
  

 

      

SAE./No.32/April 2015 

Studies in Applied Economics 

Bifurcation of 
MacroeconoMetric 

Models and roBustness of 
dynaMical inferences 

William A. Barnett and Guo Chen 

Johns Hopkins Institute for Applied Economics, 
Global Health, and Study of  Business Enterprise 



!Bifurcation!of!Macroeconometric!Models!and!Robustness!of!Dynamical!Inferences! 

William!A.!Barnett!! 
University!of!Kansas,!Lawrence,!and!Center!for!Financial!Stability,!New!York!City! 

Guo!Chen!! 
University!of!Kansas,!Lawrence,!Kansas! 

April!20,!2015! 
! 

About!the!Series! 

The!Studies(in(Applied(Economics!series!is!under!the!general!direction!of!Prof.!Steve!H.!Hanke,!CoMDirector!of! 

the!Institute!for!Applied!Economics,!Global!Health!and!the!Study!of!Business!Enterprise!(hanke@jhu.edu).!! 

! 

About!the!Authors! 

Dr.!William!A.!Barnett!(williamabarnett@gmail.com)!is!an!eminent!economic!scientist!and!originator!of!the! 

Divisia!monetary!aggregates!and!the!“Barnett!Critique.”!He!is!Oswald!Distinguished!Professor!of! 

Macroeconomics!at!the!University!of!Kansas!Department!of!Economics!and!Core!Faculty!Member!of!the! 

Center!for!Global!and!International!Studies!at!the!University!of!Kansas,!as!well!as!Senior!Fellow!of!the!IC2! 

Institute!at!the!University!of!Texas!at!Austin!and!Fellow!of!the!Institute!for!Applied!Economics!at!Johns! 

Hopkins!University.!He!is!Founder!and!Editor!of!the!Cambridge!University!Press!journal,!Macroeconomic( 

Dynamics,!and!Founder!and!Editor!of!the!Emerald!Press!monograph!series,!International(Symposia(in( 

Economic(Theory(and(Econometrics.!Dr.!Barnett!recently!founded!the!Society!for!Economic!Measurement!and! 

serves!as!president.!He!is!also!Director!of!the!Advances!in!Monetary!and!Financial!Measurement!Program!at! 

the!Center!for!Financial!Stability.! 

Guo!Chen!(ameliachennj@gmail.com)!is!a!Ph.D.!candidate!at!the!University!of!Kansas.!Her!BS!degree!is!in! 

mathematics!from!Nanjing!University,!where!she!was!awarded!Excellent!Graduate.!!She!has!an!MA!in! 

economics!from!the!University!of!Kansas!and!an!MS!in!mathematics!from!the!University!of!Washington,! 

where!she!was!awarded!the!Top!Scholar!Award!in!2009.!She!was!an!exchange!student!in!mathematics!at!the! 

University!of!Paris!1!PantheonMSorbonne!and!at!the!Hong!Kong!University!of!Science!and!Technology.! 

! 

1! 
! 

mailto:the!Institute!for!Applied!Economics,!Global!Health!and!the!Study!of!Business!Enterprise!(hanke@jhu.edu


Summary! 

In!systems!theory,!it!is!well!known!that!the!parameter!spaces!of!dynamical!systems!are!stratified!into! 

bifurcation!regions,!with!each!supporting!a!different!dynamical!solution!regime.!!Some!can!be!stable,!with! 

different!characteristics,!such!as!monotonic!stability,!periodic!damped!stability,!or!multiperiodic!damped! 

stability,!and!some!can!be!unstable,!with!different!characteristics,!such!as!periodic,!multiperiodic,!or!chaotic! 

unstable!dynamics.!!But!in!general,!the!existence!of!bifurcation!boundaries!is!normal!and!should!be!expected! 

from!most!dynamical!systems,!whether!linear!or!nonlinear.!!Bifurcation!boundaries!in!parameter!space!are! 

not!evidence!of!model!defect.!!While!existence!of!bifurcation!boundaries!is!well!known!in!economic!theory,! 

econometricians!using!macroeconometric!models!rarely!take!bifurcation!into!consideration,!when!producing! 

policy!simulations.!!Such!models!are!routinely!simulated!only!at!the!point!estimates!of!their!parameters.!!! 

Barnett!and!He!(1999)!explored!bifurcation!stratification!of!Bergstrom!and!Wymer’s!(1976)!continuous!time! 

UK!macroeconometric!model.!!Bifurcation!boundaries!intersected!the!confidence!region!of!the!model’s! 

parameter!estimates.!!Since!then,!Barnett!and!his!coauthors!have!been!conducting!similar!studies!of!many! 

other!newer!macroeconometric!models!spanning!all!basic!categories!of!those!models.!!So!far,!they!have!not! 

found!a!single!case!in!which!the!model’s!parameter!space!was!not!subject!to!bifurcation!stratification.!!In! 

most!cases,!the!confidence!region!of!the!parameter!estimates!was!intersected!by!some!of!those!bifurcation! 

boundaries.!!The!fundamental!implication!of!this!research!is!that!policy!simulations!with!macroeconometric! 

models!should!be!conducted!at!multiple!settings!of!the!parameters!within!the!confidence!region.!!While!this! 

result!would!be!as!expected!by!systems!theorists,!the!result!contradicts!the!normal!procedure!in! 

macroeconometrics!of!conducting!policy!simulations!solely!at!the!point!estimates!of!the!parameters.!!! 

This!survey!provides!an!overview!of!the!classes!of!macroeconometric!models!for!which!these!experiments! 

have!so!far!been!run!and!emphasizes!the!implications!for!lack!of!robustness!of!conventional!dynamical! 

inferences!from!macroeconometric!policy!simulations.!!By!making!this!detailed!survey!of!past!bifurcation! 

experiments!available,!we!hope!to!encourage!and!facilitate!further!research!on!this!problem!with!other! 

models!and!to!emphasize!the!need!for!simulations!at!various!points!within!the!confidence!regions!of! 

macroeconometric!models,!rather!than!at!only!point!estimates.! 
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1. Bifurcation Of Macroeconomic Models1 

1.1. Introduction 

Bifurcation has long been a topic of interest in dynamical macroeconomic systems. 

Bifurcation analysis is important in understanding dynamic properties of macroeconomic 

models as well as in selection of stabilization policies. The goal of this survey is to summarize 

work by William A Barnett and his coauthors on bifurcation analyses in macroeconomic models 

to facility and motivate work by others on further models. In section 1, we introduce the 

concept of bifurcation and its role in studies of macroeconomic systems and also discuss several 

types of bifurcations by providing examples summarized from Barnett and He (2004, 2006b). In 

sections 2-8, we discuss bifurcation analysis and approaches with models from Barnett’s other 

papers on this subject. 

To explain what bifurcation is, Barnett and He (2004,2006b) begin with the general form 

of many existing macroeconomic models: 

ܠ۲ ) (1.1) = , ી), 

where ۲ is the vector-valued differentiation operator, is the state vector,ી is the parameter 

vector, and  is the vector of functions governing the dynamics of the system, with each 

component assumed to be smooth in a local region of interest. 

In system (1.1), the focus of interest lies in the settings of the parameter vector, ી. 

Assume ી takes values within a theoretically feasible set ߆. The value of ી can affect the 

dynamics of the system substantially through a small change, and we say a bifurcation occurs in 

the system, if such a small change in parameters fundamentally alters the nature of the 

dynamics of the system. In particular, bifurcation refers to a change in qualitative features 

instead of quantitative features of the solution dynamics. A change in quantitative features of 

dynamical solutions may refer to a change in such properties as the period or amplitude of 

cycles, while a change in qualitative features may refer to such changes as changes from one 

type of stability or instability to another type of stability or instability. 

1 This section is summarized from Barnett and He (2004,2006b). 
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A point within the parameter space at which a change in qualitative features of the 

dynamical solution path occurs defines a point on a bifurcation boundary. At the bifurcation 

point, the structure of the dynamic system may change fundamentally. Different dynamical 

solution properties can occur when parameters are close to but on different sides of a 

bifurcation boundary. A parameter set can be stratified by bifurcation boundaries into several 

subsets with different types of dynamics within each subset. 

There are several types of bifurcation boundaries, such as Hopf, pitchfork, saddle-node, 

transcritical, and singularity bifurcation. Each type of bifurcation produces a different type of 

qualitative dynamic change. We illustrate these different types of bifurcation by providing 

examples in section 1.3. Bifurcation boundaries have been discovered in many macroeconomic 

systems. For example, Hopf bifurcations have been found in growth models (e.g., Benhabib and 

Nishimura (1979), Boldrin and Woodford (1990), Dockner and Feichtinger (1991), and 

Nishimura and Takahashi (1992)) and in overlapping generations models. Pitchfork bifurcations 

have been found in the tatonnement process (e.g., Bala (1997) and Scarf (1960)). Transcritical 

bifurcations have been found in Bergstrom and Wymer’s (1976) UK model (Barnett and He 

(1999)) and singularity bifurcation in Leeper and Sims’ Euler-equation model (Barnett and He 

(2008)). 

One reason we are concerned about bifurcation phenomena in macroeconomic models 

is because changes in parameters could affect dynamic behaviors of the models and 

consequently the outcomes of imposition of policy rules. For example, Bergstrom and Wymer’s 

(1976) UK model operates close to bifurcation boundaries between stable and unstable regions 

of the parameter space. In this case, if a bifurcation boundary intersects the confidence region 

of the parameter estimates, different qualitative properties of solution can exist within this 

confidence region. As a result, robustness of inferences about dynamics can be damaged, 

especially if inferences about dynamics are based on model simulations with the parameters 

set only at their point estimates. When confidence regions are stratified by bifurcation 

boundaries, dynamical inferences need to be based on simulations at points within each of the 

stratified subsets of the confidence region. 

Knowledge of bifurcation boundaries is directly useful in policy selection. If the system 

is unstable, a successful policy would bifurcate the system from the unstable to stable region. 

4 
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In that sense, stabilization policy can be viewed as bifurcation selection. As illustrated in section 

2, Barnett and He (2002) have shown that successful bifurcation policy selection can be difficult 

to design. 

Barnett’s work has found bifurcation phenomena in every macroeconomic model that 

he and his coauthors have so far explored. Barnett and He (1999,2002) examined the dynamics 

of Bergstrom-Wymer’s continuous-time dynamic macroeconomic model of the UK economy 

and found both transcritical and Hopf bifurcation boundaries. Barnett and He (2008) estimated 

and displayed singularity bifurcation boundaries for the Leeper and Sims (1994) Euler equations 

model. Barnett and Duzhak (2010) found Hopf and period doubling bifurcations in a New 

Keynesian model. Banerjee, Barnett, Duzhak and Gopalan (2011) examined the possibility of 

cyclical behavior in the Marshallian Macroeconomic Model. Barnett and Eryilmaz (2013, 2014) 

investigated bifurcation in open economy models. Barnett and Ghosh (2013a) investigated the 

existence of bifurcations in endogenous growth models. 

This survey is organized in the chronological order of Barnett’s work on bifurcation of 

macroeconomic models, from early models to many of the most recent models. 

1.2. Stability 

There are two possible approaches to analyze bifurcation phenomena: global and local. 

Methods in Barnett’s current papers have used local analysis, which is analysis of the linearized 

dynamic system in a neighborhood of the steady state. In his papers, equation (1.1) is linearized 

in the form 

ܠ۲ (ી)ۯ (1.2) = + ۴( , ી), 

where ۯ(ી) is the Jacobian matrix of ( , ી), and ۴( , ી) ) = , ી) െ = (ી)ۯ o( , ી) is the 

vector of higher order term. Define כ�to be the system’s steady state equilibrium, such that

(ી ,�כ )כ = , and redefine the variables such that the steady state is the point =  by 

replacing with െ  .�כ

The local stability of (1.1), for small perturbation away from the equilibrium, can be 

studied through the eigenvalues of ۯ(ી), which is a matrix-valued function of the parameters 

ી. It is important to know at what parameter values, ી�the system (1.1) is unstable. But it is ,
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also important to know the nature of the instability, such as periodic, multiperiodic, or chaotic, 

and the nature of the stability, such as monotonically convergent, damped single-periodic 

convergent, or damped multiperiodic convergent. For global analysis, which can be far more 

complicated than local analysis, higher order terms must be considered, since the perturbations 

away from the equilibrium can be large. Analysis of ۯ(ી) alone may not be adequate. More 

research on global analysis of macroeconomic models is needed. 

To analyze the local stability properties of the system, we need to locate the bifurcation 

boundaries. The boundaries must satisfy 

�൯(ી)ۯ൫ݐ݁݀ (1.3) = 0. 

According to Barnett and He (2004), if all eigenvalues of ۯ(ી) have strictly negative real 

parts, then (1.1) is locally asymptotically stable in the neighborhood of . If at least one of = 

the eigenvalues of ۯ(ી) has positive real part, then (1.1) is locally asymptotically unstable in 

the neighborhood of .= 

The bifurcation boundaries can be difficult to locate. In Barnett and He (1999, 2002), 

various methods are applied to locate the bifurcation boundaries characterized by (1.3). 

Equation (1.3) usually cannot be solved in closed form, when ી is multi-dimensional. As a 

result, numerical methods are extensively used for solving (1.3). 

Before proceeding to the next section, we introduce the definition of hyperbolic for 

flows and maps, respectively. According to Hale and Kocak (1991), the following definitions 

apply. 

Definition 1.1. An equilibrium point כof ሶ ) ) is said to be hyperbolic, if all the eigenvalues = 
)ܦ of the Jacobian matrixכ ) have nonzero real parts. 

Definition 1.2. A fixed point כof  ) ) is said to be hyperbolic, if the linear ܥଵ�map �
 �has no eigenvalues withכ at (כ )ܦ is hyperbolic; that is, if the Jacobian matrix (כ )ܦ

modulus one. 
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Definition 1.2. refers to discrete-time dynamical systems. Since bifurcations can only 

occur in a local neighborhood of non-hyperbolic equilibria, we are more interested in the 

behavior at non-hyperbolic equilibria. 

For a discrete-time dynamical system, consider a generic smooth one-parameter family 

of maps  ) (ߙ , א ,( )(ఈ) = ܴ�, ߙ א ܴ�. Since local bifurcation happens only at 

nonhyperbolic fixed points, there are three critical cases to consider: 

(a) The fixed point כ�has eigenvalue 1. 

(b) The fixed point כ�has eigenvalue -1. 

(c) The fixed point כ�has a pair of complex-conjugate eigenvalues ݁±ఏబ�with 0  .�ߨ >�ߠ >

The codimension 1 bifurcation associated with case (a) is called a fold (saddle node) 

bifurcation. The codimension 1 bifurcation associated with case (b) is called a flip (period 

doubling) bifurcation, while the codimension 1 bifurcation associated with case (c) is called a 

Neimark-Sacker bifurcation. Neimark-Sacker bifurcation is the equivalent of Hopf bifurcation 

for maps. 

In the following section, we are going to introduce three important one-dimensional 

equilibrium bifurcations described locally by ordinary differential equations. They are 

transcritical, pitchfork, and saddle-node bifurcations. 

1.3. Types of Bifurcations 
1.3.1. Transcritical Bifurcations 

For a one-dimensional system, 

ݔܦ ,(ߠ ,�ݔ)ܩ =

the transversality conditions for a transcritical bifurcation at (ߠ ,�ݔ) = (0,0) are 

് ௫௫(0,0)ܩ ,ఏ(0,0) = 0ܩ = ௫(0,0)ܩ = (0,0)ܩ (1.4) 0, and ܩఏ௫ଶ െ  .ఏఏ(0,0) > 0ܩ௫௫ܩ

An example of such a form is 

�ݔܦ ݔߠ െ  = ଶ�. (1.5)ݔ

7 



              

            

              

             

             

        

          

         

   

  

 

                           

  

    

    

   
 

 

          

       

 

               

             

             

            

 
 

The steady state equilibria of the system are at כݔ�= 0 and כݔ�  = It follows that .ߠ

system (1.5) is stable around the equilibrium כݔ�= 0 for ߠ < 0, and unstable for ߠ > 0. System 

(1.5) is stable around the equilibrium כݔ� ߠ for ߠ > 0, and unstable for ߠ < 0. The nature of = 

the dynamics changes as the system bifurcates at the origin. This transcritical bifurcation arises 

in systems in which there is a simple solution branch, corresponding here to 0 =�כݔ. 

Transcritical bifurcations have been found in high-dimensional continuous-time 

macroeconomic systems, but in high dimensional cases, transversality conditions have to be 

verified on a manifold. Details are provided in Guckenheimer and Holmes (1983). 

1.3.2. Pitchfork Bifurcations 

For a one-dimensional system, 

ݔܦ  .(ߠ ,�ݔ)݂ =

,�כݔ) �such thatכߠ �and a parameter valueכݔ Suppose that there exists an equilibriumכߠ )

satisfies the following conditions: 

�ݔ)݂߲כߠ
ݔ߲ (ܽ)

, )
|௫ୀ௫0 =�כ, 

�כߠ
(ܾ) 

߲ଷ݂(ݔ�, )
|௫ୀ௫כ ് �ଷݔ߲ ,0

߲ଶ݂(ݔ�
ߠ߲ݔ߲ (ܿ)

(ߠ ,
|௫ୀ௫כ�,ఏୀఏכ ് 0, 

�כݔ) thenכߠ ) is a pitchfork bifurcation point. , 

An example of such form is 

ݔܦ ݔߠ = െ  .�ଷݔ

The steady state equilibria of the system are at כݔ�= 0 and כݔ�= ±ξߠ . It follows that 

the system is stable when ߠ < 0 at the equilibrium כݔ�= 0, and unstable at this point when ߠ > 

0. The two other equilibria כݔ�= ±ξߠ�are stable for ߠ > 0. The equilibrium כݔ�= 0 loses 

stability, and two new stable equilibria appear. This pitchfork bifurcation, in which a stable 
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solution branch bifurcates into two new equilibria as ߠ increases, is called a supercritical 

bifurcation. 

Bala (1997) shows how pitchfork bifurcation can occur in the tatonnement process. 

1.3.3. Saddle-Node Bifurcations 

For a one-dimensional system, 

ݔܦ  .(ߠ ,�ݔ)݂ =

�כߠ �כݔ) A saddle-node pointכߠ ) satisfies the equilibrium condition ݂(כݔ� ) = 0 and the Jacobian , ,

wf x( ,  )T * 
condition |

x x  *
0 , as well as the transversality conditions, as follows: 

wx 

,
(ܽ) 

߲݂(
�ߠ߲
(ߠ�ݔ

|௫ୀ௫כ�,ఏୀఏכ ് 0, 

,
(ܾ) 

߲ଶ݂
ݔ߲

ݔ)
ଶ
(ߠ

|௫ୀ௫כ�,ఏୀఏכ ് 0. 

Sotomayor (1973) shows that transversality conditions for high-dimensional systems can also 

be formulated. 

A simple system with a saddle-node bifurcation is 

�ݔܦ ߠ െ  =.�ଶݔ

The equilibria are at כݔ�= ±ξߠ, which requires ߠ to be nonnegative. Therefore, there exist no 

equilibria for ߠ < 0, and there exist two equilibria at כݔ�= ±ξߠ , when ߠ > 0. It follows that 

when ߠ > 0, the system is stable at כݔ� ξߠ and unstable at כݔ� െξߠ. In this example, = = 

bifurcation occurs at the origin as ߠ increases through zero, which is called the (supercritical) 

saddle node. 

1.3.4. Hopf Bifurcations 

Hopf bifurcation is the most studied type of bifurcation in economics. For continuous 

time systems, Hopf bifurcation occurs at the equilibrium points at which the system has a 

9 



           

              

               

     

              

    

                                                

               

        

            

          

        

       

 

   

         

              

           

             

           

       

  

  

 
 

Jacobian matrix with a pair of purely imaginary eigenvalues and no other eigenvalues which 

have zero real parts. For discrete time system, the following theorem applies in the special case 

of n =2. The Hopf Bifurcation Theorem in Gandolfo (2010, ch. 24, p.497) is widely applied to 

find the existence of Hopf bifurcation. 

Theorem 1.1. (Existence of Hopf Bifurcation in 2 dimensions) Consider the two-dimensional 

non-linear difference system with one parameter 

�௧ାଵܡ (ܡ௧, ߙ),= 

and suppose that for each ߙ in the relevant interval there exists a smooth family of equilibrium 

points, ܡ� �ଵߣ ,at which the eigenvalues are complex conjugates ,(ߙ)ܡ (ߙ)ߠ =If .(ߙ)߱݅ + , ଶ�= 

there is a critical value ߙ�of the parameter such that 

a. the eigenvalues’ modulus becomes unity at ߙ, but the eigenvalues are not roots of 

unity (from the first up to the fourth), namely 

หߣଵ�, ଶ(ߙ)ห = ξߠଶ�+ ߱ଶ�= 1, ߣଵ�, ଶ(ߙ) ് 1 for ݆ = 1,2,3,4, 

and 

d | O D(  ) |  1,2 b. 
dD 

ሃఈୀఈబ ് 0, 

then there is an invariant closed curve bifurcating from ߙ. 

This theorem only applies with a 2×2 Jacobian. The earliest theoretical works on Hopf 

bifurcation include Poincaré (1892) and Andronov (1929), both of which were concerned with 

two-dimensional vector fields. A general theorem on the existence of Hopf bifurcation, which is 

valid in ݊ dimensions, was proved by Hopf (1942). 

A simple example in the two-dimensional system is 

ݔܦ = െݕ ߠ൫ݔ + െ ,�൯(ଶݕ +�ଶݔ)

�ݕܦ ݔ ߠ൫ݕ + െ =൯(ଶݕ +�ଶݔ) . 

10 



             

             

     

                        

           

 

        

                                  
                                                 

                                               
                           

                                                 

                                                   
 

  

                 

                 

        

                     

                

            

 

                     

             

          

       

 
 

One equilibrium is כݔ� =�כݕ 0 with stability occurring for ߠ < 0 and the instability occurring = 

for ߠ > 0. That equilibrium has a pair of conjugate eigenvalues ߠ + ݅ and ߠ െ ݅. The 

eigenvalues become purely imaginary, when ߠ = 0. 

Barnett and He (2004) show the following method to find Hopf bifurcation. They let 

(ݏ) ۷ݏ)ݐ݁݀ = െ ۯ be the characteristic polynomial of (ۯ and write it as 

(ݏ) = ܿ�+ ܿଵݏ + ܿଶݏଶ�+ ܿଷݏଷ�+ ڮ+ ܿିଵݏିଵ�+ ݏ�. 

They construct the following (݊ െ 1) by (݊ െ 1) matrix 

ܿ� ܿଶ� ܿିଶۍ�� …  1  0  0 … . �ܿې 0  ܿଶێ  0 …. ܿିଶ  1  0 … �ۑ 0 
�ێ … 

ܿ� ܿଶ ܿସ�… 
�ۑ

ێ  0  0 …  0 �ۑ 1 
�ێ ܿଵ� ܿଷ� ܿିଵ� �܁ۑ …  0  0  0 …  0 

.= 
�ێ ܿଵ� ܿଷ� ܿିଵ� … 0ۑ  0        0 …  0
ێ …�ۑ . 
ێ …�ۑ
ێ 0ۑ  0 …  0 ܿଵ� ܿଷ�… … ܿିଵ� �ۏے

n
Let ܁�be obtained by deleting rows 1 and and columns 1 and 2, and let ܁ଵ�be

2 
n

obtained by deleting rows 1 and and columns 1 and 3. The matrix (ߠ)ۯ has one pair of purely 
2 

imaginary eigenvalues (Guckenheimer, Myers, and Sturmfels (1997) ), if 

݀ (܁)ݐ݁݀ ,0 = (܁)ݐ݁݀  0. (1.6) < (ଵ܁)ݐ݁

If ݀݁(܁)ݐ = 0 and ݀݁ݐ(܁) ݀  may have more than one pair of (ߠ)ۯ 0, then = (ଵ܁)ݐ݁

purely imaginary eigenvalues. The following condition can be used to find candidates for 

bifurcation boundaries: 

݀ (܁)ݐ݁݀ ,0 = (܁)ݐ݁݀  (ଵ܁)ݐ݁ 0. (1.7) 

Since solving (1.7) analytically is difficult, Barnett and He (1999) apply the following 

numerical procedure to find bifurcation boundaries. Without loss of generality, they initially 

consider only two parameters ߠଵ�and ߠଶ. 

11 



  

               

            

            

 

       

        

           

      

                

           

              

    

           

           

          

             

              

            

             

           

          

        

 

      

            

         

 
 

Procedure (P1) 

(1) For any fixed ߠଵ, treat ߠଶ�as a function of ߠଵ, and find the value of ߠଶ�satisfying the 

condition ݄(ߠଶ) ൯(ߠ)ۯ൫ݐ݁݀ = = 0. First find the number of zeros of ݄(ߠଶ). Starting 

with approximations of zeros, use the following gradient algorithm to find all zeros of 

 :(ଶߠ)݄

݊)ଶߠ (1.8) + ଶ(݊) െߠ = (1 ݄ܽ(ߠଶ)ലఏమୀఏమ() 

where {ܽ, ݊ = 0,1,2 … } is a sequence of positive step sizes. 

(2) Repeat the same procedure to find all ߠଶ�satisfying (1.7). 

(3) Plot all the pairs (ߠଵ, ߠଶ). 

(4) Check all parts of the plot to find the segments representing the bifurcation boundaries. 

Then parts of the curve found in step (1) are boundaries of saddle-node bifurcations. 

Parts of the curve found in step (2) are boundaries of Hopf bifurcations, if the required 

transversality conditions are satisfied. 

Pioneers in studies of Hopf bifurcations in economics include Torre (1977) and Benhabib 

and Nishimura (1979). Torre found the appearance of a limit cycle associated with a Hopf 

bifurcation boundary in Keynesian systems. Benhabib and Nishimura showed that a closed 

invariant curve might emerge as the result of optimization in a multi-sector neoclassical optimal 

growth model. These studies illustrate the existence of a Hopf bifurcation boundary in an 

economic model results in a solution following closed curves around the stationary state. The 

solution paths may be stable or unstable, depending upon the side of the bifurcation boundary 

on which the parameter values lie. More recent studies finding Hopf bifurcation in econometric 

models include Barnett and He (1999, 2002, 2008), who found bifurcation boundaries of the 

Bergstrom-Wymer continuous-time UK model and the Leeper and Sims Euler-equations model. 

1.3.5. Singularity-Induced Bifurcations 

This section is devoted to a dramatic kind of bifurcation found by Barnett and He (2008) 

in the Leeper and Sims (1977) model—singularity-induced bifurcation. 
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Some macroeconomic models, such as the dynamic Leontief model (Luenberger and 

Arbel (1977)) and the Leeper and Sims (1994) model, have the form 

ݐ)�۰ (1.9) + (ݐ)�ۯ = (1  .(ݐ) +

Here (ݐ) is the state vector, (ݐ) is the vector of driving variables, ݐ is time, and ۰ and ۯ are 

constant matrices of appropriate dimensions. If (ݐ) = , the system (1.9) is in the class of 

autonomous systems. Barnett and He (2006b) illustrate only the autonomous cases of (1.9). 

If ۰ is invertible, then we can invert ۰ to acquire 

ݐ) + 1) = ۰ି(ݐ)�ۯ + ۰ି(ݐ),

so that 

ݐ) + 1) െ�(ݐ) = ۰ି(ݐ)�ۯ െ�(ݐ) + ۰ି(ݐ)

= (۰ିۯ െ ۷) (ݐ) + ۰ି(ݐ),

which is in the form of (1.1). 

The case in which the matrix ۰ is singular is of particular interest. Barnett and He 

(2006b) rewrite (1.9) by generalizing the model to permit nonlinearity as follows: 

۰( ܠી)۲ ,(ݐ) = ۴(  ી). (1.10) ,(ݐ) ,(ݐ)

Here (ݐ) is the vector of driving variables, and ݐ is time. Barnett and He (2006b) consider the 

autonomous cases in which (ݐ) = . 

Singularity-induced bifurcation occurs, when the rank of ۰( , ી) changes, as from an 

invertible matrix to a singular one. Therefore, the matrix must depend on ી for such changes to 

occur. If the rank of ۰( , ી) does not change according to the change of ી, then singularity 

of ۰( , ી) is not sufficient for (1.10) to be able to produce singularity bifurcation. 

Barnett and He (2006b) consider the two-dimensional state-space case and perform an 

appropriate coordinate transformation allowing (1.10) to become the following equivalent 

form: 
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Bଵ(ݔଵ, ݔଶ, ી)Dxଵ�= Fଵ(ݔଵ, ݔଶ, ી), 

0 = Fଶ(ݔଵ, ݔଶ, ી). 

They provide four examples to demonstrate the complexity of bifurcation behaviors that 

can be produced from system (1.10). The first two examples do not produce singularity 

bifurcations, since ۰ does not depend on ી. In the second two examples, Barnett and He (2008) 

find singularity bifurcation, since ۰ does depend on ી. 

Example 1. Consider the following system modified from system (1.5), which has been shown 

to produce transcritical bifurcation: 

�ݔܦ ݔߠ െ �ଶݔ (1.11) = ,

ݔ െ �ଶݕ (1.12)0= . 

Comparing with the general form of (1.10), observe that 

۰ ቂ1  0ቃ ,= 
0  0 

which is singular but does not depend upon the value of ߠ. 

�כݕ ,ߠand ൫ (0,0) = ( ,�כݔ) The equilibria areכݕ ±ξߠ൯�. Near the equilibrium (כݔ�, ) = 

(0,0), the system ((1.11),(1.12)) is stable for ߠ < 0 and unstable for ߠ > 0. The equilibria 

( ,�כݔ)כݕ = ൫ߠ, ±ξߠ൯ are undefined, when ߠ < 0, and stable when ߠ > 0. The bifurcation point 

is (ݔ ݕ , Notice before and after bifurcation, the number of differential equations .(0,0,0) = (ߠ ,

and the number of algebraic equations remain unchanged. This implies that the bifurcation 

point does not produce singularity bifurcation, since ۰ does not depend upon ߠ. 

Example 2. Consider the following system modified from system (1.7), which can produce 

saddle-node bifurcation: 

�ݔܦ ߠ െ �ଶݔ (1.13) = ,

ݔ െ �ଶݕ (1.14)0 = . 
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Comparing with the general form of (1.10), observe that 

۰ ቂ1  0ቃ ,= 
0  0 

which is singular but does not depend upon the value of ߠ. 

The equilibria are at (כݕ�כݔ) = (ξߠ, ±
రξߠ), defined only for ߠ   0. The system , 

�כݕ �כݔ) is stable around both of the equilibria ((1.14),(1.13))כݕ ) = (ξߠ, ±
రξߠ) and (כݔ� ) = (ξߠ,, ,

±כݕ
రξߠ). The bifurcation point is (כݔ� , The three-dimensional bifurcation diagram .(0,0,0) = (ߠ ,

in Barnett and He (2006b) shows that there is no discontinuity or change in dimension at the 

origin at the origin. The bifurcation point does not produce singularity bifurcation, since the 

dimension of the state space dynamics remains unchanged on either side of the origin. 

Example 3. Consider the following system: 

ݔܦ ݔܽ = െ ܽ ଶ�, withݔ > 0, (1.15) 

ݕܦߠ ݔ = െ  ଶ�. (1.16)ݕ

Comparing with the general form of (1.10), observe that 

۰ = ቂ
0
1 

ߠ
0ቃ , 

which does depend upon the parameter ߠ. 

When ߠ = 0, the system has one differential equation (1.15) and one algebraic equation 

(1.16). If ߠ ് 0, the system has two differential equations (1.15) and (1.16) with no algebraic 

equations for nonzero ߠ. 

�כݔ) The equilibria areכݕ ) = (0,0) and (ܽ, ±ξܽ). For any value of ߠ, the system , 

�כݕ ( ,�כݔ) The equilibrium .(0,0) = ( ,�כݔ) is unstable around the equilibrium at ((1.16),(1.15))כݕ = 

ߠ is unstable for (ξܽ ,�ܽ)כݕ < 0 and stable for ߠ > 0. The equilibrium (כݔ�, ) = (ܽ�, െξܽ) is 

unstable for ߠ > 0 and stable for ߠ < 0. 

Without loss of generality, Barnett and He (2006b) normalize ܽ to be 1. When ߠ = 0, 

the system’s behavior degenerates into movement along the one-dimensional curve ݔ െ  =�ଶݕ

15 
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0. When ߠ ് 0, the dynamics of the system move throughout the two-dimensional state space. 

The singularity bifurcation caused by the transition from nonzero ߠ to zero results in the drop in 

the dimension. 

Barnett and He (2006b) observe that even if singularity bifurcation does not cause a 

change of the system between stability and instability, dynamical properties produced by 

singularity bifurcation can change. For example, if ߠ changes from positive to zero, when (ݔ ,(ݕ

is at the equilibrium (1,1), the system will remain stable; if ߠ changes from positive to zero, 

when (ݔ ߠ is at the equilibrium (0,0), the system will remain unstable; if (ݕ changes from ,

positive to zero, when(ݔ , is at the equilibrium (1,-1), the system will change from unstable to (ݕ

stable. But in all of these cases, the nature of the disequilibrium dynamics changes dramatically, 

even if there is no transition between stability and instability. 

Example 4. Consider the following system: 

ݔܦ ݔܽ = െ ܽ ଶ�, withݔ > 0, (1.17) 

ݕܦߠ ݔ = െ  (1.18) .�ݕ

Comparing with the general form of (1.10), observe that 

۰ = ቂ
0
1 

ߠ
0ቃ . 

