier Diversity 

In this section we consider two thought experiments that demonstrate the determinants of small 
portfolios that also lie on the efficient frontier. First, we use monthly returns to determine risk 
and return of efficient portfolio sizes similar to previous studies and obtain identical results.  
However, we find that using actual stock correlations (versus assumed constant correlations 
between each pair of stocks and constant percentage composition (Evans and Archer (1968); 
Statman (1987); Statman (2004))) decreases portfolio sizes in contrast to what has been 
previously reported. This leads us to conclude that the simplifying assumption of correlation 
and percentage composition may have artefactually increased optimal portfolio sizes in 
previous studies. Second, we address how the shape of the efficient frontier needs to change 
to achieve small portfolios at a purely theoretical level. We find that if the risk metric makes 
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it possible to find slightly higher returns for lower risk, the portfolio size decreases 
precipitously.  

We first considered the monthly return of every stock in the S&P 500 and the statistics from 
the past decade (only stocks with 5 years of data are considered for robust statistics; see the 
end of the article to access to the code used to generate all the results presented). We use 
average relative return versus relative return standard deviation as return versus risk 
respectively. These results are shown in Exhibit 1, Left. Overlaid on this plot are three 
different efficient frontiers determined by mean-variance optimization using Modern Portfolio 
Theory as elaborated on below (Elton (2010); Francis and Kim (2013)).  

Previous studies make the simplifying assumption that the correlation is constant and identical 
between all pairs of stocks to make the calculations more tractable (Francis and Kim (2013); 
Statman (1987); Statman (2004 )). These studies yield estimates that range from 30 up to 300 
stocks for an efficient portfolio. To ensure our methodology can reproduce these results and 
to test the significance of this assumption, we constructed efficient frontiers under three 
different conditions: no correlation between equities, a constant correlation of 0.08 as 
previously used (Elton (2010); Statman (2004 )), and actual correlations between stocks shown 
as blue, green, and red lines in Exhibit 1, Left respectively. 

It is clear from the data that the assumption of correlation changes the shape of the efficient 
frontier. Specifically, zero and constant correlation result in reduced risk for expected return 
as is demonstrated by the blue and green curves being shifted left in Exhibit 1. When we 
consider the actual correlations between these equities, we obtain efficient portfolios that are 
riskier than those obtained from the simplifying assumptions denoted by the red line in Exhibit 
1 – i.e. for a given return, we have more risk. To address whether this assumption changes the 
portfolio size, we analyzed the distribution of portfolio sizes across the entire efficient frontier 
(Exhibit 1, Right). Indeed, when we use the simplifying assumption of zero or constant 
correlation, we obtain results that are consistent with previous studies. Specifically, the 
average portfolio size on the efficient frontier is approximately 190 and 43 equities for zero 
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and constant correlation respectively (Elton and Gruber (1977); Elton (2010); Evans and 
Archer (1968); Statman (1987); Statman (2004 )).  

When we use the real correlations, we obtain a precipitous decrease in the average portfolio 
size to approximately 17 stocks (Exhibit 1, Right Table). This result leads us to conclude that 
the simplifying assumptions used in previous studies lead to an artefactual increase in the 
number of securities required to diversify unsystematic risk. However, the value of ~17 assets 
in the portfolio is still large when compared to certain portfolios empirically utilized by certain 
value investors. Is this due to increased risk taken on by these portfolios, or are there other 
contributions that may yield smaller portfolios? 

In our second thought experiment, we consider the general shape of the risk versus return curve 
for stocks which may change when we consider a different risk metric. We will simply ask the 
question: how does the shape of the efficient frontier need to change to reduce the overall 
number of assets in efficient portfolios? We will ascribe a simple empirical model to restrain 
the space sampled by potential assets to own for these purposes: 

where Rmax is the maximum return obtained by an asset (i.e. at infinite risk), RiskMin is the 
minimum value of risk sampled by an individual asset at approximately zero return, and Cshape 

