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Summary* 

While credit cards provide transactions services, as do currency and demand deposits, credit cards have 

never been included in measures of the money supply. The reason is accounting conventions, which do 

not permit adding liabilities, such as credit card balances, to assets, such as money. However, economic 

aggregation theory and index number theory measure service flows and are based on microeconomic 

theory, not accounting. We derive theory needed to measure the joint services of credit cards and money. 

Carried forward rotating balances are not included in the current period weakly separable block, since they 

were used for transactions services in prior periods. The theory is developed for the representative 

consumer, who pays interest for the services of credit cards during the period used for transactions. This 

interest rate is reported by the Federal Reserve as the average over all credit card accounts, including 

those not paying interest. Based on our derived theory, we propose an empirical measurement of the 

joint services of credit cards and money. These new Divisia monetary aggregates are widely relevant to 

macroeconomic research.1 We evaluate the ability of our money aggregate measures to nowcast 

nominal GDP. This is currently topical, given proposals for nominal GDP targeting, which require monthly 

measures of nominal GDP. The nowcasts are estimated using only real time information, as available 

for policy makers at the time predictions are made. We use a multivariate state space model that takes 

into account asynchronous information inflow, as proposed in Barnett, Chauvet, and Leiva-Leon (2016). 

The model considers real time information that arrives at different frequencies and asynchronously, in 

addition to mixed frequencies, missing data, and ragged edges. The results indicate that the proposed 

parsimonious model, containing information on real economic activity, inflation, and the new 

augmented Divisia monetary aggregates, produces the most accurate real time nowcasts of nominal 

GDP growth. In particular, we find that inclusion of the new aggregate in our nowcasting model yields 

substantially smaller mean squared errors than inclusion of the previous Divisia monetary aggregates.  

Keywords: Credit Cards, Money, Credit, Aggregation Theory, Index Number Theory, Divisia Index, Risk, 

Asset Pricing, Nowcasting, Indicators. 

JEL Classification: C43, C53, C58, E01, E3, E40, E41, E51, E52, E58, G17. 

1The source of our data is the Center for Financial Stability, which is preparing to update and publicly release 
our new extended Divisia monetary aggregates monthly.  The new aggregates will also be available monthly to 
Bloomberg terminal users. Our model is specific to credit cards, and not to store cards or charge cards. 
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1. Introduction 

Most models of the monetary policy transmission mechanism operate through 

interest rates, and often involve a monetary or credit channel, but not both. See, e.g., 

Bernanke and Blinder (1988) and Mishkin (1996).  In addition, there are multiple 

versions of each mechanism, usually implying different roles for interest rates 

during the economy’s adjustment to central bank policy actions.  However, there is a 

more fundamental reason for separating money from credit.  While money is an 

asset, credit is a liability.  In accounting conventions, assets and liabilities are not 

added together.  But aggregation theory and economic index number theory are 

based on microeconomic theory, not accounting conventions.  Economic aggregates 

measure service flows. To the degree that money and some forms of credit produce 

joint services, those services can be aggregated.   

A particularly conspicuous example is credit card services, which are directly 

involved in transactions and contribute to the economy’s liquidity in ways not 

dissimilar to those of money.2 While this paper focuses on aggregation over 

monetary and credit card services, the basic principles could be relevant to some 

other forms of short term credit that contribute to the economy’s liquidity services, 

such as checkable lines of credit. 

While money is both an asset and part of wealth, credit cards are neither.  Hence 

credit cards are not money.  To the degree that monetary policy operates through a 

wealth effect (Pigou effect), as advocated by Milton Friedman, credit cards do not 

play a role.  But to the degree that the flow of monetary services is relevant to the 

economy, as through the demand for monetary services or as an indicator measure, 

the omission of credit card services from “money” measures induces a loss of 

information.  For example, Duca and Whitesell (1995) showed that a higher 

probability of credit card ownership was correlated with lower holdings of 

monetary transactions balances.  Clearly credit card services are a substitute for the 

2 We are indebted to Apostolos Serletis for his suggestion of this topic for research.  His suggestion is 
contained in his presentation as discussant of Barnett’s Presidential Address at the Inaugural 
Conference of the Society for Economic Measurement at the University of Chicago, August 18-20, 
2014.  The slides for Serletis’s discussion can be found online at 
http://sem.society.cmu.edu/conference1.html. 
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services of monetary transactions balances, perhaps to a much higher degree than 

the services of many of the assets included in traditional monetary aggregates, such 

as the services of nonnegotiable certificates of deposit. 

In this seminal paper, we use strongly simplifying assumptions.  We assume 

credit cards are used to purchase consumer goods.  All purchases are made at the 

beginning of periods, and payments for purchases are either by credit cards or 

money.  Credit card purchases are repaid to the credit card company at the end of 

the current period or at the end of a future period, plus interest charged by the 

credit card company. Stated more formally, all discrete time periods are closed on 

the left and open on the right. After aggregation over consumers, the expected 

interest rate paid by the representative credit card holder can be very high, despite 

the fact that some consumers pay no interest on credit card balances.  Future 

research is planned to disaggregate to heterogeneous agents, including consumers 

who repay soon enough to owe no interest. In the current model, such consumers 

affect the results only by decreasing the average interest rate paid by consumers on 

credit card balances aggregated over consumers. 

To reflect the fact that money and credit cards provide services, such as liquidity 

and transactions services, money and credit are entered into a derived utility 

function, in accordance with Arrow and Hahn’s (1971) proof.3 The derived utility 

function absorbs constraints reflecting the explicit motives for using money and 

credit card services.  Since this paper is about measurement, we need only assume 

the existence of such motives.  In the context of this research, we have no need to 

work backwards to reveal the explicit motives.  As has been shown repeatedly, any 

3 Our research in this paper is not dependent upon the simple decision problem we use for derivation 
and illustration.  In the case of monetary aggregation, Barnett (1987) proved that the same 
aggregator functions and index numbers apply, regardless of whether the initial model has money in 
the utility function or production function, so long as there is intertemporal separability of structure 
and separability of components over which aggregation occurs. That result is equally as applicable to 
our current results with augmented aggregation over monetary asset and credit card services.  While 
this paper uses economic index number theory, it should be observed that there also exists a 
statistical approach to index number theory. That approach produces the same results, with the 
Divisia index interpreted to be the Divisia mean using expenditure shares as probability.  See Barnett 
and Serletis (1990). 
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of those motives, including the highly relevant transactions motive, are consistent 

with existence of a derived utility function absorbing the motive.4 

Based on our derived theory, we propose an empirical measurement of the 

joint services of credit cards and money.  These new Divisia monetary aggregates 

are widely relevant to macroeconomic research.5 We evaluate the ability of our 

monetary services aggregate to nowcast nominal GDP. This objective is currently 

topical, given proposals for nominal GDP targeting, which requires monthly 

measures of nominal GDP.  The nowcasts are estimated using only real time 

information as available for policy makers at the time predictions are made. We use 

a multivariate state space model that takes into account asynchronous information 

inflow and potential parameter instability: the DYMIBREAK model proposed in 

Barnett, Chauvet, and Leiva-Leon (2016). The model considers real time information 

arriving at different frequencies and asynchronously, and takes into account 

potential nonstationarity, in addition to mixed frequencies, missing data, and ragged 

edges. The results indicate that the proposed model, containing information on real 

economic activity, inflation, interest rates, and the new Divisia monetary aggregates, 

produces the most accurate real time nowcasts of nominal GDP growth. In 

particular, we find that the inclusion of the new aggregate measures in our 

nowcasting model yields substantially smaller mean squared errors than inclusion 

of the previous Divisia monetary aggregates, which in turn had performed 

substantially better than the official simple sum monetary aggregates. 

2. Intertemporal Allocation 

4 The aggregator function is the derived function that always exists, if monetary and credit card 
services have positive value in equilibrium.  See, e.g., Samuelson (1948), Arrow and Hahn (1971), 
Stanley Fischer (1974), Phlips and Spinnewyn (1982), Quirk and Saposnik (1968), and Poterba and 
Rotemberg (1987).  Analogously, Feenstra (1986, p. 271) demonstrated “a functional equivalence 
between using real balances as an argument of the utility function and entering money into liquidity 
costs which appear in the budget constraints.” The converse mapping from money and credit in the 
utility function back to the explicit motive is not unique. But in this paper we are not seeking to 
identify the explicit motives for holding money or credit card balances.  
5The source of our data is the Center for Financial Stability, which is preparing to update and 
publically release our new extended Divisia monetary aggregates monthly.  The new aggregates will 
also be available monthly to Bloomberg terminal users. Our model is specific to credit cards, and not 
to store cards or charge cards. 
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We begin by defining the variables in the risk neutral case for the representative 

consumer: 

𝐱𝑠 = vector of per capita (planned) consumptions of N goods and services 

(including those of durables) during period 𝑠. 

𝐩𝑠 = vector of goods and services expected prices, and of durable goods 

expected rental prices during period 𝑠. 

= planned per capita real balances of monetary asset 𝑖 during𝑚𝑖𝑠 

period 𝑠 (𝑖 = 1,2, … , 𝑛). 

= planned per capita real expenditure with credit card type 𝑗 for transactions 𝑐𝑗𝑠 

during period s (𝑗 = 1,2, … , 𝑘).  In the jargon of the credit card industry, those 

contemporaneous expenditures are called “volumes.” 

𝑧𝑗𝑠 = planned per capita rotating real balances in credit card type j during period s 

from transactions in previous periods (𝑗 = 1,2, … , 𝑘). 

𝑦𝑗𝑠 = 𝑐𝑗𝑠 + 𝑧𝑗𝑠 = planned per capita total balances in credit type j during period s 

(𝑗 = 1,2, … , 𝑘). 

𝑟𝑖𝑠 = expected nominal holding period yield (including capital gains and losses) 

on monetary asset 𝑖 during period 𝑠 (𝑖 = 1,2, … , 𝑛). 

= expected interest rate on 𝑐𝑗𝑠.𝑒𝑗𝑠 

jse = expected interest rate on 𝑧𝑗𝑠. 

𝐴𝑠 = planned per capita real holdings of the benchmark asset during period 𝑠. 

𝑅𝑠 = expected (one-period holding) yield on the benchmark asset during 

period 𝑠. 

𝐿𝑠 = per capita labor supply during period 𝑠. 

𝑤𝑠 = expected wage rate during period 𝑠. 

The benchmark asset is defined to provide no services other than its expected 

yield, 𝑅𝑠, which motivates holding of the asset solely as a means of accumulating 

wealth.  As a result, 𝑅𝑠 is the maximum expected holding period yield available to 

consumers in the economy in period s from holding a secured asset.  The benchmark 
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asset is held to transfer wealth by consumers between multiperiod planning 

horizons, rather than to provide liquidity or other services. In contrast, jse  is not 

the interest rate on an asset and is not secured.  It is the interest rate on an 

unsecured liability, subject to substantial default and fraud risk.  Hence, jse can be 

higher than the benchmark asset rate, and historically has always been much higher 

than the benchmark asset rate.6 

It is important to recognize that the decision problem we model is not of a single 

economic agent, but rather of the “representative consumer,” aggregated over all 

consumers.  All quantities are therefore averaged over all consumers.  Gorman’s 

assumptions for the existence of a representative consumer are implicitly accepted, 

as is common in almost all modern macroeconomic theory having microeconomic 

foundations.  This modeling assumption is particularly important in understand the 

credit card quantities and interest rates used in our research.  About 20% of credit 

card holders in the United States do not pay explicit interest on credit card balances, 

since those credit card transactions are paid off by the end of the period. But the 

80% who do pay interest pay very high interest rates.7 The Federal Reserve 

provides two interest rate series for credit card debt.  One, jse , includes interest 

only on accounts that do pay interest to the credit card issuing banks, while the 

other series, 𝑒𝑗𝑠, includes the approximately 20% that do not pay interest.  The latter 

interest rate is thereby lower, since it is averaged over interest paid on both 

categories of accounts. Since we are modeling the representative consumer, 

aggregated over all consumers, 𝑒𝑗𝑠 is always less than jse  for all j and s.  The interest 

6 We follow the Center for Financial Stability (CFS) and the Bank of Israel in using the short term 
bank loan rate as a proxy for the benchmark rate.  That interest rate has always exceeded the interest 
rate paid by banks on deposit accounts and on all other monetary assets used in the CFS Divisia 
monetary aggregates, and has always been lower than the Federal Reserve’s reported average 
interest rate charged on credit card balances.  For detailed information on CFS data sources, see 
Barnett, Liu, Mattson, and Noort (2013). For the additional data sources used by the CFS to extend to 
credit card services, see Barnett and Su (2016). 
7 The following statement is from www.motherjones.com/kevin-drum/2011/10/americans-are-
clueless-about-their-credit-card-debt.  "In the four working age categories, about 50% of households 
think they have outstanding credit card debt, but the credit card companies themselves think about 
80% of households have outstanding balances." Since these percentages are of total households, 
including those having no credit cards, the percent of credit card holders paying interest might be 
even higher. 
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rate on rotating credit card balances, jse , is paid by all consumers who maintain 

rotating balances in credit cards.  But 𝑒𝑗𝑠 is averaged over those consumers who 

maintain such rotating balances and hence pay interest on contemporaneous credit 

card transactions (volumes) and those consumers who pay off such credit card 

transactions before the end of the period, and hence do not pay explicit interest on 

the credit card transactions.  The Federal Reserve provides data on both jse  and 𝑒𝑗𝑠. 

Although 𝑒𝑗𝑠 is less than jse , 𝑒𝑗𝑠 also has always been higher than the benchmark 

rate.    This observation is a reflection of the so-called credit card debt puzzle.8 

We use the latter interest rate, 𝑒𝑗𝑠, in our augmented Divisia monetary 

aggregates formula, since the contemporaneous per capita transactions volumes in 

our model are averaged over both categories of credit card holders. We do not 

include rotating balances used for transactions in prior periods, since to do so would 

involve double counting of transactions services.   

The expected interest rate, 𝑒𝑗𝑠, can be explicit or implicit, and applies to the 

aggregated representative consumer.  For example, an implicit part of that interest 

rate could be in the form of an increased price of the goods purchased or in the form 

of a periodic service fee or membership fee.  But we use only the Federal Reserve’s 

average explicit interest rate series, which is lower than the one that would include 

implicit interest. Nevertheless, that downward biased explicit rate of return to credit 

card companies, 𝑒𝑗𝑠, aggregated over consumers, tends to be very high, far 

exceeding 𝑅𝑠, even after substantial losses from fraud. 

It is also important to recognize that we are using the credit card industry’s 

definition of “credit card,” which excludes “store cards” and “charge cards.”  

According to the trade’s definition, “store cards” are issued by businesses providing 

credit only for their own goods, such as gasoline company credit cards or 

department store cards.  To be a “credit card” by the trade’s definition, the card 

must be accepted for all goods in the economy not constrained to cash-only sales.  

8See, e.g., Telyukova and Wright (2008), who view the puzzle as a special case of the rate dominance 
puzzle in monetary economics.  The “credit card debt puzzle” asks why people do not pay down debt, 
when receiving low interest rates on deposits, while simultaneously paying higher interest rates on 
credit card debt. 
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“Charge cards” can be widely accepted for goods purchases, but do not charge 

interest, since the debt must be paid off by the end of the period.  To be a “credit 

card,” the card must provide a line of credit to the card holder with interest charged 

on purchases not paid off by the end of the period.  For example, American Express 

provides both charge cards and credit cards.  The first credit card was provided by 

Bank of America.  There now are four sources of credit card services in the United 

States:  Visa, Mastercard, Discover, and American Express. From American Express, 

we use only their credit card account services, not their charge cards. We use data 

from only those four sources, in accordance with the credit card industry’s 

conventional definition of “credit card.” 