ܽ ,�ܽ) and (0,0) = ( ,�כݔ) The equilibria areכݕ ). The system is unstable around the 

�כݕ ߠ for any value of (0,0) = ( ,�כݔ) equilibriumכݕ . The equilibrium (כݔ�, ) = (ܽ�, ܽ ) is unstable 

for ߠ < 0 and stable for ߠ  0. When ߠ < 0, the system is unstable everywhere. When ߠ = 0, 

equation (1.18) becomes the algebraic constraint ݕ  = which is a one-dimensional ray ,ݔ

through the origin. However, when ߠ ് 0, the system moves into the two-dimensional space. 

Even though the dimension can drop from singular bifurcation, there could be no change 

between stability and instability. For example, (0,0) remains unstable and (1, 1) remains stable, 

when ߠ ് 0 and ߠ = 0. 

Barnett and He (2006b) also observe that the nature of the dynamics with ߠ small and 

positive is very different from the dynamics with ߠ small and negative. In particular, the 
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�כݔ) equilibrium atכݕ ) = (1,1) is stable in the former case and unstable in the latter case. ,

Hence there is little robustness of dynamical inference to small changes of ߠ close to the 

bifurcation boundary. Barnett and Binner (2004, part 4) further investigate the subject of 

robustness of inferences in dynamic models. 

Example 5. Consider the following system: 

�ଵݔܦ  =,ଷݔ

�ଶݔܦ െݔଶ,= 

ଷ, (1.19) 0ݔߠ +�ଶݔ +�ଵݔ = 

with singular matrix 

= 
1  0  0

۰ ൩ , (1.20)0  1  0
0  0  0 

where ۲ܠ =  .Ԣ(ଷݔܦ ,ଶݔܦ ,ଵݔܦ)

The only equilibrium is at כ�= ߠ For any .(0,0,0) = (כଷݔ ,�כଶݔ ,�כଵݔ) ് 0, Barnett and He 

(2006b) solve the last equation for ݔଷ�and substitute into the first equation to derive the 

following two-equation system: 

x � x
Dx1  � 1 2 , (1.21) 

T 

�ଶݔܦ െݔଶ.= 

In this case, the matrix ۰ becomes the identity matrix. 

= This two-dimensional system is stable atכ ߠ for (0,0) = (כଶݔ�כଵݔ) > 0 and unstable for ,

ߠ < 0. However, setting ߠ = 0, Barnett and He (2006b) find that system (1.19) becomes 

�ଵݔ െݔଶ,= 

�ଶݔܦ െݔଶ,= 
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�ଷݔ  ଶ,= (1.22)ݔ

for all ݐ > 0. This system has the following singular matrix : 

= 
0  0  0

۰ ൩0  1  0  .
0  0  0 

(1.23) 

The dimension of system (1.22) is very different from that of (1.21). In system (1.22), 

there are two algebraic constraints and one differential equation, while system (1.21) has two 

differential equations and no algebraic constraints. Clearly the matrix ۰ is different in the two 

cases with different ranks. This example shows that singular bifurcation can results from the 

dependence of ۰ upon the parameters, even if there does not exist a direct closed-form 

algebraic representation of the dependence. 

Barnett and He (2008) find singularity bifurcation in their research on the Leeper and 

Sims’ Euler-equations macroeconometric model, as surveyed in section 3. Singularity 

bifurcations could similarly damage robustness of dynamic inferences with other modern Euler-

equations macroeconometric models. Examples above show that implicit function systems (1.9) 

and (1.10) could produce singular bifurcation, while closed form differential equations systems 

are less likely to produce singularity bifurcation. Since Euler equation systems are in implicit 

function form and rarely can be solved for closed form representations, Barnett and He (2006b) 

conclude that singularity bifurcation should be a serious concern with modern Euler equations 

models. 

2. Bergstrom—Wymer Continuous Time UK Model2 

2.1. Introduction 

Among the models that have direct relevance to this research are the high dimensional 

continuous time macroeconometric models in Bergstrom, Nowman and Wymer (1992), 

Bergstrom, Norman, and Wandasiewicz (1994), Bergstrom and Wymer (1976), Grandmont 

(1998), Leeper and Sims (1994), Powell and Murphy (1997), and Kim (2000). Surveys of 

2 This section is based on Barnett and He (1999,2001b,2002). 
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macroeconometric models are available in Bergstrom (1996) and in several textbooks such as 

Gandolfo (1996) and Medio (1992). The general theory of economic dynamics is provided, for 

example, in Boldrin and Woodford (1990) and Gandolfo (1992). Various bifurcation phenomena 

are reported in Bala (1997), Benhabib (1979), Medio (1992), Gandolfo (1992), and Nishimura 

and Takahashi (1992). Focused studies of stability are conducted in Grandmont (1998), Scarf 

(1960), and Nieuwenhuis and Schoonbeek (1997). Barnett and Chen (1988) discovered chaotic 

behaviors in economics. Bergstrom, Nowman, and Wandasiewicz (1994) investigate 

stabilization of macroeconomic models using policy control. Wymer (1997) describes several 

mathematical frameworks for the study of structural properties of macroeconometric models. 

In section 2, we discuss several papers by Barnett and He on bifurcation analysis using 

Bergstrom, Nowman, and Wymer’s continuous-time dynamic macroeconometric model of the 

UK economy. Barnett and He chose this policy-relevant model as their first to try, because the 

model is particularly well suited to these experiments. The model contains adjustment speeds 

producing Keynesian rigidities and hence possible Pareto improving policy intervention. In 

addition, as a system of second order differential equations, the model can produce interesting 

dynamics and possesses enough equations and parameters to be fitted plausibly to the UK 

data. 

Barnett and He (1999) discovered that both saddle-node bifurcations and Hopf 

bifurcations coexist within the model’s region of plausible parameter setting. Bifurcation 

boundaries are located and drawn. The model’s Hopf bifurcation helps to provide explanations 

for some cyclical phenomena in the UK macroeconomy. The Barnett and He paper designed a 

numerical algorithm for locating the model’s bifurcation boundaries. That algorithm was 

provide above in section 1.3.4. 

Barnett and He (1999) observed that stability of the model had not previously been 

tested. They found that the point estimates of the model’s parameters are outside the stable 

subset of the parameter space, but close enough to the bifurcation boundary so that the 

hypothesis of stability cannot be rejected. Confidence regions around the parameter estimates 

are intersected by the boundary separating stability from instability, with the point estimates 

being on the unstable side. 
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Barnett and He (2002) explored the problem of selection of a “stabilization policy.” The 

purpose of the policy was to bifurcate the system from an unstable to a stable operating regime 

by moving the parameters’ point estimates into the stable region. The relevant parameter 

space is the augmented parameter space, including both the private sector’s parameters and 

the parameters of the policy rule. Barnett and He found that policies producing successful 

bifurcation to stability are difficult to determine, and the policies recommended by the 

originators of the model, based on reasonable economic intuition and full knowledge of their 

own model, tend to be counterproductive, since such policies contract the size of the stable 

subset of the parameter space and move that set farther away from the private sector’s 

parameter estimates. These results point towards the difficulty of designing successful 

countercyclical stabilization policy in the real world, where the structure of the economy is not 

accurately known. Barnett and He (1999) also proposed a new formula for determining the 

bifurcation boundaries for transcritical bifurcations. 

2.2. The Model3 

The Bergstrom, Nowman, and Wymer (1992) model is described by the following 14 

second-order differential equations. 

{E (r D� log p)�E D log p}E1e
� (Q P� �ଶܦ( 2 3 

൩� (2.1) log ܥ ଶߣ +�ଵߣ)ଵߛ = െ ܦ log ܥ) ଶߛ + log �
TC1 

� t �E �E �1/ E1 6 6 6ªE e O {Q � E K } º 2 4 5D log L J O3 ( 2 �D log L) �J 4 log « » (2.2) 
L¬ ¼ 

Q 1�Eۍ� E ( ) �ې 
�ଶܦ �ێ 5 K ۑ� (2.3) log ܭ ଶߣ +�ଵߣ)ଷߛ = െ ܦ log ܭ)  �logߛ +

6 

ێ r � E7 D log p � E8 ۑ�
ۏ �ے

3 The model description is modified from Barnett and He (1999). 
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qp 
�1}ۍ10 E9 ( )E }(C Gc �DK  � En � Eo ) ې� 

iܦଶ� p
Q 

(2.4) log ܳ ଶߣ +�ଵߣ)ߛ = െ ܦ log ܳ )  �log଼ߛ +
ێ
ێ
�ێ

ۑ
ۑ
�ۑ

ۏ �ے
1�E6ۍ�� �O t Q E E 6 1ې 6E E T we  {1� E ( ) }11 4 2 5w ێ� K ܦۑଶ� �ଽߛ (2.5) log  = ቆܦ log ቆ�

p 
ቇ െ ଵቇߣ ଵߛ + log ێ� p ۑ�

ێ �ۑ
ۏ �ے

�ଶܦ w pi ቇlog ݓ ଵଵߛ = ቆߣଵ െ ܦ log ቆ�
p 
ቇቇ ଵଶߛ + �log ቆܦ

qp 

1
� 

�O t �E �E E1 6 6 6E4e {Q � E K } 
O t 
5 ൪� ଵଷߛ +(2.6) log ൦�

E e 2 12 

( � P)p Qܦଶݎ� െ �ݎ (2.7) = െߛଵସݎܦ ଵହߛ + ቈߚଵଷ�+ ݎ െ ݍlogܦଵସߚ �ଵହߚ + M 

p Iiܦଶ� ቇቍ�log ܫ ଵߛ = ቌߣଵ�+ ߣଶ െ �log ቆܦ
qp 

qp 
10

ێ
E 

pi 
C G  

�ۑ
�ۍ

9 ( )E ( � c �DK  � En � Eo ) ې�
ێ (2.8) ଵߛ+ۑ log piێ� ( )I ۑ�

qpۏ �ے

ªE Y E17 ( p / qp)E18 º 2 16 f fD log E J O(  � O �D log E ) �J log (2.9) n 18 1 2 n 19 « »
E«¬ n »¼ 

�ܨଶܦ െߛଶܨܦ ܳ)ଵଽߚ]ଶଵߛ + + ܲ) െ  = (2.10) [ܨ

�ଶܲܦ െߛଶଶܲܦ ݎଶଵ൫ߚ +�ଶߚଶଷ൛ൣߛ + െ ܭ൯൧logܦ െ ܲൟ� (2.11) = 

�ܭଶܦ െߛଶସܭܦ�+ ߛଶହ൛ൣߚଶଶ�+ ߚଶଷ൫ݎ െ ൯ݎ െ ݍlogܦଶସߚ െ ܳ)ଶହ݀௫൧ߚ + ܲ) െ  = ൟ�(2.12)ܭ
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E O t3ª e º 
D2 log M J O(  �D log M ) �J log 26 

26 3 27 « »M¬ ¼ 

ªE �  � �E P F ªE E P Fº �  � � �DK  º n o n o a�J 28 D log �J 29 log « (2.13) « » » 
i ( /  ¼¬ ( /p qp)I ¼ ¬ pi qp)I 

ªE27 p f º ªE �  � �E P F º 2 n oD log q J 30 D log( p f / qp) �J 31 log « » � J 32 D log »« 
¬ qp ¼ ¬ ( /pi qp)I ¼ 

ªE �  � � �E  P F DK  º n o a�J 33 log « » (2.14) 
¬ ( /pi qp)I ¼ 

where ݐ is time, ܦ is the derivative operator, ݔܦ ݔଶܦ ,ݐ݀/ݔ݀ = = ݀ଶݐ݀/ݔଶ�, and 

ܳ ,�ܲ ,ܯ ,�ܮ ,ܭ ,ܭ ,�ܫ ,ܨ ,ܧ ,�ܥ ݓ ,�ݎ ,�ݍ ,� are endogenous variables whose definitions are listed below: 

ܥ = real private consumption, 

 ,�= real non-oil exportsܧ

ܨ = real current transfers abroad, 

ܫ = volume of imports, 

ܭ = amount of fixed capital, 

 ,�= cumulative net real investment abroad (excluding changes in official reserve)ܭ

ܮ = employment, 

ܯ = money supply, 

ܲ = real profits, interest and dividends from abroad, 

 = price level, 

ܳ = real net output, 

ݍ = exchange rate (price of sterling in foreign currency), 
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ݎ = interest rate, 

ݓ = wage rate. 

The variables ݀௫ ܧ ,  ,ܩ , ݎ , , , ܶ ଵ, ܶ ଶ, ܻ �are exogenous variables with the following 

definitions: 

݀௫�= dummy variables for exchange controls (݀௫�= 1 for 1974-79, ݀௫�= 0 for 1980 

onwards), 

 ,�= real oil exportsܧ

 ,�= real government consumptionܩ

 ,�= price level in leading foreign industrial countries

 ,�= price of imports (in foreign currency)

 ,�= foreign interest rateݎ

ଵܶ�= total taxation policy variable, so is real private disposable income 

ଶܶ� indirect taxation policy variable so is real output at factor cost = 

ܻ�= real income of leading foreign industrial countries. 

According to Barnett and He (1999), the structural parameters ߚ, ݅ ߛ ,27, … ,1,2 = , ݆ = 

1,2, … ,33, and ߣ, ݇ = 1,2,3, can be estimated from historical data. A set of their estimates 

using quarterly data from 1974 to 1984 are given in Table 2 of Bergstrom, Nowman, and Wymer 

(1992) and the interpretations of those 14 equations are also available in Bergstrom, Nowman 

and Wymer (1992). 

The exogenous variables satisfy the following conditions in equilibrium: 

݀௫�= 0, 

 ,�= 0ܧ

ܳ)כ݃ =�ܩ + ܲ), 
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,�ఒర௧݁כ =�

,�ఒర௧݁כ =�

�ݎ �כݎ

ଵܶ�

=

= ଵܶ
כ

,

,

ଶܶ�= ଶܶ
 ,�כ

భశ�మ
ܻ� ܻ

�ቀ�ഁభళ݁כ
ቁ௧�

,= 

�כ �כݎ�כ ଵܶ
�כ

ଶܶ
�כ

ܻ
�כ݃ whereכ � and ߣସ�are constants. It has been proven that (ݐ)ݍ , … ,(ݐ)ܥ, , , , , , ,

in (2.1)-(2.14) change at constant rates in equilibrium. To study the dynamics of the system 

around the equilibrium, Barnett and He (2002) make a transformation by defining a set of new 

variables ݕଵ(ݐ), ݕଶ(ݐ), … , ݕଵସ(ݐ) as follows: 

 , {௧(ఒభାఒమ)݁כܥ/(ݐ)ܥ}log = (ݐ)ଵݕ

�ܮ/(ݐ)ܮ }log = (ݐ)ଶݕఒమ௧݁כ } , 

 ,{௧(ఒభାఒమ)݁כܭ/(ݐ)ܭ}log = (ݐ)ଷݕ

 , {௧(ఒభାఒమ)݁כܳ/(ݐ)ܳ}log = (ݐ)ସݕ

 , {௧(ఒయିఒభିఒమ)݁כ/(ݐ)}log = (ݐ)ହݕ

 , {௧(ఒయିఒమ)݁כݓ/(ݐ)ݓ}log = (ݐ)ݕ

(ݐ)ݕ െ (ݐ)ݎ =  ,�כݎ

 , {௧(ఒభାఒమ)݁כܫ/(ݐ)ܫ}log = (ݐ)଼ݕ

 , {௧(ఒభାఒమ)݁כܧ/(ݐ)ܧ}log = (ݐ)ଽݕ

 , {௧(ఒభାఒమ)݁כܨ/(ݐ)ܨ}log = (ݐ)ଵݕ

 , {௧(ఒభାఒమ)݁כܲ/(ݐ)ܲ}log = (ݐ)ଵଵݕ
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 , {௧(ఒభାఒమ)݁כܭ/(ݐ)ܭ}log = (ݐ)ଵଶݕ

 , {ఒయ௧݁כܯ/(ݐ)ܯ}log = (ݐ)ଵଷݕ

 , {௧(ఒభାఒమାఒరିఒయ)݁כݍ/(ݐ)ݍ}log = (ݐ)ଵସݕ

כ כܭ כܳ כ כݓ כݎ �כܫ כܨ �כܲ כܥ whereכܯ �ܮ �כܧ �כܭ ߚ) �are functions of the vectorכݍ ߛ , of (ߣ , , , , , , , , , , , , , ,

63 parameters in equations (2.1)-(2.14) and the additional parameters 

ܶ�כݎ�כ�כ�כ݃ ଵ
ܶ�כ

ଶ
ܻ�כ


,�כ ,  ,  .ସߣ , , , ,

The following is a set of differential equations derived from (2.1)-(2.14): 

െ (௬భభ݁כܲ +�௬ర݁כܳ)ଶ{logߛ +�ଵݕܦଵߛଵ�= െݕଶܦ log(ܳכܲ +�כ) െ +�ݕଶߚ ଶߚ) െ ହݕܦ(ଷߚ െ {ଵݕ

(2.15) 

�E �E 

1 Q* 6 � E5 K
* 6 

ସߛ +�ଶݕܦଷߛଶ�= െݕଶܦ ቐ� log �
* �E y * �E y 

 െ �ଶቑݕ (2.16) �E �E6 6
6 4  6 3E6 Q e � E5 K e 

ସݕ)(ߚ + 1)}ߛ +�ଷݕܦହߛଷ�= െݕଶܦ െ כݎ]ଷ) + logݕ െ ଷߣ)ߚ െ ଵߣ െ (ଶߣ  [଼ߚ +

(2.17) െ log[ݕ�+ כݎ െ ଷߣ +�ହݕܦ)ߚ െ ଵߣ െ (ଶߣ {[଼ߚ +

* *  *  E10 E10 ( y5 � y14 ) ª1� E (q p / p ) e º° 2 9 iD y4  �J 7 Dy4 �J 8 ®log « * *  *  E10 »
° ¬ 1� E9 (q p / pi )¯ ¼ 

* y * * y * y * y * y1 4 11 3 9� log(C e  � ( � P e  ) � K e  (D O O ) E e  )g Q e  y � �  �3 1 2 n 

* * * * * *log(C � ( � P ) � K (O O ) E ) � y `� g Q  � � (2.18) 1 2 n 4 

*ª º 
2 1� E § Q ·

E6 
E ( y � y )6 6 4 3 

5 9 (D 6 �D 5 ) �J10{y6 y5 log «1 5 ¨ * ¸D y  J y y � �  � E e »
E « © K ¹ »6 ¬ ¼ 

ª * E º½1� E6 § Q · 6 ° � log «1� E5 ¨ ¸ »¾ (2.19) 
E6 « © K

* 
¹ »° ¬ ¼¿ 
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2 * �E * �E1
6 6D y6 J11(Dy5 �Dy6 ) �J12 (Dy5 �Dy14 ) �J13 ® log ª(Q ) � E5 (K ) º ¬ ¼E¯ 6 

1 * �E �E y * �E �E y ½ 
6 6 4 6 6 3� log ª(Q ) e � E (K ) e º (2.20) ¬ 5 ¼¾E6 ¿ 

* y5 * y4 * y11 * * * 
2 (Q e  � P e  ) p Q  � P )p e  (
D y  �J Dy  �J E[ � E � E Dy � y ] (2.21) 7 14 7 15 15 * y 15 * 14 14 713M e  M 

�଼ݕଶܦ ଵସݕܦ +�ହݕܦ)ଵߛ െ (଼ݕܦ െ (ଵସݕ +�ହݕ)(ଵߚ + 1) }ଵߛ + =଼ݕ

               +log[݁כܥ௬భ (௬భభ݁כܲ +�௬ర݁כܳ)כ݃ + (ଶߣ +�ଵߣ +�ଷݕܦ)௬య݁כܭ + [௬వ݁כܧ +

െ log[(כܲ +�כܳ)כ݃ +�כܥ (ଶߣ +�ଵߣ)כܭ +  (2.22) {[כܧ +

�ଽݕଶܦ െߛଵ଼ݕܦଽ െ (ଵସݕ +�ହݕ)ଵ଼ߚ}ଵଽߛ  = ଽ} (2.23)ݕ +

* y4 * y11 * * 
2 2 Q e  � P e  Q  � P ½
D y  �{ � 2(O O Dy � (Dy ) �J E  � (2.24) 10 J 20 1 � 2 )} 10 10 21 19 ® * y * ¾

10¯ F e  F  ¿ 

* y12 *ªK e  K  º 2 2 * a aD y  �{J � 2(O O  Dy � ( J E E  �O )}  �11 22 1 � 2 )} 11 Dy11) � 23{ 20 � 21(rf 4 «
¬ P e

* y P* »¼ 
(2.25) 

11 

ଵଶݕܦ{(ଶߣ +�ଵߣ)ଶସ�+ 2ߛ}ଵଶ�= െݕଶܦ െ כݎ)ଶଷߚ +�ଶଶߚ]}ଶହߛ +�ଶ(ଵଶݕܦ) െ כݎ െ (ݕ

* y * y4 11Q e  � P e  * *(Dy O O  O O )] �[E � E (r � r�E � � � �  )24 14 1 2 4 3 * y 22 23 f12K ea 
Q* � P* 

� ( � � � )]E O O  O  O  } (2.26) 24 1 2 4 3 *Ka 
* y9 * y11 * y10E e  Dy  � P e  Dy  � F e  Dy  2 n 9 11 10D y13  �J 26 Dy13 �J 27 y13 �J 28{ * y * y * y9 11 10E e  � P e  � F e  n 

െ ଵସݕܦ +�ହݕܦ+௬భబ݁כܨ െ {଼ݕܦ ௬భభ݁כܲ +�௬వ݁כܧ]ଶଽ{logߛ +

െܭ݁כ௬భమ(ݕܦଵଶ�+ ߣଵ�+ ߣଶ)] െ log[ܧכܲ +�כ െ כܨ െ  [(ଶߣ +�ଵߣ)כܭ

ଵସݕ +�ହݕ+(2.27) െ  {଼ݕ

26 



  

                

   

                     

           

          

              

              

           

       

ܠ            

 

ܠ                  

     

   

ܠ          ܠ       

ܠ                

            

      

                      

         

    

 
 

�ଵସݕଶܦ െߛଷ(ݕܦହ�+ ݕܦଵସ) െ  =(ଵସݕ +�ହݕ)ଷଵߛ

* y * y * y9 11 10E e  Dy  � P e  Dy  � F e  Dy  n 9 11 10�J 32{ * y * y * y � Dy5 � Dy14 � Dy8}9 11 10E e  � P e � F en

௬భభ݁כܲ +�௬వ݁כܧ]ଷଷ{logߛ+  െ ௬భబ݁כܨ െ [(ଶߣ +�ଵߣ +�ଵଶݕܦ)௬భమ݁כܭ

െ log[ܧכܲ +�כ െ כܨ െ ଵସݕ +�ହݕ + [(ଶߣ +�ଵߣ)כܭ െ  (2.28) {଼ݕ

The equilibrium of the original system (2.1)-(2.14) corresponds to the equilibrium ݕ�= 

0, ݅ = 1,2, … , 14 of (2.15)-(2.18). The major advantage of the new system ((2.15)-(2.18)) 

described by (2.15)-(2.18) is that it is autonomous, but still retains all the dynamic properties of 

the original system (2.1)-(2.14). In Barnett and He (1999), the paper analyzes the local dynamics 

of (2.15)-(2.28) in a local neighborhood of the equilibrium, ݕ�= 0, ݅ = 1, 2, … , 14. For 

simplicity, the system (2.15)-(2.28) is denoted as 

ܠ۲ ) (2.29) = , ી), 

where 

= ଶݕܦ�ଶݕ�ଵݕܦ�ଵݕ] ܴ�ג�ଵସ]ᇱݕܦ�ଵସݕ … ଶ଼�

is the state vector, while 

ી� Ԣ ג ܴଷ�= ,ଵߚ] … ,ଵߛ ,ଶߚ , … [ଷߣ ,ଶߣ ,ଵߣ ,ଷଷߛ ,

is the parameter vector, and ( , ી) is a vector of smooth functions of and ી obtained from 

(2.15)-(2.28). Note that (2.29) is a first-order system. The point כ  is an equilibrium of = 

(2.29). Let ߆ denote the feasible region determined by those bounds. 

2.3. Stability of the Equilibrium 

In section 1.2, the discussion on stability describes a means to analyze local stability of 

the system through linearization. The linearized system of (2.15)-(2.28) is 

* y4 * y11Q e  � P eܦଶݕଵ� െߛଵݕܦଵ�+ ߛଶ ൝� െߚଶݕ�+ ଶߚ) െ ହݕܦ(ଷߚ െ �ଵൡݕ (2.30) = 
Q* � P* 
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* �E * �E6 6

�ଶݕଶܦ
Q( )  y � E (K ) y4 5 3െߛଷݕܦଶ�+ ߛସ ൝� * �E �E െ �ଶൡݕ (2.31) 
Q * 6 6 

= 
( )  � E5 (K ) 

y � E Dy2 7 7 5D y3  �J 5 Dy3 �J 6{(1� E6 )( y4 � y3 ) � } (2.32) 
r * � E O O O7 ( 3 1 2 ) E� �  � 8 

* *  *  E10E (q p / p )2 9 iD y4  � 7 Dy4 J 8{ y4 * * *  E E10 (y5 � y14 )O � � �  
101� E9 (q p / pi ) 

* * * * * * * 
1 � ( 4 � P y ) � K D 3 � K ( 1 � 2 ) y � E yn 9C y  g Q y  11 y O O  3� (2.33) * * * * * *C � g Q( � P ) � K (O O )� � E1 2 n 

* * E6 
2 E5 (Q K/ )
D y  J (D  �D ) �J {(1� E ) ( y � y ) � �  y y y y } (2.34) 5 9 6 5 10 6 * * E 4 3 6 561� E5 ( / )Q K  

* �E * �E6 6( )  y � E (K ) yQ2 4 5 3D y6 J11(Dy5 �Dy6 ) �J12 (Dy5 �Dy14 ) �J13 (2.35) * �E * �E6 6( )  � E5 (K )Q 

2 E * * * * * *D y7  �J14 Dy7 �J15{�E14 Dy14 � y7 � 15
* [(Q � P ) p y( 5 � y13 ) � p  Q y( 4 � P y11)]} (2.36) 

M 

�଼ݕଶܦ ଵସݕܦ +�ହݕܦ)ଵߛ െ (଼ݕܦ െ (ଵସݕ +�ହݕ)(ଵߚ + 1)}ଵߛ +  =଼ݕ

* * * * * * *( � P y ) � K (O O ) y � K Dy � E y  C y � g  Q y  �1 4 11 1 2 3 3 n 9 (2.37) � * * * * * * }
C � g Q � P ) � K ( 1 � 2 ) �( O O  En 

�ଽݕଶܦ െߛଵ଼ݕܦଽ െ (ଵସݕ +�ହݕ)ଵ଼ߚ}ଵଽߛ  = ଽ} (2.38)ݕ +

J E2 21 19 * *Q y P y � y )]  (2.39) D y  �[J � 2(O O� )]Dy � [ (  � y ) � (10 20 1 2 10 * 4 10 11 10F 

* 
2 * Ka 
11 [ 22 O O1 � 2 )]Dy � 23[ 20 � 21( f �O4 ( 12 yD y  � J � 2( 11 J E  E r )] y � 11) (2.40) 

P* 

* * * * 
2 Q � P Q � P
D y  �[J � 2(O O )]Dy J { E Dy � E y� � �12 24 1 2 12 25 24 * 14 23 * 7Ka Ka 

* *Q y( � y ) � P y( � y )* * 4 12 11 12[E � E (r r ) ( � � � )] } (2.41) �  �  � E O O O O  22 23 f 24 1 2 4 3 *Ka 
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�ଵଷݕଶܦ െߛଶݕܦଵଷ െ  =ଵଷݕଶߛ

* * *E Dy  � P Dy  � F Dyn 9 11 10 
* ଶ଼ߛ+* * ൝� E � �P F 

ଵସݕܦ +�ହݕܦ + െ �ൡ଼ݕܦ
n 

* * * * *P y  � F y  � K (O O )E y  � � y � K Dyn 9 11 10 a 1 2 12 a 12 + ݕହ�+ ݕଵସ െ �ൡ଼ݕ (2.42) * * ଶଽߛ+* * ൝� P F K (O O )E � � �  �n a 1 2 

�ଵସݕଶܦ െߛଷ(ݕܦହ�+ ݕܦଵସ) െ  =(ଵସݕ +�ହݕ)ଷଵߛ

* * *E Dy  � P Dy  � F Dyn 9 11 10 
* ଷଶߛ+* * ൝� E � �P F 

ଵସݕܦ +�ହݕܦ + െ �ൡ଼ݕܦ
n 

* * * * *P y  � F y  � K (O O )E y  � � y � K Dyn 9 11 10 a 1 2 12 a 12 
* * ଷଷߛ+* * ൝� P F K (O O ) 

ଵସݕ +�ହݕ + െ �ൡ଼ݕ (2.43) 
E � � �  �n a 1 2 

In matrix form, these equations become 

ሶ� (ી)ۯ (2.44) .= 

For the set of estimated values of {ߚ }, ൛ߛൟ, and {ߣ} given in Table 2 of Bergstrom, �

Nowman, and Wymer (1992), all the eigenvalues of ۯ(ી) are stable, having negative real parts, 

except for the following three: 

�ଵݏ ݅ ଷݏ ଶ�= 0.009 + 0.0453 , = 0.009 െݏ ,0.0033 =݅ 0.0453 . 

Barnett and He (1999) observe that the real parts of the unstable eigenvalues are so small and 

close to zero, that it is unclear whether they are caused by errors in estimation or the structural 

properties of the system itself.

  Next, they proceed to locate the stable region and the bifurcation boundary by first 

looking for a stable sub-region of ߆�and then expanding the sub-region to find its boundary. 

They first look for a parameter vector ીכ א ߆ such that (2.44) is stable. They then search for a 

stable region of ી and the boundaries of bifurcation regions. To find a ીכ�such that all 
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eigenvalues of ۯ(ીכ) have strictly negative real parts, they first consider the following problem 

of minimizing the maximum real parts of eigenvalues of matrix ۯ(ી): 

(2.45) 
ીג௵�ܴ ୫ୟ୶(ۯ(ી))min 

where 

ܴ୫ୟ୶൫ۯ(ી)൯ = max
�

{real (ߣ): ߣଵ ,ଶߣ , …  .{(ી)ۯ ଶ଼�are eigenvalues ofߣ ,

Barnett and He (1999) could not acquire a closed-form expression for ܴ୫ୟ୶൫ۯ(ી)൯, 

since the dimension of ۯ(ી) is too high for analytic solution. Instead they employ the gradient 

method to solve the minimization problem (2.45). More precisely, let ી() be the estimated set 

of parameter values given in Table 2 of Bergstrom, Nowman, and Wymer (1992). At step ݊ ݊ �
0, with ી() let 

, 

, 

ી(ାଵ) = ી() െ� ߲ܴmax
߲ી
ቀۯ൫ી൯ቁ�

|ીୀી() , ܽ�

where {ܽ, ݊ = 0,1,2, … } is a sequence of (positive) step sizes. After several iterations (20 

iterations in this case), the algorithm converged to the following point, ીכ א ,ଵ߆

ી0.2470 ,0.0183 ,0.1829 ,0.1936 ,0.2603 ,0.2030 ,2.3894 ,0.2256 ,0.9400] =�כ,

െ0.2997, 1.0000, 23.5000, െ0.0100, 0.1260, 0.0082, 13.5460, 0.4562, 1.0002,

                0.0097, 0.0049, 0.2812, െ0.1000, 44.9030, 0.1431, 0.0004, 71.4241, 0.8213,

            3.9998, 0.8973, 0.6698, 0.0697, 0.1064, 0.0010, 3.9901, 0.3652, 1.0818,

             0.0081, 3.5988, 0.6626, 0.1172, 0.8452, 0.0421, 1.4280, 0.3001, 3.9969,

             3.6512, 3.9995, 4.0000, 3.9995, 3.9410, 0.5861, 0.0040, 0.7684, 0.0427,

  0.1183, 0.0708, 2.3187, 0.1659, 0.0017, 0.0000, 0.0100, 0.0100, 0.0067].

The corresponding ܴ୫ୟ୶൫ۯ(ીכ)൯ െ0.0039 implies that all eigenvalues of ۯ(ીכ) have = 

strictly negative real parts, and the system (2.44) is locally asymptotically stable around at ીכ�. 
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Barnett and He (1999) then look for the stable region of the parameter space and the 

bifurcation boundaries starting from this stable point. 

2.4. Determination of Bifurcation Boundaries 

The goal of this section is to find bifurcation boundaries of the model. Since the 

linearized system (2.44) only deals with local stability of the system, Barnett and He (1999) deal 

with local bifurcations as opposed to global bifurcations. 

In the previous section, for the set of parameters given in Table 2 of Bergstrom, 

Nowman, and Wymer (1992), ۯ(ી) has three eigenvalues with strictly positive real parts. 

