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Self-organized criticality occurs in 
non-conservative neuronal networks during 
‘up’ states 
Daniel Millman1, Stefan Mihalas1, Alfredo Kirkwood1,2 and Ernst Niebur1,2* 

During sleep, under anaesthesia and in vitro, cortical neurons 
in sensory, motor, association and executive areas fluctuate be-
tween so-called up and down states, which are characterized by 
distinct membrane potentials and spike rates1–5. Another phe-
nomenon observed in preparations similar to those that exhibit 
up and down states—such as anaesthetized rats6, brain slices 
and cultures devoid of sensory input7, as well as awake monkey 
cortex8—is self-organized criticality (SOC). SOC is character-
ized by activity ‘avalanches’ with a branching parameter near 
unity and size distribution that obeys a power law with a critical 
exponent of about −3/2. Recent work has demonstrated SOC 
in conservative neuronal network models9,10, but critical be-
haviour breaks down when biologically realistic ‘leaky’ neurons 
are introduced9. Here, we report robust SOC behaviour in 
networks of non-conservative leaky integrate-and-fire neurons 
with short-term synaptic depression. We show analytically 
and numerically that these networks typically have two stable 
activity levels, corresponding to up and down states, that the 
networks switch spontaneously between these states and that 
up states are critical and down states are subcritical. 

Self-organized criticality (SOC) characterizes the spread of forest 
fires11, earthquakes12 and avalanches of idealized grains toppling 
down sandpiles13. Analogously, neuronal activity propagates in 
‘neuronal avalanches’14. Up- and down-state behaviour is also a 
network-level phenomenon: a high proportion of the neurons in 
large cortical areas alternate between states at the same time2,15–18. 
Whereas down states are quiescent19, up states have high synaptic 
and spiking activity5, resembling that of rapid eye movement sleep 
and wakefulness20. Differences in synaptic activity and neuronal 
responsiveness between up and down states suggest that avalanche 
behaviour differs as well. 

A recent modelling study9 demonstrated criticality in a 
conservative network of non-leaky integrate-and-fire neurons 
with short-term synaptic depression (STSD). On addition 
of voltage leak, however, networks required a compensatory 
current to remain critical. In a similar conservative network 
with depression and facilitation, the same group found two 
stable states, one critical and one subcritical10. Non-conservative 
networks of leaky integrate-and-fire (LIF) neurons also exhibit 
stable up and down states21, which can be obtained with STSD 
alone22. We therefore investigate whether critical behaviour 
occurs in either the up or down state in these non-conservative 
LIF/STSD systems. 

Solving the Fokker–Planck equation for the probability density 
of the membrane potential in a mean-field approximation, 
we obtain an analytical solution for the branching parameter 

Figure 1 | Bifurcations of mean-field approximation predict critical up 
states and subcritical down states. a, Stable fixed points are shown in 
black, unstable fixed points in red and saddle nodes in blue. Quiescent 
stable down states are ubiquitous in the parameter region shown. When 
synapses are sufficiently strong and vesicle recovery is sufficiently fast, a 
stable or unstable high-activity up-state attractor emerges, as well as a 
saddle node at an intermediate firing rate. b, Analytical solution for the 
branching parameter of up and down states. Down states are subcritical 
with a branching parameter near zero, and the up states are critical with a 
branching parameter near unity. Inset: Two-dimensional view of different 
regions of up-state stability. Parameters: R = (2/3)×109�, C = 3 × 10−11 F, 
Vr =−70 mV, θ =−50 mV, we = 95 pA, fe = 5 Hz, τs = 5 ms, τrp = 1 ms, 
nr = 6, ns = 7.5, pr = 0.25. 

during up and down states. The branching parameter is 
close to unity in the up state, indicating critical behaviour, 
and close to zero (subcritical) in the down state. Simulated 
networks of LIF neurons, just as biological neural systems, 
also have these properties. This behaviour is observed even as 
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Figure 2 | Simulated networks exhibit up- and down-state behaviour. a, Networks spontaneously alternate between quiescent spiking (down state) and 
∼65 spikes s−1 (up state). b, The up-state duration distribution is fitted well by an exponential (red line, τ = 1.9 s). c, At down-to-up transitions, the 
branching parameter increases from zero and overshoots unity before settling near unity; the firing rate likewise overshoots. d, The branching parameter 
and firing rate decay towards zero at up-to-down transitions. The same parameters as Fig. 1, τR = 100 ms,win = 50 pA; networks of 300 neurons. 

additional biologically realistic features, including small-world 
connectivity, NMDA (N-methyl-d-aspartate) receptor currents and 
inhibition, are introduced. 