We let 𝑢𝑡 be the representative consumer’s current intertemporal utility 

function at time t over the T-period planning horizon. We assume that 𝑢𝑡 is weakly 

separable in each period’s consumption of goods and monetary assets, so that 𝑢𝑡 can 

be written in the form 

𝑢𝑡 = 𝑢𝑡(𝐦𝑡, … , 𝐦𝑡+𝑇; 𝐜𝑡, … , 𝐜𝑡+𝑇; 𝐱𝑡, … , 𝐱𝑡+𝑇; 𝐴𝑡+𝑇)

 = 𝑈𝑡(𝑣(𝐦𝑡, 𝐜𝑡), 𝑣𝑡+1(𝐦𝑡+1, 𝐜𝑡+1), … , 𝑣𝑡+𝑇(𝐦𝑡+𝑇, 𝐜𝑡+𝑇);

 𝑉(𝐱𝑡), 𝑉𝑡+1(𝐱𝑡+1), … , 𝑉𝑡+𝑇(𝐱𝑡+𝑇); 𝐴𝑡+𝑇), (1) 

for some monotonically increasing, linearly homogeneous, strictly quasiconcave 

functions, 𝑣, 𝑣𝑡+1, … , 𝑣𝑡+𝑇, 𝑉, 𝑉𝑡+1, … , 𝑉𝑡+𝑇.The function 𝑈𝑡 also is monotonically 

increasing, but not necessarily linearly homogeneous. Note that ct, not yt, is in the 

utility function.  The reason is that yt includes rotation balances, zt, resulting from 

purchases in prior periods.  To include yt in the utility function would introduce a 

form of double counting into our aggregation theory by counting prior transactions 

services more than once. Those carried forward balances provided transactions 

services in previous periods and were therefore in the utility function for that 

period. Keeping those balances in the utility function for the current period would 

imply existence of a different kind of services from the transactions and liquidity 

services we are seeking to measure. 
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Dual to the functions, 𝑉and 𝑉𝑠(𝑠 = 𝑡 + 1, … , 𝑡 + 𝑇), there exist current and 

∗ ∗planned true cost of living indexes, 𝑝𝑡 = 𝑝(𝐩𝑡) and 𝑝𝑠 = 𝑝𝑠
∗(𝐩𝑠)(𝑠 = 𝑡 + 1, … , 𝑡 + 𝑇). 

Those indexes, which are the consumer goods unit cost functions, will be used to 

deflate all nominal quantities to real quantities, as in the definitions of 𝑚𝑖𝑠, 𝑐𝑗𝑠, and 

𝐴𝑠 above. 

Assuming replanning at each t, we write the consumer’s decision problem during 

each period 𝑠(𝑡 ≤ 𝑠 ≤ 𝑡 + 𝑇) within the planning horizon to be to choose 

(𝐦𝑡, … , 𝐦𝑡+𝑇; 𝐜𝑡, … , 𝐜t+T; 𝐱𝑡, … , 𝐱𝑡+𝑇; 𝐴𝑡+𝑇) ≥ 𝟎 to 

max 𝑢𝑡(𝐦𝑡, … , 𝐦𝑡+𝑇; 𝐜𝑡, … , 𝐜𝑡+𝑇; 𝐱𝑡, … , 𝐱𝑡+𝑇; 𝐴𝑡+𝑇), 

subject to 

𝑛 

∗𝐩𝑠
′ 𝐱𝑠 = 𝑤𝑠𝐿𝑠 + ∑[(1 + 𝑟𝑖,𝑠−1)𝑝𝑠−1𝑚𝑖,𝑠−1 − 𝑝𝑠

∗𝑚𝑖𝑠] 
𝑖=1 

𝑘 

∗ + ∑[𝑝𝑠
∗𝑐𝑗𝑠 − (1 + 𝑒𝑗,𝑠−1)𝑝𝑠−1𝑐𝑗,𝑠−1]                    (2) 

𝑗=1 

𝑘 

∗ ∗+ ∑ [𝑝𝑠
∗𝑧𝑗𝑠 − (1 + , 1j se 

) 𝑝𝑠−1𝑧𝑗,𝑠−1] + [(1 + 𝑅𝑠−1)𝑝𝑠−1𝐴𝑠−1 

𝑗=1 

− 𝑝𝑠
∗𝐴𝑠]. 

Planned per capita total balances in credit type j during period s are then 𝑦𝑗𝑠 = 𝑐𝑗𝑠 + 

𝑧𝑗𝑠. 

Equation (2) is a flow of funds identity, with the right hand side being funds 

available to purchase consumer goods during period s. On the right hand side, the 

first term is labor income.  The second term is funds absorbed or released by rolling 

over the monetary assets portfolio, as explained in Barnett (1980).  The third term is 

particularly important to this paper.  That term is the net change in credit card debt 

during period s from purchases of consumer goods, while the fourth term is the net 

change in rotating credit card debt.  The fifth term is funds absorbed or released by 

rolling over the stock of the benchmark asset, as explained in Barnett (1980).  The 
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third term on the right side is specific to current period credit card purchases, while 

the fourth term is not relevant to the rest of our results, since 𝑧𝑗𝑠 is not in the utility 

function.  Hence 𝑧𝑗𝑠 is not relevant to the user cost prices, conditional decisions, or 

aggregates in the rest of this paper. 

Let 

1,                    𝑖𝑓 𝑠 = 𝑡, 
𝑠−1 

𝜌𝑠 = {
∏(1 + 𝑅𝑢) , 𝑖𝑓 𝑡 + 1 ≤ 𝑠 ≤ 𝑡 + 𝑇.  

(3) 

𝑢=𝑡 

We now derive the implied Fisherine discounted wealth constraint. The 

derivation procedure involves recursively substituting each flow of funds identity 

into the previous one, working backwards in time, as explained in Barnett (1980).  

The result is the following wealth constraint at time t: 
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It is important to understand that (4) is directly derived from (2) without any 

additional assumptions.  As in Barnett (1978, 1980), we see immediately that the 

nominal user cost (equivalent rental price) of monetary asset holding 𝑚𝑖𝑠 (𝑖 = 

1,2, … , 𝑛) is 

∗𝑝𝑠 𝑝𝑠
∗(1 + 𝑟𝑖𝑠) 

= − .𝜋𝑖𝑠 𝜌𝑠 𝜌𝑠+1 
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So the current nominal user cost price, 𝜋𝑖𝑡, of 𝑚𝑖𝑡 reduces to 

𝑝𝑡
∗(𝑅𝑡 − 𝑟𝑖𝑡)

𝜋𝑖𝑡 = . (5) 
1 + 𝑅𝑡 

Likewise, the nominal user cost (equivalent rental price) of credit card transactions 

services, 𝑐𝑗𝑠 (𝑗 = 1,2, … , 𝑘), is 

∗𝑝𝑠
∗(1 + 𝑒𝑗𝑠) 𝑝𝑠 

�̃�𝑗𝑡 = − . 
𝜌𝑠+1 𝜌𝑠 

Finally, the current period nominal user cost, �̃�𝑗𝑡, of 𝑐𝑗𝑡 reduces to 

𝑝𝑡
∗(1 + 𝑒𝑗𝑡) 

∗�̃�𝑗𝑡 = − 𝑝𝑡 (6)
1 + 𝑅𝑡 

𝑝𝑡
∗(𝑒𝑗𝑡 − 𝑅𝑡)

 = . (7)
1 + 𝑅𝑡 

Equation (7) is a new result central to most that follows in this paper.9 The 

corresponding real user costs are 

𝜋𝑖𝑠 ∗ = (8a) 𝜋𝑗𝑠 ∗𝑝𝑠 

and 

�̃�𝑗𝑡 ∗𝜋 = . (8𝑏) ̃𝑗𝑠 ∗𝑝𝑠 

Equation (6) is particularly revealing.  To consume the transactions services of 

credit card type j, the consumer borrows 𝑝𝑡
∗ dollars per unit of goods purchased at 

the start of the period during which the goods are consumed, but repays the credit 

9 The same user cost formula applies in the infinite planning horizon case, but the derivation is 
different. The derivation applicable in that case is in the Appendix. 
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card company 𝑝𝑡
∗(1 + 𝑒𝑗𝑡) dollars at the end of the period.  The lender will not 

provide that one period loan to the consumer unless 𝑒𝑗𝑡 > 𝑅𝑡, because of the ability 

of the lender to earn 𝑅𝑡 without making the unsecured credit card loan. The 

assumption that consumers do not have access to higher expected yields on secured 

assets than the benchmark rate does not apply to firms providing unsecured 

liabilities, such as credit card firms. Hence the user cost price in (7) is nonnegative.10 

Equivalently, equation (7) can be understood in terms of the delay between the 

goods purchase date and the date of repayment of the loan to the credit card 

company.  During the one period delay, the consumer can invest the cost of the 

goods purchase at rate of return 𝑅𝑡 . Hence the net real cost to the consumer of the 

credit card loan, per dollar borrowed, is 𝑒𝑗𝑡 − 𝑅𝑡 . Multiplication by the true cost of 

living index in the numerator of (7) converts to nominal dollars and division by 

1 + 𝑅𝑡 discounts to present value within the time period. 

3.  Conditional Current Period Allocation 

∗We define 𝒥𝑡   to be real, and 𝒥𝑡 nominal, expenditure on augmented monetary 

services --- augmented to include the services of contemporaneous credit card 

transactions charges. The assumptions on homogeneous blockwise weak 

separability of the intertemporal utility function, (1), are sufficient for consistent 

two-stage budgeting.  See Green (1964, theorem 4). In the first stage, the aggregated 

representative consumer selects real expenditure on augmented monetary 

∗services, 𝒥𝑡 , and on aggregate consumer goods for each period within the planning 

horizon, along with terminal benchmark asset holdings, 𝐴𝑡+𝑇 . 

10 Our model is of the representative consumer, aggregated over all credit card holders.  In an 
extension to heterogeneous agents, we would separate out consumers who repay the credit card 
company soon enough to avoid interest on the loan. That possibility could be viewed as a special 
case of our current model, in which the consumer repays immediately.  In that special case, there is 
no discounting between purchase and repayment, and no interest is charged.  The services of the 
credit card company become a free good with user cost price of zero.  The credit card debt then 
disappears from the flow of funds equation, (2), since the credit cards provide no net services to the 
economy, and serve as instantaneous intermediaries in payment of goods purchased with money. If 
this were the case for the representative consumer, aggregated over all consumers, the model would 
be of a charge card, not a credit card.  As explained in section 2, we do not consider charge cards or 
store cards, only credit cards.  
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In the second stage, 𝒥𝑡
∗ is allocated over demands for the current period services 

of monetary assets and credit cards. That decision is to select 𝐦𝑡 and 𝐜𝑡 to 

max 𝑣(𝐦𝑡, 𝐜𝑡),               (9) 

subject to 

′ ′ ∗𝛑∗
𝑡𝐦𝑡 + �̃�∗

𝑡𝐜𝑡 = 𝒥𝑡 ,        (10) 

where𝒥𝑡
∗ is expenditure on augmented monetary services allocated to the current 

period in the consumer’s first-stage decision. 

The rotating balances, 𝑧𝑗𝑠, from previous periods, not used for transactions this 

period, add a flow of funds term to the constraints, (2), but do not appear in the 

utility function.  As a result, 𝑧𝑗𝑠 does not appear in the utility function, (9), or on the 

left side of equation (10), but does affect the right side of (10).  To implement this 

theory empirically, we need data on total credit card transactions volumes each 

period, 𝑐𝑗𝑠, not just the total balances in the accounts, 𝑐𝑗𝑠 + 𝑧𝑗𝑠.11 While those 

volumes are much more difficult to find than credit card balances, we have been 

able to acquire those current period volumes from the annual reports of the four 

credit card companies. For details on available sources, see Barnett and Su (2016). 

4.  Aggregation Theory 

11 Credit card companies provide a line of credit to consumers, with interest and any late payments 
added after the due date.  New purchases are added as debt to the balance after the due date has 
passed.  Many consumers having balances, zjs, pay only the “minimum payment” due. That decision 
avoids a late charge, but adds the unpaid balance to the stock of debt and boosts the interest due. 
Depending upon the procedure for aggregating over consumers, the interest rate on cjs could be 
different from the interest rate on zjs, with the former interest rate being the one that should be used 
in our user cost formula. 
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The exact quantity aggregate is the level of the indirect utility produced by 

solving problem ((9),(10)): 

ℳ𝑡 = max {𝑣(𝐦𝑡, 𝐜𝑡): 𝛑𝑡
′ 𝐦𝑡 + �̃�𝑡

′ 𝐜𝑡 = 𝒥𝑡} (11) 

′ ′ = max {𝑣(𝐦𝑡, 𝐜𝑡): 𝛑∗
𝑡𝐦𝑡 + �̃�∗

𝑡𝐜𝑡 = 𝒥𝑡
∗}, 

where we define ℳ𝑡 = ℳ(𝐦𝑡, 𝐜𝑡) = 𝑣(𝐦𝑡, 𝐜𝑡) to be the “augmented monetary 

aggregate” --- augmented to aggregate jointly over the contemporaneous services of 

money and credit cards.  The category utility function 𝑣 is the aggregator function 

we assume to be linearly homogeneous in this section. Dual to any exact quantity 

aggregate, there exists a unique price aggregate, aggregating over the prices of the 

goods or services. Hence there must exist an exact nominal price aggregate over the 

user costs (𝛑𝑡, �̃�𝑡). As shown in Barnett (1980,1987), the consumer behaves 

relative to the dual pair of exact monetary quantity and price aggregates as if they 

were the quantity and price of an elementary good.  The same result applies to our 

augmented monetary quantity and dual user cost aggregates. 

One of the properties that an exact dual pair of price and quantity aggregates 

satisfies is Fisher’s factor reversal test, which states that the product of an exact 

quantity aggregate and its dual exact price aggregate must equal actual expenditure 

on the components. Hence, if 𝛱(𝛑𝑡, �̃�𝑡) is the exact user cost aggregate dual to ℳ𝑡 , 

then 𝛱(𝛑𝑡, �̃�𝑡) must satisfy 

𝒥𝑡 
𝛱(𝛑𝑡, �̃�𝑡) = . (12) 

ℳ𝑡 

Since (12) produces a unique solution for 𝛱(𝛑𝑡, �̃�𝑡), we could use (12) to define the 

price dual to ℳ𝑡 . In addition, if we replace ℳ𝑡 by the indirect utility function defined 

by (11) and use the linear homogeneity of 𝑣, we can show that 𝛱 = 𝛱(𝛑𝑡, �̃�𝑡), 

defined by (12), does indeed depend only upon (𝛑𝑡, �̃�𝑡), and not upon (𝐦𝑡, 𝐜𝑡) or 𝒥𝑡. 

See Barnett (1987) for a version of the proof in the case of monetary assets. The 
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conclusion produced by that proof can be written in the form 

𝛱(𝛑𝑡, �̃�𝑡) = [ 𝑚𝑎𝑥 {𝑣(𝐦𝑡, 𝐜𝑡): 𝛑 ′𝑡𝐦𝑡 + �̃�′
𝑡𝐜𝑡 = 1}]−1 ,  (13) 

(𝐦𝑡,𝐜𝑡) 

which clearly depends only upon (𝛑𝑡, �̃�𝑡). 

Although (13) provides a valid definition of 𝛱, there also exists a direct 

definition that is more informative and often more useful. The direct definition 

depends upon the cost function 𝐸, defined by 

𝐸(𝑣0, 𝛑𝑡, �̃�𝑡) = 𝑚𝑖𝑛 {𝛑′
𝑡𝐦𝑡 + �̃�′

𝑡𝐜𝑡: 𝑣(𝐦𝑡, 𝐜𝑡) = 𝑣0}, 
(𝐦𝑡,𝐜𝑡) 

which equivalently can be acquired by solving the indirect utility function equation 

(11) for 𝒥𝑡 as a function of ℳ𝑡 = 𝑣(𝐦𝑡, 𝐜𝑡) and (𝛑𝑡, �̃�𝑡). Under our linear 

homogeneity assumption on 𝑣, it can be proved that

 𝛱(𝛑𝑡, �̃�𝑡) = 𝐸(1, 𝛑𝑡, �̃�𝑡) 

= min {𝛑 ′𝑡𝐦𝑡 + �̃�′
𝑡𝐜𝑡: 𝑣(𝐦𝑡, 𝐜𝑡) = 1}, (14) 

(𝐦𝑡,𝐜𝑡) 

Which is often called the unit cost or price function. 