However, at ી� ીכ�, found through the gradient method, all eigenvalues of ۯ(ી) have strictly = 

negative real parts. Since eigenvalues are continuous functions of entries of ۯ(ી), there must 

exist at least one eigenvalue of ۯ(ી) with zero real part on the bifurcation boundary. Different 

types of bifurcations may occur and three types of bifurcations are discussed in Barnett and He 

(1999,2002): saddle-node bifurcations, Hopf bifurcations, and transcritical bifurcations. 

i. Saddle-node and Hopf Bifurcations 

In systems generated by autonomous ordinary differential equations, a saddle-node 

bifurcation occurs, when the critical equilibrium has a simple zero eigenvalue. If ݀݁ݐ൫ۯ(ી)൯ = 

0, then ۯ(ી) has at least one zero eigenvalue. Therefore, Barnett and He (1999) start from 

൯(ી)ۯ൫ݐ݁݀ = 0 to look for bifurcation boundaries. To demonstrate the feasibility of this 

approach, Barnett and He (1999) consider the bifurcation boundaries for ߚଶ�and ߚହ. The 

following theorem is proved in Barnett and He (1999) as their theorem 1. 

Theorem 2.1. The bifurcation boundary for ߚଶ�and ߚହ�is determined by 

ହߚହ�+ 21.78ߚଶߚ1.36 (2.46) െ ଶߚ2.05 െ 10.05 = 0. 

A Hopf bifurcation occurs at points at which the system has a nonhyperbolic equilibrium 

associated with a pair of purely imaginary, but non-zero, eigenvalues and when additional 

transversality conditions are satisfied. Barnett and He (1999) use the Procedure (P1) introduced 

in section 1.3.4 to find Hopf bifurcation. They numerically find boundaries of saddle-node 

bifurcations and Hopf bifurcations for ߚଶ�and ߚହ, the surface of the bifurcation boundary for 
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 ଵହ, and the three dimensional Hopfߚ �and଼ߛ ଵହ, Hopf bifurcation boundary forߚ ହ�andߚ ,ଶߚ

bifurcation boundary for ߚ ,଼ߛଵହ�and ߚଶ. Barnett and He (1999) conclude that the method is 

applicable to any number of parameters. 

ii. Transcritical Bifurcations 

A new method of finding transcritical bifurcations is proposed in Barnett and He (2002). 

Again Barnett and He (2002) start from ݀݁ݐ൫ۯ(ી)൯ = 0 to look for bifurcation boundaries. 

Without loss of generality, Barnett and He (2002) consider bifurcations when two 

parameters ߠ�ߠ�change, while others are kept at ીכ�The matrix ۯ(ી) is therefore rewritten as  , . 

(ી)ۯ (כી)ۯ = + ۰(ીכ)۱(ૄ)۲(ીכ), (2.47) 

where ૄ �൧, and ۲(ૄ) is a matrix of appropriate dimension. The dimension of ۲(ૄ) isߠ ,�ߠൣ =

usually much smaller than that of ۯ(ી). In this case, the following proposition, proved in 

Barnett and He (2002) as their Proposition 1, is useful for simplifying the calculation of 

transcritical bifurcation boundaries. 

Proposition 2.1. Assume that ۯ(ી) has structure (2.47) and that all eigenvalues of ۯ(ીכ) have 

strictly negative real parts. Then ݀݁ݐ൫ۯ(ી)൯ = 0, if and only if 

ݐ݁݀ ቀ۷ + ۲(ૄ)۱(ીכ)ିۯ(ીכ)۰(ીכ)ቁ� (2.48) = 0. 

Barnett and He (2002) demonstrate the usefulness of this approach by considering the 

bifurcation boundary for ૄ� They find that only the following entries of = [ଶଷߠ ,ଶߠ] = .[ଶଷߚ ,ଶߚ]

 :ૄ are functions of (ી)ۯ

ܽଶ ଵ(ૄ) ଶߚ)ଶߛ = െ ଷ), ܽଶߚ ଵଷ(ૄ) = െߛଶߚଶ�, , , 

* * *J G  J E (Q25 Q 25 23 � P )
a24,7 ( )P * , a24,13 ( )P  � * ,

Ka Ka 
* * *J G25 P J G (Q25 � P )

a24,21 ( )P * , a24,23 ( )P  � *Ka Ka 
where ߜ� ݎଶଷ൫ߚ +�ଶଶߚ െ ൯כݎ െ ସߣ +�ଶߣ +�ଵߣ)ଶସߚ െ א (כી)ଷ). In this case, ۰ߣ ܴଶ଼×ଶ�has all = 

zero entries except that its (2,1) entry is 1 and its (24,2) entry is 1. The matrix ۱(ીכ) ܴ�א ହ×ଶ଼�
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has zero entries, except the entries are 1 at the following locations: (1,7), (2,10), (3,13), (4,21), 

(5,23). The matrix ۲(ૄ) is 

۲(ૄ) = (ૄ) െ�(ીכ),

with 

(ૄ) = ቈ�ܽଶସ �
0
(ૄ) 

ܽଶ�, ଵ(ૄ) 
ܽ
ܽ
ଶସ
ଶ�, ଵଷ
ଵଷ

(
( 
ૄ
ૄ
)
) ܽଶସ

 0 

ଶଵ(ૄ) ܽଶସ ଶଷ
 0

(ૄ) �. 
,  0 , , , 

Using Proposition 2.1, Barnett and He (2002) observe that ݀݁(ۯ)ݐ = 0 is equivalent to 

ݐ݁݀ ቀቂ  1  0 ቃ + ۲(ૄ)۱(ીכ)ିۯ(ીכ)۰(ીכ) ቁ = 0, 
0  1 

where 

�ۍ 13.7090 െ �ې 17.1187
�ିۯ(

0  0 
.۱(ીכ� (ીכ)۰(ીכ) = 

ێ
ێ
�ێ െ1.7276                  2.1573 

ۑ
ۑ
�ۑ

ۏ
െ616.4935 389.2039 

 െ616.4935 389.2039ے

Equivalently, they obtain the bifurcation boundary: 

െ14.23 + 15.91 ߠଶ�+ 0.28 ߠଶଷ െ  .ଶଷ�= 0ߠଶߠ0.50

When parameters take values on the bifurcation boundary, stability of the system (2.29) 

needs to be determined by examining the higher order terms in ۲ܠ (ી)ۯ = + ۴( , ી) with 

center manifold theory. Barnett and He (2002) write ۲ܠ (ી)ۯ = + ۴( , ી) through 

appropriate coordinate transformation as (see Glendinning (1994) or Guckenheimer and 

Holmes (1983)): 

�ଵݔܦ  = (2.49) ,(ଶ, ીݔ ,ଵݔ)ଵܨ +�ଵݔଵ(ી)ܣ

�ଶݔܦ  , (ଶ, ીݔ ,ଵݔ)ଶܨ +�ଶݔଶ(ી)ܣ = (2.50)

where all eigenvalues of ܣଵ(ી) have zero real parts and all eigenvalues of ܣଶ(ી) have strictly 

negative real parts. By center manifold theory, there exists a center manifold, ݔଶ�  = such ,(ଵݔ)݄

that 
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݄(0) = 0 and 0 = (0)݄ܦ. 

By substituting ݔଶ�  = into (2.49), Barnett and He (2002) obtain (ଵݔ)݄

�ଵݔܦ ݄ ,ଵݔ)ଵܨ +�ଵݔଵ(ી)ܣ = (2.51)  .(ી ,(ଵݔ)

The stability of (2.29) is connected to that of (2.51) through the following theorem. 

Theorem 2.2. (Henry (1981), Carr (1981)) If the origin of (2.51) is locally asymptotically stable 

(respectively unstable), then the origin of (2.29) is also locally asymptotically stable 

(respectively unstable). 

By substituting ݔଶ�  =(ଵݔ)݄ into (2.50), Barnett and He (2002) observes that (ଵݔ)݄

satisfies 

݄ ,ଵݔ)ଵܨ +�ଵݔଵ(ી)ܣ](ଵݔ)݄ܦ =�ଵݔܦ(ଵݔ)݄ܦ =�ଶݔܦ  [(ી ,(ଵݔ)

(ଵݔ)݄ଶ(ી)ܣ ݄ ,ଵݔ)ଶܨ +  =,(ી ,(ଵݔ)

or ݄(ݔଵ) satisfies 

݄ ,ଵݔ)ଵܨ +�ଵݔଵ(ી)ܣ](ଵݔ)݄ܦ (ଵݔ)݄ଶ(ી)ܣ = [(ી ,(ଵݔ) ݄ ,ଵݔ)ଶܨ +  ી), (2.52) ,(ଵݔ)

 .0 = (0)݄ܦ ,0 = (0)݄ (2.53)

For most cases, especially codimension-1 bifurcations, the dimension of (2.51) is usually 

one or two. In the case of transcritical bifurcations, the dimension of (2.51) is one. Since solving 

(2.52) and (2.53) is difficult, Barnett and He (2002) use a Taylor series approximation with 

several terms to determine the local asymptotic stability or instability of (2.51). In this case, let 

௫భ ௫భܨଵ(ݔଵ, ݔଶ, ી) = ܽଵ�
మ�

�ଶ�+ ܽଷݔଵܽଶݔ +
య�

ڮ + ,ଶ ଷ! ! 

(ଶ, ીݔ ,ଵݔ)ଶܨ = ܾଵ�ଶ
మ�

ଶ�+ ܾଷ�ଷݔଵܾଶݔ +
య�

௫భڮ + ௫భ . 
! ! 

Barnett and He (2002) assume that ݄(ݔଵ) has the following Taylor expansion 

ߙ ௫భమ� య
(ଵݔ)݄ ߚ + = ௫భ ڮ + .ଶ ଷ! ! 
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Then (2.52) becomes 

�ଵଶݔ ߚ +�ଵݔଵଷቆܽݔ ଵݔ
ଶ�

�ଵ�+ ܽଵݔଵ(ી)ܣቇቈڮ + ଵܽଶݔ + ቆߙ
ߚ +�ଵଶݔ ଵݔ

ଷ�
ቇڮ + + ܽଷ� ڮ + �

2! 2! 2! 3! 3! 

�ଵଶݔ ߙଶ(ી) ቆܣଵଷݔ ଵݔ
ଶ�

ߚ + ଵݔ
ଷ�

ቇڮ + + ܾଵ� ଵܾଶݔ + ቆߙ
ߚ +�ଵଶݔ ଵݔ

ଷ�
ቇڮ + + ܾଷ� =ڮ +  .

2! 3! 2! 2! 3! 3! 

By comparing coefficients of the same order terms and also observing that ܣଵ(ી) = 0 at 

a bifurcation point, Barnett and He (1999) observe that 

�ߙ െିܣଵଶ� �ߚ ,ଵଶ(ી)ܾଵିܣ (ી)(ܽߙଵ െ ܾଶߙ).= = 

Therefore, (2.51) becomes 

�ݔ ߙ ܽ�1
2

�ଵݔܦ �ଵ�+ ܽଵݔଵ(ી)ܣ + ቀܽ�2 3ቁ + !2 !2 = (2.54) .ڮ +�ଵଷݔ 3! 

The stability analysis of (2.54) determines the stability characteristics of ۲ܠ (ી)ۯ = + ۴( , ી). 

Without loss of generality, Barnett and He (2002) consider the stability of the system on 

the transcritical bifurcation boundary for parameters ߚଶ, ߚଶଷ. Considering the point (ߚଶ, ߚଶଷ) = 

(0.1068, 55.9866) on the boundary and using previous approach, Barnett and He (1999) find 

that (2.51) becomes ݔܦଵ� which is locally asymptotically unstable at ݔଵ= 0.1308 ݔଵଶ�+ (ݔଵଶ), = 

0. Therefore, it follows from center manifold theory that the system (2.29) is locally 

asymptotically unstable at this transcritical bifurcation point. Furthermore, Barnett and He 

(2002) numerically find boundaries of both Hopf and transcritical bifurcations for ߠଶ�and ߠଶ, 

for ߠଶ, ߠଶଷand ߠଶ, for ߠଶଷand ߠଶ�and for ߠଵଶ, ߠଶଷand ߠଶ. 

2.5. Stabilization Policy 

We have seen in the previous section that both transcritical and Hopf bifurcations exist 

in the UK continuous time macroeconometric model. In this section, we provide Barnett and 

He’s (2002) results investigating the control of bifurcations using fiscal feedback laws. They 

define stabilization policy to be intentional movement of bifurcation regions through policy 

intervention, with the intent of moving the stable region to include the parameters. However, 
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there would be no need for stabilization policy, if the parameters were inside the stable region 

without policy. 

Barnett and He (2002) first consider the effect of a heuristically plausible fiscal policy of 

the following form, as suggested in Bergstrom, Nowman, and Wymer (1992): 

ߛ =�log ଵܶܦ ߚ log ቊ Q 
* ( 1 � 2 )Q e O O t ቋ െ log ൝ T1*T1 

ൡ൩�. (2.55) 

The control feedback rule (2.55) adjusts the fiscal policy instrument, ଵܶ, towards a partial 

equilibrium level, which is an increasing function of the ratio of output to its steady state level. 

In (2.55), ߚ is a measure of the strength of the feedback, and ߛ governs the speed of 

adjustment. According to Bergstrom, Nowman, and Wymer (1992), the control law (2.55) can 

reduce the positive real parts of unstable eigenvalues through proper choices of parameters

ߚ , The intent is for the policy to be stabilizing. However, Barnett and He (2002) tried the .ߛ

following procedure and found that the control law (2.55) is unlikely to stabilize the systems 

(2.1)-(2.14). First, they define ݕଵହ�= log ൝ T1*T1 
ൡ�and then they find that ݕଵହ�satisfies , 

�ଵହݕܦ ସݕߚߛ െ  =.ଵହݕߛ

They add this equation to the system (2.29) and obtain 

ܟ۲ �ᇱۯ Ԣ� (2.56) = (ી)ܟ + ۴ ( , ી), 

where 

ܟ = ቂݕଵହቃ�, ۴ᇱ( , ી) = ቂ۴( , ી)ቃ ,
0 

and ۯԢ�(ી) is the corresponding coefficient matrix. 

They then consider three sets of parameter values: ߚ ߛ ,0.04 = ߚ ;0.02 = ߛ ,0.01 = = 

0.05; and ߚ ߛ ,0 = = 0. The case, ߚ ߛ ,0 = = 0, corresponds to the original system (2.1)-(2.14), 

in which no fiscal policy control is applied. Barnett and He (2002) illustrate the effect of a simple 
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fiscal policy in three cases, indicating that some stable regions could be destabilized and some 

unstable regions could be stabilized. But since the feasible region is smaller under control than 

without control, Barnett and He conclude that the policy is not likely to succeed. 

Barnett and He (2002) next consider a more sophisticated fiscal control policy, based 

upon optimum control theory, with the control being 

ݑ = log ൝
T
T1
* ൡ�. (2.57) 
1 

Under the control (2.57), the system (2.29) becomes 

ܠ۲ (ી)ۯ (2.58) = ݑ۰ + + ۴( , ી), 

where ۰ = [0 െ ଶߛ  0 …   0]் ܴ�א ଶ଼�. The controllability matrix [۰ۯ …�۰ۯ�ૠ۰] has rank 7, 

implying that the pair (ۯ ۰) is not controllable. Therefore, it is not possible to set the closed-,

loop eigenvalues of the coefficient matrix of (2.58) arbitrarily. 

Nevertheless, the numerical procedure of Khalil (1992) shows that there exists a linear 

transformation, ܢ  = such that ,�܂

�ܢ۲  �ۯ �
۰൨ �ۯ =�ݑ ۯ

൨ ܢ +  � , 

where ۯ ܴ�א ଶଵ×ଶଵۯ�ܴ�א� ×ଶଵۯ� ܴ�א ×�۰, , , = [ 0 … ܴ�א [1 0 �, 

ۯ�� � �۰܂ ۰൨ۯ܂(ી)ି܂�= ۯ� ۯ
൨�, =  �, 

and (ۯ, ۰) is controllable. Further, all eigenvalues of ۯ�have negative real parts, implying 

that (ۯ(ી), ۰) is stabilizable. 

To obtain a feedback control law stabilizing (2.58), Barnett and He (2002) consider 

minimizing 

ஶ�
ܬ = න�[ ݑܸ +�܃܂]݀ݐ,

�
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where ܴ�א�܃ ଶ଼×ଶ଼�and ܸ א ܴଵ�are positive definite. According to linear system theory, the 

optimal feedback control law is given by 

�ݑ ۹� ۹� െܸିଵ۰۾܂,= , = 

where ۾ is positive definite and solves the algebraic Ricatti equation ۯ۾ ۾܂ۯ + െ�
۾܂۰ܸିଵ۰۾ ܃ + = . 

Choosing ܃ ۷ and ܸ = 1, Barnett and He (2002) get = 

۹ = [ 1.5036, 0.4754, 0.0178, 0.0307, െ1.1897, 18.5851, 7.2979, 1.9063, 2.3147, 

23.2392, 0.7488, 7.2091, 38.9965, 39.4000, 0.1841, 0.2129, 0.3061, 0.0494, െ0.0027,

(2.59)      0.0000, െ0.0013, െ0.0002, 0.9550, 1.8482, െ0.3329, െ0.5475, 0.9369, െ1.0402]. 

Under the control ݑ ۹�equation (2.58) becomes 

ܠ۲ = (ી)ۯ]

=

+ ۰۹

,

] + ۴( , ી). (2.60) 

Since all the eigenvalues of ۯ + ۰۹ have strictly negative real parts under the choice of 

۹, the state feedback law ݑ ۹�indeed stabilizes the system (2.60). Barnett and He (2002) = 

also confirm by direct verification that there exist no bifurcations under the control law (2.60) 

for (ߚଶ, ߚହ). 

Barnett and He (2002) further investigate whether there is a parameter ીᇱ א  �at߆

which the system (2.60) is unstable. They check the stability of (2.60) under the control law 

(2.60) for all parameter ી א �The following ીᇱ߆ א  . ଵ�were found߆

ીᇱ�= [0.9400, 0.5074, 2.0913, 0.2030, 0.2612, 0.1933, 0.2309, 0.0000, 0.2510, െ0.3423,

     1.0000, 23.5000, െ0.0100, 0.2086, 0.0332, 13.5460, 0.4562, 0.9322, 0.0100, 0.0034,

      0.1324, െ0.5006, 100.0000, 0.0000, 0.0004, 71.4241, 0.8213, 4.0000, 1.0289, 0.3631,

        0.1201, 0.1000, 0.0010, 3.7015, 0.4860, 1.1270, 0.0042, 3.3994, 0.4802, 0.1300, 0.6851,

         0.0620, 1.2134, 0.3830, 4.0000, 3.2535, 3.8592, 4.0000,4.0000, 3.5723, 0.4775, 0.0071, 
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         0.6104, 0.0143, 0.1718, 0.1227, 2.5551, 0.1833, 0.0035, 0.0000, 0.0018, 0.0004, 0.0100].

The corresponding ܴ୫ୟ୶൫ۯ(ીᇱ)൯ = 0.4971. Hence, there indeed exists a parameter ીᇱ א  ଵ�at߆

which (2.60) is unstable. 

Barnett and He (2002) investigate whether the use of an optimal control feedback policy 

with a structural model would be easily implemented, if the Lucas critique and time 

inconsistency issues did not exist. It is often believed that designing such active policy would be 

easy, if it were not for the problems produced by the Lucas critique and by the time 

inconsistency of optimal control. However, Barnett and He (2002) find that even without those 

problems, the design of a successful feedback policy can be difficult. They consider a policy to 

be successful, if the policy shifts the bifurcation boundaries such that the stable region moves 

towards the point estimates of the parameters. Then the probability is increased that the 

stable region will include the values of the parameters. Barnett and He (2002) find that 

Bergstrom’s proposed selection of a fiscal policy feedback rule for his own UK model is 

counterproductive for three reasons: (1) the resulting policy equation derived from optimal 

control theory is complicated and depends heavily upon the model; (2) the problem of 

robustness of the optimal control policy to specification error is not addressed; and (3) the 

problems of possible time inconsistency of optimal control policy are not taken into 

consideration. The effects of policy feedback rules can depend upon the complicated geometry 

of bifurcation boundaries and how they are moved by augmentation of the model by the 

feedback rule. As a result, Barnett and He (2002) conclude that such policies can be 

counterproductive. 

3. Leeper and Sims Model 
3.1. Introduction 

Barnett and He (2008) conducted a bifurcation analysis of the best known Euler-

equations general-equilibrium macroeconometric model: the Leeper and Sims (1994) model 

and found the existence of singularity bifurcation boundaries within the parameter space. This 

section surveys Barnett and He’s (2008)’s bifurcation analysis of that model. 

Barnett and He (2008) provided initial confirmation of Grandmont’s views about 

bifurcation. Grandmont (1985) found that the parameter space of even the most classical 
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dynamic general-equilibrium macroeconomic models is stratified into bifurcation regions. This 

result challenged the prior common view that different kinds of economic dynamics can only be 

attributed to different kinds of structures. But he was not able to reach conclusions about 

policy relevance, since his results were based on a model in which all policies are Ricardian 

equivalent, no frictions exist, employment is always full, competition is perfect, and all solutions 

are Pareto optimal. Nevertheless, robustness of dynamical inferences can be seriously damaged 

by the stratification of a confidence region into bifurcated subsets, when a bifurcation 

boundary crosses the confidence region of a parameter. Policy relevance was introduced by 

Barnett and He (1999, 2001a,2002), who investigated Bergstrom-Wymer continuous-time 

dynamic macroeconometric model of UK economy. That Keynesian model does permit 

introduction of welfare improving countercyclical policy. Barnett and Duzhak (2008,2010) 

further explored policy relevance by demonstrating the existence of Hopf and flip bifurcations 

within the more recent class of New Keynesian models. 

There is a large literature on dynamic macroeconometric models.4 In particular, the 

Lucas critique has motivated development of Euler-equations models with policy-invariant deep 

parameters. A seminal example in this class is the Leeper and Sims model, which contains 

parameters of consumer and firm behavior as deep parameters of tastes and technology. The 

deep parameters are invariant to government policy rule changes, and hence immune to the 

Lucas critique.5 The dimension of the state space in the Leeper and Sims model is substantially 

lower than in the Bergstrom--Wymer UK model, but still too high for analysis by available 

analytical approaches. Through numerical procedures, Barnett and He (2008) find that the 

dynamics of the Leeper and Sims model are complicated by the model’s Euler equations 

structure. The model consists of both differential equations and algebraic constraints. Barnett 

and He (2008) found that the order of the dynamics of the Leeper and Sims model could change 

within a small neighborhood of the estimated parameter values. Within this small 

neighborhood close to a bifurcation boundary, one eigenvalue of the linearized part of the 

model can move quickly from finite to infinite and back again to finite. Barnett and He (2008) 

state that a large stable eigenvalue indicates that some variables can respond rapidly to 

4 See Barnett and He (2008), footnote 2. 

5 Similar models are developed in Kim (2000) and in Binder and Pesaran (1999), according to Barnett and He (2008), footnote 3. 
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changes of other variables. A large unstable eigenvalue indicates one variable’s rapid diversion 

away from other variables, while an infinity eigenvalue indicates existence of a pure algebraic 

relationships among the variables. Due to the nature of the mapping from parameter space to 

functional space of dynamical solutions, the sensitivity to the setting of the parameters 

presents serious challenges to the robustness of dynamical inferences. 

Barnett and He’s (2008)’s bifurcation analysis of the Leeper and Sims model not only 

confirm the policy relevance of Grandmont’s views but also reveal the existence of a singularity 

bifurcation boundary within a small neighborhood of the estimated parameter values. 

Singularity bifurcation, surveyed in section 1, had not previously been encountered in 

economics, although is known in the engineering and mathematics literatures. On the 

singularity boundary, the number of differential equations will decrease, while the number of 

algebraic constraints will increase. Such change in the order of dynamics had not previously 

been found with macroeconometric models. Barnett and He (2008) speculate that singularity 

bifurcation may be a common property of Euler equations models. Even though the dimension 

of the dynamics can be the same on both sides of a singularity bifurcation boundary, the nature 

of the dynamics on one side may differ dramatically from the nature of the dynamics on the 

other side. Hence the implications of singularity bifurcation are not limited to the change in the 

dimension of the dynamics directly on the bifurcation boundary. These results cast into doubt 

the robustness of dynamical inferences acquired by simulation only at the point estimate of the 

parameters. Barnett and He (2008) advocate simulating models at various settings throughout 

the parameters’ confidence region, rather than solely at the parameters point estimates. 

Since the US data used in the model include imported and exported goods, the Leeper 

and Sims model, although specified as a closed economy model, is implicitly open economy. 

Barnett and He (2008) consider extension of their analysis to an explicitly open-economy Euler-

equations model. In section 6, we survey research on bifurcation phenomena in explicitly open-

economy New Keynesian models. 

3.2. The Model6 

6 The model description is modified from Barnett and He (2008). 
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The Leeper and Sims (1994) model includes the dynamic behavior of consumers, firms, 

and government. Consumers and firms maximize their respective objective functions, and the 

government pursues countercyclical policy objectives through monetary and tax policies 

satisfying an intertemporal government budget constraint. Parameters of consumer and firm 

behavior are the deep parameters of tastes and technology and are invariant to government 

policy rule changes. The model consists of both ordinary differential equations and algebraic 

constraints. The resulting system is called a differential/algebraic system in systems theory. 

The detailed derivation of the models is available in Leeper and Sims (1994) and will not be 

repeated in this survey. 

The Leeper and Sims model consists of the following 12 state variables. 

ܮ = labor supply, 

 ,consumption net of transaction costs =�כܥ

ܯ = consumer demand for non-interest-bearing money, 

ܦ = consumer demand for interesting-bearing money, 

ܭ = capital, 

ܻ = factor income from capital and labor, excluding interest on government debt, 

ܥ = gross consumption, 

ܼ = investment, 

ܺ = consumption goods aggregate price, 

ܳ = investment goods price, 

ܸ = income velocity of money, 

ܲ = general price level. 

The consumer maximizes utility according to 

ஶ ௧� గ(1 െכܥ) ܧ�ݐଵିగ)ଵି�݀(ܮ ቈන�exp(െන (ݏ݀(ݏ)ߚ
1 െ �ߛ �

subject to 

ሶܯ ሶ� ܥܺܦ݅ + ܼܳ + ߬ +
ܦ + ܻ +ܲ� = ܲ ,

�ܻܸ߶ +�כܥܺ =�ܥܺ , 
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� � 

� � � � � 
� 

� � 

�ሶܭ ܼ െ =ܭߜ ,

ܻ� ܭݎ ܮݓ + + ܵ= ,

ܻܸܲ ܯ = , 

where ߨ א (0,1) and ߛ > 0 are parameters; 0   (ݏ)ߚ 1 is the subjective rate of time 

preference at time ݏ; ߬ is the level of lump-sum taxes paid by the representative consumer; ݅ is 

the nominal rate of return earned on government bonds; ܵ is the sum of dividends received by 

the representative consumer, ݓ is the wage rate; ߮ > 0 is the transaction cost per unit of 

ߜ ;ܻܸ  0 is the rate of depreciation of capital; and ݎ = rental rate of return on capital. 

Parameters in this model are not necessarily assumed to be constant. 

The firms maximize profits according to 

ଵ ଵ
ఙ�max ൜ ܥ)ܺ + ݃) �ఙܭߙ)ܣ +�כܫܳ + )ఙ െ ܭݎ െ ܮݓ െ ܥ)) + ݃)ఓ�+ כܫߠ ఓ)ఓൠ�,+ ܮ�

where ݃ is the level of government purchases. The following are parameters: 

ܣ ߙ ,0 < ߠ ,0 < ߤ ,0 <  0, and 0

= 

 ߪ  1. 

,The market-clearing condition is כܫ� ܼ ܭ݊ + where ݊ = the fraction of existing capital 

purchased by the government for distribution to the newborn. Investment goods, כܫ, produced 

by the firm include both those bought by the existing population, and those purchased by the 

government for distribution to the newborn, as indicated by the market-clearing condition. 

In this model, the state variables satisfy the following differential equations: 

1 iD
( � ) � C QL � �W (3.1) M D  Y X �

P P 

�ሶܭ ܼ െ ܭߜ (3.2) = 

C* L  X P  S C* 
(1 �S (1 �J )) � (1 �J )(1 �S ) � � i � E � �S (1 �J ) log( ) (3.3) 

C* 1 � L X P S 1 � L 

P Q  r
� i �G � (1 � 2IV ) (3.4) 

P Q  Q 

43 



                       

             

           

  

                                

                    

                    

                                 

                     

                    

                     

                   

                    

                     

          

          

               

              

           

    

 

 

 

 

 

 
 

Equation (3.1) represents the consumers’ budget constraint. Equation (3.2) is the law of 

motion for capital, and equations (3.3) and (3.4) are the first-order conditions derived from the 

consumers’ optimization problem. In addition, the state variables also satisfy the following 

algebraic constraints. 

Y 1�PX ( ) , (3.5) 
C g� 

Y 1�PQ T ( ) , (3.6) 
Z nK� 

V Y 1�Gr A D ( )  , (3.7) 
K 

V Y 1�Gw A ( )  , (3.8) 
L 

�ܻܸ߶ +�כܥܺ �ܥܺ (3.9) = ,

ܻ� ܭݎ ܮݓ + + ܵ� (3.10) = ,

PY
V , (3.11) 

M 

ܥ)ܺ + ݃) + ܳ(ܼ (ܭ݊ + = ܻ� (3.12) , 

w 1�S C* 
(1 2� IV ) , (3.13) 

X S 1� L 

݅ = ߶ܸଶ�. (3.14) 

Equations (3.5)-(3.8) are obtained from the first-order conditions of the firms’ 

optimization problem. Equation (3.9) defines consumption net of transaction costs, with total 

output serving as a measure of the level of transactions at a given point in time. Equation (3.10) 

defines income. Equation (3.11) is the income velocity of money. Equation (3.12) is the social 

resources constraint. Equations (3.13)-(3.14) are obtained from the first-order conditions for 

the consumers’ optimization problem. 
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The control variables consist of the nominal rate of return on government bonds, ݅, and 

the level of lump-sum taxes, ʏ͘� According to Barnett and He (2008), the monetary policy rule is 

i P P i L 
ap log( ) � aint � ai log( ) � aL log( ) �H i (3.15) 

i P P E L 

and the tax policy is 

d W W W L P D D
b (  � ) � b log( ) � b � b ( � ) �H (3.16) W L inf x Wdt C C C L P PY  PY 

price level, തܲ �

The free parameters are the steady state debt-to-income level, ܦഥ/ തܻ, the steady state 

the ܽ’s, and the ܾ’s. The disturbance noises are ߝ�and ߝఛ. The control variables ,

and ߬. Barnett and He (2008) use 
W 

are ݅ W rather than as a control. The exogenous c C 

variables are ݊ ݃ߨߜߠߙ , and ߶, which are specified by Leeper and Sims to follow ,ܣ , , , , ,

logarithmic first-order autoregressive (AR) processes in continuous time, while ߚ is specified to 

be a logarithmic first-order AR in unlogged form. Barnett and He (2008) analyze the structural 

properties of (3.1)-(3.14) without external disturbances. Barnett and He (2006b,2008) treat all 

parameters in (3.3) as fixed parameters and treat the exogenous variables as realized at their 

measured values. The extension of this analysis to the case of stochastic bifurcation is a subject 

for future research. 

Next Barnett and He (2008) reduce the dimension of the problem by temporarily 

eliminating some state variables for the convenience of analytical investigation. They contract 

to the following 7 state variables 

= 

ې
ۑ
ۑ
ۑ
ۑ
ۑ
�ے

ܦ
ܲ
�ܥ
ܮ
ܭ
ܼ
ܻ�

ۍ
ێ
ێ
ێ
ێ
ێ
�ۏ

(3.17) . 
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� 
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� � � � 

The remaining state variables can be written as unique functions of By eliminating .

ܸ�כܥ�ܯ �ܳ�ܺ from the independent state variables, it can be determined directly from (3.1)-, , , ,

(3.14) that satisfies the following equations. 

1 Y I / i
D� P� ( I / i ) Y 

P P 

iD Y 1�P Y 1�P Y i  / I
Y � � ( ) C �T ( ) L �W cC � 2 i (3.18) 

P C � g Z � nK 2V I 

P �P1 �IVY (1  � P)(C � g) 1 � P
(1 �S (1 �J ))( � ) CP 1�PC �IVY  (C � g) C � g 

P�1 1�P(1 �S (1 � )) V Y  (C � g) 1 � P P (1 �J )(1 J I P  �S )
�( � ) Y � � LP 1�PC �IVY  (C � g) Y P 1 � L 

P 1�P( � g)Y C  1
i � E � i (3.19) P 1�PC �IVY  (C � g) 2 iI 

P Y Z � nK  aVD P V  1�P V �1� �  � � I � K i G (3.20) (1 P)( � ) (1 2 V ) Y (Z � nK ) � �  
P Y Z � nK T 

�ሶܭ ܼ െ ܭߜ (3.21)

 0 =

=

ܥ) + ݃)

,

ఓ�+ ߠ(ܼ ఓ(ܭ݊ + െ ܻఓ�, (3.22) 

ఙܮ +�ఙܭߙ െ ܽିఙܻିఙ� (3.23)0 = 

V  P V  1�a Y  � (C � g) P 1 �S IV P 1�P 1 �S C
0 (1 � 2 V ) � ( � gI Y C  ) � (3.24) 1�VL S 1 � L S 1 � L 

Then Barnett and He (2008) write equations (3.18)-(3.24) as 

ሶ� )ܐ (3.25) ) (ܝ ,  =,(ܝ ,

 ) =  (3.26) ,(ܝ ,
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where is a 7-dimensional state vector, ܝ is a 2-dimensinal control vector, ܐ( -is a 4×7 (ܝ ,

dimensional matrix, and ( ) ,is a 4×1 vector of functions (ܝ ,  is a 3×1 vector of (ܝ ,

functions. Equation (3.25) describes the nonlinear dynamical behavior of the model, and (3.26) 

describes the nonlinear algebraic constraints. The system formed by (3.25) and (3.26) is called 

nonlinear descriptor systems in the mathematical literature. Barnett and He (2006b,2008) use 

݉ = 7, ݉ ଵ�= 4, ݉ ଶ�= 3, and ݈ = 2 (with ݉ = ݉ଵ�+ ݉ଶ) to denote respectively the dimension 

of , the number of differential equations in (3.25), the number of algebraic constraints in 

(3.26), and the dimension of the vector of control variables ܝ. 