is a parameter that describes the shape of the bound of risk versus return. We do not claim that 
this simplified model of restraints can be mechanistically interpreted, however, it does have a 
few advantages when exploring changes in the shape of the sample space for our purposes.  
First and foremost, it describes the overall shape of risk versus return sampled by real data 
(Exhibit 2, second lightest line denoted as 0.5). Second, the value of RiskMin is fixed by the 
nature of the stock market – it is the minimum risk (by whatever metric utilized) that an asset 
may obtain simply by being exposed to the stock market. Third, the value of Rmax does not 
change the diversification of the portfolio given that it only changes the scaling of the function. 
Thus, the only parameter of interest that changes our assessment of portfolio size is Cshape which 
simplifies our investigation to a single dimension. 
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A family of curves corresponding to different values of Cshape are shown in Exhibit 2, Left (the 
five curves correspond to different values of Cshape – from lightest to darkest the values are 
1.0, 0.5, 0.0, -0.5, and -1.0). As the value of Cshape decreases, it results in a change in the shape 
of risk versus return that allows for assets with higher return at a given risk – i.e. we are 
populating regions of the space in the upper left portion of the graph. Indeed, in the following 
section we find that when risk is defined as cash flow variance, our efficient frontier takes on 
a shape similar to this. We hypothesize that populating this region of higher return for a given 
amount of risk (i.e. decreasing Cshape) will result in less diversified portfolios if correlations 
between items are unchanged. To test this hypothesis we performed additional portfolio 
constructions under varying possible values of Cshape. 

We randomly generated stocks that are bounded by different values of Cshape by using the Rmax 

and Riskmin values of the S&P 500. From these randomly generated stocks, we then performed 
mean-variance portfolio construction iteratively and asked the question: what is the average 
portfolio size on the efficient frontier? If our hypothesis is true, then we expect to see a 
reduction in the average portfolio size as the value of Cshape decreases regardless of the number 
of stocks generated. Indeed, this is what we observe as depicted in Exhibit 2, Right. There is 
a clear decrease of portfolio size as we approach values of Cshape = -1, and a marked increase 
until the signal attenuates at approximately a value of 1 or 2. The results shown are from 
portfolios constructed with 10 random sets of 50, 100, 150, and 200 stocks for a range of Cshape 

values. We clearly see a decrease in the portfolio size consistent with our hypothesis which is 
born out of theory independent from our first thought experiment. This result suggests that 
investors that maintain small portfolios must be able to identify assets with high return and low 
risk, otherwise they would be taking on more risk or not constructing optimal portfolios. Is it 
possible to identify such assets when the risk metric is changed to cash flow? 

These results are due to the fact that when a particular asset has a higher expected return than 
any asset with higher risk, all such assets are immediately ruled out from portfolio 
consideration. Again, these types of assets may exist, but are difficult to identify a priori. The 
question remains: how can we identify assets that have these properties? Obviously if this were 
routine, it would be common practice. However, only prominent value investors seem to have 
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tapped into the capacity to perform such analyses. We would argue that another main 
difference is the time horizon considered: mean-reversion to fundamental value can take on the 
order of years (Lakonishok, 1994) as opposed to daily/weekly/monthly returns. 

How do we perform such an analysis to construct a portfolio given these results? We will 
demonstrate in the following sections that using fundamental analysis in the form of discounted 
cash flows integrated with Monte-Carlo simulations leads to a practical means of obtaining 
such portfolios. The integration of fundamental analysis with portfolio construction leads to 
exactly what we obtain when we simulate stocks in the preceding section: small portfolios. 