The unit cost function is the minimum cost of attaining unit utility level for 

𝑣(𝐦𝑡, 𝐜𝑡) at given user cost prices (𝛑𝑡, �̃�𝑡). Clearly, (14) depends only upon(𝛑𝑡, �̃�𝑡). 

𝒥𝑡 Hence by (12) and (14), we see that 𝛱(𝛑𝑡, �̃�𝑡) = ⁄ = 𝐸(1, 𝛑𝑡, �̃�𝑡).ℳ𝑡 

5. Preference Structure over Financial Assets 

5.1. Blocking of the Utility Function 

While our primary objective is to provide the theory relevant to joint 

aggregation over monetary and credit card services, subaggregation separately over 

monetary asset services and credit card services can be nested consistently within 
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the joint aggregates. The required assumption is blockwise weak separability of 

money and credit within the joint aggregator function.  In particular, we would then 

assume the existence of functions ῦ, 𝑔1, 𝑔2, such that 

𝑣(𝐦𝑡, 𝐜𝑡) = ῦ(𝑔1(𝐦𝑡), 𝑔2(𝐜𝑡)), (15) 

with the functions 𝑔1 and 𝑔2 being linearly homogeneous, increasing, and 

quasiconcave. 

We have nested weakly separable blocks within weakly separable blocks to 

establish a fully nested utility tree. As a result, an internally consistent multi-stage 

budgeting procedure exists, such that the structured utility function defines the 

quantity aggregate at each stage, with duality theory defining the corresponding 

user cost price aggregates. 

In the next section we elaborate on the multi-stage budgeting properties of 

decision ((9),(10)) and the implications for quantity and price aggregation. 

5.2. Multi-stage Budgeting 

Our assumptions on the properties of 𝑣 are sufficient for a two-stage solution of 

the decision problem ((9),(10)), subsequent to the two-stage intertemporal solution 

that produced ((9),(10)).  The subsequent two-stage decision is exactly nested 

within the former one. 

Let 𝑀𝑡 = 𝑀(𝐦𝑡) be the exact aggregation-theoretic quantity aggregate over 

monetary assets, and let 𝐶𝑡 = 𝐶(𝐜𝑡) be the exact aggregation-theoretic quantity 

∗aggregate over credit card services.  Let 𝛱𝑚 = 𝛱𝑚(𝛑𝑡
∗) be the real user costs 

∗aggregate (unit cost function) dual to 𝑀(𝐦𝑡), and let 𝛱𝑐 = 𝛱𝑐(�̃�∗
𝑡) be the user costs 

aggregate dual to 𝐶(𝐜𝑡). The first stage of the two-stage decision is to select 𝑀𝑡 and 

𝐶𝑡 to solve 

max ῦ(𝑀𝑡, 𝐶𝑡) (16)
(𝐦𝑡,𝐜𝑡) 
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subject to 

∗𝛱𝑚
∗ 𝑀𝑡 + 𝛱𝑐

∗𝐶𝑡 = 𝒥𝑡 . 

From the solution to problem (16), the consumer determines aggregate real 

expenditure on monetary and credit card services, 𝛱𝑚
∗ 𝑀𝑡and 𝛱𝑐

∗𝐶𝑡 . 

In the second stage, the consumer allocates 𝛱𝑚
∗ 𝑀𝑡 over individual monetary 

assets, and allocates 𝛱𝑐
∗𝐶𝑡 over services of individual types of credit cards. She does 

so by solving the decision problem: 

max 𝑔1(𝐦𝑡), (17) 
𝐦𝒕 

subject to 

∗′ 𝛑𝑡 𝐦𝑡 = 𝛱𝑚
∗ 𝑀𝑡. 

Similarly, she solves 

max 𝑔2(𝒄𝑡),             (18) 
𝐜𝐭 

subject to 

∗′ �̃�𝑡 𝐜𝑡 = 𝛱𝑐
∗𝐶𝑡. 

The optimized value of decision (17)’s objective function, 𝑔1(𝒎𝑡), is then the 

monetary aggregate, 𝑀𝑡 = 𝑀(𝐦𝑡), while the optimized value of decision (18)’s 

objective function, 𝑔2(𝐜t), is the credit card services aggregate, 𝐶𝑡 = 𝐶(𝐜𝑡). 

Hence, 

∗′ 𝑀𝑡 = max {𝑔1(𝐦𝑡): 𝛑𝑡 𝐦𝑡 = 𝛱𝑚
∗ 𝑀𝑡} (19) 

and 

∗′ 𝐶𝑡 = max {𝑔2(𝐜𝑡): �̃�𝑡 𝐜𝑡 = 𝛱𝑐
∗𝐶𝑡}. (20) 
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It then follows from (11) and (15) that the optimized values of the monetary and 

credit card quantity aggregates are related to the joint aggregate in the following 

manner: 

ℳ𝑡 = ῦ(𝑀𝑡, 𝐶𝑡).              (21) 

6. The Divisia Index 

We advocate using the Divisia index, in its Törnqvist (1936) discrete time 

version, to track ℳ𝑡 = ℳ(𝐦𝑡, 𝐜𝑡), as Barnett (1980) has previously advocated for 

tracking 𝑀𝑡 = 𝑀(𝐦𝑡). If there should be reason to track the credit card aggregate 

separately, the Törnqvist-Divisia index similarly could be used to track 𝐶𝑡 = 𝐶(𝐜𝑡). 

If there is reason to track all three individually, then after measuring 𝑀𝑡 and 𝐶𝑡 , the 

joint aggregate ℳ𝑡 could be tracked as a two-good Törnqvist-Divisia index using 

(21), rather as an aggregate over the n + k disaggregated components, (𝐦𝑡, 𝐜𝑡). The 

aggregation theoretic procedure for selecting the 𝑛 + 𝑚 component assets is 

described in Barnett (1982). 

6.1. The Linearly Homogeneous Case 

It is important to understand that the Divisia index (1925,1926) in continuous 

time will track any aggregator function without error.  To understand why, it is best 

to see the derivation.  The following is a simplified version based on Barnett (2012, 

pp. 290-292), adapted for our augmented monetary aggregate, which aggregates 

jointly over money and credit card services. The derivation is equally as relevant to 

separate aggregation over monetary assets or credit cards, so long as the prices in 

the indexes are the corresponding user costs, ((5),(7)).  Although Francois Divisia 

(1925, 1926) derived his consumer goods index as a line integral, the simplified 

approach below is mathematically equivalent to Divisia’s original method. 

At instant of continuous time, t, consider the quantity aggregator function, ℳ𝑡 = 

ℳ(𝐦𝑡, 𝐜𝑡) = 𝑣(𝐦𝑡, 𝐜𝑡), with components (𝐦𝑡, 𝐜𝑡), having user cost prices (𝛑𝑡, �̃�𝑡). 
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𝑎 ′ 𝑎 Let 𝐦𝑡 = (𝐦′
𝑡, 𝐜𝑡)′and 𝛑𝑡 = (𝛑𝑡

′ , �̃�′
𝑡)′. Take the total differential of ℳ to get 

𝑛+𝑘 
𝜕ℳ 

𝑎) = 𝑎 𝑑ℳ(𝐦𝑡 ∑  𝑑𝑚𝑖𝑡 . (22) 𝑎 𝜕𝑚𝑖𝑡 𝑖=1 

Since 𝜕ℳ/𝜕𝑚𝑖𝑡 contains the unknown parameters of the function ℳ, we replace 

each of those marginal utilities by 𝜆𝜋𝑖𝑡
𝑎 = 𝜕ℳ/𝜕𝑚𝑖𝑡 which is the first-order 

condition for expenditure constrained maximization of ℳ, where 𝜆 is the Lagrange 

multiplier, and 𝜋𝑖𝑡
𝑎  is the user-cost price of 𝑚𝑖𝑡

𝑎  at instant of time t. 

We then get 

𝑛+𝑘 𝑎)𝑑ℳ(𝐦𝑡 𝑎 = ∑ 𝜋𝑖𝑡
𝑎 𝑑𝑚𝑖𝑡 , (23) 

𝜆 
𝑖=1 

which has no unknown parameters on the right-hand side. 

For a quantity aggregate to be useful, it must be linearly homogeneous. A case in 

which the correct growth rate of an aggregate is clearly obvious is the case in which 

all components are growing at the same rate. As required by linear homogeneity, we 

would expect the quantity aggregate would grow at that same rate. Hence we shall 

assume ℳ to be linearly homogeneous. 

Define 𝛱𝑎(𝛑𝑡
𝑎) to be the dual price index satisfying Fisher’s factor reversal test, 

𝛱𝑎(𝛑𝑡
𝑎)ℳ(𝐦𝑎

𝑡 ) = 𝛑𝑡
𝑎′𝐦𝑎

𝑡 . In other words, define 𝛱𝑎(𝛑𝑡
𝑎) to equal 𝛑𝑎

𝑡 ’𝐦𝑡
𝑎/ ℳ(𝐦𝑎

𝑡 ), 

which can be shown to depend only upon 𝛑𝑡
𝑎, when ℳ is linearly homogeneous. 

Then the following lemma holds. 

Lemma 1: Let 𝜆 be the Lagrange multiplier in the first order conditions for solving the 

constrained maximization ((9),(10)), and assume that 𝑣 is linearly homogeneous.  

Then 

1 
𝜆 = 𝑎)𝛱𝑎(𝛑𝑡 
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Proof: See Barnett (2012, p. 291). ∎ 

From Equation (23), we therefore find the following: 

𝑛+𝑘 

𝑎) = 𝑎 𝛱𝑎(𝛑𝑡
𝑎)𝑑ℳ(𝐦𝑡 ∑ 𝜋𝑖

𝑎𝑑𝑚𝑖 . (24) 
𝑖=1 

Manipulating Equation (24) algebraically to convert to growth rate (log change) 

form, we find that 

𝑛+𝑘 

𝑎) = 𝑎 𝑑𝑙𝑜𝑔 ℳ(𝐦𝑡 ∑ 𝜔𝑖𝑡 𝑑𝑙𝑜𝑔 𝑚𝑖 ,            (25) 
𝑖=1 

where 𝜔𝑖𝑡 = 𝜋𝑖
𝑎𝑚𝑖

𝑎/𝛑𝑡
𝑎′𝐦𝑎

𝑡  is the value share of 𝑚𝑖
𝑎 in total expenditure on the 

services of 𝐦𝑡
𝑎. Equation (25) is the Divisia index in growth rate form. In short, the 

growth rate of the Divisia index, ℳ(𝐦𝑡
𝑎), is the share weighted average of the 

growth rates of the components.12 Notice that there were no assumptions at all in 

the derivation about the functional form of ℳ, other than existence (i.e., weak 

separability within the structure of the economy) and linear homogeneity of the 

aggregator function. 

If Divisia aggregation was previously used to aggregate separately over money 

and credit card services, then equation (25) can be replaced by a two-goods Divisia 

index aggregating over the two subaggregates, in accordance with equation (21). 

12 While widespread empirical results are not yet available for the augmented Divisia monetary 
aggregate, ℳ(𝐦𝑡

𝑎), extensive empirical results are available for the un-augmented Divisia monetary 
aggregates, 𝑀(𝐦𝑡). See, e.g., Barnett (2012), Barnett and Chauvet (2011a,b), Barnett and Serletis 
(2000), Belongia and Ireland (20141,b,c), and Serletis and Gogas (2014). 
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6.2. The Nonlinearly Homogeneous Case 

For expositional simplicity, we have presented the aggregation theory 

throughout this paper under the assumption that the category utility functions, 𝑣, 𝑔1, 

and 𝑔2, are linearly homogeneous.  In the literature on aggregation theory, that 

assumption is called the “Santa Claus” hypothesis, since it equates the quantity 

aggregator function with the welfare function.  If the category utility function is not 

linearly homogeneous, then the utility function, while still measuring welfare, is not 

the quantity aggregator function.  The correct quantity aggregator function is then 

the distance function in microeconomic theory.  While the utility function and the 

distance function both fully represent consumer preferences, the distance function, 

unlike the utility function, is always linearly homogenous. When normalized, the 

distance function is called the Malmquist index. 

In the latter case, when welfare measurement and quantity aggregation are not 

equivalent, the Divisia index tracks the distance function, not the utility function, 

thereby continuing to measure the quantity aggregate, but not welfare.  See Barnett 

(1987) and Caves, Christensen, and Diewert (1982). Hence the only substantive 

assumption in quantity aggregation is blockwise weak separability of components.  

Without that assumption there cannot exist an aggregate to track. 

6.3. Discrete Time Approximation to the Divisia Index 

If (𝐦𝑡, 𝐜𝑡) is acquired by maximizing (9) subject to (10) at instant of time t, then 

𝑣(𝐦𝑡, 𝐜𝑡) is the exact augmented monetary services aggregate, ℳ𝑡 , as written in 

equation (11).  In continuous time, ℳ𝑡 = 𝑣(𝐦𝑡, 𝐜𝑡) can be tracked without error by 

the Divisia index, which provides ℳ𝑡 as the solution to the differential equation 
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𝑛 𝑘 
𝑑𝑙𝑜𝑔 ℳ𝑡 𝑑𝑙𝑜𝑔 𝑚𝑖𝑡 𝑑𝑙𝑜𝑔 𝑐𝑗𝑡 

= ∑ 𝜔𝑖𝑡 + ∑ 𝜔  , (26) �̃�𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 
𝑖=1 𝑗=1 

in accordance with equation (25).  The share 𝜔𝑖𝑡 is the expenditure share of 

monetary asset i in the total services of monetary assets and credit cards at instant 

of time t, 

𝜔𝑖𝑡 = 𝜋𝑖𝑡𝑚𝑖𝑡/(𝛑𝑡
′ 𝐦𝑡 + �̃�′

𝑡𝐜𝑡), 

while the share �̃�𝑖𝑡 is the expenditure share of credit card services, i, in the total 

services of monetary assets and credit cards at instant of time t, 

�̃�𝑖𝑡 = �̃�𝑖𝑡𝑐𝑖𝑡/(𝛑𝑡
′ 𝐦𝑡 + �̃�′

𝑡𝐜𝑡). 

Note that the time path of (𝐦𝑡, 𝐜𝑡) must continually maximize (9) subject to (10), in 

order for (26) to hold. 

In discrete time, however, many different approximations to (25) are possible, 

because 𝜔𝑖𝑡 and �̃�𝑖𝑡 need not be constant during any given time interval.  By far the 

most common discrete time approximations to the Divisia index is the Törnqvist-

Theil approximation (often called the Törnqvist (1936) index or just the Divisia 

index in discrete time).  That index can be viewed as the Simpson’s rule 

approximation, where t is the discrete time period, rather than an instant of time: 

𝑎 𝑙𝑜𝑔 ℳ(𝐦𝑡
𝑎) − 𝑙𝑜𝑔 ℳ(𝐦𝑡−1) 

𝑛 

= ∑ �̅�𝑖𝑡(log 𝑚𝑖𝑡 − log 𝑚𝑖,𝑡−1) 
𝑖=1 

𝑘 

+ ∑ �̅̃�𝑖𝑡(log 𝑐𝑖𝑡 − log 𝑐𝑖,𝑡−1), (27) 
𝑖=1 

where �̅�𝑖𝑡 = (𝜔𝑖𝑡 + 𝜔𝑖,𝑡−1)/2 and �̅̃�𝑖𝑡 = (�̃�𝑖𝑡 + �̃�𝑖,𝑡−1)/2. 
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A compelling reason exists for using the Törnqvist index as the discrete time 

approximation to the Divisia index. Diewert (1976) has defined a class of index 

numbers, called “superlative” index numbers, which have particular appeal in 

producing discrete time approximations to aggregator functions. Diewert defines a 

superlative index number to be one that is exactly correct for some quadratic 

approximation to the aggregator function, and thereby provides a second order local 

approximation to the unknown aggregator function.  In this case the aggregator 

function is ℳ(𝐦𝑡, 𝐜𝑡) = 𝑣(𝐦𝑡, 𝐜𝑡). The Törnqvist discrete time approximation to the 

continuous time Divisia index is in the superlative class, because it is exact for the 

translog specification for the aggregator function.  The translog is quadratic in the 

logarithms. If the translog specification is not exactly correct, then the discrete 

Divisia index (27) has a third-order remainder term in the changes, since quadratic 

approximations possess third-order remainder terms. 