Barnett and He (2008) solve the steady state of the system (3.25)-(3.26) for the 7 state 

variables, , conditionally on the setting of the controls ܝ from the following equations: 

 )  = (3.27) ,(ܝ ,

� ) (3.28)  =.(ܝ ,

and get 

݅  =ߚ

i 0 (3.29) 

߬ҧ߬ҧ� ҧ= ܥ�

The first equation of (3.29) is found from (3.15) in the steady state, the second equation 

from the definition of steady state, and the third equation from (3.16) in the steady state. The 

values ത�and ܝഥ are solutions to (3.27)-(3.28), and (3.29). The resulting steady state is the 

equilibrium of (3.25)-(3.26), when the control variables are set at their steady state. 

The vector of parameters in the steady state system is 

ܘ = ߨ] ߚ ߠ ܽ�ߙ ߶ ߜ ߤ ߛ  .�ᇱ[ߪ

Here ݃ is taken as a fixed value by the private sector at its setting by the government. 

The constraints on the parameter values and ݃ are: 
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(3.30) 0 ߨ > ߛ ,1 > > 0, 0  ߪ  ߤ ,1  ߜ ,1  0, 0  ߚ  ߜ ,1 > 0, ݃  0. 

3.3. Singularity in Leeper and Sims Model 

Barnett and He (2008) use local linearization around the equilibrium (തܝ�ഥ) and derive ,

the following linearized system of (3.25) and (3.26): 

۳ ሶ�  = (3.31) ,ܝ�+ ۰ۯ

�  = (3.32) ,ܝ�+ ۰ۯ

where 

m m  4 7u1E1 h x u( ,  )� R u R 

( , )  
1uwf x u  m m  4 7uA1 | ,  � R R x x u u  wx 

w ( , )  
2ug x u  m m  3 7uA2 | ,  � R R x x u u  wx 

( , )  
1uwf x u  m l  4 2uB1 | ,  � R R x x u u  wu 

w ( , )  
2

g x u  m lu 3 2uB2 |  � R R x x u u  wu , 

Barnett and He (2008) find the linearized system satisfies the regularity condition 

according to Gantmacher (1974). In particular, they find values of the determinant’s parameter 

such that ݀݁ݐ(۳ݏ െ ۯ
െۯ�

൨) ء 0. Since the linearized system is regular, it is solvable. Barnett 

and He (2008) further transform the linearized system (3.31)-(3.32) into the following form. 

Definition 3.1 (Barnett and He (2008), Definition 3.1) Two systems 

۳ ሶ� �ܝ۰ +�ۯ (3.33) = 

and 
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۳෨ܡሶ� ܡ෩ۯ + ۰෩ܝ� (3.34) = 

are said to be restricted system equivalent (r.s.e), if there exist two nonsingular matrices ܂�and 

 �such that܂

�܂۳܂ ۳෨܂�܂ۯ� �۰܂�෩ۯ ۰෩� =ܡ܂ , = , = , = . 

Barnett and He (2008) note that the form (3.34) can be obtained by using the coordinate 

transform ܂ܡ into (3.33) and then multiplying both sides of (3.33) by ܂from the left. They = 

next transformed (3.31)-(3.32) into suitable r.s.e. forms. They denote ݎா� ݇݊ܽݎ (۳), where = 

Then there exist nonsingular matrices ܂�and ܂�such that ݎா א {1,2,3,4}. 

�܂۳܂  ۳ܚ۷  0 ൨= .
0  0 

They substitute the form = ܂ ቂ
ܡ
ܡ


ቃ�, where ܡ א ܴಶ�and ܡ א ܴିಶ�= ܴିಶ�, into 

(3.31)-(3.32) and also multiply both sides of (3.31) by ܂. It follows that (3.31)-(3.32) is r.s.e to 

�ሶܡ �ܝ�+ ۰ܡۯ +�ܡۯ (3.35a) = , 

(3.35b) � �ܝ�+ ۰ܡۯ +�ܡۯ

(3.35c) �

=

,�ܝ�+ ۰ܡۯ +�ܡۯ =

, 

where 

�ۯ��,܂ۯ �ۯ ܂ۯ܂ ,  ۰� ,۰܂ [ۯ�ۯ] �ۯ= �ۯ
൨ = ۰�൨ = 

with ۯ א ܴಶ×ಶ�, ۯא� ܴಶ×(ିಶ), ۯא� ܴ(ସିಶ)×ಶ�, ۯ א ܴ(ସିಶ)×(ିಶ), ۯא��
ܴଷ×ಶ�, ۯא� ܴଷ×(ିಶ), ۰ א ܴಶ×ଶ�, and ۰א� ܴ(ସିಶ)×ଶ, while ܡ�is an ݎா�dimensional vector 

and ܡ�is a 7 െ  .ா�dimensional vectorݎ

Barnett and He (2008) combine equations (3.35a) and (3.35b) and acquire the following: 

 (3.36a) ,�ܝ�+ ۰ܡۯ +�ܡۯ =�ሶܡ

  (3.36b) ,�ܝ�+ ۰෩ܡ෩ۯ +�ܡ෩ۯ =
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where 

 �ۯ  �ۯ  ۰ۯ�෩�= ۯ�
൨�, ۯ෩�= ۯ�

൨�, ۰෩�= ۰�൨�. 

If ۯ෩�is nonsingular, it follows from (3.36b) that ܡ� െ൫ۯ෩൯
ି൫ۯ෩ܡ�+ ۰෩ܝ൯�They = . 

substitute the form of ܡ�into (3.36a) and get 

�ሶܡ �ܝ�+ ۲ܡ۱ (3.37) = , 

where ۱� ۯ െ �෩ۯۯ ۰ െ א�෩ۯ෩ିଵۯۯ ܴಶ×ಶ�and ۲� ିଵ۰෩א� ܴಶ×ଶ�This implies that = = . 

if ۯ෩�is nonsingular, given the algebraic relationship between ܡ�and ܡ�in equation (3.36b), 

the dynamics of ܡ�can be explained in terms of ordinary differential equations (3.37). 

Linear system ((3.31), (3.32)) is equivalent to ((3.37), (3.36b)), only when ۯ෩�is 

nonsingular. If ۯ෩�were singular, the above transformation would not be possible and singular 

bifurcation would occur. As explained in Barnett and He (2004,2006b), if ۯ෩�becomes exactly 

singular, the dimension of dynamics change. The dynamics also would change substantially, if 

 .෩�moves between two settings located on opposite sides of a singular bifurcation boundaryۯ

To examine the case when ۯ෩�is singular in more detail, Barnett and He (2008) rewrite 

the linearized system ((3.36a), (3.36b)) as 

 ۷
�۳ܚ 

 ൨ ܡ�  �ۯ ൨ۯ ቂ ܡ
ܡ

 ቃ +  ۰ ൨ܝ�� ܡ= (3.38)

ሶ
ሶ൨� �෩ۯ �෩ۯ ۰෩� . 

The matrix pair (�۷
�۳ܚ 

�൨�, 
�ۯ ۯ ൨), which is in the form of a matrix pencil, is also ۯ෩� �෩ۯ

regular, since the model is regular. Therefore, there exist nonsingular matrices, ܂෩�and ܂෩, such 

that (Gantmacher (1974)): 

෩܂  ۷
�۳ܚ 

 ൨܂෩�= �۷
�ܕ

ۼ
�൨�and ܂෩ 

෩�= ቈ܂�൨ۯ�ۯ 
�෩ۯ

۷

ܕ

�,෩ۯۯ�෩�
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where m ଶ�= m and ۼ is a nilpotent matrix; i.e. there exists a positive integer ݀  1 such ଵ�+ m 

that ۼௗ=0. The smallest such integer ݀ is called the nilpotent index of ۼ. One example of a 

nilpotent matrix is: 

ۍ  0  1  0 …  0 0 ې 0   0  1 …  0  0
�ۼ

ێ
ێ
�ێ

ۑ
ۑ
�ۑ

. (3.39) = … … . 
0  0  0 …  0  1

ۏ  0  0  0 …  0 �ے 0 

Barnett and He (2008) next consider the coordinate transform ቂܡܡ


ቃ ෩܂ = ቂ

ܢ
ܢ


ቃ�,

substitute it for ܡ in equation (3.38), and multiply both sides of (3.38) by ܂෩�from the left. The 

following r.s.e. form of ((3.31),(3.32)) results: 

�ሶܢ �ܝ�+ ۰෩ܢ෩ۯ (3.40) 

�ሶܢۼ

=

,�ܝ�+ ۰෩ܢ =

, 

(3.41) 

where 

ቈ ۰෩ � ෩܂ 
۰൨۰෩�

= ۰෩�. 

The solutions to (3.40) and (3.41) are respectively 

௧ܢ� ݁� + (0)ܢ෩(௧ି௧బ)ۯ݁ ߦ݀(ߦ)ܝ෩(௧ିక) ۰෩ۯ ,= ௧బ�

ௗିଵ (0) െܢۼ(ݐ)(ିଵ)ߜ σௗିଵ�െσܢ� ୀଵ� ୀ  =,(ݐ)()ܝ۰෩ۼ

where ݐ  0 is the initial time, ߜ(ିଵ)(ݐ) is the derivative of order ݇ െ 1 of the Dirac delta 

function, and ܝ() denotes that ݇-th order derivative of ܝ�. 

If ۼ �it follows from (3.41) that ܢ� െ۰෩ܝ�which is a smooth algebraic relationship = , = ,

between ܢ�and ܝ; and the above solution for ܢ�does not apply. Only when ۼ is nonzero, there 

exist impulsive terms involving the Dirac delta functions, which could produce shock effects in 

the first summation of the solution for ܢ, and smooth derivative terms of ܝ in the second 
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summation. The solution structure with nonzero ۼ is very different from the solution of 

ordinary differential equations as in (3.40) for ܢ. 

The following theorem links bifurcation phenomenoa at ۼ ്  to the singularity of ۯ෩. 

The proof is contained in Barnett and He (2008), Theorem 3.1. 

Theorem 3.1. If both (3.40)-(3.41) and (3.36a)-(3.36b) are r.s.e forms of the same linearized 

system (3.31)-(3.32), then ۼ , if and only if ۯ෩�is nonsingular. Hence it follows that = 

് ( ෩ۯ)ݐ݁݀ 0. 

The next theorem links the singularity of ۯ෩�to the rank of the original coefficient 

matrix. The proof is contained in Barnett and He (2008), Theorem 3.2. 

Theorem 3.2. Assume that ۳�has full row rank, i.e. 

݇݊ܽݎ (۳) = ݉ଵ. 

Then ۯ෩�is nonsingular, if and only if the ݉ × ݉ matrix �۳ۯ


൨ is nonsingular, so that 

ۯ�൬�۳݇݊ܽݎ


൨൰� ݉= . 

Theorem 3.2 provides the condition for the existence of a singularity bifurcation 

boundary, so that ݀݁ݐ ൬ۯ
۳

൨൰ = 0. 

The following corollary says that the singularity condition does not change whenever 

state variables that can be modeled by ordinary differential equations are added or deleted. 

The proof is contained in Barnett and He (2008), Corollary 3.1. 

Corollary 3.1. Consider the following system describing the dynamics of ( ܞ where ,(ܞ , א ܴయ�

for arbitrary ݉ଷ. 

۳�ሶ + ۳ܞܞሶ�= ۯ�+ ۯܞܞ + ۰ܝ�, (3.42a) 

ܞܞۯ =�ሶܞ  (3.42b) ,�ܝܞ۰ +
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 ܞܞۯ +�ۯ = + ۰ܝ�, (3.42c) 

where ۳ۯ ,ܞۯ ,ܞ۰ ,ܞۯ ,ܞܞ�are arbitrary matrices of dimension 

݉ଵ�× ݉ଷ, ݉ ଵ�× ݉ଷ, ݉ଷ�× ݉ଷ, ݉ ଷ�× ݈�, and ݉ଶ�× ݉ଷ, 

respectively, and the other matrices are as defined above. Then the singularity condition for 

(3.42a), (3.42b), and (3.42c) is the same as that for ((3.31), (3.32)). 

The above corollary says that adding (or deleting) state variable that can be modeled by 

ordinary differential equations does not change the singularity condition. The corollary is 

useful in reducing the dimension of the problem under consideration. With this corollary, 

Barnett and He (2008) are able to drop the Leeper and Sims’ model’s state variable ܭ from the 

state vector (3.17) in the system ((3.31), (3.32)) without affecting the singularity condition. The 

singularity condition then becomes 

ݐ݁݀ ൬ۯ
۳
ᇱ
ᇱ


൨൰ = 0, (3.43) 

in which 

�ۍ

۳ᇱ�

�ێ
�ێ
�ێ
�ێ
�ێ

= 

�ۏ


1 

0 

0 

ܻ
ܸܲ

ܲ
1 

ܲ
1

 0  0  0 

(1 െ െ 1)(ߛ �ଶଷ݁(ߨ 1 െ ܮ  0 

െ�1 െ �ߤ
0  0 ܼ ܭ݊ +

ܸې
1

݁ଶ
�ۑ
�ۑ
�ۑ
�ۑ
�ۑ

1 െ �ߤ
ܻ� �ے

and 

ܥ)ߤ + ݃)ఓିଵ� ܼ)ߤߠ �ఓିଵ(ܭ݊ + �ఓିଵܻߤ
= 

 0  0  0
�ᇱۯ ܽଶଷ� ܽଶସ� ܽଶ� ൩0  0 

ఙିଵܮߪ
 0 

ఙିଵ0ܻߪఙିܣ  0  0  0 

with 

1 �S (1  �J ) P P�2 1 � P 
e23 * [1 �IVY (P �1)(C � g) ] � ,

C C g� 
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1 �S (1  �J ) P P�1 1 � P 
e [� IVY P(C � g) ] � ,26 C* Y 

V P�V V �1 �P 1 �S 1 
a23 (1 � 2IV ) A Y  L  (1 � P)(C � g) � ,

S 1 � L 

V P�V V �2 1�P 1 �S C 
a24 (1 � 2IV ) A Y  (V �1) L (C � g) � 2 ,

S (1 � L) 

= (1 െ ߤ)ఙܣ(ܸ߶2 െ ܥ)ఙିଵܮఓିఙିଵܻ(ߪ + ݃)ଵିఓ�ܽଶ� . 

The prime denotes the deletion of the state variable ܭ from the vector in equation 

(3.17) and deletion of equation (3.21), which is the corresponding differential equation for 

capital ܭ. 

Barnett and He (2008) also show by direct calculation that (3.43) is equivalent to 

(1 �J )(1 �S ) 1 � Pۍ �ଶଷ݁ې ݁ଶᇱ�1 � L Z � nK
)ݐ݁݀

ێ
ێ
ێ
�ێ
ܥ)ߤ + ݃)ఓିଵ� ܼ)ߤߠ �ఓିଵ(ܭ݊ + െ �ఓିଵܻߤ

ۑ
ۑ
ۑ
�ۑ
) = 0 (3.44)0

ܽଶଷ� ܽଶସ� ܽଶ
�ۏ ఙିଵܮߪ

 0 
0ےఙିଵܻߪఙିܣ  0 

where 

=
1 െ �ߨ

ܥ
(1
כ
െ (ߛ

[െ߶ܸܻఓܥ)ߤ + ݃)ఓିଵ]. ݁ଶᇱ�

Equation (3.44) determines the singularity-induced bifurcation boundary. According to 

Barnett and He (2008), this is the first time that this type of bifurcation has been found in a 

macroeconometric model. 

To investigate bifurcation of the closed-loop system under the control of the monetary 

policy rule and tax policy rule introduced in (3.15) and (3.16), Barnett and He (2008) augment 

the state variable to include two more controls as follows: 
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ۍܦ ێܲې ێܥۑ �ۑ
ێ ܮ ܭۑ ێ (3.45) .  =ۑ
ێܼ �ۑ

ێ ܻ �ۑ
ێ ݅ �ۑ
߬ۏ �ے

The corresponding linearized system (3.31)-(3.32) becomes 

۳ ሶ� �ۯ , (3.46) = 

� (3.47) = [�ۯ] ,

×� ×
where ۳ א ܴభ = ܴ× ଽ�, ۯ א ܴభ = ܴ× ଽ�, ݉ଵ

�= ݉ଵ�+ 2, ݉�= ݉ + 2. 

3.4. Numerical Results 

Corollary 3.1 allows adding (or deleting) state variables that can be modeled by ordinary 

differential equations without changing the singularity condition. Barnett and He (2008) then 

apply condition (3.44) to the closed-loop system (3.47) and look for bifurcation boundaries. 

They vary pairs of parameters with all other parameters set at their estimates. They also find 

the intersection of their theoretically feasible ranges and the 95% confidence intervals of their 

estimated values, in particular, the intersection ࢮ of (3.30) and [ҧ(݅) െ ܿҧߪ (݅)ҧ , + ܿҧߪ ], where  �

�is the standard error of the estimate, and ܿҧߪ ,(݅) ҧ(݅) is the estimated value of parameter is�

the critical value of the 95th-percentile confidence interval for ܰ(0,1). 

The estimation information for the parameters ߤ�g, and ߚ is taken directly from the ,

Leeper and Sims paper, which is presented in Table 3.17. 

7 Table 3.1 is a replicate of Barnett and He (2008), Table 1. 
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Table 3.1. Estimation of ߤ ݃�and ߚ�, , 

Parameter Estimate Standard Error ࢮ Interval 

�ߤ 1.0248 0.324 [1, 1.6598] 

݃� 0.0773 0.292 [0, 0.6496] 

�ߚ 0.1645 0.288 [0, 0.7290] 

Note: Since ݃ is an exogenous variable, rather than a parameter, the “estimate” is the sample mean, and the 

“standard error” is the sample standard deviation. 

Barnett and He (2008) display a few representative sections of the singularity bifurcation 

boundary. One section is ߤ versus ݃, the other is ߤ versus ߚ�They then explore what happens . 

when ߚ crosses the singularity boundary, with ߚ ranging between 0.08 and 0.24. Table 3.2 

8displays the changes of finite eigenvalues, ߣଵ, …  .ߚ corresponding to the changes of ,଼ߣ ,

Table 3.2. Eigenvalue Changes 

�ߚ 0.080 0.120 0.160 0.165 0.170 0.200 0.240 

�ଵߣ 1.002 1.002 1.002 1.002 1.002 1.002 1.002 

�ଶߣ 0.080 0.120 0.160 0.165 0.170 0.200 0.240 

�ଷߣ -0.303 -0.262 -0.220 -0.215 -0.210 -0.178 -0.135 

�ସߣ -3.558 -3.559 -3.561 -3.561 -3.561 -3.563 -3.566 

�ହߣ -0.098 -0.084 -0.077 -0.076 -0.075 -0.072 -0.069 

�ߣ -0.002 -0.003 -0.003 -0.003 -0.003 -0.004 -0.004 

�ߣ 3.101 5.177 8.237 8.682 9.254 13.416 28.401 

�଼ߣ -117.790 -204.703 -1811.413 λ� 1456.294 195.888 58.059 

Three more infinite eigenvalues are not shown in Table 3.2. The second through the 

ninth rows are the corresponding finite eigenvalues of the linearized model at each setting of ߚ�

8 Table 3.2 is a replicate of Barnett and He (2008), Table 2. 
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shown in the first row. Table 3.2 shows that when the value of ߚ crosses the bifurcation 

boundary, with ߚ ranging between 0.08 and 0.24, ଼ߣ�decreases from negative values rapidly to 

െλ�jumps suddenly from െλ to +λ, and then decreases while remaining positive. This ,

phenomenon shows that the model has a change in dynamic structure, when ߚ crosses the 

singularity-induced bifurcation boundary. The two regions separated by the boundary exhibit 

drastically different dynamical behaviors. Barnett and He (2008) also display that very small 

changes in ߤ can cause bifurcation independently of the setting of ݃ or ߚ�They also state that . 

the number of dynamic equations and the number of algebraic equations change, when the 

singularity-induced bifurcation boundary is reached. 

4. New Keynesian Model9 

4.1. Introduction 

This section surveys Barnett and Duzhak’s (2008, 2010) work on bifurcation analysis 

within the class of New Keynesian models. Their interest in exploring bifurcation in New 

Keynesian models is driven by the increasing policy interest in New Keynesian models. In 

Barnett and Duzhak (2008, 2010), they have studied different specifications of monetary policy 

rules within the New Keynesian functional structure and have found both the existence of Hopf 

bifurcation and the existence of period doubling (flip) bifurcation boundaries through numerical 

procedures. 

The usual New Keynesian log-linearized model consists of a forward-looking IS-curve 

describing consumption smoothing behavior, a Phillips curve derived from price optimization by 

monopolistically competitive firms in the presence of nominal rigidities, and a monetary policy 

rule having different specifications. Barnett and Duzhak (2010) use eigenvalues of the 

linearized system to locate Hopf bifurcation boundaries and investigate different monetary 

policy effects on bifurcation boundary locations for each case. They use two types of New 

Keynesian models: one can be reduced to produce a 2×2 Jacobian, and the other produces a 

3×3 Jacobian. In the 3×3 case, Barnett and Duzhak (2010) employ a theorem on Hopf 

bifurcation from the engineering literature. 

9 This section is summarized from Barnett and Duzhak (2008,2010). 
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Starting from Grandmont’s findings with a classical model, Barnett and Duzhak (2008, 

2010) continue to follow the path from the Bergstrom-Wymer UK model, then to the Euler 

equations Leeper and Sims’ macroeconometric models, and then to New Keynesian models. 

Barnett and Duzhak (2008, 2010) believe that Grandmont’s conclusions appear to hold for all 

categories of dynamic macroeconomic models and suggest that Barnett and He’s initial findings 

with the Bergstrom-Wymer ‘s UK model appear to be generic. Barnett and Duzhak (2008, 2010) 

suggest that study of the full nonlinear system and analysis of continuous-time New Keynesian 

models will merit future research. 

4.2. The Model10 

The main assumption of New Keynesian economic theory is that there are nominal price 

rigidities preventing prices from adjusting immediately and thereby creating disequilibrium 

unemployment. Price stickiness is often introduced in the manner proposed by Calvo (1983). 

The model used by Barnett and Duzhak (2008, 2010) is based upon Walsh (2003), section 5.4.1, 

pp. 232-239, which in turn is based upon the monopolistic competition model of Dixit and 

Stiglitz (1977). 

The model consists of consumers, firms, and monetary policy authority. The 

representative consumer can allocate wealth to money and bonds and choose the aggregate 

consumption stream to maximize the utility. Consumers derive utility from the composite 

consumption good ܥ௧, real money balances, and leisure, and supply labor in a competitive labor 

market, while receiving labor income ݓ௧ ௧ܰ. Consumers own the firms, which produce 

consumption goods, and they receive all profits ߨ௧. 

Firms operate in a monopolistically competitive market, in which each firm has pricing 

power over the goods it sells. A random fraction of firms does not adjust its product price in 

each period. A result is price rigidity by the firm, while the remaining firms adjust prices to their 

optimal levels. Firms make their production and price-setting decisions by solving the cost 

minimization and pricing decision problems, such that 

10 The model description is modified from Barnett and Duzhak (2010). 
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i E S�t  t t�1x E x � (4.1) t  t t�1 V 

�௧ߨ (4.2)  =௧ݔߢ +�௧ାଵߨ௧ܧߚ


where ߨ௧�is the inflation rate at time ݐ; ݅௧�is the interest rate; ݔ௧�= ො௧ݕ) െ  ො௧�) is the gapݕ

between actual output percentage deviation ݕො௧�and the flexible-price output percentage 

deviation ݕො௧; is a degree of relative risk aversion; ܧ௧�is the expectations operator, 

conditionally upon information at time ݐ, and ߚ is the discount factor. 

Equation (4.1) represents the demand side of the economy and is a forward-looking IS 

curve that relates the output gap to the real interest rate. Equation (4.2) represents the supply 

side and is the New-Keynesian Phillips curve describing how inflation is driven by the output 

gap and expected inflation. The remaining equation to close the model will be a monetary 

policy rule, in which the central bank uses a nominal interest rate as the policy instrument. Two 

main policy classes are targeting rules and instrument rules. A well-known instrument rule is 

Taylor’s rule, using a reaction function responding to inflation and output to set the path of the 

Federal Funds rate. Barnett and Duzhak (2010) initially center analysis on specification of the 

current-looking Taylor rule, then on forward-looking, backward-looking, and hybrid Taylor rules. 

Literature also proposes many ways to define an inflation target. Barnett and Duzhak (2010) 

consider current-looking, forward-looking and backward-looking inflation targeting policies. 

4.3. Determinacy and Stability Analysis 

Barnett and Duzhak (2010) use Theorem 1.1 for the analysis of the reduced 2 2 case u 

of A x  Bx  uEt t�1 t . They also find bifurcations in the 3 3 case by using the following Lemma 4.1 

and Theorem 4.1, which arise from the engineering literature. That approach had not 

previously been used in the economics literature. According to Barnett and Duzhak (2010), in 

the 3 3 case with current-looking or backward-looking policy rules, the only form of u 

bifurcation detected from the linearized model was Hopf bifurcation. 

Lemma 4.1. (Barnett and Duzhak (2010), Lemma 3.1) For a matrix ۯ = [ܽ ], with ݅�, ݆ =�

1,2,3, a pair of complex conjugate eigenvalues lies on the unit circle and another eigenvalue lies 

inside the unit circle, if and only if 
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(ܽ)  ,1 > |ݔ|

(ܾ) ݔ| |ݖ + < 1  ,�ݕ +

ݕ (ܿ) െ ݖݔ = 1 െ ,�ଶݔ

where ݖ ݔ �andݕ are the coefficients of the characteristic equation ߣଷ�+ ߣݖଶ�+ ߣݕ ݔ + = 0 of , ,

the matrix ۯ�. 

The following theorem is Barnett and Duzhak’s (2010), Theorem 3.2. The proof is 

included in that paper. 

Theorem 4.1. (Existence of Hopf Bifurcation in 3 Dimensions) Consider a map հ ) , ),

where has 3 dimensions. Let ۸ be the Jacobian of the transformation, and let the 

(ߣ)ܲ ଷcharacteristic polynomial of the Jacobian beߣ ߣݕ +�ଶߣݖ + = ݔ + = 0. Assume that for 

one of the equilibria, ( כ�, כ), there is a critical value, ߮, for one of the parameters, ߮כ, in  
כsuch that eigenvalue conditions (a),(b), and (c) and transversality condition (d) hold, where: 

(ܽ)  ,1 > |ݔ|

(ܾ) ݔ| |ݖ + < 1  ,�ݕ +

ݕ (ܿ) െ ݖݔ = 1 െ  ,�ଶݔ

w O j ( ,  )x* ĳ* 
| * c z 0 for the complex conjugates with ݆ = 1,2. (݀) 

* M Mw i iMi 

Then there is an invariant closed curve Hopf-bifurcating from כ�. 

i. Current-Looking Taylor Rule 

The current-looking Taylor rule is: 

݅௧�= ܽଵߨ௧�+ ܽଶݔ௧, (4.3) 

where ܽଵ�is the coefficient of the central bank’s reaction to inflation and ܽଶ�is the coefficient of 

the central bank’s reaction to the output gap. 
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The 3-equation system ((4.1), (4.2),(4.3)) constitutes a New Keynesian model. To analyze 

the model’s determinacy and stability properties, Barnett and Duzhak (2010) first display the 

system in the following form, which is not a closed form: 

௧ܧۯ ௧ାଵ� ۰ ௧�+ ઼௧,= 

where 

1 ۍ1 ې �ۍ �ې
ۯ �ێ

1 
V

 0 
۰ ,ۑ �ێ

1  0 
V ۑ, ௧�= ߨ

௧ݔ
௧൩= ێ. = ߚ ۑ ێ െߢ� �ۑ ݅

ۏ
0  0 

ۏ ܽଶ� ܽ
1
ଵ െ

0
ے 1 ௧

 0  0 �ے 0 

Obtaining the matrix ۱� ۰ିۯ is impossible, since ܣ is a singular matrix. = 

Therefore, they reduce the system to a system of two log-linearized equations by 

substituting Taylor’s rule (4.3) into the consumption Euler equation. The system of two 

equations has the following form: 

 ߪ 1
�ߚ

1 
 ܧ�௧ݔ௧ାଵ൨ = ቈ1 + 

ܽ
ߪ
ଶ� െ ܽ

ߪ
ଵ
 ቂߨ
௧ݔ
௧
ቃ�,ܧ௧ߨ௧ାଵ� െ�0ߢ  1 

which can be written as 

௧ܧۯ ௧ାଵ� ۰ ௧,= 

where 

1 a2 a1 
௧�= ቂߨ

௧ݔ
௧
ቃ�, ۯ = ൦ 1 

V ൪, and ۰ =   1 + 
V 

െ .V
�ߚ െ�0ߢ  1 

Premultiply the system by the inverse matrix ିۯ�,

ۍ െ�1 ିۯ�ߪߚ 1ې� �ێ  =�ۑ
ێ ۑ

,

ۏ ߚ 0 
1 

�ے
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results in 

a2 E N  a1E ۍ��1 �ې
ێ
  1 + 

VE VE ܧۑ௧ݔ௧ାଵܧ�௧ݔ௧ାଵ�= ۱ݔ௧�or  ௧ାଵ൨ߨ௧ܧ �ێ = N 1 ۑ ቂߨ
௧ݔ
௧
ቃ�,

ێ െ� �ۑ
�ۏ E E ے�

where ۱  .�۰ିۯ =

The eigenvalues of ۱ are the roots of the characteristic polynomial 

(ߣ) ۱)ݐ݁݀ = െ (۷ߣ ଶߣ = െ ߣ 1 + 
ܽଶߚ ߢ +

ߚ
1൨ + 

ߚߪ + ܽଶߚ ߚଵܽߢ +
�ߚߪ �ଶߚߪ + . 

Define ܦ as 

ଶܽଶߚ �ߢ + ߚߪ + ܽଶߚ ଵܽߢ + ܦߚ ߚ
1൨= 1 �ߚߪ + + െ �ଶߚߪ 4 . 

Then the eigenvalues are 

1 a E N  1 1 a �� E N  1O1 (1 � 2 � � D ) and O2 (1 � 2 � � D ) . 
2 VE E 2 VE E 

According to Blanchard and Kahn (1980), the system of expected difference equations has 

a determinate solution, if the number of eigenvalues outside the unit circle equals the number 

of forward looking variables. This system has two forward-looking variables, ݔ௧ାଵ�and ߨ௧ାଵ. 

Therefore the stability and uniqueness of the solution require both eigenvalues to be outside 

the unit circle. It can be shown that both eigenvalues will be outside the unit circle, if and only if 

(4.4) (ܽଵ െ ߢ(1 + (1 െ  .ଶ�> 0ܽ(ߚ

Interest rate rules that satisfy ܽଵ�> 1 are called active. Such active rules define Taylor’s 

principle, stating that the interest rate should be set higher than the increase in inflation. When 

ܽଵ�> 1, clearly (4.4) holds. Monetary policy satisfying the Taylor’s principle is thought to 

eliminate equilibrium multiplicities. 

In this case, the Jacobian of the New Keynesian model can be written in the form: 
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1  ۍ + 
ܽଶߚ
ߚߪ

�ߢ + ܽଵߚ െ
�ߚߪ

�ې 1
۸ �ێ =�ۑ .

ێ െ �ߢ �ۑ
ۏ �ߚ ߚ

1 
�ے

The model is parameterized by: 

ߚ
ۇߪ �ۊ ۈ ߢ  =ۋ
ܽଵ

�یଶܽۉ

Barnett and Duzhak (2008, 2010) use ܽଵ�and ܽଶ�as candidates for bifurcation 

parameters They employ Theorem 1.1. to look for the existence of Hopf bifurcation for this . 

New Keynesian model with current looking Taylor rule. The following result is proved in Barnett 

and Duzhak’s (2008), Proposition 3.1: 

Proposition 4.1. The new Keynesian model with current-looking Taylor rule, equations 

(4.1),(4.2) and (4.3), undergoes a Hopf bifurcation at equilibrium points, if and only if the 

discriminant of the characteristic equation is negative and ܽଶ� ߚߪ െ ଵܽߢ െ =�ߪ . 