II. Discounted Cash Flow Monte-Carlo Simulation Reveals a 

Distribution of Share Price Estimates 

Here, we present a variation of Discounted Cash Flow (DCF) valuation integrated with a 
Monte-Carlo simulation to determine the variance of cash flow for all stocks in the S&P 500.  
Not only does this allow for direct comparison to our previous results using monthly return 
statistics, but it allows us to determine if the use of cash flow variance as risk will reduce the 
size of portfolios similar to our second thought experiment. All data for companies were 
scraped from the Bloomberg API (see Appendix for details and code). Specifically, we 
obtained revenue, operating and non-operating costs, and other value drivers in determining 
the free cash flow generated by companies for the past 5 years. What allows us to determine 
the variance of the cash flow is to resample our base case DCF by varying input parameters 
(described in more detail below) based on their historical variability. We note that we present 
only one form of a DCF but the technique is generally applicable, i.e. if one has a model that 
generates free cash flow and variance of input parameters, one can perform a Monte-Carlo 
simulation to obtain a distribution of probable free cash flows. Finally, we note that this 
approach is similar to one that we have utilized for over twenty years and has been published 
in the Studies in Applied Finance working paper series at the Johns Hopkins Institute for 
Applied Economics, Global Health, and the Study of Business Enterprise. 

Revenue growth was assumed to be the historical average generating our top line – i.e. revenue 
for our 10-year forecasting period. We grow the initial revenue (revinit) at a rate determined 
from our analyses (growthC). Thus, the revenue for each forecast period i is: 

(Eq. 1) 

where the variables are as previously defined above. From this value, we will subtract the 
margins to eventually determine our free cash flow. 

The first step in this process is to calculate the EBITDA by subtracting all operating expenses.  
Suppose there are L operating expenses and their margins are represented by marginOpEx,i, 
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where this margin is a function of revenue. Then, the EBITDA for each forecasting period is 
given by: 

(Eq. 2) 

where the sum on the right half of the equation is of all the operating expenses. To get to the 
net operating profit after interest and taxes (NOPAIT), we treat the interest expense as a margin 
of revenue: 

(Eq. 3) 

and taxes as a margin of EBIDTA (which in turn is a margin on revenue from Eq. 2): 

. (Eq. 4) 

By substituting in values for EBITDA, Interest, and Taxes, we arrive at the NOPAIT: 

(Eq. 5) 

From here, we wish to subtract the change in working capital (marginΔWC) and capital 
expenditures (marginCAPEX) which will bring us to the free cash flow for the forecasting period.  
Since both of these are also margins of the revenue, it can be readily shown that substitution of 
all the values in equation 1-5 will lead to a projected free cash flow (FCF) for all periods 1-9 
of: 

(Eq. 6) 

Equation 6 has important insight into how a company is valued. It is clear that the margins are 
an extremely important component of the cash flow. In fact, explicitly defining these margins 
as random normal variables in the Monte-Carlo (MC) simulation below are what lead to the 
variations in FCF, and hence estimated share price. 

A special note should be made about the value in year 10. The terminal value year 10 is treated 
as a perpetuity: 

(Eq. 7) 

where FCF10 is the cash flow in year 10, k is the discount rate we use (10%), and growthLTG 

is the long-term growth rate of the company (1.5%). We use a constant 10% discount rate 
because this represents our opportunity cost to invest in a company. We are interested in 
generating a 10% return on our investment (which beats the market ~ two-thirds of the time), 
thus we treat the free cash flow as a potential gain we may obtain through investment. This 
assumption and the long-term growth rate are flexible and do not change the main conclusions. 

Now, we can obtain the equity value for the company by summing these cash flows that are 
discounted and adding back current cash and cash-equivalents: 
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(Eq. 8) 

To finally arrive at the expected share price we simply divide the equity value by the number 
of diluted shares outstanding: 

(Eq. 9) 

It is important to note that there are limitations to DCF 
analysis. For instance, the vast majority of the 
estimate usually comes from the terminal value, which 
relies on the forecasted cash flow in the future, which 
in turn may not be well determined. We emphasize 
again that this particular form of DCF and any other 
fundamental valuation can be used; the important point 
to note is that one must ascertain how well determined 
the input parameters are to perform in a Monte-Carlo 
simulation. 

For value investing, we are interested in well-established companies in the S&P500, which 
tend to be lower growth companies that have relatively stable margins as long as they are 
devoid of recent large purchases and/or restructuring. As a result, the margins (i.e. expenses) 
will have stable well-defined distributions and standard deviations. For the purposes of this 
study, we treat them as normal distributions; however, this assumption can be easily tuned for 
any distribution. What is important is that our conclusions are not dependent on this 
assumption. 