With weekly or monthly monetary asset data, the Divisia monetary index, 

consisting of the first term on the right hand side of (27), has been shown by Barnett 

(1980) to be accurate to within three decimal places in measuring log changes in 

𝑀𝑡 = 𝑀(𝐦𝑡) in discrete time.  That three decimal place error is smaller than the 

roundoff error in the Federal Reserve’s component data. We can reasonably expect 

the same to be true for our augments Divisia monetary index, (27), in measuring the 

log change of ℳ𝑡 = ℳ(𝐦𝑡, 𝐜𝑡). 

7. Risk Adjustment 

In index number theory, it is known that uncertainty about future variables has 

no effect on contemporaneous aggregates or index numbers, if preferences are 

intertemporally separable.  Only contemporaneous risk is relevant. See, e.g., Barnett 

(1995). Prior to Barnett, Liu, and Jensen (1997)), the literature on index number 

theory assumed that contemporaneous prices are known with certainty, as is 

reasonable for consumer goods. But Poterba and Rotemberg (1987) observed that 

contemporaneous user cost prices of monetary assets are not known with certainty, 
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since interest rates are not paid in advance.  As a result, the need existed to extend 

the field of index number theory to the case of contemporaneous risk. 

For example, the derivation of the Divisia index in Section 6.1 uses the perfect 

certainty first-order conditions for expenditure constrained maximization of ℳ, in a 

manner similar to Francois Divisia’s (1925,1926) derivation of the Divisia index for 

consumer goods. But if the contemporaneous user costs are not known with 

certainty, those first order conditions become Euler equations.  This observation 

motivated Barnett, Liu, and Jensen (1997)) to repeat the steps in the Section 6.1 

derivation with the first order conditions replaced by Euler equations. In this 

section, we analogously derive an extended augmented Divisia index using the Euler 

equations that apply under risk, with utility assumed to be intertemporally strongly 

separable. The result is a Divisia index with the user costs adjusted for risk in a 

manner consistent with the CCAPM (consumption capital asset price model).13 

The approach to our derivation of the extended index closely parallels that in 

Barnett, Liu, and Jensen (1997), Barnett and Serletis (2000, ch. 12), and Barnett 

(2012, Appendix D) for monetary assets alone.  But our results, including credit card 

services, are likely to result in substantially higher risk adjustments than the earlier 

results for monetary assets alone, since interest rates on credit card debt are much 

higher and much more volatile than on monetary assets.  

7.1 The Decision 

Define 𝑌 to be the consumer’s survival set, assumed to be compact.  The decision 

problem in this section will differ from the one in section 2 not only by introducing 

risk, but also by adopting an infinite planning horizon. The consumption possibility 

set, 𝑆(𝑠), for period 𝑠 is the set of survivable points, (𝐦𝑠, 𝐜𝑠, 𝐱𝑠, 𝐴𝑠) satisfying 

equation (2). 

The benchmark asset 𝐴𝑠 provides no services other than its yield, 𝑅𝑠. As a result, 

the benchmark asset does not enter the consumer’s contemporaneous utility 

13 Regarding CCAPM, see Lucas (1978), Breeden (1979), and Cochrane (2000). 
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function. The asset is held only as a means of accumulating wealth. The consumer’s 

subjective rate of time preference, 𝜉, is assumed to be constant. The single-period 

utility function, 𝑢(𝐦𝑡, 𝐜𝑡, 𝐱𝑡), is assumed to be increasing and strictly quasi-concave. 

The consumer’s decision problem is the following. 

Problem 1. Choose the deterministic point (𝐦𝑡, 𝐜𝑡, 𝐱𝑡, 𝐴𝑡) and the stochastic process 

(𝐦𝑠, 𝐜𝑠, 𝐱𝑠, 𝐴𝑠), 𝑠 = 𝑡 + 1, … , ∞, to maximize 

∞ 𝑠−𝑡 1 
𝑢(𝐦𝑡, 𝐜𝑡, 𝐱𝑡) + 𝐸𝑡[ ∑ ( ) 𝑢( 𝐦𝑠, 𝐜𝑠, 𝐱𝑠)], (28) 

1 + 𝜉 
𝑠=𝑡+1 

Subject to (𝐦𝑠, 𝐜𝑠, 𝐱𝑠, 𝐴𝑠) ∈ 𝑆(𝑠) for 𝑠 = 𝑡, t+1, … , , and also subject to the 

transversality condition 

𝑠−𝑡 1 
lim 𝐸𝑡 ( ) 𝐴𝑠 = 0.          (29) 
𝑠→∞ 1 + 𝜉 

7.2 Existence of an Augmented Monetary Aggregate for the Consumer 

We assume that the utility function, 𝑢, is blockwise weakly separable in (𝐦𝑠, 𝐜𝑠) 

and in 𝒙𝑠. Hence, there exists an augmented monetary aggregator function, ℳ, 

consumer goods aggregator function, 𝑋, and utility functions, 𝐹 and 𝐻, such that 

𝑢(𝐦𝑠, 𝐜𝑠, 𝐱𝑠) = 𝐹[ℳ(𝐦𝑠, 𝐜𝑠), 𝑋(𝐱𝑠)]. (30) 

We define the utility function 𝑉 by 𝑉(𝐦𝑠, 𝐜𝑠, 𝑋𝑠) = 𝐹[ℳ(𝐦𝑠, 𝐜𝑠), 𝑋𝑠], where 

aggregate consumption of goods is defined by 𝑋𝑠 = 𝑋(𝒙𝑠). It follows that the exact 

augmented monetary aggregate is 

ℳ𝑠 = ℳ(𝐦𝑠, 𝐜𝑠). (31) 
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The fact that blockwise weak separability is a necessary condition for exact 

aggregation is well known in the perfect-certainty case. If the resulting aggregator 

function also is linearly homogeneous, two-stage budgeting can be used to prove 

that the consumer behaves as if the exact aggregate were an elementary good, as in 

section 5.2. Although two-stage budgeting theory is not applicable under risk, 

ℳ(𝒎𝑠, 𝒄𝑠) remains the exact aggregation-theoretic quantity aggregate in a well-

defined sense, even under risk.14 

The Euler equations that will be of the most use to us below are those for 

monetary assets and credit card services. Those Euler equations are 

𝜕𝑉 𝑝𝑠
∗(𝑅𝑠 − 𝑟𝑖𝑠) 𝜕𝑉 

𝐸𝑠 [ − 𝜌 ] = 0  (32𝑎) ∗𝜕𝑚𝑖𝑠 𝑝𝑠+1 𝜕𝑋𝑠+1 

and 

𝜕𝑉 𝑝𝑠
∗(𝑒𝑗𝑠 − 𝑅𝑠) 𝜕𝑉 

𝐸𝑠 [ − 𝜌 ] = 0       (32b) ∗𝜕𝑐𝑗𝑠 𝑝𝑠+1 𝜕𝑋𝑠+1 

for all 𝑠 ≥ 𝑡, 𝑖 = 1, … , 𝑛, and 𝑗 = 1, … , 𝑘, where 𝜌 = 1/(1 + 𝜉) and where 𝑝𝑠
∗ is the 

exact price aggregate that is dual to the consumer goods quantity aggregate 𝑋𝑠. 

Similarly, we can acquire the Euler equation for the consumer goods aggregate, 

𝑋𝑠, rather than for each of its components. The resulting Euler equation for 𝑋𝑠 is 

𝜕𝑉 𝑝𝑠
∗(1 + 𝑅𝑠) 𝜕𝑉 

𝐸𝑠 [ − 𝜌 ] = 0.       (32𝑐) ∗𝜕𝑋𝑠 𝑝𝑠+1 𝜕𝑋𝑠+1 

For the two available approaches to derivation of the Euler equations, see the 

Appendix. 

7.3 The Perfect-Certainty Case 

14See Barnett (1995) and the appendix in Barnett, Liu, and Jensen (1997). 
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In the perfect-certainty case with finite planning horizon, we have already 

shown in section 2 that the contemporaneous nominal user cost of the services of 

𝑚𝑖𝑡 is equation (5) and the contemporaneous nominal user cost of credit card 

services is equation (7).  We have also shown in section 6 that the solution value of 

the exact monetary aggregate, ℳ(𝐦𝑡, 𝐜𝑡) = ℳ(𝐦t
a), can be tracked without error in 

continuous time by the Divisia index, equation (25). 

The flawless tracking ability of the index in the perfect-certainty case holds 

regardless of the form of the unknown aggregator function, ℳ. Aggregation 

results derived with finite planning horizon also hold in the limit with infinite 

planning horizon.  See Barnett (1987, section 2.2).  Hence those results continue 

to apply. However, under risk, the ability of equation (25) to track ℳ(𝐦𝑡, 𝐜𝑡) is 

compromised. 

7.4 New Generalized Augmented Divisia Index 

7.4.1 User Cost Under Risk Aversion 

We now find the formula for the user costs of monetary services and credit card 

services under risk. 

Definition 1. The contemporaneous risk-adjusted real user cost price of the services of 

𝑎 𝑚𝑖𝑡
𝑎  is 𝓅𝑖𝑡, defined such that 

𝜕𝑉 

𝜕𝑚𝑖𝑡
𝑎 

𝓅𝑖𝑡
𝑎 = 

𝜕𝑉 , 𝑖 = 1,2, … , 𝑛 + 𝑘. 

𝜕𝑋𝑡 

The above definition for the contemporaneous user cost states that the real user 

cost price of an augmented monetary asset is the marginal rate of substitution 

between that asset and consumer goods. 
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For notational convenience, we convert the nominal rates of return, 𝑟𝑖𝑡, 𝑒𝑗𝑡 and 

∗ ∗𝑅𝑡 , to real total rates, 1 + 𝑟𝑖𝑡, 1 + 𝑒𝑗𝑡 and 1 + 𝑅𝑡
∗ such that 

𝑝𝑡
∗(1 + 𝑟𝑖𝑡)

∗1 + 𝑟𝑖𝑡 =  , (33a) ∗𝑝𝑡+1 

𝑝𝑡
∗(1 + 𝑒𝑗𝑡)

∗1 + 𝑒𝑗𝑡 =  , (33b) ∗𝑝𝑡+1 

𝑝𝑡
∗(1 + 𝑅𝑡)

∗1 + 𝑅𝑡 =  , (33c) ∗𝑝𝑡+1 

∗ ∗ ∗where 𝑟𝑖𝑡 , and 𝑅𝑡 are called the real rates of excess return. Under this change of , 𝑒𝑗𝑡 

variables and observing that current-period marginal utilities are known with 

certainty, Euler equations (32a), (32b), and (32c) become 

𝜕𝑉 𝜕𝑉 
− 𝜌𝐸𝑡 [(𝑅𝑡

∗ − 𝑟𝑖𝑡
∗ ) ] = 0,         (34) 

𝜕𝑚𝑖𝑡 𝜕𝑋𝑡+1 

𝜕𝑉 𝜕𝑉 
∗− 𝜌𝐸𝑡 [(𝑒𝑗𝑡 − 𝑅𝑡

∗) ] = 0, (35) 
𝜕𝑐𝑗𝑡 𝜕𝑋𝑡+1 

and 

𝜕𝑉 𝜕𝑉 
− 𝜌𝐸𝑡 [(1 + 𝑅𝑡

∗) ] = 0.   (36) 
𝜕𝑋𝑡 𝜕𝑋𝑡+1 

We now can provide our user cost theorem under risk. 

Theorem 1 (a). The risk adjusted real user cost of the services of monetary asset 𝑖 

under risk is 𝓅𝑖𝑡
𝑚 = 𝜋𝑖𝑡 + 𝜓𝑖𝑡, where 
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∗𝐸𝑡𝑅𝑡
∗ − 𝐸𝑡𝑟𝑖𝑡 

= (37) 𝜋𝑖𝑡 1 + 𝐸𝑡𝑅𝑡 

and 

𝜕𝑉 𝜕𝑉 ∗ ∗𝐶𝑜𝑣 (𝑅𝑡 , ) 𝐶𝑜𝑣 (𝑟𝑖𝑡, )
𝜕𝑋𝑡+1 𝜕𝑋𝑡+1 𝜓𝑖𝑡 = 𝜌(1 − 𝜋𝑖𝑡) − 𝜌 . (38) 

𝜕𝑉 𝜕𝑉 

𝜕𝑋𝑡 𝜕𝑋𝑡 

(b). The risk adjusted real user cost of the services of credit card type 𝑗 under 

𝑐 risk is 𝓅𝑗𝑡 = �̃�𝑗𝑡 + �̃�𝑗𝑡, where 

∗ ∗− 𝐸𝑡𝑅𝑡 𝐸𝑡𝑒𝑗𝑡 
�̃�𝑗𝑡 = (39) 

1 + 𝐸𝑡𝑅𝑡 

and 

𝜕𝑉 𝜕𝑉 ∗ ∗𝐶𝑜𝑣 (𝑒𝑗𝑡, ) 𝐶𝑜𝑣 (𝑅𝑡 , )
𝜕𝑋𝑡+1 𝜕𝑋𝑡+1 𝜓 = 𝜌 − 𝜌(1 + 𝜋  . (40) ̃

𝑗𝑡 𝜕𝑉 ̃𝑗𝑡) 
𝜕𝑉 

𝜕𝑋𝑡 𝜕𝑋𝑡 

Proof. See the Appendix. ∎ 

Under risk neutrality, the covariances in (38) and (40) would all be zero, because 

the utility function would be linear in consumption. Hence, the user cost of 

monetary assets and credit card services would reduce to 𝜋𝑖,𝑡 and �̃�𝑗,𝑡 respectively, 

as defined in equation (37) and (39). The following corollary is immediate. 

Corollary 1 to Theorem 1. Under risk neutrality, the user cost formulas are the 

same as equation (5) and (7) in the perfect-certainty case, but with all interest rates 

replaced by their expectations. 
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7.4.2 Generalized Augmented Divisia Index Under Risk Aversion 

In the case of risk aversion, the first-order conditions are Euler equations. We 

now use those Euler equations to derive a generalized Divisia index, as follows. 

𝑎 Theorem 2. In the share equations, 𝜔𝑖𝑡 = 𝜋𝑖𝑡
𝑎 𝑚𝑖𝑡

𝑎 /𝛑𝑡
𝑎′𝐦𝑡 , we replace the user 

𝑎 𝑎 costs, 𝛑𝑡 = (𝛑′
𝑡, �̃�′

𝑡)′, defined by (5) and (7), by the risk-adjusted user costs, 𝓅𝑖𝑡, 

𝑎 / ∑𝑛+𝑘 𝑎 defined by Definition 1, to produce the risk adjusted shares, 𝓈𝑖𝑡 = 𝓅𝑖𝑡
𝑎 𝑚𝑖𝑡 𝑗=1 𝓅𝑗𝑡

𝑎 𝑚𝑗𝑡. 