Based on the result in Prop. 4.1, Barnett and Duzhak (2010) find that the bifurcation 

boundary is the set of parameter values satisfying the following condition: 

ߪ ߚߪ + െ ߚଵܽߢ െ1ߢ + �ଶߚߪ > < 1. 

ii. Forward-Looking Taylor Rule 

A forward-looking Taylor rule is: 

݅௧�= ܽଵܧ௧ߨ௧ାଵ�+ ܽଶܧ௧ݔ௧ାଵ. (4.5) 

The model consisting of (4.1), (4.2) and (4.5) is parameterized by 
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ߚ
ۇߪ �ۊ ۈ ߢ  =.ۋ
ܽଵ

�یଶܽۉ

The resulting Jacobian has the following form: 

V N (1 � a ) a �1ۍ� � 1 �ې 1
�Vێ � a2 (V � a2 )E (V � a2 )E �۸ۑ� ێ.  =ۑ
�ێ �

N 1 ۑ�
�ۏ E E ے�

Barnett and Duzhak (2010) use ܽଵ�and ܽଶ�as candidates for bifurcation parameters. The 

following result is proved in Barnett and Duzhak (2008) as Proposition 3.2: 

Proposition 4.2. The new Keynesian model with forward-looking Taylor rule, equations (4.1), 

(4.2) and (4.5), undergoes a Hopf bifurcation at equilibrium points, if and only if the 

c V
discriminant of the characteristic equation is negative and a2  �

E 
�V . 

Based on the result in Prop. 4.2, Barnett and Duzhak (2010) find the bifurcation 

boundary is the set of parameter values satisfying the following condition: 

െ1 < 
1 ቆߚ + 

 1)ߢ
ߪ
െ ܽଵ)

ߚ +
1ቇ < 1. 

2 

Barnett and Duzhak (2010) propose a numerical algorithm to detect a period doubling 

bifurcation, which is based on the following technique. Given the ݅௧�iterate of the fixed point, 

݂( ) െ�= 0, a period-doubling bifurcation will occur whenever ߮�= 0 with ߮�= 
 ܑ� ݀݁ݐ൫ ۸( ) )൯�, where ۸ܖ۷ + ) is the Jacobian matrix of the iterated map ݂�. 

Barnett and Duzhak (2010) use the software continuation package CONTENT, developed 

by Yuri Kuznetsov and V.V. Levitin, to locate the bifurcation boundary. Barnett and Duzhak 

select the parameter ܽଶ�to be a free bifurcation parameter and find a period-doubling 

bifurcation point at ܽଶ�= 2.994, with the other parameters set constant in accordance with 

their paper’s appendix table. The nature of the state space solution depends upon where the 
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bifurcation boundary is located. If parameter ܽଶ�is moved to 3 with the other parameters set 

constant, the solution becomes periodic. Along the bifurcation boundary, the values of 

parameter, ܽଶ, are between 2.75 and 3. When values of ܽଵand ܽଶ�are along the bifurcation 

boundary with the forward looking Taylor rule, Barnett and Duzhak (2010) find that the central 

bank actively reacts to the expected future values of inflation and even more aggressively to 

the forecasted values of the output gap. 

iii. Hybrid Taylor Rule 

A Hybrid-Taylor rule is: 

݅௧�= ܽଵܧ௧ߨ௧ାଵ�+ ܽଶݔ௧� (4.6) 

This rule was proposed in Clarida, Gali, and Gertler (2000), who maintain that the rule reflects 

the Federal Reserve’s existing policy. 

The system ((4.1),(4.2),(4.6)) has the following Jacobian: 

ܽ ܽ�
൦
 1 ߪ +

2 1)ߢ +
ߚߪ
െܽ1) 

ߚߪ
െ1 

۸�
1 

൪= .
െߚ
�ߢ

ߚ
1 

Barnett and Duzhak (2010) use ܽଵ�and ܽଶ�as candidates for bifurcation parameters. The 

following result was proved in Barnett and Duzhak (2008), Proposition 3.3: 

Proposition 4.3. The new Keynesian model with Hybrid-Taylor rule, equations, (4.1),(4.2), and 

(4.6), undergoes a Hopf bifurcation at equilibrium points, if and only if the discriminant of the 

characteristic equation is negative and ܽଶ� ߪߚ െ =�ߪ . 

Based on Proposition 4.3, Barnett and Duzhak (2010) find that the bifurcation boundary 

is the set of parameter values satisfying the following condition: 

(ଶߚ + 1)ߪ െ 1)ߢ + ܽଵ)െ1 < 
�ߚߪ2 < 1. 

iv. Current-Looking Inflation Targeting 
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The inflation targeting equation is: 

݅௧�= ܽଵߨ௧, (4.7) 

which can be used instead of the Taylor rule to complete the New Keynesian model. 

The system ((4.1),(4.2),(4.7)) has the following Jacobian: 

VE �N a1E ۍ�1 �ې
��۸ۑ �VE VEێ ێ.  =ۑ

�N 1ێ �ۑ
�ۏ E E ے�

The model is characterized by 

�ߚ
� ቌߢߪ ቍ= . 

ܽଵ�

Barnett and Duzhak (2010) use ܽଵ�as a candidate for a bifurcation parameter. The 

following result is proved in Barnett and Duzhak (2008), Proposition 3.4: 

Proposition 4.4. The new Keynesian model with current-looking inflation targeting, equations 

(4.1),(4.2) and (4.7), produces a Hopf bifurcation at equilibrium points, if and only if the 

c VE �V
discriminant of the characteristic equation is negative and a1 .

N 

Based on Proposition 4.4, Barnett and Duzhak (2010) find that the bifurcation boundary 

is the set of parameter values satisfying the following condition: 

ߪ െ3ߢ +  .1 >�ߚߪ >

v. Forward-Looking Inflation Targeting 

A forward-looking inflation-targeting rule is: 

݅௧�= ܽଵܧ௧ߨ௧ାଵ. (4.8) 
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The system ((4.1),(4.2),(4.8)) has the Jacobian as follows: 

�
N (1 � a1) a �1ۍ 1 �ې 1

�ێ VE VE �۸ۑ� ێ.  =ۑ
��ێ

N 1 ۑ�
�ۏ E E ے�

The model is parameterized by 

�ߚ
� ቌߢߪ ቍ.= 

ܽଵ�

The following proposition is proved in Barnett and Duzhak (2008), Proposition 3.5: 

Proposition 4.5. The new Keynesian model with forward-looking inflation targeting, equations 

(4.1),(4.2), and (4.8), produces a Hopf bifurcation at equilibrium points, if and only if the 

discriminant of the characteristic equation is negative and ߚ�= 1. 

Based on Proposition 4.5, which does not depend on ܽଵ, Barnett and Duzhak (2010) find that 

the bifurcation boundary is the set of parameter values satisfying the following condition: 

െ3 < 
�ܽ)ߢ

2 
ଵ
ߪ
െ 1) 

< 1. 

Parameter ߚ is both the discount factor and the coefficient in (4.2) which scales the 

impact of expected inflation. Assuming for simplicity that ߚ = 1, Barnett and Duzhak (2010) 

find it surprising that this common setting of parameter ߚ can put the model directly onto a 

Hopf bifurcation boundary. This conclusion is conditional upon the assumption that the model 

is a good approximation to the economy and that the discriminant of the characteristic 

equation is negative. In such cases, it is not appropriate to set ߚ = 1. 

Barnett and Duzhak (2010) further find that the dynamic solution in phase space, i.e. 

with inflation rate plotted against output gap, will be periodic, if ߚ = 0.98. They find that if the 

parameter value is located directly on the bifurcation boundary, solution in phase space will 

become an invariant limit cycle. 
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vi. Backward-Looking Taylor Rule 

Backward-looking monetary policy rules are intended to prevent expectations driven 

fluctuations. Such rules are constructed with decisions based on observed past values of 

variables. Examples are found in Carlstrom and Fuerst (2000) and Eusepi (2005). Barnett and 

Duzhak (2010) observe that such a policy should be sufficient for determinacy of equilibria. 

In a backward-looking Taylor rule, the central bank sets an interest rate according to the 

past values of inflation and output gap as follows: 

݅௧�= ܽଵߨ௧ିଵ�+ ܽଶݔ௧ିଵ. (4.9) 

The system ((4.1),(4.2),(4.9)) can be written in the following form: 

௧ܧ ௧ାଵ� ۱ ௧,= 

with 

N 1 ��1ۍ1 �ې �
�ێ VE VE V ۑ�

۱ �ێ N 1 ۑ , ௧�= ߨ
௧ݔ
௧൩ۑ ��ێ� ݅௧�

= 

E E
 0

. 

ێ �ۑ
�ۏ ܽଶ� ܽଵ �ے 0 

Matrix ۱ has the characteristic polynomial 

ߪ െ �ଶܽߚ det(۱ = (ߣ)ଵ�+ ܽଶܽߢ െ (۷ߣ ଷߣ = െ (ߚ + 1)ߪ ߢ +
�ߚߪ �ߚߪ +�ଶߣ ߣ �ߚߪ + . 

The following proposition is proved in Barnett and Duzhak (2010), Proposition 3.6. 

Proposition 4.6. The New Keynesian model with backward-looking Taylor rule produces a Hopf 

,
bifurcation at equilibrium points, if the transversality condition 

డ|ఒೕ( כ
כ
כ)| ലఝכୀఝ ് 0 holds, డఝ�  �

and if the parameters ߙଵ�and ߙଶ�satisfy the following three conditions at the equilibrium: 

a2 �Na1 � 1,(ܽ) 
VE 
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(ܾ) ܽଶ(1 െ (ߚ ଵܽ)ߢ + െ 1) > 0, 

� a2 ( a a2 ) V 1� E ) �N ) N 1 � 2 2V E  N  1 � ( (  a a
1 (  ) .� �(ܿ) 

2 2VE V E  VE 

vii. Backward-Looking Inflation Targeting 

A backward-looking inflation targeting rule sets the interest rate according to inflation 

during a previous period, as follows: 

݅௧�= ܽଵߨ௧ିଵ. (4.10) 

The system ((4.1),(4.2),(4.10)) has the Jacobian as follows: 

�1ۍ + 
ߢ

ߪ
�െߚߪې 1 ߚߪ

1 

ێ
ێ
ێ
�ێ
െ �ߢ

ߚ
1 

ۑ
ۑ
ۑ
�ۑ

= . ۸
�ߚ 0 

�ۏ ܽଵ0 �ے 0 

The Jacobian has the characteristic polynomial 

(ߣ)ଵܽߢ ଷߣ = െ (ߚ + 1)ߪ ߢ + �ଶߣ ߚ
ߣ 1 �ߚߪ+ ߚߪ + . 

The following proposition is proved in Barnett and Duzhak (2010) as Proposition 3.7. 

Proposition 4.7. The New Keynesian model with backward-looking inflation targeting produces 

,
a Hopf bifurcation at equilibrium points, if the transversality condition 

డ|ఒೕ( כ
כ
כ)| ലఝכୀఝ ് 0డఝ�  �

holds, and if the parameters ߮כ�satisfy the following three conditions at the equilibrium: 

Na1 1� ,(ܽ) 
VE 

a ! 1 ,(ܾ) 1 
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2 Na1( (1� E ) �N ) Na1
2

V E � V § · 
1� ¨ .(ܿ) 

2 2 ¸V E  VE© ¹ 

Barnett and Duzhak (2010) note that their numerical search for bifurcations in this 

class of models has found only Hopf bifurcations. 

viii. Current-Looking Taylor Rule with Interest Rate Smoothing Term 

A current-looking Taylor rule with interest rate smoothing term allows central bankers 

to avoid volatility in interest rate by including a lagged interest rate term in the rule as follows: 

݅௧�= (1 െ ܽଷ)(ܽଵߨ௧�+ ܽଶݔ௧) + ܽଷ݅௧ିଵ. (4.11) 

Parameter ܽଷ, which is assumed to be between 0 and 1, describes the degree of interest rate 

smoothing by the central bank. The model consisting of (4.1), (4.2) and (4.11) is parameterized 

by 

�ߚ
ߢߪۇ �ۊ =ۋۋଵܽۈۈ . 

ܽۉ
ܽ
ଷ
ଶ
�ی

The model has the following matrix form: 

௧ܧ ௧ାଵ� ۱ ௧,= 

with 

N 1 �ۍ1 �ې �
�ێ

1 + 
VE VE V ۑ�

ێ �ۑ
۱ �ێ = �

N 1 ۑ�
�ێ E E

 0 
�ۑ

ێ )ۑ 1  )  V � a ) � �  a a( V � a ) a � �  a )� �  a a( N ( 1 )  ( 13 1 2 3 1 2 2 �aێ3 a( �1) � � � � a 2ۑ �ۏ3 3 VE VE V ے�

and 
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ߨ
௧ݔ
௧௧�=  ൩�.
݅௧�

This system has the following characteristic polynomial: 

a a( �1)  N 12 3 � �ଷߣ� 1 a � � ቇ (ߣ)ଶߣ = + ቆ� 3V VE E 

� a � a �Na (1 � a ) 1 � a ܽ�1 2 3 2 3 1 3Na a  
� a3 � ቇ ߣ െ+ ቆ�

VE E ߚ
3. 

The following proposition is proved in Barnett and Duzhak (2010), Proposition 3.8. 

Proposition 4.8. The New Keynesian model consisting of ((4.1),(4.2) ,(4.11)) produces a Hopf 

,�כ
bifurcation at equilibrium points, if the transversality condition 

డ|ఒೕ(

డఝכ
כ)| ലఝכୀఝ ് 0 holds, 

�

and if the parameters, כ, satisfy the following three conditions at the equilibrium: 

(ܽ) ܽଷ െ ߚ < 0, 

(ܾ) ܽଵ�> 1, 

1 � a  a a( �1) a a a( � 2) �Na (1 � a ) � a �Na3 3 3 3 2 3 1 3 2 3(1 3 ) � � 0.� �  a(ܿ) 
2

2E E VE 

ix. Backward-Looking Taylor Rule With Interest Rate Smoothing Term 

The backward-looking Taylor rule with interest rate smoothing is: 

݅௧� ݅௧ିଵ. (4.12) = (1 െ ܽଷ)(ܽଵߨ௧ିଵ�+ ܽଶݔ௧ିଵ) + ܽଷ�

The model consisting of (4.1), (4.2) and (4.12) has the following Jacobian: 
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N 1 ۍ1 �ې
ێ

1 + 
VE

�
VE V ۑ�

ێ �۸ۑ = N 1ۑ ��ێ�
�ێ E E

�ۑ 0 
ێ �ۑ
�a2ۏ (1 � a3 ) a1(1 � a3 ) a3 ے�

with characteristic polynomial 

(ߣ) ߚ =
1൰ ଷܽ)ߚଶ�+ ቆܽଶߣ െ (ଷܽ + 1)ߪ +�ଷܽߢ + (1

+ ܽଷቇ ଷߣ�ߣ െ ൬1 + ܽଷ�+ ߚߪ
�ߢ

�ߚߪ +

�
Na1(1 � a3 ) � a2 (1 � a3 ) �V a3 .

VE 

The following proposition is proved in Barnett and Duzhak (2010) as Proposition 3.9. 

Proposition 4.9. The New Keynesian model consisting of ((4.1), (4.2) ,(4.12)) produces a Hopf 

bifurcation at equilibrium points, if the transversality condition 
డ|ఒೕ( כ�, כ)| 

 ് 0 holds, డఝכ�
ലఝכୀఝ�

and if the parameters, כ, satisfy the following three conditions at the equilibrium: 

Na (1 � a ) � a (1 � a ) �V a1 3 2 3 3(ܽ) ቤ�
VE 

ቤ < 1, 

Na (1 � a ) � a (1 � a ) �V a �N �V a E (a 1)  Na �V (1  � a )� �1 3 2 3 3 2 3 3 31 a3� �  � � a3 ,(ܾ) 
VE VE 

a E (a 1)  Na �V (1  � a )  ((a �Na )(1  � a ) �V a )(VE  (1  � a ) �N �V )� �2 3 3 3 2 1 3 3 3a3 � �(ܿ) 
2VE (VE ) 

§ (a2 �Na1)(1  � a3) �V a3 · 
2 

1 �¨ ¸
© VE ¹ 

Through numerical procedures, Barnett and Duzhak (2010) also find the existence of 

period-doubling bifurcation by varying ܽଶ, while holding other parameters fixed in accordance 

with the appendix in Barnett and Duzhak (2010). The first period doubling bifurcation point is 

found at ܽଶ�= 5.7. Starting from this point, Barnett and Duzhak (2010) then vary ܽଶ�and ܽଷ�
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simultaneously. They discover that period doubling bifurcation will occur for large values of the 

parameter ܽଶ. As a result, aggressive reaction of the central bank to past values of the output 

gap can lead to a period doubling bifurcation within this model. 

Duzhak (2010) started from point ܽଶ�= 5.7 and varied parameters ܽଶ�and ܽଵ�
simultaneously, while holding the other parameters constant in accordance with their paper’s 

appendix. They numerically found a period doubling bifurcation boundary with values of the 

parameter ܽଶ�within a very narrow range from 5.98 to 6.02. Barnett and Duzhak (2010) also 

found that a change in the interest rate smoothing parameter ܽଷ�leads to a different critical 

period-doubling bifurcation value for the parameter ܽଶ. Although previously thought to be the 

least prone to any kind of bifurcations, backward-looking interest rate rules show evidence of 

both Hopf bifurcation and period-doubling bifurcation. 

x. Hybrid Rule With Interest Rate Smoothing Term 

The hybrid rule with interest rate smoothing, proposed in Clarida, Gali and Gertler 

(1998), is often believed to match the empirics of Japan, the United States, and the European 

Union. That rule allows the central banker to set a short-term interest rate based on forecasted 

inflation, the current value of the output gap, and a past value of the interest rate, as follows: 

݅௧� ݅௧ିଵ. (4.13) = (1 െ ܽଷ)(ܽଵߨ௧ାଵ�+ ܽଶݔ௧) + ܽଷ�

The model consisting of equation ((4.1), (4.2) , (4.13)) can be written as 

௧ܧۯ ௧ାଵ� ۰ ௧,= 

with 

1 ۍ1 ې �ۍ �ې
�ۯ

ێێ
ێ 1 

V
 0 

ۑۑ
�ۑ
, ۰

 1  0 
, ௧�=  ߨ

௧ݔ
௧�൩ێ� V ۑ�= �ߚ. = ێ െߢ� ۑ ݅0  0  1  0 ௧ିଵ�

�ۏ ے �ۏ ܽଷ െ 0ے ܽଵ(1 െ ܽଷ)  1 ܽଶ(1 െ ܽଷ)  0 

This model has the following Jacobian: 
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N 1 ۍ1 �ې
�ێ

1 + 
VE 

�
VE V ۑ�

ێ N 1۸ۑ �ێ = �ۑ �
�ێ E E

 0 
�ۑ

ێ �a1(1 � a3ۑ )N a1(1 � a3 �ێ( � a (1 � a ) 2ۑ 3 a3ۏ� E E ے�

with characteristic polynomial 

(ߣ) ߚ =
1൰ +�ଶ�+ ቆܽଷߣ

1 +
ߚ
ܽଷ െ ܽଶ(1 െ ܽଷ) ܽଷߢ + ܽଵ1)ߢ െ ܽଷ)ቇ ଷߣ�ߣ െ ൬1 + ܽଷ�+ ߚߪ

�ߢ
�ߪ + �ߚߪ +

a a a a3 3 2 2� � �
E  VE  VE  . 

The following proposition is proved in Barnett and Duzhak (2010), Proposition 3.10. 

Proposition 4.10. The New Keynesian model consisting of ((4.1), (4.2),(4.13)) produces a Hopf 

bifurcation at equilibrium points, if the transversality condition 
డ|ఒೕ(

డఝ�
כ


כ
, כ)| ലఝכୀఝ ് 0 holds, 

and if the parameters, כ, satisfy the following three conditions at the equilibrium: 

a a a a3 3 2 2� � � � 1,(ܽ) 
E  VE  VE  

a2 (1 � a3 ) �N 1 a3 1 � a3 a2 (1  � a3 ) a3N � a1N (1  � a3 )1 a3 �� �  �  �  1 � a3 � � � ,(ܾ) 
VE E E E V VE 

1 � a3 � 
a2 (1  � a3 ) a3N � a N (1  � a3 )a � � 1(ܿ) 3 E V VE 

ଶ�
a a (1 � a ) 1 N a a (1 � a )3 2 3 3 2 3� � ቇ� � � ቇ+ ቆ�
E  VE  

ቇቆ1 + ܽଷ�+ 
E 

+ 
VE

 = 1 െ ቆ�
E  VE  

. 

Through numerical procedures, Barnett and Duzhak (2010) find the existence of period-

doubling bifurcation by varying ܽଶ�while holding other parameters fixed in accordance with 
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their appendix. The critical value of parameter ܽଶ�is found at ܽଶ�= 3.03. Starting with this point, 

Barnett and Duzhak (2010) first vary parameters ܽଶ�and ܽଷ�and then vary parameters ܽଶ�and ܽଵ�
with the other parameters held constant. 

In the first case, they find a fold flip bifurcation point at ܽଶ� = 0.46. In the = 3.03 and ܽଶ�
second case, they find parameter ܽଶ�is located mostly between 3 and 3.15 within the period-

doubling bifurcation boundary, regardless of the values of parameter ܽଵ. They conclude that a 

period doubling bifurcation will occur, if the central bank actively reacts to the output gap. 

Therefore, two types of bifurcations are revealed for the hybrid interest rate rule. 

5. New Keynesian Model With Regime Switching11 

5.1. Introduction 

Monetary policy has seen major changes over the past decades. In the 1970s, the 

central bank stayed relatively passive in its actions in the presence of high inflation along with 

slow economic growth. Afterwards to help to combat high inflation present at the start of the 

1980s, the Federal Reserve shifted to a more active regime. The phenomenon “great 

moderation” arose from the following period of moderate inflation along with stable economic 

growth in the mid-1980s. In the 21st century, following the financial crises starting in 2007, the 

Fed had to move aggressively. 

Section 5, based on Barnett and Duzhak (2014), investigates whether bifurcations can 

result from monetary policy regime switching over time. Barnett and Duzhak (2014) focus on 

New Keynesian models. Previous literature like Gali and Gertler (1999), Bernanke, Laubach, 

Mishkin, and Posen (1999), and Leeper and Sims (1994) has shown that the original New 

Keynesian model has been developed into an important tool for monetary policy. In Barnett 

and Duzhak (2008) and Barnett and Duzhak (2010), the parameter space of the standard New 

Keynesian model has been shown to be stratified into bifurcation subsets. Relevant previous 

work includes, but is not limited to the following. Andrews (1993) and Evans (1985) study 

11 This section is summaried from Barnett and Duzhak (2014). 
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monetary policy with parameter instability. Davig and Leeper (2006) and Farmer, Waggoner, 

and Zha (2007) study determinacy when the Taylor rule is generalized to allow for regime 

switching. There is a literature on methods to determine parameter instability in time series 

(see Hansen (1992) and Nyblom (1989)). Economic models of regime switching had been 

investigated previously in different contexts, such as Hamilton (1989) and Warne (2000). 

Clarida, Gali, and Gertler (1999), Sims and Zha (2006), and Groen and Mumtaz (2008) find 

empirical support for regime switching in monetary policy.12 

In Barnett and Duzhak (2014), the policy regime is assumed to follow a Markov chain 

with a fixed transition matrix. As a result, the solution to the model evolved differently 

depending on the state of the regime. Barnett and Duzhak (2014) investigate three models—a 

basic setup with a simple monetary policy rule, a New Keynesian model with regime switching, 

and a New Keynesian model with a hybrid monetary policy rule. They show through bifurcation 

analysis that regime switching can bring changes in the qualitative properties of the solution. 

In the first model, the nominal interest rate is set as a function of current inflation with 

the response coefficient depending on the policy regime present at the time. Combining both 

the Fisher equation that links the nominal interest rate to future inflation, and the equation of 

real interest rate, Barnett and Duzhak (2014) get an equation that relates future inflation to 

current inflation and the real interest rate. A system of two linear difference equations is 

acquired for inflation in the two regimes. Barnett and Duzhak(2014) further use the eigenvalues 

of the system’s matrix to perform the bifurcation analysis. Two main findings with respect to 

bifurcations are: first, for the basic setup, Barnett and Duzhak (2014) find no possibility of a 

Hopf bifurcation; second, they find the existence of a period doubling bifurcation. In this case, 

the solution can move from a stable to a periodic solution, where periodicity doubles in 

successive bifurcations. 

In the second model, Barnett and Duzhak (2014) explore whether their analysis of this 

simple setup carries over to the standard New Keynesian model with regime switching and a 

standard Taylor rule. The Taylor (1999) rule makes the nominal interest rate a function of both 

12 This model description is modified from Barnett and Duzhak (2014) 
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inflation and the output gap. Barnett and Duzhak (2014) use numerical methods and find that 

this model does not exhibit any bifurcations for the range of feasible parameter combinations. 

In the third model, Barnett and Duzhak (2014) investigate whether a state-of-the-art 

hybrid Taylor rule exhibits bifurcations. In this model, the Taylor rule allows for forward-looking 

response to inflation. Using the same technique, they find that this model might exhibit a 

period-doubling bifurcation. The ideas from the basic setup thus carry over to the more 

prominent model of monetary policy. The analysis reveals that period doubling bifurcations and 

the resulting changes in the dynamics in inflation and output have more tendencies to arise in 

models with the forward-looking Taylor rule than in the model with the current-looking 

counterpart. 

5.2. Dynamics with a Simple Monetary Policy Rule 

The basic setup with simple monetary policy rule consists of the following two equations: 

(5.1) ݅௧�  =,௧ߨ(௧ݏ)ߙ

݅௧�  = ௧. (5.2)ݎ +�௧ାଵߨ௧ܧ

A policy reacts to inflation by changing an interest rate according to (5.1), 

where ݅௧�is the nominal interest rate, ߙ(ݏ௧) a state-dependent coefficient which changes with 

the policy regime ݏ௧, and ߨ௧�denotes the rate of inflation. 

Under the assumption that there are two possible realizations for the policy regime, ݏ௧,
the linear reaction function to inflation evolves stochastically between two states, ݏ௧�= 1 and 

 ௧�= 2, so thatݏ

for ݏ௧�= (௧ݏ)ߙ1 = ൜ߙ
ଵߙ
ଶ� for ݏ௧�= 2, 

where ߙ�denotes different parameters that govern the aggressiveness of policy to combat 

inflation. An active policy regime is the one with policy parameter ߙ�> 1. In Barnett and 

Duzhak (2014), the active regime is regime 1. The policy regime evolves according to a Markov 
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chain, where the transitional probabilities are given by the transition matrix with entries �= 

݆ ,�݅ where [݅ =�௧ିଵݏ|݆ =�௧ݏ]ܲ = 1,2. 

Following Davig and Leeper (2006), Barnett and Duzhak (2014) use the Fisher equation 

(5.2) as the second equation in the model, where ݎ௧�is the real interest rate. The Fisher equation 

links the nominal interest rate to expected inflation and the real interest rate. Barnett and 

Duzhak (2014) use this relationship to solve for expected inflation, which evolves as a function 

of the nominal and real interest rates. 

Combining (5.1) and (5.2), Barnett and Duzhak (2014) acquire the following dynamic 

system: 

ቃ
ିଵ�

ቃ
ିଵ�

ܧ�௧[ߨଵ ௧ାଵ] ൨� ቂ�ଵଵ� �ଵଶ ߙଵ  0 ൨ ቂ ߨ
�ଵ௧ߨ
ଶ௧�
ቃ െ ቂ�ଵଵ� �ଵଶ ቂ ݎݎ

௧
௧
ቃ= ଶଵ� �ଶଶ �ଶߙ �ଶଵ �ଶଶ ଶߨ]௧ܧ. ௧ାଵ]  0 

In this model, the real interest ݎ௧�is exogenously given. A fully specified macroeconomic model 

endogenizes this rate. 

As is standard in the (bifurcation) analysis of difference equations, Barnett and Duzhak 

study the economy with parameter certainty. Parameter certainty in that model means that 

agents have no uncertainty about the level of inflation, if a certain state occurs. This does not 

mean agents know the level of inflation in the following period: the state of the policy regime 

determines inflation, and the state of the policy regime itself switches with given probabilities. 

Using parameter certainty, Barnett and Duzhak (2014) restate the system of linear difference 

equations as 

ଶଶ�െଵଵ�ۍଵߙଶଶ ቂێଶଵଵଶ ߨ
ଵߨ ௧ାଵ�
ଶ ௧ାଵ

ቃ െଶଵߙଵ= ێ�
ଶଶ�െଵଵ�ۏ �ଶଵଵଶ

െଵଶߙଶ� ଶଶ�െଵଵې ۑ�ଶଵଵଶ ቂ ߨ
ଵߨ ௧�
ଶ ௧
ቃ െ ቂ�ଵଵଵଵߙଶ� ଶଶ�െଵଵۑଶଵ �ے�ଶଵଵଶ

ቃ
ିଵଵଶ� ቂ ݎݎ

௧�
௧�
ቃଶଶ� . 

Since the entries in the transition matrix are probabilities, it follows that ଵଵ�+ ଶଵ�= 1 and 

�߂ ,ଵଶ�= 1. Hence +�ଶଶ ଶଶଵଵ െ ଶଶ +�ଵଵ = ଶଵ�asଵଶ െ1.= 
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To analyze the stability of the evolution of inflation and its dynamic properties, as 

shown by the linear system above, Barnett and Duzhak (2014) first consider the Jacobian matrix 

and corresponding characteristic polynomial of the above linear system: 

�ଵߙଶଶ െଵଶߙଶۍ �ې
۸� ଶଶ+ଵଵ�ێ െ ଶଶ +�ଵଵ 1 െ �ۑ 1

�ێ െଶଵߙଵ� �ଶߙଵଵ  =ۑ

ۏ ଶଶ +�ଵଵ െ ଶଶ +�ଵଵ 1 െ �ے 1

p D1 � p D2 D Dܲ(ߣ) ଶߣ = െ ߣܾ + ܿ�withb 22 11 and c 1 2  . 
p � p �1 p � p �111 22 11 22 

The determinant ܦ of the Jacobian matrix is given by 

ଶ
�ܦ ଶଶߙଵ�+ ଵଵߙଶ൨�െ� ଶଶ +�ଵଵ =�ଶߙଵߙ4 െ ଶଶ +�ଵଵ 1 െ 1

. 

For a Hopf bifurcation to exist, the discriminant ܦ must be negative, giving a rise to 

complex roots of ܲ(ߣ). Given that (ଵଵ�+ ଶଶ െ 1)ଶ�is always nonnegative, it follows that ܦ < 

0, which is equivalent to (ଶଶߙଵ�+ ଵଵߙଶ)ଶ െ ଶଶ +�ଵଵ) െ -ଶ�< 0. The term on the leftߙଵߙ4(1

hand side stays positive within the feasible set of parameters. Therefore, a Hopf bifurcation 

which arises only when the roots are complex, is not possible for this economy. 

Barnett and Duzhak (2014) further examine the possibility of a period doubling 

bifurcation. Lemma 1 in Barnett and Duzhak (2014, page 10) provide conditions for the 

existence of the period doubling bifurcation (see Kuznetsov (1998), p.415). Both conditions for 

the period doubling bifurcation hold in this model. According to Barnett and Duzhak (2014), if 

one of the roots of the characteristic polynomial is in the negative part of the unit circle, there 

is a possibility of a period doubling bifurcation. They then analyze the eigenvalues of the 

characteristic polynomial. The characteristic polynomial ܲ(ߣ) has the following roots: 

1 ߙଵଶଶ�+ ߙଶଵଵߣଵ�, ଶ�= ଵଵ�+ ଶଶ െ 1
± ξܦ൨�

2 

where ܦ is the discriminant defined above. 
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According to Lemma 1 in Barnett and Duzhak (2014), they need one of the roots to be 

equal to -1. Setting O1,2  �1 , the condition becomes 

ඥ(ଶଶߙଵ�+ ଵଵߙଶ)ଶ െ ଶଶ +�ଵଵ) െ ଶଶ +�ଵଵ)ଶ�= 2ߙଵߙ4(1 െ 1) + ,(ଶߙଵଵ +�ଵߙଶଶ)

which needs to hold for a period doubling bifurcation to occur. The above expression is 

simplified as 

(ଶߙ + 1)ଵଵ (5.3) (ଵߙ + 1)ଶଶ +  .ଶ�= 1ߙଵߙ +

Equation (5.3) is a bifurcation boundary, in the form of a function of the parameters of the 

dynamical model. 

To calibrate the economy, Barnett and Duzhak (2014) use the values in Table 5.113. One 

of the policy regimes, regime 1, is active with a coefficient greater than 1, whereas regime 2 is a 

passive regime. They further assume that ଵଵ�= 0 is zero, which is the probability of remaining 

in the active regime, conditional on being in the active regime. Whenever regime 1 occurs, the 

economy will be sent to a passive regime with certainty. 

13 Table 5.1. is a replicate of Barnett and Duzhak’s (2014) Table 1. 
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Table 5.1. Standard Parameter Combinations 

Parameter Value 

�ଵߙ
�ଶߙ
�ଵߛ
�ଶߛ
�ଵଵ
�ଶଶ
�ߚ
�ߢ
�ߪ

1.5 

0.5 

0.3 

0.15 

0.85 

0.9 

0.98 

0.024 

0.3 

Using these assumptions, Barnett and Duzhak (2014) find the critical value for the 

transitional probability ଶଶ�to be ଶଶ�= 0.1. They use this point as a benchmark to trace out the 

bifurcation boundary. Varying the other parameters, i.e. policy parameters ߙଵ�and ߙଶ, along 

with the probability of staying in the passive regime ଶଶ, Barnett and Duzhak (2014) 

demonstrate a period doubling bifurcation boundary as a function of the three control 

parameters ଶଶ, ߙଵ, and ߙଶ. If ଶଶ�= 1, then the policy regime would be passive and stay 

passive indefinitely. In this case, 1  ,ଶଶ�= 0 ଶ�= 1, so no bifurcation can arise. Ifߙଵߙ +�ଵߙ +

then ߙଵߙଶ�= 1. The bifurcation boundary is symmetric with respect to the policy parameters 

 ଶ�of the passive regime is small, the policyߙ ଶ. If the policy reaction coefficientߙ ଵ�andߙ

response coefficient ߙଵ�needs to be very large for a bifurcation to arise. 