We use the means and standard deviations of margins and growth as input variables for a 
Monte-Carlo simulation, generating over 100,000 different FCF forecasts to sample the 
variation contained in the historical data. From the Monte-Carlo simulation, we yield a 
distribution of estimated share prices that are consistent with the operational history of the 
company (Exhibit 3). It should be noted that this represents the probable free cash flow per 
share distribution given historical averages. Since the distribution represents our uncertainty 
in our expected price (and thus return), it doubles as our objective measure of risk as discussed 
in the preceding sections (Elton (2010)). Using this methodology, we generated DCF models 
for every company in the S&P 500 which had reasonable statistics (see Appendix for more 
details). We then determined return relative to the current stock price and treated the cash flow 
variance as our risk metric as shown in Exhibit 3.  
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III. Modern Portfolio Theory as Applied to Cash Flow Variance 

From the data generated in the previous section we have a measure of the distribution of 
probable free cash flows per share, representing our estimate of share price. Because we know 
the current stock price, we can readily calculate the expected return (E[Ri]) for each stock. We 
also have access to the standard deviation of free cash flows, which we will use as our risk 
metric as previously discussed. We also need to consider the return correlation between 
companies to obtain portfolio variance. To do this, we obtained returns from the last decade 
as described in Section 1 and found correlations between all companies to get a sense of how 
the stock prices will change with one another. 

We now wish to take a subset of our stocks and construct a portfolio that consists of proportions 
(α1, α2, …, αm) of stocks 1 through m, and a certain proportion of cash (αc). We will use cash 
as an asset with zero return, zero variance, and zero correlation to other stocks for simplicity.  
This of course is an oversimplification; however, it manifests that the entire portfolio need not 
consist of stocks if we are risk averse.  From this construction, it follows that: 

(Eq. 10) 

where the summation of proportions invested in stocks and cash must equal unity by definition.  
We will only consider positive proportions (i.e. long positions and no shorting) and we wish to 
maximize the expected return while minimizing the variance of the portfolio similar to other 
“mean-variance” optimization processes. To accomplish this, we utilized modern portfolio 
theory and minimized the variance across all possible expected returns (Francis and Kim 
(2013 )). 

Exhibit 4 shows two plots resulting from the analysis above. The plot on the left shows the 
expected return versus risk as a percentage similar to plots we have shown and are found in the 
literature. The risk is measured by the coefficient of variation – i.e. the uncertainty of the stock 
price (standard deviation) relative to the current stock price resulting in a percentage. This plot 
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is the standard presentation form in the literature – i.e. the risk metric is the percent standard 
deviation (similar to Exhibit 2), and in the case of modern portfolio theory, the temporal 
fluctuation of a stock price. However, an individual investor or asset manager does not 
necessarily think in terms of these values. Furthermore, given access to the risk metric of 
nominal dollars from our Monte-Carlo simulation, we can recast the risk metric as the standard 
deviation of cash flow per share (i.e. our share price estimate). 

This results in the figure on the right of Exhibit 4 showing the return versus risk for every 
company along with the efficient frontier in red. Two main conclusions can be drawn. First, 
the DCF-MC analysis yields a wide variety of returns and standard deviations (risk) for the 
various companies. Second, the efficient frontier appears to have very little curvature and 
almost vertical. This is indeed the shape that we would expect to observe for portfolios with 
few items as demonstrated by our simulations in Exhibit 2 (i.e. a low Cshape). The importance 
of this figure cannot be overstated - these results lead us to conclude that we have constructed 
portfolios that are optimal according to MPT using our new risk metric. 

Since the shape of the efficient frontier suggests a low Cshape, 
we would expect the efficient portfolios to consist of a 
smaller number stocks as demonstrated in the first section.  
This is the exact result we find – i.e. the majority of 
portfolios are small and contain five or fewer securities as 
shown in Exhibit 5. The conclusion is clear: most, if not all, 
of the portfolios on the efficient frontier consist of few 
securities in apparent contradiction of what is generally 
expected for efficient portfolios. Indeed, we have reduced 
the average number of items in the portfolio from ~17 to ~5 

by using cash flow variance as our risk metric. Specifically, this approach has yielded portfolio 
sizes that average 4.4 ± 0.7 (mean ± standard deviation). 