Under our weak-separability assumption, 𝑉(𝐦𝑠, 𝐜𝑠, 𝑋𝑠) = 𝐹[ℳ(𝐦𝑠, 𝐜𝑠), 𝑋𝑠], and our 

assumption that the monetary aggregator function, ℳ, is linearly homogeneous, the 

following generalized augmented Divisia index is true under risk: 

𝑛+𝑘 

𝑑𝑙𝑜𝑔 ℳ𝑡 = ∑ 𝓈𝑖𝑡𝑑𝑙𝑜𝑔 𝑚𝑖𝑡
𝑎 . (41) 

𝑖=1 

Proof. See the Appendix. ∎ 

The exact tracking of the Divisia monetary index is not compromised by risk 

̃aversion, as long as the adjusted user costs, 𝜋𝑖𝑡 + 𝜓𝑖𝑡 and �̃�𝑗𝑡 + 𝜓𝑗𝑡, are used in 

computing the index. The adjusted user costs reduce to the usual user costs in the 

case of perfect certainty, and our generalized Divisia index (41) reduces to the usual 

Divisia index (25). Similarly, the risk-neutral case is acquired as the special case 

̃with 𝜓𝑖𝑡 = 𝜓 = 0, so that equations (37) and (39) serve as the user costs. In short, 𝑗𝑡 

our generalized augmented Divisia index (41) is a true generalization, in the sense 

that the risk-neutral and perfect-certainty cases are strictly nested special cases. 

Formally, that conclusion is the following. 

Corollary 1 to Theorem 2. Under risk neutrality, the generalized Divisia index (41) 

reduces to (25), where the user costs in the formula are defined by (37) and (39). 
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7.5 CCAPM Special Case 

As a means of illustrating the nature of the risk adjustments, 𝜓𝑖,𝑡 and �̃�𝑗,𝑡 , we 

consider a special case, based on the usual assumptions in CAPM theory of either 

quadratic utility or Gaussian stochastic processes. Direct empirical use of Theorems 

1 and 2, without any CAPM simplifications, would require availability of prior 

econometric estimates of the parameters of the utility function, 𝑉, and of the 

subjective rate of time discount. Under the usual CAPM assumptions, we show in 

this section that empirical use of Theorems 1 and 2 would require prior estimation 

of only one property of the utility function: the degree of risk aversion, on which a 

large body of published information is available. 

Consider first the following case of utility that is quadratic in consumption of 

goods, conditionally on the level of monetary asset and credit card services. 

Assumption 1. Let 𝑉 have the form 

1 
2𝑉(𝐦𝑡, 𝐜𝑡, 𝑋𝑡) = 𝐹[ℳ(𝐦𝑡, 𝐜𝑡), 𝑋𝑡] = 𝐴[ℳ(𝐦𝑡, 𝐜𝑡)]𝑋𝑡 − 𝐵[ℳ(𝐦𝑡, 𝐜𝑡)]𝑋𝑡 , (42) 

2 

where 𝐴 is a positive, increasing, concave function and 𝐵 is a nonnegative, 

decreasing, convex function. 

The alternative assumption is Guassianity, as follows: 

Assumption 2. Let (𝑟𝑖𝑡
∗ , 𝑒𝑗𝑡

∗ , 𝑋𝑡+1) be a trivariate Gaussian process for each asset 𝑖 = 

1, … , 𝑛, and credit card service, 𝑗 = 1, … , 𝑘. 

We also make the following conventional CAPM assumption: 

Assumption 3. The benchmark rate process is deterministic or already risk-

adjusted, so that 𝑅𝑡
∗ is the risk-free rate. 
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Under this assumption, it follows that 

𝜕𝑉 
∗𝐶𝑜𝑣 (𝑅𝑡 , ) = 0. 

𝜕𝑋𝑡+1 

We define 𝐻𝑡+1 = 𝐻(ℳ𝑡+1, 𝑋𝑡+1) to be the well-known Arrow-Pratt measure of 

absolute risk aversion, 

𝐸𝑡[𝑉′′]
𝐻(ℳ𝑡+1, 𝑋𝑡+1) = −  , (43) 

𝐸𝑡[𝑉′] 

𝑎 𝑎 2where 𝑉′ = 𝜕𝑉(𝐦𝑡+1, 𝑋𝑡+1)/𝜕𝑋𝑡+1 and 𝑉′′ = 𝜕2𝑉(𝐦𝑡+1, 𝑋𝑡+1)/𝜕𝑋𝑡+1. In this 

definition, risk aversion is measured relative to consumption risk, conditionally 

upon the level of augmented monetary services produced by ℳ𝑡+1 = ℳ(𝐦𝑡, 𝐜𝑡). 

Under risk aversion, 𝐻𝑡+1 is positive and increasing in the degree of absolute risk 

aversion. The following lemma is central to our Theorem 3. 

Lemma 2. Under Assumption 3 and either Assumption 1 or Assumption 2, the user-

̃cost risk adjustments, 𝜓𝑖𝑡 and 𝜓𝑗𝑡,  defined by (38) and (40), reduce to 

𝜓𝑖𝑡 = 
1 

∗ 𝐻𝑡+1𝑐𝑜𝑣(𝑟𝑖𝑡
∗ , 𝑋𝑡+1)  (44a) 

1 + 𝑅𝑡 

and 

�̃�𝑗𝑡 = − 
1 

∗ 𝐻𝑡+1𝑐𝑜𝑣(𝑒𝑗𝑡
∗ , 𝑋𝑡+1).  (44b) 

1 + 𝑅𝑡 

Proof. See the Appendix. ∎ 

The following theorem identifies the effect of the risk adjustment on the 

expected own interest rates in the user cost formulas. 

32 



 

 
 

 

 

  

 

                                            

 

                                         

 

                                           

 

                                   

 

         

 

 

 

  

 

  

 

 

ˆ
tH

ˆ
tH

ˆ
tH

ˆ
tH

Theorem 3. Let 1
ˆ

t t tH H X . Under the assumptions of Lemma 2, we have the 

following for each asset 𝑖 = 1, … , 𝑛, and credit card service, 𝑗 = 1, … , 𝑘. 

∗∗ − (𝐸𝑡𝑟𝑖𝑡 𝑚 𝐸𝑡𝑅𝑡 − 𝜙𝑖𝑡)
𝓅𝑖𝑡 = ∗1 + 𝐸𝑡𝑅𝑡 

, (45) 

where 

=𝜙𝑖𝑡 
∗ 𝑋𝑡+1 

𝐶𝑜𝑣 (𝑟𝑖𝑡 , ),        
𝑋𝑡 

(46) 

and 

∗ ̃ ∗− 𝜙𝑗𝑡) − 𝐸𝑡𝑅𝑡 𝑐 
(𝐸𝑡𝑒𝑗𝑡 

= ,𝓅𝑗𝑡 ∗1 + 𝐸𝑡𝑅𝑡 
(47) 

where 

�̃� = 𝑗𝑡 
∗ 𝑋𝑡+1 

𝐶𝑜𝑣 (𝑒𝑗𝑡 , ). 
𝑋𝑡 

(48) 

Proof. See the Appendix. ∎ 

As defined, is a time shifted Arrow-Pratt relative risk aversion measure.  Theorem 

3 shows that the risk adjustment on the own interest rate for a monetary asset or 

credit card service depends upon relative risk aversion, , and the covariance 

between the consumption growth path, Xt+1/Xt, and the real rate of excess return 

∗earned on a monetary asset, 𝑟𝑖𝑡
∗ , or paid on a credit card service,𝑒𝑗𝑡 . 

7.6 Magnitude of the Adjustment 

In accordance with the large and growing literature on the equity premium 

puzzle, the CCAPM risk adjustment term is widely believed to be biased 
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downward.15 A promising explanation may be the customary assumption of 

intertemporal separability of utility, since response to a change in an interest rate 

may not be fully reflected in contemporaneous changes in consumption.  Hence the 

contemporaneous covariance in the CCAPM “beta” correction may not take full 

account of the effect of an interest rate change on life style.  An approach to risk 

adjustment without assumption of intertemporal separability was developed for 

monetary aggregation by Barnett and Wu (2005).  

8. Data Sources 

The credit card transactions services are measured by the transactions volumes 

summed over four sources:  Visa, MasterCard, American Express, and Discover.  Our 

theory does not apply to debit cards or to store cards or to charge cards not 

providing a line of credit or not widely acceptable for retail purchases.  We acquired 

the volumes from their annual reports and seasonally adjusted them by the Census 

X-13ARIMA-SEATS program. The start date is the quarter during which those credit 

card firms went public and the annual reports became available.  The 

contemporaneous transactions volumes do not include the carried forward rotating 

balances resulting from transactions during prior periods.16 The credit card interest 

rates imputed to the representative consumer are from the Federal Reserve Board’s 

data on all commercial bank credit card accounts, including those not charged 

interest, since paid off within the month.17 The benchmark rate on monetary assets 

owned by consumers is the one used by the CFS in its current Divisia monetary 

15See, e.g., Campbell and Cochrane (1999), Cochrane (2000), Kocherlakota (1996), Marshall (1997), 
Mehra and Prescott (1985). 
16 Credit limits are not considered, since we do not have a way to untangle the effect of those 
constraints on contemporaneous transactions volumes from the effect on the carried forward 
rotating balances associate with previous period transactions. 
17This interest rate includes credit card accounts not assessed interest, and hence is lower than the 
Federal Reserve’s supplied interest rates on accounts assessed interest.  This imputation includes 
only explicit interest paid, averaged over all credit card accounts. 
[Further research, using a heterogeneous agents approach, is planned on this imputation. In that 
future research, implicit interest rate could include annual credit card fees and the increased product 
prices on goods purchased primarily with credit cards, as well as the explicit interest rate paid on 
contemporaneous transactions volumes by the approximately 80% of credit card holders who 
maintain rotating balances.] 
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aggregates releases.18 All other component quantities and interest rates are as used 

in the CFS Divisia monetary aggregates at: 

http://www.centerforfinancialstability.org/amfm.php 

In the near future, the CFS plans to add to that site our augmented Divisia 

monetary aggregates, ℳ𝑡 = ℳ(𝐦𝑡, 𝐜𝑡), as defined in equations 11 and 21, including 

credit card services.  Monthly updates will be provided to the public by the CFS 

through monthly releases.  The monthly updates will also be provided by Bloomberg 

to its terminal users. Our extensive search for relevant sources of credit card data 

are provided in detail in Barnett and Su (2016), which documents our decisions 

about credit card data sources.  All details about data sources and data decisions 

regarding monetary asset components and interest rates are provided in Barnett, 

Liu, Mattson, and van den Noort (2013).  We use only sources available to the 

public.19 

The resulting augmented Divisia monetary services aggregates, ℳ𝑡 = 

ℳ(𝐦𝑡, 𝐜𝑡), satisfy the existence conditions for a structural economic variable in a 

macroeconomic model.  Hence those aggregates can be used as the quantity of 

monetary services in a demand for money equation, or as a monetary intermediate 

target or long run anchor in a monetary rule, or in any other econometric or policy 

application requiring a macroeconomic model containing the monetary service flow 

as a structural variable. 

Alternatively, money can be used as an indicator of the state of the economy.  

For example, new-Keynesian nominal GDP targeting policies require monthly 

measures of nominal GDP, although data on nominal GDP are available only 

quarterly. The usefulness of Divisia monetary aggregates in Nowcasting monthly 

nominal GDP has been established by Barnett, Chauvet, and Leiva-Leon (2016). 

Indicator uses of monetary data are free from the controversies that have 

surrounded uses of money as a policy target.  In the next section, we produce an 

18 That imputed interest rate is the short term (2 to 31 days) rate of interest on bank loans. 
19 The CFS sweep adjusts demand deposits.  During periods when available from the Federal Reserve, 
the CFS uses the reported sweep adjustments.  When not available, the CFS uses an econometric 
model to approximate the sweep adjustment.  Although sweep adjustment is important at the M1 
level of aggregation, the sweep adjustment has insignificant effect on the broader aggregates, since 
sweeps are largely internalized within those aggregates. 
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∗indicator optimized augmented monetary aggregate, ℳ𝑡 = ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡). Since this 

aggregate is application specific, its existence condition is different from the one 

used above to produce the augmented Divisia monetary aggregates. Unlike the 

augmented Divisia monetary aggregates, ℳ𝑡 = ℳ(𝐦𝑡, 𝐜𝑡), which are statistical 

index numbers in the superlative index number class, the indicator optimized 

∗ aggregates, ℳ𝑡 = ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡), are econometrically estimated aggregator functions, 

not statistical index numbers.  The estimated aggregator function is time dependent 

because of the real time estimation used in the nowcasting. 

9. Nowcasting Nominal GDP 

In this section we turn to the use of our data as indicators, rather than as policy 

targets or as structural variables in the macroeconomy.  We find that the 

information contained in credit card transaction volumes is a valuable addition to 

the indicator set in formal nowcasting of nominal GDP.  A consequence is a directly 

derived indicator-optimized augmented aggregator function over monetary and 

credit card services.  This aggregator function uniquely captures the contributions 

of monetary and credit card services as indicators of nominal GDP in the nowcasting. 

An important contribution to the literature on nowcasting is Giannone, Reichlin, 

and Small (2008). Their approach, based on factor analysis, has proved to be very 

successful.  Barnett, Chauvet, and Leiva-Leon (2016) propose an alternative 

methodology based on confirmatory factor analysis and find that Divisia monetary 

aggregates are particularly valuable indicators within the resulting set of optimal 

indicators.  Barnett and Tang (2016) compared the factor analysis approach of 

Giannone, Reichlin, and Small (2008) and Barnett, Chauvet, and Leiva-Leon (2016) 

with alternative nowcasting approaches, and find that the factor analysis 

approaches are usually best and benefit substantially from inclusion of the CFS 

Divisia monetary aggregates among its indicators.   

In this paper, we investigate the further gains from inclusion of credit card 

transactions volumes in the Nowcasting. We also produce and explore the derived 

∗indicator optimized aggregates, ℳ𝑡 = ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡). 
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9.1. The Model 

In this paper we use data on credit card transaction volumes along with the 

optimal indicators found by Barnett, Chauvet, and Leiva-Leon (2016) to provide a 

model useful to yield accurate nowcasts of monthly Nominal GDP. Accordingly, as 

indicators we use growth rates of quarterly Nominal GDP, 𝑦1,𝑡 , monthly Industrial 

Production, 𝑦2,𝑡, monthly Consumer Price Index, 𝑦3,𝑡, a monthly Divisia monetary 

aggregate measure, 𝑦4,𝑡, and a monthly credit card transaction volume, 𝑦5,𝑡, to 

estimate the following Mixed Frequency Dynamic Factor model: 

(49) 

The model separates out, into the unobserved factor, 𝑓𝑡, the common cyclical 

fluctuations underlying the observed variables. The idiosyncratic movements are 

captured by the terms, 𝑣𝑖,𝑡 , for 𝑖 = 1,2, … ,5. The factor loadings, 𝛾𝑖 , measure the 

sensitivity of the common factor to the observed variables. The dynamics of the 

factor and idiosyncratic components are given by 

𝑓𝑡 = 𝜙1𝑓𝑡−1 + ⋯ + 𝜙𝑝𝑓𝑡−𝑝 + 𝑒𝑡, 𝑒𝑡~𝑁(0,1) (50) 

𝑣𝑖,𝑡 = 𝜑𝑖1𝑣𝑖,𝑡−1 + ⋯ + 𝜑𝑖𝑄𝑖
𝑣𝑖,𝑡−𝑄𝑖

+ 𝜀𝑖,𝑡, 𝜀𝑖,𝑡~𝑁(0, 𝜎𝜀
2
𝑖
), for 𝑖 = 1, … ,5.  (51) 
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Following Stock and Watson (1989), the model assumes that 𝑓𝑡 and 𝑣𝑖,𝑡 are mutually 

independent at all leads and lags for all 𝑛 = 5 variables. 