5.3. New Keynesian Model with Regime Switching 

The standard New Keynesian model, as laid out in, e.g., Woodford (2003) or Walsh 

(2003), traditionally consists of the following equations: 

௧ݔ ݅௧ െ� � ௧ାଵ�െݔ௧ܧ (5.4) ߪ
1 (௧ାଵߨ௧ܧ )  =௧ݑ +
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�௧ߨ (5.5) =�௧ௌݑ +�௧ݔߢ +�௧ାଵߨ௧ܧߚ . 

(5.6) ݅௧�  =௧ݔ(௧ݏ)ߛ +�௧ߨ(௧ݏ)ߙ

Equation (5.4) is the forward-looking IS equation describing the demand side of the 

economy, and equation (5.5) is the Phillips curve representing the supply side. The IS curve (5.4) 

relates the output gap, ݔ௧, to the nominal interest rate, ݅௧, and expectations about the future 

1
output gap as well as inflation. The coefficient is the inverse of relative risk aversion, which 

V 

equals the elasticity of intertemporal substitution, since preferences with constant relative risk 

aversion are assumed in deriving the equations. The New Keynesian Phillips curve, (5.5), 

describes how inflation is driven by the output gap and expected inflation. Both equations for 

demand and supply side allow for a shock, ݑ௧ . A rule for monetary policy is (5.6), which takes 

the form described in Taylor (1999). According to that Taylor rule, the monetary authority sets 

the nominal interest rate by targeting both inflation and the output gap, where Di governs the 

Central bank’s reaction to inflation and ߛ�the reaction to the output gap. 

The model can be written in matrix notation 

�ାܜ܇ۯ  = (5.7) ,ܜܝ +�ܜ܇۰

where ܇ denotes the vector of variables ܇ ்�and ܜܝ�the vector of = [ଶ௧ݔ�ଵ௧ݔ�ଶ௧ߨ�ଵ௧ߨ ]
aggregate demand and supply shocks, while ۯ�and ۰ are given by 

�ଵଵߚ െ 1)ߚ ۍ(ଶଶ  0 െ 1)ߚې 0  ێଶଶߚ (ଵଵ  0 �ۑ 0 
ۯ �ێ � 1െ� ,ۑ

ߪ
11 

ߪ
�ێ =22 ଵଵ  1 െ �ۑ�ଶଶ

�ێ 1െ� � �ۑ
ۏ ߪ

11 
ߪ
�ଶଶ 22 െ 1ے �ଵଵ

and 

െ ۍ�ߢ  1  0 െې 0  ێ�ߢ 0ߙ  1 ߛ 0  ۰ۑ ێ = ߪ
1 

ߪ
1         0.ۑ 1 +  0

ێ �ߙ ߛ �ۑ
ۏ ߪ 0 

2  0       1 ߪ +
�ے 2
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Rearranging (5.7), Barnett and Duzhak (2014) obtain the normal form 

�ାܜ܇ ,ܜܝିۯ +�ܜ܇۱ (5.8) = 

where ۱  .�۰ିۯ =

Now the system is 4-dimensional instead of having a two-by-two Jacobian matrix in the 

basic form. Since the 4-dimensional model is more difficult to analyze, Barnett and Duzhak 

(2014) employ the software continuation package CONTENT developed by Yuri Kuznetsov and 

V.V.Levitin to trace out bifurcation boundaries. Barnett and Duzhak (2014) hold constant the 

parameters that describe the probabilities of regime, while varying structural and policy 

parameters. They find that neither a Hopf nor a periodic doubling bifurcation can occur for any 

feasible set of parameters. They do find a bifurcation for parameter values ߛଶ�= 0.179 and ߢ = 

െ0.46. However, negative values for ߢ are economically nonfeasible. In this case, the 

bifurcation boundary never crosses into the subspace of feasible parameter combinations. 

5.4. New Keynesian Model with a Hybrid Monetary Policy Rule 

Barnett and Duzhak (2014) further provide an analysis of a state-of-the-art model of a 

monetary policy. Proposed by Clarida, Gali and Gertler (1999), the model consists of a hybrid 

rule, which includes both a current-looking and a forward-looking component: 

(5.9) ݅௧�  =.௧ݔ(௧ݏ)ߛ +�௧ାଵߨ(௧ݏ)ߙ

According to the rule, a policy maker is forward-looking with respect to inflation and current 

looking with respect to the output gap. The corresponding linear system is: 

�ାܜ܇  =,ܜ܇۲

where matrix ۲ is given by 
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۲ = 

ିଵାమమ� � െ� (ିଵାమమ)
�ۍ (ିଵାమమାభభ) (ିଵାమమାభభ) (ିଵାమమାభభ) (ିଵାమమାభభ)
�ێ ିଵାభభ భభ െ� (ିଵାభభ)� െ� భభێ� (ିଵାమమାభభ) (ିଵାమమାభభ) (ିଵାమమାభభ) (ିଵାమమାభభ)
�ێ మమ(ିଵାఈభ) (ିଵାమమ)(ିଵାఈమ) మమ(ିఈభାఙ�ା� భ) (ିଵାమమ)(ିఈమାఙ�ା� మ)
ێ ఙ�(ିଵାమమାభభ) ఙ�(ିଵାమమାభభ) ఙ�(ିଵାమమାభభ) ఙ�(ିଵାమమାభభ)
�ێ (ିଵାభభ)(ିଵାఈభ) (ିଵାఈమ)భభ (ିଵାభభ)(ିఈభାఙ�ା� భ) భభ(ିఈభାఙ�ା� మ)
ۏ ఙ�(ିଵାమమାభభ) ఙ�(ିଵାమమାభభ) ఙ�(ିଵାమమାభభ) ఙ�(ିଵାమమାభభ) 

మమ� ିమమ�

Numerical analysis of this dynamic system to find Hopf and period doubling bifurcations leads 

to two findings, which are the same as for the simple economy. First, there is no possibility of a 

Hopf bifurcation. Second, a period doubling bifurcation emerges. 

To find a bifurcation boundary, Barnett and Duzhak (2014) first vary parameter ߙଶ, 

while holding all other parameters constant. They use the critical point of ߙଶ�at 0.00125 to 

trace out the bifurcation boundary. After tracking the first period doubling bifurcation point, 

Barnett and Duzhak (2014) choose the second parameter, the risk aversion parameter, ߪ, to 

vary simultaneously with parameter ߙଶ. They find a period doubling bifurcation will occur for a 

very narrow set of parameters ߙଶ�corresponding to a passive reaction to future inflation, in the 

close proximity of zero. Similarly, they find a period doubling point for parameter ߢ = 3.725. 

After choosing a second parameter, ߪ, to be varied, Barnett and Duzhak (2014) compute the 

period doubling bifurcation boundary. Parameter ߢ is a nonlinear function of the discount 

factor and the parameter responsible for the degree of price rigidity. It shows that the period 

doubling bifurcation will occur, when the economy is characterized by a high level of price 

stickiness. After analyzing further parameter combinations, Barnett and Duzhak (2014) find that 

a period doubling bifurcation is also possible for lower values of ߢ accompanied by very high 

values of the policy parameter, ߙଵ, which shows that an aggressive reaction of the central bank 

to future inflation will lead to a period doubling bifurcation. 

6. Open-Economy New Keynesian Models14 

6.1. Introduction 
The Barnett and Duzhak’s (2008, 2010, 2013) results surveyed in sections 4 and 5 on 

bifurcation of New Keynesian models is based on closed economy models. Continuing to 

14 This section is summarized from Barnett and Eryilmaz (2013,2014). 

�ې
�ۑ
�ۑ
�ۑ
�ۑ
�ۑ
�ے
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explore bifurcation in macroeconometric models, Barnett and Eryilmaz (2014) explore 

bifurcation of an open economy New Keynesian model proposed by Gali and Monacelli (2005). 

In addition, Barnett and Eryilmaz (2013) explore bifurcation of the open economy New 

Keyensian model proposed by Claridy, Gali, and Gertler (2002). In this section, we first survey 

the results of Barnett and Eryilmaz (2014) and then the results of Barnett and Eryilmaz (2013). 

With those two models, Barnett and Eryilmaz (2013, 2014) find that the open economy 

framework has more complex dynamics than the closed economy models. As a result, 

stratification of the confidence regions remains an important research topic in the context of 

open-economy New Keynesian structures. In addition to damaging inference robustness, 

bifurcation of those models can result from changes in monetary policy. Such phenomena are 

relevant to evaluating policy risk. 

As surveyed in section 6.2 below, Barnett and Eryilmaz (2014) ran bifurcation analyses 

of the Gali and Monacelli (2005) model and found that the degree of openness has a significant 

role in equilibrium determinacy and emergence of bifurcations. The values of bifurcation 

parameters and location of bifurcation boundaries are affected by introducing parameters 

related to the open economy structure. Numerical analyses are performed to search for 

different types of bifurcation. Limit cycles and period doubling bifurcations are found, although 

in some cases only for nonfeasible parameter values. Stratification of the confidence regions 

remains problematic to open economy New Keynesian functional structures. 

Comparing the results from Barnett and Duzhak’s (2010) closed economy analysis, it is 

not clear whether openness makes the New Keynesian model more sensitive to bifurcations. 

Barnett and Eryilmaz (2014) do not find evidence that open economies are more vulnerable to 

the problem than closed economies. The evidence from the Gali and Monacelli model might be 

caused by the model’s broad set of parameters, including deep parameters relevant to the 

open economy. The fact that the studies use different sets of benchmark values for the 

parameters makes direct comparison more difficult. Barnett and Eryilmaz (2014) also note that 

the analysis is restricted to special cases within the framework of open-economy New 

Keynesian structures. Generalizing the results to real economies would require more results 

with other open-economy New Keynesian models. 
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As surveyed in section 6.3 below, Barnett and Eryilmaz (2013) investigate bifurcations in 

the Clarida, Gali, and Gertler (2002) model. Barnett and Eryilmaz (2013) show that the model is 

vulnerable to Hopf bifurcation at a critical value of the parameter measuring the sensitivity of 

the nominal interest rate to changes in output gap. Their theoretical results need to be 

confirmed by subsequent numerical analysis to locate the Hopf bifurcation boundary and map 

its shape. The numerical analysis is beyond the scope of Barnett and Eryilmaz (2013), but they 

have provided the theory needed to implement the numerical research and locate the Hopf 

bifurcation boundary. A primary objective of the subsequent numerical analysis should be to 

determine whether the Hopf bifurcation boundary crosses relevant confidence regions of the 

model’s parameters. If so, a serious robustness problem would exist in dynamical inferences. 

But even if the bifurcation boundary does not cross the confidence region, policy can move the 

location of the bifurcation boundary. Within this model, the central bank should react 

cautiously to changes in the rate of domestic inflation and the output gap to avoid inducing 

instability from a possible Hopf bifurcation. 

6.2. Gali and Monacelli Model15 

The Gali and Monacelli (2005) model is described by the following equations: 

1 �D Z( �1)  
� t , (6.1) x  E x � (r ES � r )t  t t�1 t  t t�1V 

(1 � ET )(1 �T ) VS E E S � ( �M) x , (6.2) t  t t�1 tT 1 �D  Z( �1)  

�௧ݎ  = ௧. (6.3)ݔ௧�+ ߶௫ߨഥ௧�+ ߶గݎ

The Gali and Monacelli (2005) model is based on the following assumptions: the 

domestic policy does not affect the other countries or the world economy; each economy is 

assumed to have identical preferences, technology, and market structure; both consumers and 

firms are assumed to behave optimally. Consumers maximize expected present value of utility, 

while firms maximize profits. 

15 The model description is modified from Barnett and Eryilmaz (2014). 
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The utility maximization problem yields the dynamical intertemporal IS curve (6.1), 

which is a log-linear approximation to the Euler equation. In equation (6.1), ݔ௧�is the gap 

between actual output and flexible-price equilibrium output, ݎ௧ҧ�is the small open economy’s 

natural rate of interest, and ߪఈ�= 1)ߪ െ ߙ ߱ ଵ�andି(߱ߙ + ߛߪ = + (1 െ ߟߪ)(ߙ െ 1) are 

composite parameters. The lowercase letters denote the logs of the respective variables, ߩ = 

ଵ�െିߚ 1 denote the time discount rate, and ܽ௧�is the log of labor’s average product. The 

maximization problem of the representative firm yields the aggregate supply curve (6.2), also 

often called the New Keynesian Philips curve in log-linearized form. 

The policy rule (6.3) is a version of the Taylor rule, providing a simple (non-optimized) 

monetary policy, where the coefficients ߶௫�> 0 and ߶గ�> 0 measure the sensitivity of the 

nominal interest rate to changes in output gap and inflation rate respectively. Various versions 

of the Taylor rule are often employed to design monetary policy in empirical DSGE models. 

Equations (6.1) and (6.2), in combination with a monetary policy rule such as equation (6.3), 

constitute a small open economy model in the New Keynesian tradition. 

Gali and Monacelli (2005) observed that closed economy models and open economy 

models differ in two primary aspects: (1) some coefficients, such as the degree of openness, 

terms of trade, and substitutability among domestic and foreign goods, depend on the 

parameters that are exclusive to the open economy framework; and (2), the natural levels of 

output and interest rate depend upon both domestic and foreign disturbances, in addition to 

openness and terms of trade. Barnett and Eryilmaz (2014) use the same methodology as in 

section 4 to detect bifurcation phenomenon. For two-dimensional dynamical systems, they 

apply Theorem 1.1. For three-dimensional dynamical systems, they apply Theorem 4.1. They 

employed CL MatCont within MatLab for numerical analysis. Regarding different policy rules, 

Barnett and Eryilmaz (2014) consider contemporaneous, forward, and backward looking policy 

rules, as well as hybrid combinations. The calibrated values of the parameters are given in Gali 

and Monacelli (2005), which are ߚ ߙ ,0.99 = ߪ ,0.4 = = ߱ = 1, ߮ = 3, and ߤ = 0.086. For the 

ܰ = 3 policy parameters, ߶௫�= 0.125, ߶గ�= 1.5, and ߶�= 0.5. 

i. Current-Looking Taylor Rule 
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The model consists of the following equations, in which the first two equations 

describe the economy, while the third equation is the monetary policy rule followed by the 

central bank with ܰ = 2 policy parameters: 

Vߨ௧�= ܧߚ௧ߨ௧ାଵ�+ ߤ ቆ
1�D Z( �1)

+ ߮ቇݔ௧ , (6.4) 

1�D Z( �1) 
t  t tx �1� ( t � t tS 1 � rt ) (6.5) x E  r E � ,

V 

�௧ݎ  = ௧. (6.6)ݔ௧�+ ߶௫ߨ௧ҧ�+ ߶గݎ

Rearranging the terms, the system can be written in the form ܧ௧ܜܡା�  =,ܜܡ۱

�ۍ P EIx �MP (EIS �1)(1�D Z( �1)) ቇې
ێ
 1 + 

E 
+ ൫1 ߱)ߙ + െ 1)൯ ቆ�

EV EV ۑ ௧ାଵ�൨ݔ௧ܧ �ێ = ۑ ቂ ߨ
௧ݔ
௧
ቃ�.ܧ௧ߨ௧ାଵ� P V 1ێ� � (M �ۑ ( �

�ۏ E 1�D Z( �1) E ے�

(6.7) 

Using Theorem 1.1, the conditions for the existence of Hopf bifurcation in the system 

(6.7) are presented in the following proposition. 

Proposition 6.1. Let ߂ be the discriminant of the characteristic equation. Then system (6.7) 

undergoes a Hopf bifurcation at equilibrium points, if and only if ߂ < 0 and 

* V E( �1) V
� P M( � ) .  (6.8) Ix 1�D Z( �1) 1�D Z( �1) 

IS 

The corresponding value of the bifurcation parameter in the closed economy case is 

߶௫כ� ߚ)ߪ െ 1) െ ߙ గ, as given by Barnett and Duzhak (2008). For߶ߢ = 0, proposition 6.1 gives = 

the same result as the closed economy counterpart. 

Barnett and Eryilmaz (2014) numerically find a period doubling bifurcation at ߶௫�= 

െ2.43 and a Hopf bifurcation at ߶௫� െ0.52. Numerical computations indicate that the = 

monetary policy rule equation (6.6) should have ߶௫כ�< 0 for a Hopf or period doubling 
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bifurcation to occur. That negative coefficient for the output gap in equation (6.6) would 

indicate a procyclical monetary policy: rising interest rates, when the output gap is negative, or 

vice versa. Literature seeking to explain procyclicality in monetary policy includes Schettkat and 

Sun (2009), Demirel (2010), and Leith, and Moldovan, and Rossi (2009). A successful 

countercyclical monetary policy would be bifurcation-free and would yield more robust 

dynamical inferences with confidence regions not crossing a bifurcation boundary. 

Barnett and Eryilmaz (2014) also show there is only one periodic solution, while the 

other solutions diverge from the periodic solution as ݐ ื λ. This periodic solution is called an 

unstable limit cycle. The model is not subject to bifurcation within the feasible parameter 

space, when ߶௫�> 0 and ߶గ�> 0, although bifurcation is possible within the more general 

functional structure of system (6.7). 

ii. Current-Looking Taylor Rule With Interest Rate Smoothing 

The model consists of the equations (6.4) and (6.5), along with the following policy 

rule having ܰ = 3 policy parameters: 

�௧ݎ  = ௧ିଵ. (6.9)ݎ௧�+ ߶ݔ௧�+ ߶௫ߨ௧ҧ�+ ߶గݎ

The system can be written in the form ܧ௧ܜܡା�  = :�asܜ +�ܜܡ۱

1� �D DZۍ െ� ҧݎ �௧ାଵݔ௧ܧ௧ې �௧ݔ �ێ V ۑ�
 �௧ାଵ൩ߨ௧ܧ ۱ �൩ ێ + �ۑ (6.10) 
�௧ାଵݎ௧ܧ

ߨ =
௧ݎ
௧� ێ  0 

1� � Z ۑ�D Dܧ�ێ௧ݎҧ� ҧ� ௧ାଵ�െۑ ߶௫ݎ௧ۏ� V ے�

with 

�ܜܡ ൩= ߨ
ݔ

௧ݎ

௧
௧�, 

۱ = 
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ߤ െ 1 െ ߙ �߱ߙ + 1 െ ߙ ۍ�߱ߙ + ߚې ൬1 + ߮ 1 െ �ߙ
ߪ

൰߱ߙ + + �ߚߪ 1 ێߪ �ۑ
�ێ െ ߤ �ߪ �ۑ
ێ ߚ ൬� ߚ

1
.ۑ 0

ێ �ۑ
ێ �ߤ

1 ߱)ߙ + െ 1) 
+ ߮൰�

െ ߚ
1 ൬߶௫�

1 െ ߙ �߱ߙ + ߶�+ ߶௫�
1 െ ߙ �ۑ�߱ߙ +

ߚ +�௫߶�ۏ ൬1 + ߮ 1 െ �ߙ
ߪ

൰߱ߙ + ൬߶௫�
1 െ �ߙ

ߪ
߱ߙ + െ ߶గ൰� �ߪ െ ߶గ൰� �ߪ �ے

Assuming the system (6.10) has a pair of complex conjugate eigenvalues and a real-

valued eigenvalue, the following proposition states the conditions for the system to undergo a 

Hopf bifurcation. 

Proposition 6.2. The system (6.10) undergoes a Hopf bifurcation at equilibrium points, if and 

only if the following transversality condition holds 

డ|ఒ� z 0 ̍
డథ

(థ
ೕ�

)| ሃథೕୀథೕכ�

and also 

(6.11) (ܽ) ߶ െ ߚ < 0, 

V (2 P 2E� �  ) V 
(ܾ) ߶ ቆ�1� �D DZ  

ቇߤ߮ + + ߶௫(ߚ + ߤ + (1 ቆ
1�D Z( �1)  

+ ߮ቇ (߶గ�+ 1) 

2V
� � 0, (6.12) 
1�D Z( �1)  

(6.13) (ܿ) ߶ଶߦସ�+ ߶ߦଷ�+ (߶௫߶�+ ߶௫)ߦଶ�+ ߶గߦଵ�+ ߦ�= െ1. 

Hopf bifurcation cannot occur in the model, since (6.12) does not hold. To detect the 

existence of a period doubling bifurcation, Barnett and Eryilmaz (2014) keep the structural 

parameters and policy parameters, ߶గ�and ߶, constant at their baseline values, while varying 

the policy parameter ߶௫�over a feasible range. They numerically find period doubling 

bifurcation at ߶௫�= 0.83. When they consider ߶గ�as the bifurcation parameter, they 

numerically find a period doubling bifurcation at ߶గ�= 5.57 and a branching point at ߶గ�= 

െ1.5. There is no bifurcation of any type at (߱�, ߙ) = (0,1). 

iii. Forward-Looking Taylor Rule 
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The model consists of equations (6.4) and (6.5) along with the following policy rule: 

�௧ݎ  = ௧ାଵ. (6.14)ݔ௧ܧ௧ାଵ�+ ߶௫ߨ௧ܧ௧ҧ�+ ߶గݎ

Rearranging terms, the system can be written in the form 

�ାܜܡ௧ܧ  = (6.15) ,�ܜܡ۱

with 

ߨቂ =�ܜܡ
௧ݔ
௧
ቃ�, 

�ۍ �െ1൯ߨ߶൫߱െ1൯ቁ൰൫ߙ+ቀ1߮ߤ+ߪߤെ൬ߪߚ ൫߶ߨെ1൯ቀ1+ߙ൫߱െ1൯ቁ� ې
�൫߱െ1൯ቁߙ+ቀ1ݔ߶ߚെߪߚ �൫߱െ1൯ቁ۱ߙ+ቀ1ݔ߶ߚെߪߚ

ێێ
�ێ

ۑۑ
�ۑ

െ߮ߤ+ߪߤ(ߙ+1൫߱െ1൯) 
= 

ۏ ߚ (െ1߱)ߚߙ+ߚ
1 

�ے
. 

Assuming the system (6.15) has a pair of complex conjugate eigenvalues, the following 

proposition provides the conditions for the system to undergo a Hopf bifurcation. 

Proposition 6.3. The system (6.15) undergoes a Hopf bifurcation at equilibrium points, if and 

only if ߂ < 0 and 

* E �1 VI (6.16) x E 1�D Z( �1)  

Barnett and Eryilmaz (2014) find a period doubling bifurcation at ߶௫�= 1.913 and a Hopf 

bifurcation at ߶௫� െ0.01. Given the baseline values of the parameters, Hopf bifurcation = 

occurs outside the feasible set of parameter values. There is no bifurcation at ( , ) (1,0) .D Z  

The system has a periodic solution at ߶గ�= 2.8 and ߶௫�= 0. The origin is a stable spiral point. 

Any solution that starts around the origin in the phase plane will spiral toward the origin. The 

origin is a stable sink, since the trajectories spiral inward. 

iv. Pure Forward-Looking Inflation Targeting 

The model consists of equations (6.4) and (6.5) along with the following policy rule: 

�௧ݎ  = ௧ାଵ. (6.17)ߨ௧ܧ௧ҧ�+ ߶గݎ
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Rearranging the terms, the system can be written in the form 

�ାܜܡ௧ܧ  = (6.18) ,�ܜܡ۱

with ܜܡ�= ቂߨ
௧ݔ
௧
ቃ�, 

�൫߱െ1൯ቁߙ+ቀ1ߤ߮ ൫߶ߨെ1൯ቀ1+ߙ൫߱െ1൯ቁۍ 1 െ ቆߚ
�ߪߚ +�ߤ ቇ (߶గ െ �ߪߚ (1 �ې

۱ �ێ ێ =.ۑ �ߪ �ۑ
ߚ�െۏ

ߤ ൬1+ߙ൫߱െ1൯ + ߮൰� ߚ
1 

�ے

Assuming the system (6.18) has a pair of complex conjugate eigenvalues, the 

following proposition provides the conditions for the system to undergo a Hopf bifurcation. 

Proposition 6.4. The system (6.18) undergoes a Hopf bifurcation at equilibrium points, if and 

only if ߂ < 0 and כߚ� (6.19) = 1. 

Barnett and Eryilmaz (2014) show that the solution path for ߚ = 1 and ߶గ�= 8 is 

periodic and oscillates around the origin, which is a stable center. Hopf bifurcation appears at 

E 1 regardless of the values of D and Z . This result is the same as in the closed economy case 

under forward-looking inflation targeting in Barnett and Duzhak (2010). But setting the discount 

factor at 1 is not justifiable for a New Keynesian model, whether within an open or closed 

economy framework. Barnett and Eryilmaz (2014) also numerically find a period doubling 

bifurcation at ߚ െ0.91, which is not theoretically feasible. = 

Barnett and Eryilmaz (2014) further show that there is only one periodic solution, which 

is an unstable limit cycle, and other solutions diverge from the periodic solution at ݐ ื λ�. 
Varying ߶గ�while setting ߚ = 1 and keeping the other parameters constant at their baseline 

values, they numerically find a Hopf bifurcation at ߶గ�= 1.0176, a period doubling bifurcation 

at ߶గ�= 12.76, and a branching point at ߶గ�= 1. 

v. Backward-Looking Taylor Rule 

The model consists of equations (6.4) and (6.5) along with the following policy 

rule: 

92 



                                                      

܌           

          
 

                             

 

  

                         

                                             
                                                                                              

  

           

          

             

               

     

                                                                                 

                    

   

 
 

�௧ݎ  = ௧ିଵ. (6.20)ݔ௧ିଵ�+ ߶௫ߨ௧ҧ�+ ߶గݎ

The system can be written in the form ܧ௧ܜܡା�  =:ܜ +�ܜܡ۱

1�D Z( �1)  +�ܜܡା�= ۱ܜܡ௧ܧ�௧Vې�ҧݎ �ۍ 

ۏ
ێێ
�ێ

ے
ۑۑ
 (6.21) ,�ۑ

0
�ҧ௧ାଵݎ௧ܧ

with 

 =�ܜܡ ൩ߨ
ݔ

௧ݎ

௧
௧�, 

�ۍ ߮ቀ1+ߙ൫߱െ1൯ቁ� െ �൫߱െ1൯ߙ+1 ൫߱െ1൯ߙ+1 ߚې
ߤ ቆ1 ߪ + ቇ + �ߪߚ 1 ێߪ �ۑ

.۱ �ێ െߚ
ߤ ൬ �ߪ

ߚ
 =ۑ 1

�ێ ൫߱െ1൯ߙ+1 + ߮൰� �ۑ 0
ۏ ߶௫� ߶గ  0ے

Assuming the system (6.21) has a pair of complex conjugate eigenvalues, the following 

proposition provides the conditions for the system to undergo a Hopf bifurcation. 

Proposition 6.5. The system (6.21) undergoes a Hopf bifurcation at equilibrium points, if and 

only if the transversality condition, 
డ|ఒ
డథ
(
ೕ�

)| ሃ=്�כ �0 , holds for some ݆; and the following 

conditions also are satisfied: 

(݅) I �I P( V 
�M) � EV 

� 0 , (6.22) x S 1� ( �1)  1�D Z �1)  D Z  ( 

V 
(݅݅) ߶௫(ߚ െ ߤ + (1 ቆ

1�D Z( �1)  
�M ቇ (1 െ ߶గ) < 0, (6.23) 

ଶ�
V V 

(݅݅݅) ቌ߶௫�+ ߶గߤ ቆ� �M ቇቍ�+ ቌ߶௫�+ ߶గߤ ቆ� �M ቇቍ ଵ1�Dߦ Z( �1)  1�D Z( �1)  
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െ߶௫ߦଶ�= ߦଷ. (6.24) 

Barnett and Eryilmaz (2014) numerically find a period doubling bifurcation at ߶௫�= 1.91. 

Starting from the point ߶௫�= 1.91, they construct the period doubling boundary by varying ߶௫�
and ߶గ�simultaneously. They also show that along the bifurcation boundary, the positive values 

of ߶௫�lie between 0 and 13. As the magnitude of ߶గ�increases, smaller values of ߶௫�would be 

sufficient to cause period doubling bifurcation under a backward-looking policy. Their 

numerical analysis with CL MatCont detects a codimension-2 fold-flip bifurcation (LPPD) at 

(߶௫, ߶గ) = (0.94,2.01) and a flip-Hopf bifurcation (PDNS) at (߶௫, ߶గ) = (െ6.98, 3.36). By 

treating the policy parameter ߶గ�as the potential source of bifurcation, numerical analysis also 

indicates a period doubling bifurcation at ߶గ�= 11.87. By varying ߶గ�while keeping the other 

parameters constant at their benchmark values, another period doubling bifurcation is found at 

relatively large values of the parameter ߶గ�= 11.87, which is nevertheless still within the 

feasible subset of the parameter space defined by Bullard and Mitra (2002). 

vi. Backward-Looking Taylor Rule with Interest Rate Smoothing 

The model consists of equations (6.4) and (6.5) along with the following policy 

rule: 

�௧ݎ  = ௧ିଵ. (6.25)ݎ௧ିଵ�+ ߶గݔ௧ିଵ�+ ߶௫ߨ௧ҧ�+ ߶గݎ

The system can be written in the form ܧ௧ܜܡା�  =:�ܜ +�ܜܡ۱

1�D Z( �1)  +�ܜܡା�= ۱ܜܡ௧ܧ�௧Vې�ҧݎ �ۍ 

ۏ
ێێ
�ێ

ے
ۑۑ
 (6.26) ,�ۑ

0
�ҧ௧ାଵݎ௧ܧ

with 

�ܜܡ ൩= ߨ
ݔ

௧ݎ

௧
௧�, 
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P M(1 �D Z( �1)) 1 �D Z( �1)  1  �D Z( �1) �ۍ  (1 � ) െ �ې
ێ E V 

+ 1 
EV V ۑ�

۱ �ێ M(1 �D.ۑ Z( �1)) 1= 
ێ ቇ� �ۑ
�ێ

െߤ ቆ1 + 
V E

 0 
�ۑ

�ۏ ߶௫� ߶గ� ߶ �ے

Proposition 6.6. The system (6.26) undergoes a Hopf bifurcation at equilibrium points, if and 

only if the transversality condition, 
డ|ఒ
డథ
(
ೕ�

)| ሃ=�0്�כ, holds for some ݆; and the following 

conditions also are satisfied: 

�ݎ߶െݔ߶ �ߪ �ߤߪ
( +൫߱െ1൯ߙ+1 (

�ߪߚ
 (ߤ߮+൫߱െ1൯ߙ+1)ߨ߶

�1 , ݅ อ อ
�൫߱െ1൯ߙ+1

�ߪߚ
with ߶௫ െ ߶ߦଶ�+ ߶గߦଷ�< 1+ߙ൫߱െ1൯, and ߶�< ߶௫ߦଶ�+ ߶గߦଵ�+ ߚ�, 

(݅݅) ቚ߶௫�1െߪߚߙ
߱ߙ+ െ ߶ ߚ

1
+ ߶గߤ ቀߚ

1
+ ߮ 1െߙ

ߪߚ
ቁ߱ߙ+ െ ቀ߶�+ 

1+
ߚ
�ߤ

ߤ߮ + 1െߙ
ߪߚ

߱ߙ+
+ 1ቁቚ�

< 1 + ߶ ቀ1+
ߚ
�ߤ

ߤ߮ + 1െߙ
ߪߚ

߱ߙ+
+ 1ቁ െ ߶௫�1െߪߚߙ

�߱ߙ+
ߚ +

1 

with ߶௫ߦଶ�+ ߶గߦଵ െ (1 + ߶)ߦ�< 0, and ߶௫ߦଷ െ ସ(߶గ�+ ߶ߦ െ 1) < 0, 

(݅݅݅) ߶ ቀ 1+
ߚ
�ߤ

ߤ߮ + 1െߙ
ߪߚ

߱ߙ+
+ 1ቁ െ ߶௫�1െ߱ߙ+ߙ�

ߚ +
1

+ ቆ߶௫�1െߪߚߙ
߱ߙ+ െ ߶ ߚ

1
�ߪ+

߶గߤ ቀߚ
1

+ ߮ 1െߙ
ߪߚ

 +�ቁቇቀ߶߱ߙ+
1+
ߚ
�ߤ

ߤ߮ + 1െߙ
ߪߚ

߱ߙ+
+ 1ቁ = 1 െ ቆ߶௫�1െߪߚߙ

߱ߙ+ െ�
ଶ�

߶ ߚ
1

+ ߶గߤ ቀߚ
1

+ ߮ 1െߙ
ߪߚ

 .�ቁቇ߱ߙ+

Barnett and Eryilmaz (2014) detect a period doubling bifurcation numerically at ߶௫�= 

3, given the benchmark values of the parameters and the setting ߶�= 0.5. When ߶�= 1, 

period doubling bifurcation occurs at ߶௫�= 4.09. They find bifurcation boundary by varying ߶௫�
and ߶గ�simultaneously, and then ߶௫�and ߶�simultaneously. In (߶௫, ߶గ)-space, the bifurcation 
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boundary lies within the narrow range from ߶௫�= 3 and ߶௫�= 3.25. In contrast, ߶௫�varies more 

elastically in response to changes in ߶�along the bifurcation boundary in (߶ , ߶௫)-space. 