Although the results in Exhibit 5 are consistent with empirical observations of “small is 
beautiful” from practitioners as mentioned in the introduction, and exactly the results we would 
expect from a low Cshape, they are still in apparent contradiction to previous work that found 
approximately twenty to thirty securities are required to diversify away unsystematic risk 
(Evans and Archer (1968); Statman (1987); Statman (2004)). We address this issue with two 
further analyses. 

First, we note that our approach has yielded risk values for certain companies in Exhibit 4 that 
are lower in absolute and relative magnitude than those observed in Exhibit 2. Given that both 
approaches have cash as an asset with zero expected return and zero correlation to other stocks, 
this may result in smaller portfolios if you have access to lower risk stocks. To control for this 
issue, we repeated the analyses in Exhibit 4 by arbitrarily increasing the risk of all stocks and 
determining how this changed the average size of the portfolio. We did observe a small effect, 
however, the effect attenuates rapidly with increased risk and still results in portfolios that are 
significantly smaller than those in Exhibit 2. For instance, when we increase the risk of the 
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entire universe of stocks by $10 (which results in a similar plot to Exhibit 2), we still end up 
with an average optimal portfolio size of ~7 stocks. Furthermore, when we increase the risk 
by $50 which is now significantly deviant from reality (i.e. now a 95% confidence interval of 
our share price estimate is ± $100), we still yield an average optimal portfolio size of ~8 stocks.  
This leads us to conclude that small portfolios are not an artifact of small risk in the form of 
low cash flow variance in a company forecast. However, we should note that this may be the 
case with an investor – e.g. they could be quite confident in their subjective valuation of a 
company. Thus, we believe the plot in Exhibit 4 is still realistically reflective of the decision-
making process an investor faces. 

Second, we wanted to control for the DCF Monte-Carlo approach that yielded our estimates of 
return and variance (see Section II). Thus, we 
repeated simulations from previous studies that 
investigated optimal portfolio size (Evans and 
Archer (1968)). We hypothesized that although the 
average size of optimal portfolios might be higher 
than our results, if we were to take into account the 
distribution of optimal portfolios, it is still possible 
to arrive at small optimal portfolios. Akin to 
previous analyses, we randomly picked stocks, 
weighed them equally in a portfolio, and then 
determined the portfolio risk by standard deviation 
of daily returns. We also performed this analysis by 
randomly weighting the stocks to see how much 

composition plays a role in overall portfolio risk.  

The results from this analysis are shown in Exhibit 6 with constant composition portfolios in 
black and random composition in gray. The plot shows the risk as measured in standard 
deviation (%) versus the number of securities included in the portfolio. The attenuation of risk 
is used as a means of determining the required number of securities in a portfolio in order to 
diversify unsystematic risk. We note that both methods result in a monotonically decreasing 
average as depicted by the dots. However, unlike previous analyses, we have access to the 
distribution of risk values as shown by the error bars in black in Exhibit 6 (gray not shown for 
simplicity of the figure; the same conclusions apply). This result further demonstrates that: (1) 
there is large variability in the risk (standard deviation) of the portfolios generated at small 
sizes, and (2) that a few securities is still enough to generate a portfolio that has low risk. 

Taken together, our results in Exhibits 4 and 5 coupled with our control analyses lead us to 
conclude that the origin of small portfolios is an artifact of low risk stocks or the DCF Monte-
Carlo approach. Thus, we conclude that the likely origin of these results is the novel risk metric 
being employed: cash flow standard deviation in nominal dollars. Finally, although there is 
substantial empirical evidence for small portfolios in value investment funds, private-equity 
firms, and hedge funds, this represents (to our knowledge) the first quantitative formalism to 
reach such a conclusion – i.e. “small is beautiful.” 
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Implications of Integrating Fundamental Analysis with Portfolio Design 

Taken together, the results of the previous sections suggest that if fundamental analysis for 
value investing is integrated with portfolio construction using a different objective risk metric, 
it is possible to diversify away unsystematic risk with a smaller number of securities than 
previously suggested. What is clear from Exhibit 6 is that this result is not an artifact from 
limiting our selection of securities, and that the conclusions we obtain from our fundamental 
analysis are robust.  