The model in equations (49)-(51) can be cast into a measurement equation and 

transition equation yielding the following state-space representation 

𝐲𝑡 = 𝐇𝐅𝑡 + 𝛏𝑡, 𝛏𝐭~𝑖. 𝑖. 𝑑. 𝑁(𝟎, 𝐑) (52) 

𝐅𝑡 = 𝐆𝐅𝑡−1 + 𝛇𝑡, 𝛇𝑡~𝑖. 𝑖. 𝑑. 𝑁(𝟎, 𝐐). (53) 

We apply the Kalman filter to extract optimal inferences on the state vector, 𝐅𝑡 , 

which contains the common factor of interest, 𝑓𝑡, and the idiosyncratic terms, 𝑣𝑖,𝑡 . 

Following Mariano and Murasawa (2003), we modify the state-space model to 

incorporate into the system missing observations, which are frequently present 

when performing nowcasts in real-time. The modification consists of substituting 

each missing observation with a random draw 𝛽𝑡~𝑁(0, 𝜎𝛽
2). This substitution keeps 

the matrices conformable, without affecting the estimation of the model parameters, 

in accordance with the rule: 

*
,, ,* *

, ,
1

,,* *
, , 2

if observedif observed
,

otherwiseotherwise

0 if observed0 if observed
,

otherwise otherwise

i i ti t i t
i t i t

kt

i ti t
i t i t

t

yy y
y

yy
R






 

 
  
 

 
  

 

H
H

0

∗where 𝐇𝑖,𝑡 is the i-th row of a matrix 𝐇∗, which has 𝑘 columns, and 𝟎1𝑘 is a 𝑘 row 

vector of zeros. Hence, the modified measurement equation of the state-space model 

remains as 

∗ ∗𝐲𝑡 = 𝐇𝑡
∗𝐅𝑡 + 𝛏𝑡, 𝛏𝑡

∗~𝑖. 𝑖. 𝑑. 𝑁(𝟎, 𝐑∗
𝑡). (54) 

38 



 

 
 

 

 

  

 

  

 

            

  

 

 

 

   

  

  

 

 

   

 

    

               

  

 

  

The output is an optimal estimator of the dynamic factor, constructed using 

information available through time t. As new information becomes available, the 

filter is applied to update the state vector on a real-time basis. 

9.2. In-Sample Analysis 

We empirically evaluate the predictive ability of the information contained in 

credit card volumes to produce the most accurate nowcasts of nominal GDP growth, 

when credit card transactions volumes are included into the optimal indicator set 

found by Barnett, Chauvet, and Leiva-Leon (2016).  One of the indicators in that set 

is the current CFS Divisia monetary aggregates, unaugmented by inclusion of credit 

card data. We perform pairwise comparisons between models that include credit 

card information and models that do not.  In the former case, the indicator set 

includes four variables, while in the latter case the indicator set includes five 

variables.  Both sets include the same CFS unaugmented Divisia monetary 

aggregates, Mt = M(mt), as defined in equation 19, among its optimal indicators. We 

first examine the predictive ability of both models, with and without credit card 

information as a fifth indicator, by performing an in-sample analysis. We consider 

the sample period from November 2003 until May 2015 as a result of the availability 

of the needed data.  For the in-sample analysis, we estimate the model only once for 

the full sample.  From November 2003 to June 2006, there are some missing 

observations of some variables, but this does not present a problem, since the 

nowcasting model allows dealing with missing observations using the Kalman filter. 

Regular data availability for all relevant variables begins in July 2006, when the 

credit card companies’ data became available in annual reports. 

The first two columns of Table 1 report the full sample Mean Square Errors 

(MSE) associated with the models containing each of the two indicator sets. The 

table shows that models containing both CFS Divisia monetary aggregates and credit 

card transactions volumes produce lower MSE than models containing only Divisia 

monetary aggregates, Mt = M(mt) among the other three indicators. This applies at 

any of the four levels of disaggregation, M1, M2, M3, and M4. Next, we compute the 
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MSE only for the years associated with the Great Recession (2008-2009), reported 

in the last two columns of Table 1. The results show that the models including credit 

card information produce lower MSE than the models omitting such information in 

nowcasting of nominal GDP growth. 

Table 1. In-Sample Mean Squared Errors 

FULL SAMPLE GREAT RECESSION 

CFS Augmented CFS Augmented 

DM1 0.16 0.17 0.33 0.30 

DM2 0.18 0.17 0.36 0.31 

DM3 0.16 0.15 0.32 0.26 

DM4 0.18 0.15 0.39 0.25 

Note. The table reports the mean squared errors associated with each model for the entire sample 
period, November 2003 - May 2015, and for the Great Recession years, January 2008 - December 
2009. The CFS column includes the CFS Divisia monetary aggregates, Mt = M(mt), among the Barnett, 
Chauvet, and Leiva-Leon (2016) optimal indicator set, but without inclusion of credit card 
transaction volumes, while the Augmented column includes credit card transactions volumes among 
the indicators as a fifth independent indicator. 

To provide a deeper exploration about the role that each indicator plays in the 

construction of nominal GDP predictions, we follow the line of Banbura and Rustler 

(2007) and decompose each forecast into the relative contribution of each indicator, 

with emphasis on the Divisia monetary aggregate, Mt = M(mt), and credit card 

∗transactions volume.  In doing so, we substitute the prediction error, 𝛏𝑡|𝑡−1, and the 

predicted state, 𝐅𝑡|𝑡−1, into the updating equation of the Kalman filter, yielding 

∗𝐅𝑡|𝑡 = (𝐈 − 𝐊𝑡
∗𝐇𝑡

∗)𝐆𝐅𝑡−1|𝑡−1 + 𝐊∗
𝑡𝐲𝑡 , (55) 

∗′ ∗′ 
where the Kalman gain is denoted by 𝐊𝑡

∗ = 𝐏𝑡|𝑡−1(𝐇𝑡 (𝐇𝑡
∗𝐏𝑡|𝑡−1𝐇𝑡 + 𝐑∗

𝑡)), and the 

predicted variance of the state vector is given by 𝐏𝑡|𝑡−1 = 𝐆𝐏𝑡−1|𝑡−1𝐆 + 𝐐. When the 

Kalman filter approaches its steady state, the updated state vector can be 

decomposed into a weighted sum of observations 

∞ ∗ 𝐅𝑡|𝑡 = ∑𝑗=0 𝐙𝑗𝑡
∗ 𝐲𝑡−𝑗 , (56) 
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where 𝐙𝑡
∗(𝐿) = (𝐈 − (𝐈 − 𝐊𝑡

∗𝐇𝑡
∗)𝐆𝐋)−1𝐊𝑡

∗, and each element of the matrix 𝐙𝑡
∗(𝐿) 

measures the effects of unit changes in the lags of individual observations on the 

inference of the state vector 𝐅𝑡|𝑡. Therefore, the matrix 𝐙𝑡
∗(1) contains the cumulative 

impacts of the individual observations in the inference of the state vector. For 

further details about this decomposition, see Banbura and Rustler (2007). 

Accordingly, the vector containing the cumulative impact of each indicator on the 

forecast of nominal GDP growth can be calculated as follows 

1 2 2 1 1 2 2 1∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗𝛚𝑡 = 𝐇1 ( + + 𝐳3𝑡 + + ) + ( + + 𝒛9𝑡 + + ), (57) 𝐳1𝑡 𝐳2𝑡 𝐳4𝑡 𝐳5𝑡 𝐳7𝑡 𝐳8𝑡 𝐳10𝑡 𝐳11𝑡 3 3 3 3 3 3 3 3 

∗ 
where, 𝐳1𝑡 , is the i-th row of 𝐙𝑡

∗(1). 

The average cumulative forecast weights, 𝛚𝑡, associated with each indicator are 

reported in Table 2 for all the models under consideration. The results show that, on 

average, one third of the contribution is associated with previous releases of 

nominal quarterly GDP itself. Such information is primary in the model, but is only 

observed once per quarter. Regarding the monthly indicators, Industrial Production 

is the indicator that contributes the most to nominal GDP growth predictions, 

followed by the Divisia monetary aggregates. The indicator that provides the least 

contribution across models is often the Consumer Price Index, CPI. However, when 

credit card information is included, it shows a significantly greater forecast 

contribution than the unaugmented CFS Divisia monetary aggregates or the 

Consumer Price Index.  This conclusion is independent of the aggregation level of 

the monetary measure. These results corroborate that the in sample predictive 

ability of the optimal combination, including both Divisia monetary aggregates and 

credit-card volumes, outperforms models that exclude credit card information. 
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Table 2. Cumulative Forecast Weight of Each Indicator 

NGDP IP CPI DIVISIA CREDIT 

DM1 CFS 0.33 0.59 0.03 0.05 --

DM1 Augmented 0.33 0.34 0.05 0.03 0.25 

DM2 CFS 0.33 0.58 0.03 0.06 --

DM2 Augmented 0.33 0.34 0.04 0.04 0.24 

DM3 CFS 0.33 0.63 0.04 0.01 --

DM3 Augmented 0.33 0.35 0.05 0.01 0.26 

DM4 CFS 0.33 0.60 0.03 0.03 --

DM4 Augmented 0.33 0.37 0.04 0.02 0.24 

Note. The table reports the cumulative forecast weights, averaged over time, for the entire sample. 
As in table 1, the CFS rows include the CFS Divisia monetary aggregates among the Barnett, Chauvet, 
and Leiva-Leon (2016) optimal indicator set, but without inclusion of credit card transaction 
volumes, while the Augmented rows include credit card transactions volumes among the indicators 
as a fifth independent indicator. In both cases, the Divisia column is the CFS unaugmented Divisia 
monetary aggregate, Mt = M(mt), defined in equation 19. 

9.3. Real Time Analysis 

For the initial estimation of the model in real time analysis, we use data from 

November 2003 to September 2007, yielding 47 observations. Hence, our 

nowcasting evaluation sample is the remaining observations from October 2007 to 

May 2015, yielding 92 observations. The samples have been chosen based on two 

criteria, (i) to guarantee that the estimation sample represents one third of the total 

available sample, and (ii) to incorporate the Great Recession episode in the 

evaluation sample, since it is of particular interest.20 For every month of the 

evaluation sample, we re-estimate the model parameters, compute the nowcast of 

the target variable, and compare it with the first release of nominal GDP to construct 

mean squared errors. 

20We also tried with different partitions of the sample, but the results remained qualitatively 
unchanged. 
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Figure 1: Mean Square Error Comparison (Full sample) 
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With each model, the MSE associated with the real-time nowcasts are shown in 

Figure 1 for the entire evaluation sample. The figure shows that models 

incorporating credit card information provide a significantly lower MSE than the 

models not incorporating such information. Optimal weighting between credit card 

transactions volumes and Divisia monetary aggregates improves the accuracy in 

producing real-time nowcasts of Nominal GDP. The superiority of the extended 

models, which include credit card information, over the un-extended models 

omitting that information can be observed at all four levels of aggregation, and 

particularly for the M2 monetary aggregates. 

Additionally, we perform the same evaluations, but only focusing on the 

subsample containing the years of the Great Recession. The motivation for doing 

this analysis relies on comparing the ability of the extended and un-extended 

models to track Nominal GDP dynamics during recessionary periods, associated 

with macroeconomic instabilities and higher uncertainty. Figure 2 shows the mean 

squared errors associated with real-time nowcasts computed with each model for 

the evaluation sample, containing the years of 2008 and 2009. The results 

corroborate the significant superiority of the extended over unextended models in 

nowcasting Nominal GDP during contractionary episodes. 
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Figure 2: Mean Square Error Comparison (Great Recession) 

0.60 

0.55 

0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

M1 M2 M3 M4 

CFS Divisia CFS Divisia & Credit Card 

The model is re-estimated at every period of time during which new information 

is available, to simulate real-time conditions. We thereby investigate potential 

changes in the contemporaneous relationship between each indicator in the model 

and the extracted factor used to produce real-time nowcasts of nominal GDP 

growth. This information allows us to examine in detail the comovement between 

each indicator and the signals used to forecast nominal GDP during periods of 

instabilities, such as the Great Recession.  In Table 1, the first row at each level of 

aggregation is for the four indicator model, while the second row is for the five 

indicator model. 

The upper part of Table 3 reports the full sample average of the recursively 

estimated factor loadings for each indicator and for each model. The results show a 

positive and strong comovement between Industrial Production and the common 

factor, and a positive but weak comovement between Consumer Price Index and the 

common factor, with stronger comovement in the case of the five factor model. 

Regarding the CFS Divisia monetary aggregates, the results show relatively weak 

and sometimes negative comovement with the common factor.  In the five factor 

models, credit card transactions volumes show very strong comovement with the 
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common factor, even stronger than the comovement of quarterly nominal GDP with 

the common factor.  Clearly the four factor model is missing important indicator 

information. 

To assess the comovements during the Great Recession period, we compute the 

average recursive loadings for the period January 2008 to December 2009 and 

report them in the lower part of Table 3.  The comovement between each indicator 

and the common factor across models presents a similar pattern to the one obtained 

with the full sample averages, with one notable exception. With both the four 

indicator and the five indicator models, the Consumer Price Index experiences a 

negative relationship with the common factor, providing countercyclical signals to 

nowcasts of nominal GDP growth. Again the credit-card transactions volumes 

experience positive and strong comovement with the common factor, and hence 

show the ability to improve the accuracy of signals in nowcasting nominal GDP 

growth during periods of instability. 
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Table 3. Out of Sample Recursive Loadings 

Full sample period 

NGDP IP CPI DIVISIA CREDIT 

DM1 CFS 0.19 0.39 0.09 -0.10 --

DM1 CFS & CREDIT 0.22 0.42 0.15 -0.14 0.38 

DM2 CFS 0.20 0.38 0.07 -0.13 --

DM2 CFS & CREDIT 0.22 0.41 0.14 -0.17 0.36 

DM3 CFS 0.18 0.38 0.08 0.02 --

DM3 CFS & CREDIT 0.21 0.41 0.16 0.03 0.38 

DM4 CFS 0.19 0.39 0.06 -0.11 --

DM4 CFS & CREDIT 0.21 0.41 0.14 -0.12 0.36 

Great Recession period 

DM1 CFS 0.21 0.43 -0.04 -0.05 --

DM1 CFS & CREDIT 0.24 0.48 0.00 -0.08 0.29 

DM2 CFS 0.25 0.39 -0.08 -0.01 --

DM2 CFS & CREDIT 0.25 0.46 -0.03 -0.06 0.25 

DM3 CFS 0.21 0.42 -0.05 0.00 --

DM3 CFS & CREDIT 0.23 0.48 -0.01 0.01 0.31 

DM4 CFS 0.23 0.44 -0.09 -0.16 --

DM4 CFS & CREDIT 0.24 0.47 -0.01 -0.14 0.26 

Note. The table reports the average out of sample recursively estimated factor loading. The upper 
part of the table focuses on the entire sample November 2003 - May 2015, while the lower part of the 
table focuses on the Great Recession years, January 2008 - December 2009. 

10.Indicator Optimized Augmented Aggregate 

As explained in the previous section, the nowcasts can be transformed into 

weighted averages of the indicators, with the weights being the vector 𝛚𝑡 provided 

∗in Table 2.  The nowcasting-derived indicator-optimized aggregate, ℳ𝑡 = 

ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡), is the weighted averages of the CFS Divisia monetary aggregate and the 

credit card transactions volume. The weights of those two components are in fourth 

and fifth columns of Table 2. The estimated aggregator function, ℳ𝑡
∗(. ), is time 

dependent, since the weights, 𝛚𝑡, are time dependent.21 The detailed procedure for 

21 In principle, it might be possible to factor a non-time-dependent function solely of (𝐦𝑡, 𝐜𝑡) out of 
the nowcasting equation. But because of the deep nonlinearity of that equation in (𝐦𝑡, 𝐜𝑡) and the 
recursive real time nature of the nowcasting estimation, it would be impossible to solve for that 
aggregator function in algebraic closed form.  The extreme difficulty of solving for that function 
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∗computing the weights in Table 2 and the indicator optimized aggregate, ℳ𝑡 = 

ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡), is provided in the appendix VI. 