Barnett and Eryilmaz (2014) further find codimension-2 fold-flip bifurcations at 

as well as flip-Hopf bifurcations at (߶௫, ߶గ) = (0.41,3.19) and at (߶௫, ߶) = (0.78, െ0.52),

(߶௫, ߶గ) = (െ10.44, 5.04) and (߶௫, ߶) = (െ0.74, െ1.23). Bifurcation disappears at (ߙ�, ߱ ) = 

(1,0). 

vii. Hybrid Taylor Rule 

The model consists of equations (6.4) and (6.5) along with the following policy 

rule: 

�௧ݎ �௧ݔ௧ାଵ�+ ߶௫ߨ௧ܧ௧ҧ�+ ߶గݎ (6.27) = 

The system can be written in the form: 

�ାܜܡ௧ܧ  = (6.28) ,�ܜܡ۱

with 

ߨቂ =�ܜܡ
௧ݔ
௧
ቃ�, 

߱)ߙ + 1)ߤ +�௫߶ߚߪ െ 1) + ߮)(1 െ ߶గ) (߶గ െ 1)൫1 ߱)ߙ + െ 1)൯ۍ �ې
�ێ �ߪߚ + �ߪߚ 1 �ۑ

۱ �ێ �ێ.ۑ =�ۑ 1 ߱)ߙ + െ 1) 

ߚ
�ێ1 െ ߤ �ߪ �ۑ

ۏ ߚ (
߱)ߙ + 1 െ 1) 

�ے (߮ +

Proposition 6.7. The system (6.28) exhibits a Hopf bifurcation at equilibrium points, if and only 

if ߂ < 0 and 

�כ௫߶ (െ1ߚ)ߪ  .(െ1߱)ߙ+1 = (6.29)

Barnett and Eryilmaz (2014) find a period doubling bifurcation at ߶௫� െ1.92 as well as = 

a Hopf bifurcation at ߶௫� െ0.01, while system parameters are at benchmark values. = 
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Assuming positive values for policy parameters, values of the bifurcation parameters are 

outside the feasible region of the parameter space. They conclude that the feasible set of 

parameter values for ߶௫�does not include a bifurcation boundary. They also find that in 

the(߶గ, ߶௫)-space, along the period-doubling bifurcation boundary, the bifurcation parameter 

߶௫�varies in the same direction as ߶గ. Therefore as ߶௫�increases, higher values of ߶௫�are 

required to cause a period doubling bifurcation. They analyze the solution paths from (6.28) 

with stability properties indicating Hopf bifurcation. The inner spiral trajectory is converging to 

the equilibrium point, while the outer spiral is diverging. 

6.3. Clarida, Gali, and Gertler Model 

Barnett and Eryilmaz (2013) conduct bifurcation analysis in the open-economy New 

Keynesian model developed by Clarida, Gali, and Gertler (2002). Clarida, Gali, and Gertler 

(2002) developed a two-country version of a small open economy model, based on Clarida, 

Gali, and Gertler (2001) and Gali and Monacelli (1999). 

Following Walsh (2003, pp.539-540), the model of Clarida, Gali, and Gertler (2002) 

can be written as follows: 

ߨ௧� �௧ାଵߨ௧ܧߚ ߜ + ቂߪ ߟ + + ቀ1+ 
ߪݒ
ቁቃݓ ௧ݔ , (6.30) = 

�௧ݔ ௧ݎ�ቁ൫ߪ െ� ௧ҧ ൯� ௧ାଵ�െݔ௧ܧ = (6.31) ቀ1+ݓ� �௧ାଵߨ௧ܧ െ  ,�ݎ

�௧ݎ ௧ݔ௧�+ ߶௫ߨ௧ҧ�+ ߶గݎ . (6.32) = 

Equation (6.30) is an inflation adjustment equation for the aggregate price of 

domestically produced goods. Equation (6.31) is the dynamic IS curve, derived from the Euler 

condition of the consumers’ optimization problem. The monetary policy rule, (6.32), is a 

domestic-inflation-based current-looking Taylor rule. 

Let ݔ௧�denote the output gap, ߨ௧�the inflation rate for domestically produced goods and 

services, and ݎ௧�the nominal interest rate, with ܧ௧�being the expectation operator and ݎҧ௧�
denoting the small open economy’s natural rate of interest. The lowercase letter denotes the 
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logs of the respective variables. The coefficients ߶௫�> 0 and ߶గ�> 0 are the policy parameters, 

measuring the sensitivity of the nominal interest rate to changes in output gap and inflation 

rate, respectively. In addition, ߜ = [(1 െ െ 1)(ߠ ߠ/[(ߠߚ is a composite parameter with ߠ�
representing the probability that a firm holds its price unchanged in a given period of time, 

while 1 െ ߠ is the probability that a firm resets its price. The parameter ߟ denotes the wage 

elasticity of labor demand, and ିߪଵ�denotes the elasticity of intertemporal substitution. The 

parameter ݓ denotes the growth rate of nominal wages, ߩ� ଵ�െିߚ 1 is the time discount rate, = 

and ݒ is the population size in the foreign country, with 1 െ ݒ being the population size of the 

home country. Wealth effect is captured by the term �16ߪݒ. 

Substituting (6.32) for ݎ௧ െ  ௧ҧ�into the equation (6.31), Barnett and Eryilmaz (2013)ݎ

reduce the system to a first order dynamical system in two equations for domestic inflation and 

output gap. The system is given by: 

ߨ௧� �௧ାଵߨ௧ܧߚ ߜ + ቂߪ ߟ + + ቀ
1 + 
�ߪݒ
ቁቃݓ ௧ݔ ,= 

ݔ௧� ௧ାଵ�െݔ௧ܧ ൬1 +
ߪ
൰ݓ ൫߶గߨ௧�+ ߶௫ݔ௧ െ =௧ାଵ�൯ߨ௧ܧ . 

An equilibrium solution to the system is ݔ௧� =�௧ߨ 0 for all ݐ. The system can be written = 

in the standard form as 

�ାܜܡ௧ܧۯ  = (6.33) ,ܜܡ۰

or ܧ௧ܜܡା�= ۱ܜܡ, where ۱  :۰�, as followsିۯ =

 �௧ାଵݔ௧ܧ ۱ 
௧ݔ
൨, (6.34) =ܧ௧ߨ௧ାଵ�൨� �௧ߨ

where 

൦
  1 + 

൫1+ݓ
ߪ
൯߶ݔ ߪ൬ (ݓ + 1)ߜ + ߟ + + ቀ1+ 

ߪݒ
ߪߚቁ൰ݓ

1 ൫1+ݓ
ߪ
൯߶ߨ െ ൫1+

ߪߚ
�൯ݓ

۱ ൪= .
െߪ)ߜ ߟ + + ቀߪݒ�� ߚ

1
ߚ (ቁݓ+1

1 

16 The model description is modified from Barnett and Eryilmaz (2013). 
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Assuming a pair of complex conjugate eigenvalues, the conditions for the existence of a 

Hopf bifurcation are provided in the following proposition. 

Proposition 6.8. Let ߂ be the discriminant of the characteristic equations. Then the system 

(6.34) undergoes a Hopf bifurcation at equilibrium points, if and only if ߂ < 0 and 

�כെ1߶௫ߪߚ �െݓ+1 ߶గ ቀ �൯ݓ+ݒ+൫1ߪߜ
�ቁߟߜ + (6.35) = �ݓ+1.

Proof. See Barnett and Eryilmaz (2013), Proposition 1. 

Barnett and Eryilmaz (2013) observe that the Clarida, Gali, and Gertler (2002) model 

differs in several aspects from the Gali and Monacelli (2005) model. The degree to which the 

two models differ depends upon the parameter settings. In the Clarida, Gali, and Gertler (2002) 

model, the parameters ݓ ߜ and ,ݒ play an important role in determining the critical value of ,

the bifurcation parameter. Barnett and Eryilmaz (2013) note that numerical implementation of 

the theory to locating Hopf bifurcation boundaries in the Clarida, Gali, and Gerler (2002) model 

would be a challenging project. 

7. Two Endogenous Growth Models17 

7.1. Introduction 

This section surveys Barnett and Ghosh (2013, 2014) about bifurcation analyses of two 

endogenous growth models. Previous stability analyses of endogenous growth models include 

the following. Benhabib and Perli (1994) analyzed the stability property of the long-run 

equilibrium in the Lucas (1988) model; Arnold (2000a, 2000b) analyzed the stability of 

equilibrium in the Romer (1990) model; Arnold (2006) has done the same for the Jones (1995) 

model; and Mondal (2008) examined the dynamics of the Grossman-Helpman (1991) model of 

endogenous product cycles. The results derived in those papers provide important insights to 

researchers. But a detailed bifurcation analysis had not been provided for many of these 

popular endogenous growth models. Barnett and Ghosh (2014) filled the gap for the Uzawa-

Lucas endogenous growth model, as surveyed in section 7.2 below, while Barnett and Ghosh 

17 This section is summarized from Barnett and Ghosh (2013, 2014). 
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(2013) do so for a variant of Jones (2002) semi-endogenous growth model, as surveyed in 

section 7.3 below. 

In section 7.2, Barnett and Ghosh (2014) conduct bifurcation analysis on the Uzawa-

Lucas endogenous growth model, which is solved from a centralized social planner perspective 

as well as in the model’s decentralized market economy form. Barnett and Ghosh (2014) locate 

transcritical bifurcation and Hopf bifurcation boundaries for the decentralized version of the 

model using Mathematica, and also investigate the existence of Hopf bifurcation, branch point 

bifurcation, limit point cycle bifurcation, and period doubling bifurcations using Matcont. The 

series of period doubling bifurcations confirm the existence of global bifurcation and reveal the 

possibility of chaotic dynamics. Barnett and Ghosh (2014) also point out that the externality of 

the human capital parameter plays an important role in determining the dynamics of the 

decentralized model. On the contrary, from the centralized social planner perspective, the 

solution is saddle path stable with no possibility of bifurcation within the feasible parameter set. 

In section 7.3, Barnett and Ghosh (2013) conduct bifurcation analysis on a variant of 

the Jones (2002) model. Jones found that long-run growth arises from the worldwide discovery 

of ideas, which depend on the rate of population growth of the countries contributing to world 

research rather than on the level of population. His model exhibits “weak” scale effect, in 

contrast with the “strong” scale effect,produced by the first generation endogenous growth 

models of Romer (1990) and Grossman and Helpman (1991). Barnett and Ghosh (2013) 

incorporate human capital accumulation into a Jones model. They also consider the possibility 

that the direction of technology progress is driven by human capital investment (Bucci (2008)). 

As a result, the parameters in the human capital accumulation equation play an important role 

in determining the dynamics of the model. Barnett and Ghosh (2013) also introduce the 

possibility of decreasing returns to scale associated with human capital and with time spent 

accumulating human capital in the production equation. This assumption accounts for the scale 

effects in the model and permits a closed form solutions for the steady state of the model. 

Using the numerical package Matcont, Barnett and Ghosh (2013) further show the existence of 

Hopf bifurcation, branch point bifurcation, limit point of cycles, Bogdanov-Takens bifurcation, 

and generalized Hopf bifurcations within the feasible parameter sets. 
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In both models, Barnett and Ghosh (2013, 2014) emphasize that bifurcation boundaries 

do not necessarily separate stable from unstable solution domains. Barnett and Ghosh (2013, 

2014) note that bifurcation boundaries can separate one kind of unstable dynamics domain 

from another kind of unstable dynamics domain. Not as well known is that bifurcation 

boundaries can separate one kind of stable dynamics domain from another kind of stable 

dynamics domain (called soft bifurcation), such as bifurcation from monotonic stability to 

damped periodic stability or from damped periodic to damped multiperiodic stability. 

Recognizing there are an infinite number of kinds of unstable dynamics as well as an infinite 

number of kinds of stable dynamics, subjective prior views on the stability of economies are not 

reliable without conducting analysis of model dynamics. 

7.2. Uzawa-Lucas Endogenous Growth Model18 

The Uzawa-Lucas endogenous growth model (Uzawa (1965) and Lucas (1988)) is one of 

the most important endogenous growth models. This model has two sectors: the human capital 

production sector and the physical capital production sector, producing human capital and 

physical capital, respectively. Individuals have the same level of work qualification and 

expertise (ܪ). They allocate some of their time to producing final goods and dedicate the 

remaining time to training and studying. Barnett and Ghosh (2014) solve the model from a 

centralized social planner perspective as well as from the model’s decentralized market 

economy form. 

The production function in the physical sector is defined as follows: 

ܻ� =�ఈܭܣ ଵିఈ݄,                      0(ܮ݄ߝ) ߙ > < 1, 

where ܻ is output, ܣ is technology level, ܭ is physical capital, ߙ is the share of physical capital, 

ܮ is labor, and ݄ is human capital per person. In addition, ߝ and 1 െ ߝ are respectively the 

fraction of labor time devoted to producing output and human capital, where 0 ߝ > < 1. 

Observe that ܮ݄ߝ is the quantity of labor, measured in efficiency units, employed to produce 

output, and ݄�measures the externality associated with average human capital of the work 

18 The model description is modified from Barnett and Ghosh (2014). 
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force ݄, where ߞ is the positive externality parameter in the production of human capital. In 

�ݕ ,ଵିఈ݄.per capita terms(݄ߝ)  =�ఈ݇ܣ

The physical capital accumulation equation is 

�ሶܭ ଵିఈ݄(ܮ݄ߝ)ఈܭܣ െ ܥ െ =ܭߜ . 

In per capita terms, the equation is 

=�ఈሶ݇݇ܣ ଵିఈ݄(݄ߝ) െ ܿ െ (݊ ,�݇(ߜ +

and the human capital accumulation equation is 

ሶ݄� െ 1)݄ߟ  =,(ߝ

where ߟ is defined as schooling productivity. 

The decision problem is 

(U n t) W 1�V �f e� �  ( ( )  1c )
³ dt (7.1) max

�t 1�V, 

subject to 

ଵିఈ݄(݄ߝ) െ ܿ െ (݊ �ሶ݇݇(ߜ + �ఈ݇ܣ (7.2) = 

and 

ሶ݄� െ 1)ߟ  = (7.3) ,݄(ߝ

where ߩ ߩ) > ݊ > 0) is the subjective discount rate, and ߪ  0 is the inverse of the 

intertemporal elasticity of substitution in consumption. 

i. Social Planner Problem 

The social planner takes into account the externality associated with human capital, 

when solving the maximization problem (7.1) subject to (7.2) and (7.3). From the first order 

conditions, Barnett and Ghosh (2014 Appendix 2) derive the equations describing the economy 

of the Uzawa-Lucas model from a social planner’s perspective: 
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ሶ݇�
ଵିఈ݄ଵିఈା�െߝఈିଵ݇ܣ ݇

ܿ െ (݊ ݇,(ߜ + = 

ሶ݄�
െ 1)ߟ ݄,(ߝ = 

ଵିఈ݄ଵିఈା�െߝఈିଵ݇ܣߙ ߩ) �ሶܿ(ߜ +
ܿ �ߪ = ,

�ሶߝ ߟ (1 െ ߙ െ (ߞ + ܿ� (1 െ ߙ
�ߙ

)
(݊ ,(ߜ +

1 െ �ߙ ߝ ߟ + (1 െ ߙ (ߞ +
ߝ �ߙ = ݇ + 

ሶܮ
ܮ = ݊�. 

Let m 
Y 

K 
and g 

c 
k 

. Taking logarithms of ݉ and ݃ and differentiating with respect to 

time, the dynamics of the Uzawa-Lucas model is given by equation (7.4) and (7.5): 

ଵିఈ�ሶ� െ(1 െ ݉(ߙ + ఈ�(݊ (ߜ + ߟ + (ଵିఈା�
ఈ�

) 
. (7.4) �= 

ሶ� ቀఈఙ െ 1ቁ ݉ െ ఙ
ఘ െ ߜ ቀଵ� (7.5) �= ఙ െ 1ቁ + ݃ + ݊. 

,�כ݉) The steady stateכ݃ ) is given by ሶ݉�= ሶ݃�= 0 and is derived to be 

�כ݉ ߟ (1 െ ߙ (ߞ + (݊ +
ߙ
(ߜ

�ߙ =, + 

ߩ െ ݊� 1 െ �ߙ ߪ) െ �ߙ
�ߪ

)
݊)�ߙ (ߜ + ߟ + (1 െ ߙ +�ߪ =�כ݃(ߞ + െ 1)ߙ. (ߙ

A unique steady state exists, if 

(1 െ ߙ ߉(ߞ + �ߙ = ߪ) െ െ 1)ߟ(1 (ߝ ߩ + > 0. 

This inequality condition for ߉ is the transversality condition for the consumer’s utility 

maximization problem, as shown in Barnett and Ghosh (2014, Appendix 1). It can be shown that 

the social planner solution is saddle path stable. See, e.g., Barro and Sala-i-Mart n (2003) and í 

103 



           

                

  
      

        

  
  

 

   

         
 

           

     

   

           

           

 

  

 


 

 

  

 
 

Mattana (2004). Linearizing around the steady state, כݏ� �כ݃ the local stability = ,( ,�כ݉)

properties of the system defined by equations (7.4) and (7.5) can be found. The result is 

߲ ሶ݉� ߲ ሶ݉ۍ�
 ሶ݉� ߲݉ |௦כ� ߲݃ |௦כ�

 ݉௧ െ כ݉
൨ሶ݃�= 

ۏ
ێێ
ێ
߲ ሶ݃� ߲ ሶ݃� ݃௧ െ כ݃ ൨�,
߲݉ |௦כ� ߲݃ |௦ےכ

ۑۑ
ۑ
�ې

ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ�
�ܛ۸

where 

െ(1 െ כ݉(ߙ  0
ߪߙ�ቀ =�ܛ۸ െ 1ቁ �כ݃ כ݃ ൩�. 

Since ݉0 <�כ and ݃0 <�כ, it follows that ݀݁(ܛ۸)ݐ = െ(1 െ  Hence the .0 >�כ݃כ݉(ߙ

saddle path is stable. 

ii. Representative Agent Problem 

From the first order conditions with ݄� ݄ , Barnett and Ghosh (2014, Appendix 3) = 

derive the following equations describing the dynamics of the decentralized Uzawa-Lucas 

model: 

ሶ݇�
݇ ଵିఈ݄ଵିఈା�െߝఈିଵ݇ܣ = ݇

ܿ െ (݊ ,(ߜ +

ሶ݄�
െ 1)ߟ ݄,(ߝ = 

ଵିఈ݄ଵିఈା�െߝఈିଵ݇ܣߙ ߩ) �ሶܿ(ߜ +
ܿ �ߪ = ,

�ሶߝ ߟ ߙ) െ െ 1) (ߞ ߙ
�ߙ

)
(݊ ,(ߜ +

1 െ ߝ�ߙ ߟ + (1 െ ߙ െ (ߞ + ܿ
ߝ ߙ = ݇ + 

ሶܮ� ܮ�݊ = . 
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Taking logarithms of ݉ and ݃ and differentiating with respect to time, the following 

three equations define the dynamics of the Uzawa-Lucas model 

ሶ� െ(1 െ ݉(ߙ +
(ଵିఈ�
ఈ�

) (݊ (ߜ + ߟ + (ଵିఈା�
ఈ�

) െ ߟ ఈ ߝ , (7.6) �= 

ሶ
�= ቀఈఙ െ 1ቁ ݉ െ ఙ

ఘ െ ߜ ቀఙ
ଵ െ 1ቁ + ݃ + ݊, (7.7) 

ሶ ߟ (ఈି�
ఈ�

ߝ ( ߟ + (ଵିఈା�
ఈ�

) (ଵିఈ�
ఈ�

)
(݊ െ.(ߜ + ݃ + (7.8) = 

,�כ݉) The steady stateכߝ�כ݃ , ), given by ሶ݉�= ሶ݃�= ߝሶ = 0, is 

= 1 െ�(1 െ ߩ)(ߙ െ ݊ െ �כߝ(ߟ ߞ]ߟ െ െ 1)ߪ ߙ [(ߞ +
, 

ߟ [1 െ ߙ െ 1)ߞ + �כߝ െ 1)ߙ =�כ݉݊  (ߙ
)] 

 ,ߙ +

ߟ [1 െ ߙ െ 1)ߞ + (כߝ �כߝߙ + ݊(1
ߙ
െ െ 1)ߙ =�כ݃(ߙ (ߙ

]
+ . 

A unique steady state exists, if 

(1 െ ߙ ߉(ߞ + �ߙ = ߪ) െ െ 1)ߟ(1 (ߝ ߩ + > 0, 

and 0 ߝ > < 1. 

The inequality condition on ߉ is the transversality condition for the consumer’s utility 

maximization problem (Barnett and Ghosh (2014), appendix 1), while 0 >�כߝ > 1 is necessary 

݃�כ݉ forכߝ =�כݏ ,Linearizing the system around the steady state .0 <�כ ݃�כ݉) �כ ), yields the , , ,

following: 
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߲ ሶ݉� ߲ ሶ݉� ߲ ሶ݉ۍ �ې
ሶ݉� ێ ߲݉

|௦כ� ߲݃ |௦כ� כ௦|�ߝ߲ ݉�ۑ ௧ െ כ݉
߲�ێ ሶ݃� ߲ ሶ݃� ߲ ሶ݃� �ۑ ሶ݃ ൩� �ێ ۑ  ݃௧ െ כ݃ ൩

�ሶߝ
= ߲݉ |௦כ� ߲݃ |௦כ� ߝ߲ |௦כ�

௧ߝ െ �כߝ
,

߲�ێ �ሶߝ �ሶߝ߲ �ሶߝ߲ �ۑ
ێ �ۑ
߲݉�ۏ |௦כ� ߲݃ |௦כ� ߝ߲ |௦כ� �ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥے

�ܕ۸

where 

ۍ െ(1 െ �כ݉(ߙ െ ߟ ߙ
ߞ �כ݉ 0ې

ێ �ۑ
�ܕ۸ �ێ ቀߪߙ െ 1ቁ כ݃ �כ݃ ێ =�ۑ  .ۑ 0 

ێ ߟ ߙ) െ ߞ
�ߙ

ے�כߝ (
െۑ ۏכߝ  0 

The characteristic equation associated with ۸ܕ�is ݍଷ�+ ܿଶݍଶ�+ ܿଵݍ + ܿ�= 0, where 

ߟ െ 1)ߪ] ߙ െ (ߞ + �ߪ =�ܿ[ߞ  ,�כߝכ݃כ݉

ଶߟ ߙ) െ ߞ
�ߙ

ଶכߝ ( െ (1 െ =�ଵܿכ݃כ݉(ߙ , 

െߟ ߙ2) െ ߞ
�ߙ

=�ଶܿכߝ ( . 

iii. Bifurcation Analysis 

Barnett and Ghosh (2014) analyze the existence of codimension 1 and 2, transcritical, 

and Hopf bifurcation in the system ((7.6), (7.7),(7.8)). They search for the bifurcation boundary 

according to c0 det(Jm ) 0 . 

Theorem 7.1. ۸ܕ�has zero eigenvalues, if 

ߟ �כߝכ݃כ൧݉ߞ൯െߞ+ߙ൫1െߪൣ �ߪ (7.9) = 0. 

It follows from the Hopf Bifurcation Thereom in Guckenheimer and Holmes (1983), that 

if ܿ െ ܿଵܿଶ�= 0 and ܿଵ�> 0, then ۸ܕ�has precisely one pair of purely imaginary eigenvalues. 
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But if ܿ െ ܿଵܿଶ ് 0 and ܿଵ�> 0, then ۸ܕ�has no purely imaginary eigenvalues. Therefore, 

Barnett and Ghosh (2014) derive the following theorem: 

Theorem 7.2. The matrix ۸ܕ�has precisely one pair of pure imaginary eigenvalues, if 

ߙ)൫כ݃כ݉ߙ െ ߪߙ(1 ߪ)ߞ + െ ൯(ߙ ߙଶ(2כߝߪଶߟ + െ ߙ)(ߞ െ  ,0 = (ߞ

൞� ܽ݊݀� (7.10) 
ߟ
ߙ
2 
ߙ)ଶכߝ െ െ (ߞ (1 െ  .0 <�כ݃כ݉(ߙ

Furthermore, Barnett and Ghosh (2014) explain cyclical behavior in the model. They 

state that the increase of ɺ�would bring about the increase of savings rate since consumers are 

willing to cut current consumption in exchange for higher future consumptions. Then the 

movement of labor from output production to human capital production brings an increase in 

human capital, and subsequently faster accumulation of physical capital, if sufficient externality 

to human capital in production of physical capital is present. On the other hand, a lower 

subjective discount rate, ߩ, could cause consumption to rise gradually with faster capital 

accumulation. This leads to greater consumption-goods production in the future, which 

eventually leads to a decline in savings rate. A cyclical convergence to equilibrium comes from 

these two opposing effects, when savings rate is different from the equilibrium rate. Barnett 

and Ghosh (2014) conclude that interaction between different parameters can cause cyclical 

convergence to equilibrium or may cause instability, and for some parameter values 

convergence to cycles may occur. 

Based on Benhabib and Perli (1994), Barnett and Ghosh (2014) locate bifurcation 

boundaries by keeping some parameters free, while setting the others fixed at כ�= 

ߞ ߙ ߩ ߪ ݊� ߞ ߙ ߩ ߪ ,�ߟ}݊ , , , , =�כor  (0 ,0 ,0.15 ,0.0505 ,0.65 ,0.1 ,0.05) = {ߜ , ,�ߟ} , , , , {ߜ , = 

Using Matcont, Barnett and Ghosh (2014) then investigate (0.05, 0.1, 0.75, 0.0505, 0.15, 0, 0) . 

the stability properties of cycles generated by different combinations of parameters. Some limit 

cycles, such as supercritical bifurcations, are stable, while some other limit cycles, such as 

subcritical bifurcations, are unstable. A positive value of the first Lyapunov coefficient indicates 

creation of subcritical Hopf bifurcation. Period doubling bifurcation occurs, when a new limit 

cycle, the period of which is twice that of the old one, emerges from an existing limit cycle. 
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19 

Table 7.1 reports the values of the share of capital, ߙ, the externality in production of 

human capital, ߞ�and the inverse of the intertemporal elasticity of substitution in consumption, ,

 . 18F Since each of the cases reported in Table 7.1 has positive first Lyapunov coefficient, anߪ

unstable limit cycle (i.e., periodic orbit) bifurcates from the equilibrium. 

When ߙ is the free parameter, Barnett and Ghosh (2014) find from continuing 

computation of limit cycles from the Hopf point, that two limit cycles with different periods are 

present near the limit point cycle (LPC) point at ߙ = 0.738. Continuing computation further, a 

series of period doubling (flip) bifurcations arise. The first period doubling bifurcation at ߙ = 

0.7132369 has positive normal form coefficients, while the other period doubling bifurcations 

have negative normal form coefficients. This indicates that the first period doubling bifurcation 

has unstable double-period cycles, while the rest have stable double-period cycles. Barnett and 

Ghosh (2014) also find that the limit cycle approaches a global homoclinic orbit, which is a 

dynamical system trajectory joining a saddle equilibrium point to itself. They also point out the 

possibility of reaching chaotic dynamics through a series of period doubling bifurcation. 

When ߞ and ߪ are free parameters, Barnett and Ghosh (2014) conduct the bifurcation 

analysis in a similar way by carrying out the continuation of the limit cycle from the first Hopf 

point. They find that both cases give rise to the LPC point with a nonzero normal form 

coefficient, indicating the existence of a fold bifurcation at the LPC point. 

19 Table 7.1 is a replicate of Barnett and Ghosh (2014) Table 1. 
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Table 7.1. Stability Analysis Of Uzawa-Lucas Growth Model 

Parameters Equilibrium Bifurcation Bifurcation of Limit Cycle 

ɲ 

Other parameters set at כߴ�
Hopf (H) 

First Lyapunov coefficient = 0.00242, 
ɲсϬ͘ϳϯϴϮϬϳ 

Limit Point Cycle (LPC) 

period= 231.206, ɲсϬ͘ϳϯϴϮϬϰϮ͕ŶŽƌŵĂů� 
form coefficient=0.007 

Period Doubling (PD) 

ƉĞƌŝŽĚс�ϱϴϰ͘Ϭϲϰ͕�ɲсϬ͘ϳϭϯϮϯϲϵ͕ŶŽƌŵĂů� 
form coefficient=0.910 

Period Doubling (PD) 

ƉĞƌŝŽĚс�ϲϲϰ͘ϬϬϱ͕�ɲсϬ͘ϳϭϯϮϬϬϮ͕ŶŽƌŵĂů� 
form coefficient=-0.576 

Period Doubling (PD) 

ƉĞƌŝŽĚс�ϲϵϯ͘ϵϴϴ͕�ɲсϬ͘ϳϭϯϭϵϱϴ͕ŶŽƌmal 
form coefficient=-0.469 

Period Doubling (PD) 

ƉĞƌŝŽĚс�ϳϭϯ͘ϵϳϴ͕�ɲсϬ͘ϳϭϯϭϵϰϬ͕ŶŽƌŵĂů� 
form coefficient=-0.368 

Period Doubling (PD) 

ƉĞƌŝŽĚс�ϳϮϱ͘ϲϲϳ͕�ɲсϬ͘ϳϭϯϭϵϯϮ͕ŶŽƌŵĂů� 
form coefficient=-0.314 

Period Doubling (PD) 

ƉĞƌŝŽĚс�ϳϴϰ͘ϭϬϰ͕�ɲсϬ͘ϳϭϯϭϵϭϮ͕ŶŽƌŵĂů� 
form coefficient=-0.119 

ɺ 

Other parameters set at ߱כ�

Hopf (H) 

&ŝƌƐƚ�>ǇĂƉƵŶŽǀ�ĐŽĞĨĨŝĐŝĞŶƚ�сϬ͘ϬϬϮϱϬ͕ɺсϬ͘ϭϬϳϯϭϱ 

Hopf (H) 

&ŝƌƐƚ�>ǇĂƉƵŶŽǀ�ĐŽĞĨĨŝĐŝĞŶƚ�сϬ͘ϬϬϮϰϲ͕ɺсϬ͘ϬϰϳϬϱϵ 

Branch Point (BP) 

ɺсϬ͘ϬϰϳϬϱϵ 

Limit Point Cycle (LPC) 

ƉĞƌŝŽĚс�Ϯϭϱ͘ϳϱϭ͕��ɺсϬ͘ϭϬϳϯϭϰϳ͕ŶŽƌŵĂů� 
form coefficient=0.009 

ʍ 

Other parameters set at ߱כ�

Hopf (H) 

&ŝƌƐƚ�>ǇĂƉƵŶŽǀ�ĐŽĞĨĨŝĐŝĞŶƚ�сϬ͘ϬϬϮϲϰ͕�ʍсϬ͘Ϯϳϴϱϳϭ 

Hopf (H) 

&ŝƌƐƚ�>ǇĂƉƵŶŽǀ�ĐŽĞĨĨŝĐŝĞŶƚ�сϬ͘ϬϬϮϰϵ͕�ʍсϬ͘ϭϯϵϯϵ 

Branch Point (BP) 

ʍсϬ͘Ϯϳϴϱϳϭ 

Limit Point Cycle (LPC) 

Period= 213.83, ʍсϬ͘ϭϯϵϰϬϮϲ͕ŶŽƌŵĂů� 
form coefficient=0.009 

109 



                

            

       

          

               

               

       

           

        

                   

                              

                            

              

              

              

               

                     

        

ఉ ఉ               

              

               

             

           

 
 

                                                           

7.3. Jones Semi-Endogenous Growth Model20 

The model is based on a variant of Jones’ (2002) semi-endogenous growth model. 

The labor endowment equation is given by 

�௧ܮ =�ܮ +�ܮ (7.11) ௧ߝ ௧ܰ,= 

where at time ܮ ,ݐ௧�is employment, ܮ�is the labor employed in producing output, ܮ�is the 

total number of researchers, and ௧ܰ�is the total population having rate of growth ݊ > 0. Each 

person is endowed with one unit of time and divides the time among producing goods, 

producing ideas and human capital, while ߝ௧�and 1 െ  ௧�represent respectively the amount ofߝ

time the person spends producing output and accumulating human capital. 

The capital accumulation equation is given by 

ሶܭ ݏ = ௧ܻ െ  �> 0, (7.12)ܭ ,௧ܭ݀

and ܭሶ� ௧ܻ െ ௧ܥ െ  = ௧, (7.13)ܭ݀

where ݏ�is the fraction of output invested, ݀ is the exogenous, constant rate of depreciation, 

௧ܻ�is the aggregate production of homogenous final goods, and ܭ௧�is capital stock. 

Output is produced using the total quantity of human capital, ܪ , and a set of 

intermediate goods. The total quantity of human capital equation is given by 

ܮ�= ݄௧ܪ (7.14) , 

with the individual’s human capital accumulation equation is given by 

ሶ భ݄௧�= ݄ߟ௧� (1 െ ௧) మߝ െ ݄௧,       0݃ߠ ߟ ,௧�< 1ߝ ,ଶߚ ,ଵߚ > > 0, ߠ + 1 > 0, (7.15) 

where ݄௧�is human capital per person and ܮ�is labor employed in producing output. The 

parameter ߟ is productivity of human capital in the production of new human capital, ߠ reflects 

�ሶܣ
the effect of technological progress on human capital investment, and ݃�  = �is the growthܣ

20 The model description is modified from Barnett and Ghosh (2013) 
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rate of technology. Equation (7.15) builds on the human capital accumulation equation from 

the Uzawa-Lucas model. 