Three unique aspects of our approach reveal the true power of this methodology in portfolio 
construction from an academic and investor perspective. The first is that the fundamental 
analysis DCF using a MC simulation ascertains how well determined the forecasted free cash 
flows per share is for our companies of interest. Indeed, the question we are able to answer 
from such an analysis is: if the company operates within its historical averages, what should 
the expected free cash flow distribution per share look today? This can be unequivocally 
determined from our analysis and allows us to ensure that an investor is unlikely to lose money 
if the company is significantly undervalued. This is what allows us to populate the top left 
portion of the return/risk space as discussed in the first section. The variability in the 
distribution is an excellent metric for risk, representing the uncertainty in the company’s 
operating behavior. Of course this does not rule out the possibility of bankruptcy or 
mismanagement of the company, but as Markowitz points out, this is where research on a 
company, subjectivity, and the, “judgement of practical men,” will come into play (Markowitz 
(1952 )).  

The second unique aspect is that we are able to directly take into account the price of the 
securities in question. Having objectively identified the probable distribution of the stock price, 
we are able to directly compare this value to the known price in the market to determine the 
expected return distribution. Even as pointed out by Markowitz, MPT focuses merely on how 
to optimize composition only once the expected return statistics are known. Indeed, this new 
method allows an investor to directly pose the question: is the security over or undervalued in 
an absolute dollar sense? 

The third unique aspect of our approach is that we can integrate the statistics from the DCF-
MC directly into portfolio composition. This leads us to conclude that the optimal and efficient 
way to construct a portfolio is by concentrating investments in a few securities that are unlikely 
to lose by fundamental analysis. What is truly remarkable is that this investment strategy is 
already employed in the industry: specifically by value investors, private-equity firms, and 
hedge-funds. In reality, this result should not come as too surprising since resampling theory 
has demonstrated that ~10 to ~20 samples may be enough to determine robust statistics (Hanke 
and Mehrez (1979)). The work presented here sheds light into the mechanism of why small is 
beautiful: fundamental analysis leads you to invest in companies where it is unlikely to lose 
money, and as a result, the amount of securities you need to hold to diversify away risk 
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decreases. This leads to portfolios that are “spring-loaded” for a big winner without dampening 
the overall return with over-diversification.   
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Appendix I: Description of the Discounted Cash Flow Monte-Carlo 

Ticker names for the S&P500 were obtained from Wikipedia using Python and the 
BeautifulSoup package. These tickers were then saved into a spreadsheet and used to obtain values 
required for the DCF-MC. Specifically, the following functions were used on a Bloomberg Terminal 
to interface with the API: 

We obtained five years of historical data from 2010 through 2014 for all fields listed above except for 
Cash & Cash Equivalents, Total Shares Outstanding, and Long-Term debt for which we obtained the 
year-end values for 2014. Thus, we setup our simulation as though we have access to all data from 
2014 and are picking stocks as of approximately the end of the first quarter of 2015 when these SEC 
filings would be available. 

To perform the DCF-MC for each stock, the data above were read into a Python script (see 
Appendix II: Code for more) and stored in a data frame using the Pandas package. Subsequently, 
these historical data were used to perform 100,000 trials of a Monte-Carlo simulation as described in 
the main text.  Briefly, historical statistics were calculated for all input variables of interest, and a 
random 10-year DCF was randomly generated using these statistics. To save memory, only the ticker, 
percentile of the current stock price, current stock price from Yahoo Finance as of 3/3/2015, mean of 
the MC, and standard deviation of the MC were saved in an output file. These were the data that were 
directly utilized to perform portfolio optimization that resulted in Exhibits 4 and 5. 
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Appendix II: Code 

The following code for Screen_SP500_MC_DCF.py was used to read in the raw Bloomberg API data 
and perform the Monte-Carlo simulation. 
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