It is important to observe that if the CFS Divisia monetary aggregate is replaced 

by ℳ𝑡
∗ computed in that manner, then all of the results in Tables 1, 2, and 3 for five 

indicators are equally and exactly applicable to the nowcasting with four indicators.  

As evident from those tables, replacing the CFS Divisia monetary aggregates, Mt, by 

ℳ𝑡
∗ produces very large gains in indicator information with four indicators in each 

∗ case. No indicator information is lost by the aggregation, ℳ𝑡 = ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡), since 

that optimized augmented indicator is uniquely nowcasting indicator exact. 

All of the figures below display three graphs:  (1) nominal quarterly measured 

GDP growth, (2) growth of the CFS Divisia monetary aggregates, Mt = M(mt), (3) 

∗growth of the indicator optimized augmented monetary aggregates, ℳ𝑡 = 

ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡). Although the nowcasts and the monetary aggregates are available 

monthly, the plots below are quarterly, since GDP data are available only quarterly.  

The following observations follow from the figures. The fluctuations in the 

credit-card augmented Divisia monetary aggregates lead the conventional Divisia 

monetary aggregates at all four levels of aggregation. The credit-card augmented 

Divisia monetary aggregates better correlate with nominal GDP than the 

conventional Divisia monetary aggregates do. The credit-card augmented Divisia 

monetary aggregates more accurately reflect the Great Recession time period than 

the conventional Divisia monetary aggregates do. 

Although the broadest aggregates, DM3 and DM4, more accurately and 

completely measure the economy’s flow of monetary services, the transmission of 

policy to the aggregates is somewhat slower for the distant substitutes for money 

than for the assets in DM1 and DM2. 

It is evident from these results why the new credit-card augmented Divisia 

monetary aggregates improve so dramatically in Tables 1 and 2 upon the 

performance of the nominal GDP nowcasting approach developed by Barnett, 

Chauvet, and Leiva-Leon (2016).  That approach successfully incorporates the 

numerically, if the function exists, would have no benefit, since ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡) is indicator optimal and 

loses no information in the nowcasting.  
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conventional CFS Divisia monetary aggregates among its significant indicators, with 

improved performance compared with use of the official simple sum monetary 

aggregates in the same nowcasting procedure. 

10.1. Average Quarterly Growth Rates 

Figure 3: M1 Average Quarterly Growth Rates (2007Q4-2015Q1) 
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Figure 4: M2 Average Quarterly Growth Rates (2007Q4 – 2015Q1) 

Figure 5: M3 Average Quarterly Growth Rates (2007Q4 – 2015Q1) 
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Figure 6: M4 Average Quarterly Growth Rates (2007Q4 – 2015Q1) 
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10.2. Quarterly Year-over-Year Growth Rates 

Figure 7: M1 Quarterly Year-over-Year Growth Rates (2007Q4 – 2015Q1) 

Figure 8: M2 Quarterly Year-over-Year Growth Rates (2007Q4 – 2015Q1) 
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Figure 9: Quarterly M3 Year-over-Year Growth Rates (2007Q4 – 2015Q1) 

Figure 10: M4 Quarterly Year-over-Year Growth Rates (2007Q4 – 2015Q1) 
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11. Conclusions 

Many economists have wondered how the transactions services of credit cards 

could be included in monetary aggregates.  The conventional simple sum accounting 

approach precludes solving that problem, since accounting conventions do not 

permit adding liabilities to assets.  But economic aggregation and index number 

theory measure service flows, independently of whether from assets or liabilities.  

We have provided theory solving that long overlooked problem both for use as a 

structural economic variable and as an indicator.  The aggregation theoretic exact 

approach to aggregation as a structural variables provides our credit card-

augmented aggregate, ℳ𝑡 = ℳ(𝐦𝑡, 𝐜𝑡), while the indicator optimized augmented 

aggregate, uniquely derived from our nowcasting model, produces our aggregate, 

∗ℳ𝑡 = ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡). In the former case, the aggregate is defined to be weakly 

separable within the structure of the economy, while in the latter approach the 

aggregate is defined to be separable within the nowcasting equation. The former 

approach is relevant to any application requiring a measure of monetary services 

within the structure of the economy, while the latter approach is application specific 

and only relevant for use as an indicator. 

We have provided the solution under various levels of complexity in terms of 

theory, econometrics, and data availability.  We have implemented the theory under 

risk neutrality.  We have further provided the extension of our theory to CCAPM risk 

adjustment under risk aversion. The new aggregates will be provided to the public 

in monthly releases by the Center for Financial Stability (CFS) in NY City and also to 

Bloomberg terminal users.  The CFS is now providing the unaugmented aggregates, 

Mt = M(mt), and will soon be providing both of the credit card augmented 

aggregates:  the structural augmented aggregates, ℳ𝑡 = ℳ(𝐦𝑡, 𝐜𝑡), and indicator 

∗optimized aggregates, ℳ𝑡 = ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡). 

A more demanding approach would remove the CCAPM assumption of 

intertemporal separability, in accordance with Barnett and Wu (2005).  Adapting 

that advanced approach to our augmented aggregates, including credit card services, 

remains a topic for future research. While excluding credit card services, the 
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currently available CFS Divisia monetary aggregates have been found to be 

reasonably robust to introduction of risk, variations of the benchmark rate, 

introduction of taxation of interest rates, and other such refinements.22 But such 

simplifications might not be the case with our augmented monetary aggregates, 

because of the high and volatile interest rates on credit card balances. 

In previous research, Barnett, Chauvet, and Leiva-Leon (2016) have found that 

the CFS un-augmented Divisia monetary aggregate, Mt = M(mt), is a valuable 

indicator in a four factor nowcasting model of nominal GDP.  In this research, we 

∗have found that our new augmented Divisia monetary aggregates, ℳ𝑡 = ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡), 

have substantially greater indicator value than Mt = M(mt). Considering the current 

interest in the possibility of nominal GDP targeting, requiring the existence of 

monthly nominal GDP nowcasts, the augmented aggregates merit serious 

consideration.  Although the greater indicator value is evident from the time series 

plots, we have provided the formal nowcasting results to confirm the evidence from 

the plots. 

An extensive literature exists on policy relevance of the Divisia monetary 

aggregates.  See, e. g., Barnett (2012), Belongia and Ireland (2014; 2015a,b), Barnett 

and Chauvet (2011a), Serletis and Rahman (2013), and Serletis and Gogas (2014).  

Much of that literature could be strengthened further by use of the soon to be 

available credit-card augmented CFS Divisia monetary aggregates. 

22 While those refinements slightly change the un-augmented Divisia monetary aggregates, those 
changes are negligible relative to the gap between the simple sum monetary aggregate path and the 
corresponding Divisia monetary aggregate path.  See, e.g., the online library of relevant research and 
the Divisia monetary aggregates databases at the Center for Financial Stability 
(www.centerforfinancialstability.org/amfm.php). 
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APPENDICES 

(I) Derivation of the User Cost Formula for Credit Card Services, Equation 

(7), in the Infinite Lifetimes Case under Perfect Certainty: 

From equation 2, the flow of funds identities, for , 1,..., ,s t t   are 

𝑛 

∗𝐩𝑠
′ 𝐱𝑠 = 𝑤𝑠𝐿𝑠 + ∑[(1 + 𝑟𝑖,𝑠−1)𝑝𝑠−1𝑚𝑖,𝑠−1 − 𝑝𝑠

∗𝑚𝑖𝑠] 
𝑖=1 

𝑘 

∗ + ∑[𝑝𝑠
∗𝑐𝑗𝑠 − (1 + 𝑒𝑗,𝑠−1)𝑝𝑠−1𝑐𝑗,𝑠−1] 

𝑗=1 

∗ + [(1 + 𝑅𝑠−1)𝑝𝑠−1𝐴𝑠−1 − 𝑝𝑠
∗𝐴𝑠]. (A. 1) 

The intertemporal utility function 

∞ 𝑠−𝑡 1 
𝑢(𝐦𝑡, 𝐜𝑡, 𝐱𝑡) + 𝐸𝑡[ ∑ ( ) 𝑢( 𝐦𝑠, 𝐜𝑠, 𝐱𝑠)] 

1 + 𝜉 
𝑠=𝑡+1 

under perfect certainty is 

∞ 𝑠−𝑡 1 
∑ ( ) 𝑢( 𝐦𝑠, 𝐜𝑠, 𝐱𝑠).     (A. 2) 

1 + 𝜉 
𝑠=𝑡 

Let  be the Lagrangian for maximizing intertemporal utility subject to the 

sequence of flow of funds identities for ,..., ,s t   and let t  be the Lagrange 

multiplier for the t’th constraint.  Then the following are the first order conditions 

for maximizing (A.2) subject to the sequence of constraints, (A.1). 

*
1

*(1 ) 0,t t t t t
t
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From equation (A.3), we have 

1(1 ) 0.t t tR     (A.7) 

Substitute equation (A.7) into (A.6) to eliminate 1t  , we get 

* *(1 ).
1

t
t t t jt

jt t

u
c R

p p e



   

 
(A.8) 

Rearranging we get the first order condition that identifies 

of credit card services: 

jt as the user cost price 

,t jt
jt

u
c

 





(A.9) 

where 

* .
1
j t

t
t

t
t

j
e R

R
p





∎ (A.10) 

(II) Derivation of Euler Equations for Credit Card Services, Equation (35): 

The following are the Euler equations provided in the paper as equations (34), 

(35), and (36): 

𝜕𝑉 𝜕𝑉 
− 𝜌𝐸𝑡 [(𝑅𝑡

∗ − 𝑟𝑖𝑡
∗ ) ] = 0,  (A. 11) 

𝜕𝑚𝑖𝑡 𝜕𝑋𝑡+1 
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𝜕𝑉 𝜕𝑉 
∗− 𝜌𝐸𝑡 [(𝑒𝑗𝑡 − 𝑅𝑡

∗) ] = 0,         (A. 12) 
𝜕𝑐𝑗𝑡 𝜕𝑋𝑡+1 

𝜕𝑉 𝜕𝑉 
− 𝜌𝐸𝑡 [(1 + 𝑅𝑡

∗) ] = 0. (A. 13) 
𝜕𝑋𝑡 𝜕𝑋𝑡+1 

for all 𝑠 ≥ 𝑡, 𝑖 = 1, … , 𝑛, and 𝑗 = 1, … , 𝑘, where 𝜌 = 1/(1 + 𝜉) and where 𝑝𝑠
∗ is the 

exact price aggregate that is dual to the consumer goods quantity aggregate 𝑋𝑠. 

Equation (A.11) was derived in Barnett (1995, Sec 2.3) using Bellman’s method.  

An alternative approach to that derivation using calculus of variations was provided 

by Poterba and Rotemberg (1987).  Equation (A.12) follows by the same approach 

to derivation, using either Bellman’s method or calculus of variations.  We are not 

providing the lengthy derivation of (A.12) in this appendix, since the steps in the 

Bellman method approach for this class of models are provided in detail in Barnett 

and Serletis (2000, pp. 201-204). 

(III) Proof of Theorem 1 

Theorem 1 (a). The risk adjusted real user cost of the services of monetary asset 𝑖 
𝑚 under risk is 𝓅𝑖𝑡 = 𝜋𝑖𝑡 + 𝜓𝑖𝑡, where 

𝜋𝑖𝑡 = 
∗𝐸𝑡𝑅𝑡 

∗ − 𝐸𝑡𝑟𝑖𝑡 
∗1 + 𝐸𝑡𝑅𝑡 

(A. 14) 

and 

𝜓𝑖𝑡 = 𝜌(1 − 𝜋𝑖𝑡) 

𝜕𝑉 ∗𝐶𝑜𝑣 (𝑅𝑡 , )
𝜕𝑋𝑡+1 

𝜕𝑉 − 𝜌 

𝜕𝑉 ∗𝐶𝑜𝑣 (𝑟𝑖𝑡 , )
𝜕𝑋𝑡+1 .

𝜕𝑉 (A. 15) 

𝜕𝑋𝑡 𝜕𝑋𝑡 

(b). The risk adjusted real user cost of the services of credit card type 𝑗 under 

̃risk is 
𝑐 

= �̃�𝑗𝑡 + 𝜓𝑗𝑡, where 
𝑗𝑡 
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∗ ∗− 𝐸𝑡𝑅𝑡 𝐸𝑡𝑒𝑗𝑡 
𝜋 = (A. 16) ̃𝑗𝑡 ∗1 + 𝐸𝑡𝑅𝑡 

and 

𝜕𝑉 𝜕𝑉 ∗ ∗𝐶𝑜𝑣 (𝑒𝑗𝑡, ) 𝐶𝑜𝑣 (𝑅𝑡 , )
𝜕𝑋𝑡+1 𝜕𝑋𝑡+1 𝜓 = 𝜌 − 𝜌(1 + 𝜋  . (A. 17) ̃

𝑗𝑡 𝜕𝑉 ̃𝑗𝑡) 
𝜕𝑉 

𝜕𝑋𝑡 𝜕𝑋𝑡 

Proof. For the analogous proof in the case of monetary assets only, relevant to part 

(a), see Barnett, Liu, and Jensen (1997), Barnett and Serletis (2000, ch. 12), or 

Barnett (2012, Appendix D).  We provide the proof of part (b) for the extended case 

including credit.   There are two approaches to proving this important theorem, the 

direct approach and the indirect approach.  We provide both approaches, beginning 

with the indirect approach. 

By definition (1) in the paper, we have for the credit card services user cost 

price 

j
jt
c

t

t

V
c

V
X










 . (A.18) 

Defining jt to be jt jt jt
c    , it follows that 

( )jt
jt

jt
t

VV
c X

 


 


 
. 

Substituting equations (A.12) and (A.13) into this equation, we get 
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   * * *

1 1

( ) 1t jt t jt jt t t
t t

V VE e R E R
X X

   
 

    
      

    
. 

Using the expectation of the product of correlated random variables, we have 

 

 

* * * *

1 1

* *
* *

*
1 1

1 , .
1

,t jt t t jt t
t t

t jt t t
jt t t t t

t t t t

V VE e R E Cov e R
X X

E e E R V VE R E Cov R
E R X X



 

 

    
     

    

           
         

            

Multiplying  *1 t tE R through on both sides of the equation, we get: 

     

     

* * * * * *

1 1

* * * * *

1 1

1 1

1 1 ,

,

.

t t t jt t t t t jt t
t t

t jt t t t jt t t t t
t t

V VE R E e R E E R Cov e R
X X

V VE e R E R E R E Cov R
X X



 

 

    
       

    

                       


Manipulating the algebra, we have 

     

 

     

* * * * * * *

1 1 1

* * *

1

* * * * *

1 1 1

1

,

,

,t jt t t t t t jt t t jt t
t t t

t t jt t
t

t jt t t t jt t t t t t
t t t

V V VE e R E E R E e R E Cov e R
X X X

VE R Cov e R
X

V V VE e R E R E E R E Cov R
X X X



  



  

       
         

       

 
  

 

                          


 
,




  

and hence 
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* * * * * * *

1 1 1

* * *

1

* * * * * * * *

1 1

,

,

,

t jt t t t t t jt t t jt t
t t t

t t jt t
t

t jt t t t jt t t t t t jt t t
t t

V V VE e R E E R E e R E Cov e R
X X X

VE R Cov e R
X

V V VE e R E E e R E R E E e R Cov R
X X X

  



 

       
         

       

 
  

 

      
                

   

1

* * *

1 1 1

1 , .

t

t t jt t t t t t
t t t

V V VE R E E R E Cov R
X X X





  

 
 
 

          
                     

Notice that by equation (A.13), 

 

 

*

1

* *

1 1 1

1

, .

t t
t t

t t t t t
t t t

V VE R
X X

V V VE E R E Cov R
X X X







  

  
  

  

          
                    

Substituting this back into the prior equation, we have 

     

 

      

* * * * * * *

1 1 1

* * *

1

* * * * * * * *

1 1

,

,

,

t jt t t t t t jt t t jt t
t t t

t t jt t
t

t jt t t t jt t t t t t jt t t
t t

V V VE e R E E R E e R E Cov e R
X X X

VE R Cov e R
X

V V VE e R E E e R E R E E e R Cov R
X X X

  



 

       
         

       

 
  

 

      
                

 

1

*1 1 .

t

t t jt
t

VE R
X






 
 
 


 



 
 
 

Simplifying the equation, we get 

 

   

* * * * *

1 1

* * * *

1

,

1

,

1, .

jt t t t jt t
t t

t jt t t t t jt
t t

V VCov e R E R Cov e R
X X

V VE e R Cov R E R
X X




 



    
     

    

  
    



 


  



Recall that by equation (A.16), 
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∗ ∗− 𝐸𝑡𝑅𝑡 𝐸𝑡𝑒𝑗𝑡 
�̃�𝑗𝑡 = ∗ . 