As noted in Barnett and Ghosh (2013), the human capital accumulation equation has two 

advantages. It accounts for the scale effects present in the model, and it makes the model 

tractable to solve for possible steady states. To see this, Barnett and Ghosh (2013) introduced 

the assumption of decreasing returns to scale of the human capital growth rate in (7.15) by 

setting 0 >�ଶߚ ଵ�andߚ > 1. The higher the level of human capital or of time spent 

accumulating human capital, the more difficult it is to generate additional human capital. If 

 ଶ�is equal to 1, the model will exhibit “strong” scale effects. In models associated withߚ ଵ�orߚ

strong scale effects, the growth rate of the economy is an increasing function of the population. 

But this phenomenon is inconsistent with United States data, as shown by Jones (1995). Barnett 

and Ghosh (2013) also include the technological growth rate, ݃, which directly influences the 

human capital growth rate. As in Bucci (2008), Barnett and Ghosh (2013) restrict ߠ > െ1 to 

prevent explosive or negative long run growth rates. 

In Barnett and Ghosh (2013), the production function is given by 


௧ܻ� ఈ(݅)ݔ��ଵିఈܪ ݀݅, (7.16) = �

where ݔ(݅) is the input of intermediate good ݅ ܣ is the number of available intermediate ,

ଵ�
goods, and ߙ א (0,1), where ଵିఈ is the elasticity of substitution for any pair of intermediate 

goods. 

Since research and development (R&D) enable firms to produce new intermediate 

goods, the R&D technology equation is given by 

ଵିథܣ�ሶ�= ܪߛఒܣ௧� , ߶ > 0, ߣ > 0  1. (7.17) 

with 

ܮ�= ݄௧ܪ (7.18) , 
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where ܪ�is effective research effort and ܣ௧�is the existing stock of ideas while ߶ represents ,

the externalities associated with R&D. 

In the final goods sector, the representative final output firm rents capital goods, ݔ(݅), 

from monopolist ݅ at price (݅) and pays ݓ as the rental rate per unit of human capital 

employed. For each durable, the firm chooses quantity ݔ(݅) and ܪ௬�to maximize the profit as 

follows: 

ஶ
න�[ܪ௬ଵିఈݔ(݅)ఈ െ ݅݀ (݅)ݔ(݅) െ ௬.maxܪݓ

௫�, ு� �

Solving the maximization problem gives 

) ) )ݔ௬ଵିఈܪߙ = )ఈିଵ�, ݅ ݅� (7.19) 

ݓܻ = (1 െ  .ݕܪ (7.20) (ߙ

In the intermediate goods sector, each intermediate good, ݔ(݅), is produced by a 

monopolist, who owns an infinitely-lived patent on a technology determining how to transform 

a unit of raw material, ܭ, cost essly into intermediate goods. That production function is l 

simply ݔ� The producer of each specialized durable takes (݅) as given from equation = ܭ. 

(7.19) in choosing the profit maximizing output, ݔ, according to the profit level 

ߨ = max ݔ(ݔ) െ ,�ݔݎ
௫�

where ݎ is the rental price of raw capital. Solving the monopoly profit maximization problem 

gives 

(݅) ҧ = ߙ =
�ݎ

. (7.21) 

The flow of monopoly profit is 

(݅)ߨ തߨ = ҧݔҧ = െ ҧ�= (1 െݔݎ  ҧ. (7.22)ݔҧ(ߙ
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In the research and development sector, the decision to produce a new specialized input 

depends on a comparison of the discounted stream of net revenue and the cost of the initial 

investment in a design. Because the market for designs is competitive, the price for designs, ܲ, 

will be bid up until equal to the present value of the net revenue that a monopolist can extract. 

Therefore ܲ�is equal to 

ஶ ഓ
݁� �߬݀ (߬)ߨ�(௦) ௗ௦ି ܲ(ݐ), (7.23) ௧� = 

where ݎ is the interest rate. 

If (ݐ)ݒ denotes the value of the innovation, then 

ஶ(ݐ)ݒ ௧�݁ି =
ഓ (௦) ௗ௦(7.24) .߬݀ (߬)ߨ 

Assuming free entry into the R&D sector, the zero profit condition is 

ఒܣଵିథܪݓ�� ܲ �ᇣᇧᇧᇤᇧᇧᇥܪߛ (7.25) = .
ሶ�

Therefore, equation (7.25) can equivalently be written as, 

�ܪݓ �ଵିథܣఒܪߛݒ (7.26) = . 

Because of the symmetry with respect to different intermediate goods, Barnett and 

Ghosh (2013) set ܭ  = The production function then is .ݔܣ

= �ఈܻ(ܭ)ଵିఈ(ܪܣ) (7.27) . 

Hence, from equation (7.20) and (7.27), it follows that 

ݓܭ = (1 െ  ఈ�. (7.28)(ܻܪܣ)ܣ(ߙ

From zero profits in the final goods sector, ߨ� ఈݔܣଵିఈܪ െ ݔܣ െ  = �= 0; and fromܪݓ

equation (7.20), the following equation results 

113 



                  

                         

    

                     

ఌ
 

  

 

ఉ ఉ   

                 

         

             

                          

          

                        

                                    

                                 

     ఉ   

                                                                          

       

 
 

ܻ െ �ܪݓ �ݔܣ �ܻߙ (7.29) = = . 

Barnett and Ghosh (2013) note that wages equalize across sectors as a result of free 

entry and exit. 

From the consumers’ perspective, the agent’s utility maximization problem is 

ஶ݁� ି(ఘି)௧�[ܿ(߬)ଵିఙ�െ 1]௧
, 

maxݐ݀
� 1 െ �ߪ

subject to 

ሶ ሶܭ [௧ܣ௧ݒ +�௧ܭ]௧ݎ ௧ܪ௧ݓ + െ ܿ௧ ௧ܰ െ ௧ܣ௧ݒ െ ௧ܣሶ௧ݒ ,= 

ሶ భ݄௧� �௧݄ߟ (1 െ ௧) మߝ െ ௧ߝ ݄௧, and݃ߠ א [0,1],= 

where ߩ is the subjective discount rate with ߩ > ݊ > 0, and ߪ  0 is the inverse of the 

intertemporal elasticity of substitution in consumption. Individuals choose consumption, ܿ௧, 
and the fraction of time devoted to human capital production or to market work, ߝ௧. 

In order to conduct bifurcation analysis, Barnett and Ghosh (2013) derive the following 

equations, which represent the dynamic equations for the model: 

ሶ� ቀఈ
మ�

�= ఙ െ 1ቁ ݉ െ ఙ
ఘ�

+ ݊ + ݃ + ݀ , (7.30) 

ሶ� ଵିఈ�
ఈ�[െ2݉ߙ ݒߙ + ݑ)߶ + െ  =� (7.31) ,[(ݒ

௩ሶ�
௩�= (1 െ ݉(ߙ ݒ + െ ݃ + ቄ(ଵିఈ)థ െ 1ቅ ݑ) െ െ (ݒ ݀, (7.32) ఈ�

௭ሶ ଵ� ௭௩�
௭�= ( మିଵ) 

ቂെݖ െ  1ߚ൫ܣ݃ߠ
െ 2൯ ݒߙ + െ ߚ

2 ௨ െ (1 െ ݑ)(߶ െ െ (ݒ ݊ቃ�

െ(1 െ ݖ)(ଵߚ െ  ), (7.33)݃ߠ

ሶ݂ � ݖ�ቂെ݂+�1݂ݒݖ െ ଵߚ)݃ߠ െ ݒߙ + (2 െ �െݑ�ଶߚ (1 െ ݑ)(߶ െ െ (ݒ ݊ቃ, (7.34) ݂ ߚ)݂ = െ1) 2 
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�ሶݑ �݂ݒݖ
ݑ ݖ = െ ݊ +�݃ߠ െ ݑ)߶ െ (ݒ ߚ)݂ +

1
െ1) ቂെݖ െ ଵߚ)݃ߠ െ ݒߙ + (2 െ ݑ�ଶߚ െ�

2 

(1 െ ݑ)(߶ െ െ (ݒ ݊ቃ. (7.35) 

According to Barnett and Ghosh’s (2013) Definition 1, a steady state is a balanced 

�כݒ =�כݏ growth path with zero growth rate. The steady stateכ݂ כ݃) �כ݉ �כݖ , , is derived by (כݑ , , ,

solving ሶ݃ ሶ݉� ሶݒ ሶݖ ሶ݂ =�ሶݑ 0. The results are as follows: = = = = = 

߶ =�כݖ�ߠ݊ ,

ߩ െ ݊� ,ߙ߶ +�ߙ =�כݒ�ߪ݊

�כݑ݊ =�כݒ + ߶, 

�כݒ  ,ଶߙ +�ߙ =�כ݉݊

െ 1) =�כ݃ߩ ߙ
ߪ
ଶ�

ߪ +�כ݉( െ ݊ െ ݀, 

�כݑ �כ݂�ߩ߶ ൭݊ߠ െ
(߶ + 1 െ െ (ߪ ଵߚ) െ 1)൱= ߚכݒଶ� �ߠ . 

݊
Barnett and Ghosh (2013) derive the growth rate of technology to be ݃� . The goal = ߶�

is to examine the existence of codimension 1 and codimension 2 bifurcations in the dynamical 

system defined by (7.30)-(7.35). The usual way to identify codimension-1 bifurcation is by 

varying a single parameter, while the usual way to identify codimension-2 bifurcation is by 

varying 2 parameters. 

Barnett and Ghosh (2013) discuss reasons accounting for the occurrence of cyclical 

behaviors. The economic intuition behind the cycle phenomenon is described as follows. 

Suppose profits for monopolists increase. Then the price for designs, ܲ, is bid up, since the 
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market for designs is competitive. From (7.26), wages, ݓ�in the R&D sector will rise. Higher ,

wages lead to a shift of labor from output production to the research sector. Furthermore, the 

technological growth rate, ݃, will rise, if externalities to R&D are present. Assuming a negative 

effect of technical progress on human capital investment, i.e., ߠ > 0, human capital 

accumulation, ݄௧, declines. According to (7.14) and (7.19), the price falls from a decline of 

average quality of labor. Monopoly profits then fall, completing the mechanism of this cycle. 

Barnett and Ghosh (2013) use the numerical continuation package Matcont to detect 

Andronov-Hopf bifurcations. Table 7.2 reports the values of the subjective discount rate, ߩ�the ,

share of human capital, ߚଵ, and the share of time devoted to the human capital production, ߚଶ, 

the effect of technological progress on human capital accumulation, ߠ, and the depreciation 

rate of capital, ݀. Those parameters are treated as free parameters, at which Hopf bifurcation 

can occur.21 

As discussed in section 7.2, a positive first Lyapunov coefficient indicates the existence 

of subcritical Hopf bifurcation. Therefore, since cases reported in Table 7.2 are associated with 

positive first Lyapunov coefficients, an unstable limit cycle with periodic orbit bifurcates from 

the equilibrium. When ߩ ݀ and ,ߠ are treated as free parameters, a slight perturbation of , ߚଵ,

them gives rise to branch points (pitchfork/transcritical bifurcations). 

Barnett and Ghosh (2013) investigate the stability properties of cycles generated by 

different combination of such parameters. The parameter, ߩ, taken as a free parameter, gives 

rise to two period doubling (flip) bifurcations, one of which occurs at ߩ = 0.0257 and the other 

at ߩ = 0.0258. Both bifurcations have negative normal form coefficients, indicating stable 

double-period cycles. 

21 Table 7.2 is a replicate of Barnett and Ghosh (2013) Table 1. 
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Table 7.2. Stability Analysis of a Variant of Jones Semi-Endogenous Growth Model 

Parameters varied Equilibrium bifurcation Continuation 

ߙ} :ଵߚ ݊=�ଶߚ ,0.055 = ,0.4 =ߩ ݀ = ,0 = ,0.01 = ,0.04ߠ
߶  {8 = ,1 = ,0.4ߪ

Branch Point (BP)
 ଵ�= 1ߚ

ߙ} :ଵߚ ߩ = ,ଶ= 0.4, = 0.025772ߚ
݊ ݀ = ,0 = ,0.01 = ,0.04ߠ
߶  {0.08 = ,0.8 = ,0.4ߪ

Hopf (H) 
First Lyapunov coefficient=0.0000230,
 ଵ�= 0.19ߚ

ߙ} :ଶߚ ߩ = ,ଵ= 0.4, = 0.025772ߚ
݊ ݀ = ,0 = ,0.01 = ,0.19ߠ
߶  {0.08 = ,0.8 = ,0.4ߪ

Hopf (H) 
First Lyapunov coefficient=0.00002302,
 ଶ�= 0.040000ߚ

ߙ} :݀ �ଵߚ = ,0.19 = ,0.4 =ߩ
�ଶߚ ݊ = ,0.01 = ,0.04 = ,0.055ߠ

߶  {8 = ,1 = ,0.4ߪ

Branch Point (BP)
݀ = 0.826546 

ߙ} :ߩ �ଵߚ = ,ଶ= 0.4, = 0.19ߚ
݊ ݀ = ,0 = ,0.01 = ,0.04ߠ
߶  {0.08 = ,1 = ,0.4ߪ

Hopf (H) 
First Lyapunov coefficient=0.0000149, 
ߩ = 0.025772 

Branch Point (BP) ߩ = 0.026726 
Hopf (H) Neutral saddle ߩ = 0.026698 

Bifurcation of limit cycle 
Period doubling (period=1569.64; ߩ = 0.0257) 
Normal form coefficient=-4.056657e-013 
Period doubling (period=1741.46; ߩ = 0.0258) 
Normal form coefficient= -7.235942e-015 
Limit point cycle (period=2119.53; ߩ = 0.0258) 
Normal form coefficient=7.894415e-004 
Period doubling (period=2132.13; ߩ = 0.0258) 
Normal form coefficient=-1.763883e-013 

ߙ} :ߠ �ଵߚ = ,ଶ= 0.4, = 0.19ߚ
݊ ݀ = ,0 = ,0.01 = ,0.04ߩ

߶0.029710729, = 
ߪ ,0.69716983 = 0.08} 

Hopf (H) 
First Lyapunov coefficient=0.0000230, 
ߠ = 0.40000 

Hopf (H) 
First Lyapunov coefficient=0.00001973, 
ߠ = 0.355216 

Hopf (H) Neutral saddle, ߠ = 0.612624 
Branch Point (BP) ߠ = 0.613596 

Codimension-2 bifurcation 
Generalized Hopf(GH) ߠ = 
ߩ ,0.000044 = 0.580853, L2 = 0.000001254 
Bogdanov-Takens(BT)
ߠ ߩ ,0 =�ܽ) = 0.644247 , ܾ ) = 
(0.000001642, െ0.003441)
Generalized Hopf(GH)
ߠ  ଵ�= 0.584660, L2 = 0.0000008949ߚ ,0.000055 =
Bogdanov-Takens(BT)
ߠ ܾ , ଵ�= 0.903003ߚ ,0 =�ܽ) ) = 
(0.000006407790, 0.03291344) 

From further computation, Barnett and Ghosh (2013) find two limit cycles with different 

periods present near the LPC point at ߩ = 0.0258 bifurcating from the Hopf point. They also 

find another period doubling (flip) bifurcation at ߩ = 0.0258. Barnett and Ghosh (2013) then 

investigate the existence of codimension-2 bifurcations by first taking ߠ and ߩ as free 
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parameters and then taking ߠ and ߚଵ�as free parameters. There are two types of codimension 

2 bifurcations: Bogdanov-Takens and Generalized Hopf. At each Bogdanov-Takens point the 

system has an equilibrium with a double zero eigenvalue. The bifurcation point of the 

Generalized Hopf bifurcation separates branches of subcritical and supercritical Andronov-Hopf 

bifurcations in the parameter plane. The Generalized Hopf points are nondegenerate, since the 

second Lyapunov coefficient is nonzero. The system has two limit cycles for nearby parameter 

values, which collide and disappear through a saddle–node bifurcation. 

8. Zellner’s Marshallian Macroeconomic Model22 

8.1. Introduction 

This section describes Banerjee, Barnett, Duzhak, and Gopalan’s (2011) bifurcation 

analysis of the Marshallian Macroeconomic Model. The Marshallian Macroeconomic Model 

(MMM) in Zellner and Israilevich (2005) is described by sectoral demand, supply, and entry/exit 

equations, as well as factor markets, the government, and a monetary sector added to 

complete the model. The explicitly formulated entry/exit behavior model in the MMM can be 

ேሶ� Ԣ�described by the equation ߛ ߎ) െ  =�i.e. the growth rate of firms in the industry is ே ;(݁ܨ

propositional to the difference in current industry profitability, ߎ�and the long-run future ,

profitability in the industry, ܨ�. The speed of adjustment is determined by the parameter ߛᇱ�. 
With an entry/exit equation for each industry introduced in the model, Zellner and Israilevich 

(2005) describe the dynamics of the model in key variables, such as price and output at the 

sectoral as well as at the aggregate level. Varying some parameters would change the equilibria 

and could possibly cause changes in the nature of the equilibria, such as the number of 

solutions and the stability properties of the equilibria. Banerjee, Barnett, Duzhak, and Gopalan 

(2011) examine the model’s characteristics, as well as the possibility of cyclical behavior 

through bifurcation analysis with respect to the entry/exit parameter ܨ�. 

Banerjee, Barnett, Duzhak, and Gopalan (2011) show that a Hopf bifurcation exists 

within the theoretically feasible parameter space, giving rise to stable cycles, when taking ܨଵ�
from the entry-exit equation as the candidate for bifurcation parameter. Future work with that 

22 This section is summarized from Banerjee, Barnett, Duzhak and Gopalan (2011). 
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model could take several directions. One would be to introduce expectations into firms’ future 

profitability. Another could be to introduce the money market and examine the possibility of 

other kinds of bifurcations with respect to government and monetary policy parameters. 

8.2. The Model23 

Banerjee, Barnett, Duzhak, and Gopalan (2011) consider a two sector, continuous time 

version of the Marshallian Macroeconmic Model (MMM) as outlined in Zellner and Israilevich 

(2005). Each sector is characterized by an aggregate output demand function, an aggregate 

supply function, and entry-exit modeling. Banerjee, Barnett, Duzhak, and Gopalan (2011) also 

include the government that collects taxes on output, purchases output from the two sectors 

and inputs from the factor markets. They exclude the presence of money markets from the 

model at this stage. 

i. Ouput Demand 

As noted in Banerjee, Barnett, Duzhak, and Gopalan (2011), the total demand for 

goods in the ݅th sector, ݅ =1,2, is the sum of the demands from the government and the 

aggregate demand from households. Aggregate demand is thus given by 

ܵ�= ܩ�+ ܲ
ଵିఎ

ܲ
ఎೕ(ܵ(1 െ ܶ௦))ఎೞ�, (8.1) 

where ܩ�is the nominal government expenditure in sector ݅ ܵ� ܵଵ�+ ܵଶ�is the total income , = 

(nominal output), ܶ௦�is the tax rate, ߟ�is the own price elasticity, ߟ�is the cross price 

elasticity, and ߟ௦�is the income elasticity. 

To express (8.1) in terms of growth rates, the aggregate demand for goods in each 

sector is the weighted sum of growth rates of demand from the government and households, 

መܵ�= ݃ܩ�+ (1 െ ݃)ൣ(1 െ (ߟ ܲ�+ ߟ ܲ�+ ߟ௦൫ መܵ + ܶ ௦ᇱ൯൧, (8.2) 

where ݃�is the ratio of government spending in sector ݅ to total sales in sector ݅ and ܶ௦ᇱ�= 1 െ�
ܶ௦�We use the hat over symbols to designate growth rate. . 

23 The model description is modified from Banerjee, Barnett, Duzhak, and Gopalan (2011). 
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ii. Output Supply 

There are ܰ�identical firms in the ݅th sector, each using a Cobb-Douglas type production 

ܣ =�ݍ ,functionܭఈܮכ � �, with 0 >�ߚ ,�ߙ > 1, and 0 =�ߠ > 1 െ �െߙ �is the ݍ where ,1 >�ߚ �    �
product of a neutral technological change, labor, and capital augmentation factors. The 

aggregate nominal profit-maximizing output supply of each sector ݅ is given by ܵ�= 

ഇ ିݎഀିݓ
ഁ

ܰ ܲ

భ
� ഇ� ഇ�, where ܲ , ߱ �, and ݎ are the price, wage rate, and rental rate respectively. 

Converting to growth rates, output supply becomes 

መܵ�= ܰ�+ ߠ
1
݅
ܲ�െ ߙ

݅ߠ
݅ ෝ߱ െ ߚ

݅ߠ
݅ Ƹݎ . (8.3)  �

iii. Entry/Exit 

Banerjee, Barnett, Duzhak, and Gopalan (2011) consider the simplest form of the 

entry/exit equation proposed by Zellner and Israilevich (2005), 

ܰ�= ߛ[ߎ െ  ], (8.4)ܨ

where ߎ�= ߠ ܵ�is the current nominal aggregate industry profit for sector ݅�, while ܨ�> 0 

represents the aggregate long-run equilibrium profits in sector ݅�taking account of discounted ,

entry costs. These parameters are considered by Banerjee, Barnett, Duzhak, and Gopalan 

(2011) to be time invariant. The coefficient, ߛ�> 0, is the speed of adjustment for sector ݅�The . 

larger the value of ߛ�the faster the adjustment is. , 

The interpretation of the entry/exit equation in Banerjee, Barnett, Duzhak, and Gopalan 

(2011) is that a positive departure from equilibrium profits ܨ�will attract new firms into the 

industry, while a negative departure will induce firms to leave the industry, given ߛ�> 0. 

iv. Government 

According to Banerjee, Barnett, Duzhak, and Gopalan (2011), total nominal government 

expenditure, ܩ, is the sum of expenditures in each of the two sectors, ܩ, and its expenditure 

on labor, ܩ, and capital, ܩ . Zellner and Israilevich (2005) assume that ܩ, for all ݅  ,ܭ ,�ܮ ,1,2 =

grows at the same rate as ܩ. Under this assumption, Banerjee, Barnett, Duzhak, and Gopalan 
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ܭ ܭ ܭ

(2011) propose that ܩ� = �is the fraction of total government expenditure in theߞ �whereܩߞ ,

݅th market. Thus in terms of growth rates, we have ܩ� =ܩ . 

The government collects a single uniform tax at the rate ܶ௦�on output. The tax 

revenue ܴ is given by ܴ� ܶ௦ܵ, which is expressed as ܴ� ܶ ௦�+ መܵ in terms of growth rate. The = = 

exogenously determined deficit/surplus, ܦ, is defined as the government expenditures as a 

ܩ
percentage of revenues, i.e. ܦ ܴ. In terms of growth rate, we have = 

�ܩ ܦ + ܴ� ܦ + ܶ ௦�+ መܵ� (8.5) = = . 

v. Factor Markets 

According to Banerjee, Barnett, Duzhak, and Gopalan (2011), the aggregate profit-

maximizing factor demands from sector ݅ are ܮ� ߙ
߱
݅ܵ݅�and ܭ�

݅ߚ
ݎ
ܵ݅�. The government = = 

�ܮܩ �ܮ demand for labor and capital areܭܩ ߱�and ܭ� = ,�respectively. In terms of growth ratesݎ = 

the total demand for each factor is the weighted sum of growth rates of sectoral demands and 

the government demand for that factor, shown as below: 

�ܮ ܮ �݃ܮ
ܮ
ܮ +�ଵܮ 1

�ܮ +�ଶܮ 2 ݈ଵܮଵ�+ ݈ଶܮଶ�+ ݈ܮ, (8.6) ܮ� = 

ܭ ܭ +�ଵܭ 1݃ܭ �ܭ +�ଶܭ 2 ݇ଵܭଵ�+ ݇ଶܭଶ�+ ݇ܭ. (8.7) = 

The dependence of the weights is given in Appendix A in Banerjee, Barnett, Duzhak, and 

߱ ܵ
Gopalan (2011). According to Zellner and Israilevich (2005), ܮ = (ܲ) (ܲ) ೞ�and ܭ = 

ݎ ܵ
(ܲ)థ(ܲ)థೞ�, where ߜ (or ߶) and ߜ௦�(or ߶௦) are price and income elasticities of labor (or capital). 

In terms of growth rates, the labor and capital supplies equal 

�ܮ ൫ߜ ෝ߱ െ ܲ൯ ௦൫ߜ + መܵ െ ܲ൯� (8.8) = ,

�ܭ ߶൫ݎƸ െ ܲ൯ + ߶௦൫ መܵ െ ܲ൯� (8.9) = . 
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vi. Quantity and Price Aggregates 

The growth rates of aggregate nominal sales and the price aggregate are given by 

መ መ� መܵ�  = ଶܵଶ, (8.10)ݏ +�ଵܵଵݏ

ܲ� ଵݏ ܲଵ�+ ݏଶ ܲଶ, (8.11) = 

ܵ݅where ݏ�= ܵ . 

8.2.1. Solving the Model 

The MMM model is solved using market clearing conditions in all markets and the 

government’s flow budget identity. The complete solution procedure is outlined in Appendix A 

in Banerjee, Barnett, Duzhak, and Gopalan (2011). All the equations in the model are reduced 

to yield the following two dynamic equations that govern the behavior of ܵଵ�and ܵଶ: 

ሶ
ቈܵଵ�  ଵ࣠( ଵܵ, ܵ ଶ; ષ) ऐ(ܵଵ, ܵ ଶ; ષ).  ൨� (8.12) ሶ�= =ܵଶ� ࣠ଶ(ܵଵ, ܵ ଶ; ષ)

The explicit form of the non-linear functions, ଵ࣠�and ࣠ଶ, can be found in Appendix A in 

Banerjee, Barnett, Duzhak, and Gopalan (2011). The vector ષ consists of all structural 

parameters. The entry parameter for sector 1, ܨଵ, is taken as the bifurcation parameter in the 

following section. According to Appendix A in Banerjee, Barnett, Duzhak, and Gopalan (2011), 

ऐ( ଵܵ, ܵ ଶ; ષ) = (ऒ( ଵܵ, ܵ ଶ; ષ))ିଵऎ( ଵܵ, ܵ ଶ; ષ), (8.13) 

where ऒ is a matrix of dimension 2 × 2 and ऎ is a vector of dimension 2 × 1. The elements of 

ऒ and ऎ produce a high degree of nonlinearity in ऐ. In determining the dynamics of the 

equilibrium, several equilibria can arise. 

To solve for an equilibrium, (ܵଵ, ܵ ଶ), such that ሶܵ�= 0 and ሶܵ�= 0, it suffices to solve ଵ ଶ�
ऐ(ܵଵ, ܵ ଶ; ષ) = 0 in the system (8.12). From equation (8.13), the solutions at which ऎ = 0 will 

always be an equilibrium. Assuming there is no growth in government deficit, ܦ, and taxes, ܶ௦�, 
the solution is based on (8.4), so that 
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ܵଵ� ߠ
�ଵ�and ܵଶܨ 1 ߠ

= ଶ�. (8.14)ܨ 1 = 
1 2 

The positive solutions are economically relevant and produce long run equilibrium by 

ensuring that there is no further entry/exit in either sector. The next section surveys Banerjee, 

Barnett, Duzhak, and Gopalan’s (2011) results on stability and their bifurcation analysis of this 

equilibrium. 

8.3. Stability and Bifurcation Analysis of Equilibrium 

By generalizing the analysis of Veloce and Zellner’s (1985) one sector MMM model to 

two sectors, Banerjee, Barnett, Duzhak, and Gopalan (2011) analyze the dynamics in terms of 

convergence to the equilibrium given by (8.14). They consider the effects of cross price and 

income elasticities along with own price elasticities and emphasize two results that arise in the 

multisector model: (1) the solution may be stable, even when the two sectors have elastic 

demand; and (2) the path to the long run equilibrium may not be monotonic, so oscillatory 

damped convergence may arise. 

Banerjee, Barnett, Duzhak, and Gopalan (2011) explain the occurrence of oscillatory 

convergence to equilibrium in terms of economic theory. They begin the analysis by assuming 

that the two sectors produce normal goods, which are substitutes and have elastic demand, 

and assuming Sector 1 is out of equilibrium, so that ܵଵ�> ߠ
�ଵ, and ܵଶܨ 1 ߠ

 =<�ଶ. Since ܵଵܨ 1
1 2 

ߠ
 ଵ, current profitability is higher than equilibrium profitability, so entry takes place in Sectorܨ 1
1 

1. The increase of supply in Sector 1 causes a drop in Sector 1’s price, ଵܲ, and consequently 

causes sales, ܵଵ, having elastic demand, to increase. In addition, there is a decrease in Sector 

2’s demand, since the two goods are substitutes. There are two opposing effects on ܵଵ. If 

Sector 2’s demand decreases, both Sector 2’s price, ଶܲ, and quantity, ܳଶ, decline, leading to a 

decline in Sector 2’s sales, ܵଶ. If this decline in ܵଶ�is greater in magnitude than the initial 

increase in ܵଵ, then ܵ� ܵଵ�+ ܵଶ�will decline, resulting in a fall in ܵଵ. Hence cross price and = 

aggregate income effect may offset, having potentially destabilizing influence. 
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Banerjee, Barnett, Duzhak, and Gopalan (2011) further note that the decline in ଵܲ�causes 

a decrease in Sector 2’s demand and hence a decline in Sector 2’s sales, which drop below the 

equilibrium, so that ܵଶ�< ߠ
 ଶ. The result is an increase in ܵଶ�and consequently an increase inܨ 1
2

ܵଵ�through the income effect. Consequently the oscillatory convergence to equilibrium arises 

from interaction between the magnitudes of the shift and the elasticities. The mechanism 

depends largely on the own price, cross price, and income elasticities, and the magnitude of the 

shifts in demand and supply in each sector. Banerjee, Barnett, Duzhak, and Gopalan (2011) 

observe it is possible that the insufficiency of these shifts may result in the unstable solution, 

and they emphasize the importance of consistency between the elasticity parameters and the 

values of other parameters in production, input markets, entry/exit equations, and government 

policy. The possibility exists that the economy could change its convergence type, if some of 

these parameters were to change. 

Banerjee, Barnett, Duzhak, and Gopalan (2011) find the existence of a Hopf bifurcation, 

occurring when the Jacobian of ऐ has a pair of purely imaginary eigenvalues at some critical 

value of a bifurcation parameter. In the following analysis, they vary only parameter ܨଵ, while 

keeping all other parameters at values given in their paper’s Appendix B. To analyze a 

codimension-1 Hopf bifurcation for the system (8.12), they first search for the value of ( ଵܵ, ܵ ଶ)

and the bifurcation parameter (ܨଵ) satisfying the following conditions: 

(8.15) ଵ࣠( ଵܵ, ܵ ଶ, ܨଵ) = 0, 

(8.16) ࣠ଶ(ܵଵ, ܵ ଶ, ܨଵ) = 0, 

)۸ऐ)ݎݐ ଵܵ, ܵ ଶ, ܨଵ)) = 0, (8.17) 

ܵ ,൫۸ऐ(ܵଵݐ݁݀ ଶ, ܨଵ)൯ > 0, (8.18) 

where ۸ऐ�is the Jacobian of ऐ. 

Banerjee, Barnett, Duzhak, and Gopalan (2011) observe that equations (8.15) and (8.16) 

yield the equilibrium for the system of differential equations in (8.12). Conditions (8.17) and 

(8.18) ensure that the eigenvalues of ۸ऐ�are purely imaginary. They find the existence of a Hopf 

bifurcation at the computed critical value ܨு�= 6.070386762 by verifying that conditions 
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(8.17) and (8.18) are satisfied and the slope of the trace is not zero. Thus, as the parameter ܨଵ�
crosses ܨு�from the right, the solution given in (8.14) goes from a stable equilibrium to an 

unstable one. Banerjee, Barnett, Duzhak, and Gopalan (2011) illustrate that the system is locally 

spiraling inward for ܨଵ�> ܨு�and the system exhibits stable cycles in the phase space for ܨଵ,

close enough to ܨுand ܨଵ�< ܨு�. 

9. Conclusion 

At this stage of this research, we believe that Grandmont’s conclusions appear to hold 

for all categories of dynamic macroeconomic models, from the oldest to the newest. So far, the 

findings we have surveyed suggest that Barnett and He’s initial findings with the policy-relevant 

Bergstrom-Wymer model appear to be generic. We anticipate that further studies with other 

models will produce similar results, and advances in nonlinear and stochastic bifurcation are 

likely to find even deeper classes of bifurcation behavior, including perhaps chaos, which is 

precluded by linearization. This survey is designed to facilitate such future studies. 

The practical implications of these findings include the following. (1) Policy simulations 

with macroeconometric models should be run at various points within the confidence regions 

about parameter estimates, not just at the point estimates. Robustness of dynamical 

inferences based on simulations only at parameters’ point estimates is suspect. (2) Increased 

emphasis on measurement of variables is warranted, since small changes in variables can alter 

dynamical inferences by moving bifurcation boundaries and their distances from parameter 

point estimates. (3) While bifurcation phenomena are well known to growth model theorists, 

econometricians should take heed of the views of systems theorists, who have found that 

bifurcation stratification of the parameter space of dynamic systems is normal, and should not 

be viewed as a source of model failure or defect. 
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