1 + 𝐸𝑡𝑅𝑡 

Substituting this equation back into the prior equation, we have 

 

   

* * * * *

1 1

* * *

1

,

1 .1

,

1 ,

jt t t t jt t
t t

jt t t t t t jt
t t

V VCov e R E R Cov e R
X X

V VE R Cov R E R
X X

 


 



    
     

    

  
    



 
 
   

Rearranging the equation, we have 

     * * * * * *

1 1

1 1, 1, ,1t t jt t jt t t t t t jt
t t t

V V VE R Cov e R E R Cov R E R
X X X

 
 

     
        

  



   


 
 

so that 

* * *

1 1

1,,jt t jt t jt
t t t

V V VCov e R Cov R
X X X

 
 

     
     

   

 
 
  

. 

Hence, it follows that 

 

* * *

1 1

* * *

1 1 1

*

1

,  ,

,  ,  ,

,  
1

jt t t
t t

jt jt

t t

jt t t
t t t

jt

t t t

jt
t

jt

t

V VCov e R Cov R
X X

V V
X X

V V VCov e Cov R Cov R
X X X

V V V
X X X

VCov e Cov
X

V
X

  

  

  

 

  



    
   

     
 

 

       
     

         
  

  

 
 

   






*

1

,
.

t
t

t

VR
X

V
X
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 * *

1 1 1

, , .t jt t t jt t
jt t t t

V V V VE e R E Cov e Cov R
c X X X

  
  

       
      

    


 



 

 
 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

The alternative direct approach to proof is the following. 

By equation (A.13), we have 

 

 

*

1

* *

1 1

1

1 , .

t t
t t

t t t t
t t

V VE R
X X

V VE R E Cov R
X X



 



 

  
  

  

     
            

Rearranging, we get 

 * *

1 1

1 , ,t t t t
t t t

V V VE R E Cov R
X X X

 
 

      
             

and hence 

*
*

1 1

1 , .
1t t

t t t t t

V V VE Cov R
X E R X X

 
 

      
     

       
(A.19) 

But from (A.12), we have 

 *

1

.t jt t
jt t

V VE e R
c X




  
  

  

From the expectation of the correlated product, we then have 

   * *

1 1

, ,t jt t t jt t
jt t t

V V VE e R E Cov e R
c X X

 
 

     
     

    

so that 

(A.20) 
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Now substitute equation (A.19) into equation (A.20), to acquire 

 *
* *

*
1 1 1

* *

1 1 1

, , ,
1

, , , .

t jt t
t jt t

jt t t t t t t

jt t jt t
t t t t

E e RV V V V VCov R Cov e Cov R
c E R X X X X

V V V VCov R Cov e Cov R
X X X X

  

   

  

  

           
         

           

         
         

         

Multiplying and dividing the right side by 
t

V
X



, we get 

 

* *

1 1 1

*

1 1

, , ,

, ,
1 .

t jt t
t t t

jt jt
jt t

t t t

jt t
t t

jt jt
t

t t

V V VCov R Cov e Cov R
X X XV V

V V Vc X
X X X

V VCov e Cov R
X XV

V VX
X X

   

   

  

 

        
      

              
     
   

 

     
    

          
   
  

 

Define jt by 

 

*

1 1

, ,
1

jt t
t t

jt jt

t t

V VCov e Cov R
X X

V V
X X

    

    
   

     
 

 

. 

Then we have 
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,jt
jt jt

t

V
c
V
X

 




 





so that 

 ̃𝑐 
= �̃�𝑗𝑡 + 𝜓 ∎𝑗𝑡. 

𝑗𝑡 

(IV) Proof of Lemma 2: 

Assumption 1. Let 𝑉 have the form 

1 
2𝑉(𝐦𝑡, 𝐜𝑡, 𝑋𝑡) = 𝐹[ℳ(𝐦𝑡, 𝐜𝑡), 𝑋𝑡] = 𝐴[ℳ(𝐦𝑡, 𝐜𝑡)]𝑋𝑡 − 𝐵[ℳ(𝐦𝑡, 𝐜𝑡)]𝑋𝑡 , (A. 21) 

2 

Where 𝐴 is a positive, increasing, concave function and 𝐵 is a nonnegative, 

decreasing, convex function. 

Assumption 2. Let (𝑟𝑖𝑡
∗ , 𝑒𝑗𝑡

∗ , 𝑋𝑡+1) be a trivariate Gaussian process for each asset 𝑖 = 

1, … , 𝑛, and credit card service, 𝑗 = 1, … , 𝑘. 

Assumption 3. The benchmark rate process is deterministic or already risk-

adjusted, so that 𝑅𝑡
∗ is the risk-free rate. 

Under this assumption, it follows that 

𝜕𝑉 
∗𝐶𝑜𝑣 (𝑅𝑡 , ) = 0. 

𝜕𝑋𝑡+1 
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Define 𝐻𝑡+1 = 𝐻(ℳ𝑡+1, 𝑋𝑡+1) to be the well-known Arrow-Pratt measure of 

absolute risk aversion, 

𝐸𝑡[𝑉′′]
𝐻(ℳ𝑡+1, 𝑋𝑡+1) = −  , (A. 22) 

𝐸𝑡[𝑉′] 

𝑎 𝑎 2Where 𝑉′ = 𝜕𝑉(𝒎𝑡+1, 𝑋𝑡+1)/𝜕𝑋𝑡+1 and 𝑉′′ = 𝜕2𝑉(𝒎𝑡+1, 𝑋𝑡+1)/𝜕𝑋𝑡+1. 

Lemma 2. Under Assumption 3 and either Assumption 1 or Assumption 2, the user-

̃cost risk adjustments, 𝜓𝑖𝑡and 𝜓 defined by (A.15) and (A.17), reduce to 𝑗𝑡, 

𝜓𝑖𝑡 = 
1 

∗ 𝐻𝑡+1𝑐𝑜𝑣(𝑟𝑖𝑡
∗ , 𝑋𝑡+1) (A. 23) 

1 + 𝑅𝑡 

and 

�̃� = − 
1 

𝐻𝑡+1𝑐𝑜𝑣(𝑒𝑗𝑡
∗ , 𝑋𝑡+1).     (A. 24) 𝑗𝑡 ∗1 + 𝑅𝑡 

Proof. For the analogous proof in the case of monetary assets only, relevant to 

equation (44a), see Barnett, Liu, and Jensen (1997), Barnett and Serletis (2000, ch. 

12), or Barnett (2012, Appendix D).  We provide the proof of equation (A.24) for the 

extended case including credit.  

Under Assumption 3, the benchmark asset is risk-free, so that 

*

1

, 0t
t

VCov R
X 

 
 

 
. 

By equation (A.17), 
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* *

1 1

*

1

,  ,
1

,  
.

jt t
t t

jt jt

t t

jt
t

t

V VCov e Cov R
X X

V V
X X

VCov e
X

V
X

   



 



    
   

      
 

 

 
 

 




But by equation (A.13), 

So 

 *

1

1t t
t t

V VE R
X X




  
  

  
, 

 

*

1

*

1

,  

1

jt
t

jt

t t
t

VCov e
X

VR E
X

 







 
 

 
 

  
 

 

*

1

*

1

,  
.

1

jt
t

t t
t

VCov e
X

VR E
X





 
 

 
 

  
 

(A.25) 

Under Assumption 1, 

   , , t t t t
t

t
V
X

A B X   


    m c m cM M . 

Hence, 

 
2

2 , 
t

t t
V

X
B

  
 m cM . 

Shifting one period forward, those two equations become 
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1
1

t
t

V V A BX
X 




  



and 

2

2
t

V V B
X


  


. 

Substituting into equation (A.25), we get 

 

 

 
 

 

 
 

 

*
1

*

1

*
1

*

*
1*

*
1 1*

,  

1

,  
1

1 ,  
1

1 ,  .
1

jt t
jt

t t
t

jt t

t t

jt t
t t

t jt t
t

Cov e A BX

VR E
X

Cov e XB
R E V

E V
Cov e X

R E V

H Cov e X
R










 




 
  

 











 


Alternatively, consider Assumption 2.  We then can use Stein’s lemma, which 

says the following.23 Suppose (X,Y) are multivariate normal.  Then 

( ( ), ) ( ( )) ( , ).Cov g X Y E g X Cov X Y

In that formula, let Then from Stein’s lemma, 
1

( )
t

Vg X
X 





, 1tX X  , and * .jtY e

we have 

 
2

* *
12

1 1

,  ,jt t t jt
t t

V VCov e E Cov X e
X X 

 

   
         

. 

Substituting into (A.25), we get 

23 For Stein’s lemma, see Stein (1973), Ingersoll (1987, p. 13, eq. 62) or Rubinstein (1976). 
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2

*
12

1

*

1

,
.

1

t t jt
t

jt

t t
t

VE Cov X e
X

VR E
X









 
   

 
  

 

Using the definitions of V  , V  , and 1tH  , we have 

 *
1 1*

1 ,  .
1jt t jt t

t

H Cov e X
R

   


∎ 

(V) Proof of Theorem 3: 

Theorem 3. Let 1
ˆ

t t tH H X . Under the assumptions of Lemma 2, we have the 

following for each asset 𝑖 = 1, … , 𝑛, and credit card service, 𝑗 = 1, … , 𝑘, 

∗ 


𝑚 𝐸𝑡𝑅𝑡

∗ − (𝐸𝑡𝑟𝑖𝑡 − 𝜙𝑖𝑡) 
= , (A. 26) ∗ 𝑖𝑡 1 + 𝐸𝑡𝑅𝑡 

where 

𝑋𝑡+1 ∗𝜙𝑖𝑡 = ˆ
tH 𝐶𝑜𝑣 (𝑟𝑖𝑡, ), (A. 27) 

𝑋𝑡 

and 

∗ ∗


− 𝜙𝑗𝑡) − 𝐸𝑡𝑅𝑡 𝑐 (𝐸𝑡𝑒𝑗𝑡 

̃ 
= , (A. 28) ∗ 𝑗𝑡 1 + 𝐸𝑡𝑅𝑡 

where 

𝑋𝑡+1 ∗�̃� = ˆ
tH 𝐶𝑜𝑣 (𝑒𝑗𝑡, ). (A. 29) 𝑗𝑡 𝑋𝑡 
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Proof. For the proof in the case of monetary assets only, relevant to equations (A.26) 

and (A.27), see Barnett, Liu, and Jensen (1997), Barnett and Serletis (2000, ch. 12), 

or Barnett (2012, Appendix D).  We here provide the proof of equations (A.28) and 

(A.29) for the extended case including credit. 

From part b of Theorem 1, 

**

1
t j t t

jt
t

j
t

t
c

t

E RE e
E R




  


. 

Letting 1ˆ .t t tH H X and using Lemma 2, we get 

 **
1 1

*

* 1
1*

*

* 1
*

*

*

*

*
ˆ

,  
1

,  

1

,  
.

1

1

11

t

t jt tt t
jt

t t

t
t t jt

t t t

t t

t
jt

t

t t t

t t

jtc

t t

t jt

t t

t jt

t t

H

H Cov e XE R
E R

XH X Cov e
E R X

E R

XCov e

E e
E R

E e
E R

E e
E R

E R X
E R

 








 
 
 



 
 


  








 





Define 
* 1

,
ˆ ,  t

t
j t jt

t

H
XCov e
X

 
 

  
 

to get 

*

*

* *

*

*

1

( )

1

.
1

t t jt
jt

t t

t jt jt t t

t

tc

t

t

jt

t

E e
E R

E R
E R

E e E R
E R








 





 


∎ 
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(VI) Computation of the Weights, 𝛚𝑡, in Table 2 and the Indicator 

∗Optimized Augmented Aggregates, ℳ𝑡 = ℳ𝑡
∗(𝐦𝑡, 𝐜𝑡), in Figures 3 - 10: 

The nowcasting model, defined in equations (49) - (51), contains information 

about the growth rates of Nominal GDP, 𝑦1,𝑡 , Industrial Production, 𝑦2,𝑡, Consumer 

Price Index, 𝑦3,𝑡, CFS Divisia monetary aggregate, 𝑦4,𝑡, and credit card transactions 

volume, 𝑦5,𝑡. To facilitate convergence in the Maximum likelihood optimization, the 

∗data are standardized before entering the model.  Define 𝑦𝑖,𝑡 for i = 1, . . . . , 5, to be 

the standardized variables. 

We then estimate the model in a recursive real-time manner. At each period of 

time, t, that the model is re-estimated, it produces nowcasts of standardized 

∗Nominal GDP, defined as �̂�1,𝑡, during the evaluation sample, 𝑡 = 𝜏, … , 𝑇, where 𝜏 is 

October 2007 and 𝑇 is May 2015. The standardized nowcasts can be re-

standardized to recover the original units of measure to obtain �̂�1,𝑡, which are our 

nowcasts. 

The weight, 𝜔𝑖,𝑡, associated with each variable 𝑖 of the model in the construction 

∗of the standardized nominal GDP nowcast, �̂�1,𝑡, can be computed from equation (55). 

Notice that the weights, 𝜔𝑖,𝑡, can vary over time.  There are two reasons:  (i) the 

weights depend on the state-space model matrices, which change over time 

depending on the set of information available at time 𝑡, and (ii) the model is re-

estimated at every period of time to obtain updated parameter estimates. 

Accordingly, we acquire a vector of weights, one for each variable, 

𝝎𝑡 = (𝜔1,𝑡, 𝜔2,𝑡, 𝜔3,𝑡, 𝜔4,𝑡, 𝜔5,𝑡)′. 

It is important to recognize that (i) these weights are endogenously computed inside 

the nowcasting model, (ii) they depend on the matrices of the state space model, 

equations (52) - (53), and (iii) they are time-varying. 

Once we obtain the vector 𝛚𝑡, we focus our attention on two elements of that 

vector:  the weight, 𝜔4,𝑡, associate with the CFS Divisia aggregate, Mt = M(mt), and 
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the weight, 𝜔5𝑡 , associated with the Credit Card Volumes.  We then can aggregate 

over the two of them to acquire the indicator-optimized credit-card-augmented 

aggregate, 

𝑎 ℳ𝑡 = (𝜔4,𝑡𝑦4,𝑡 + 𝜔5,𝑡𝑦5,𝑡). 

Since 𝑦4,𝑡 and 𝑦5,𝑡 are expressed in growth rates, ℳ𝑡 is also in the same growth 

rate units of measure. To recover the levels of the indicator-optimized aggregate, we 

apply the following transformation 

ℳ𝑡
𝑎 

∗ ∗ ( + 1) , ℳ𝑡 = ℳ𝑡−1 100 

with the initial ℳ0
∗ set equal to the corresponding value of the CFS Divisia index, 

Mt = M(mt), for September 2007.  
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