We model networks of LIF neurons with excitatory synapses 
and STSD. Each neuron forms synapses with on average ns other 
neurons with uniform probability. Also, each neuron receives 
Poisson external input at rate fe. Glutamatergic synaptic currents 
of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 
(AMPA) receptor type from other neurons, Iin(t ), and external 
inputs, Ie(t ), are modelled as exponentials with amplitude w and 
integration time constant τs, 

−(t−ts i)/τsIin/e 
i(t ) = win/ee (1) 

In agreement with physiology, each synapse has multiple (nr) 
release sites. When a neuron fires spike i (at time ts i), only some 
sites have a docked ‘usable’ vesicle. A usable site releases its vesicle 
with probability pr, causing a postsynaptic current, equation (1). To 
model STSD, pr is scaled by a factor, Uj (t ), that is zero immediately 
after a release at site j, at time tr j , and recovers exponentially 
with time constant τR. Neuronal membranes have potential V , 
resting potential Vr, resistance R and capacitance C . On reaching 
threshold (θ), the potential resets to Vr after refractory period τrp. 
The network dynamics are: �

V − Vr 1 
�X XX 

V̇ =− 
RC 

+ 
C

Ie i(t )+ H (prUj (ts i)−ζ )Iin 
i(t ) (2) 

i i j 

− (t−tr 
j ) 

τRUj (t ) = 1−e (3) 

if V > θ,then V → Vr after τrp (4) 

where ζ is a random variable uniformly distributed on [0,1], and 
H (x) is the Heaviside step function. 

The time derivative of mean synaptic utility, u(t ) =hUj (t )ij , can 
be expressed analytically (see the Methods section): 

1 − u 
u̇ = − uprf (5)

τR 

Furthermore, the probability distribution of subthreshold 
membrane potentials, P(V ,t ), can be modelled as a diffusion–drift 

Figure 3 | Up states are critical, down states are subcritical. a, The 
frequency distribution of avalanche size (number of neurons) in the up 
state (blue) follows a power law with slope −1.5 (dashed line), indicative of 
critical networks. In the down state (red), the distribution is not linear and 
few avalanches of size greater than 10 occur, indicative of subcritical 
networks. b, Similarly, the distribution of avalanche lifetimes follows a 
power law with slope −2.0 (dashed line) in the up state (blue) but not the 
down state (red). The same model parameters as Fig. 2; networks of 2,500 
neurons. c, Avalanche size distributions for networks with AMPA and 
NMDA excitatory currents and different amplitudes of inhibitory currents. 
The amplitude of inhibitory to excitatory synapses (wItoE) is given in the 
legend as a fraction of the excitatory current amplitude. At the highest 
levels of inhibition, power laws begin to break down near system size. See 
Supplementary Data S2.5 for model details. 

equation23. The drift, with velocity vd (u, f ,V ), results from the 
net change in potential owing to synaptic inputs minus the 
leak. Diffusion, D(u,f ), arises because synaptic inputs occur with 
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Figure 4 | Criticality of up states and subcriticality of down states are robust to variations of crucial model parameters. a, Up-state (blue) firing rates 
change slightly as τR and win are changed; down states (red) remain quiescent. b, Up-state durations vary widely with changes in these parameters. 
c, Up- and down-state branching parameters remain near unity and zero, respectively, over these parameter regions. d, The up-state avalanche-size critical 
exponent remains near −1.5. 

Poisson-like, rather than uniform, timing. The Fokker–Planck 
equation for the probability density of V is, 

∂P(V ,t ) 
∂t 

∂2P(V ,t ) ∂[vd (u,f ,V )P(V ,t )]
= D(u,f ) − 

∂V 2 ∂V 
(6) 

D(u,f ) = 
1 
(Ve 

2fe + nsu 2f )2Vin2 
(7) 

V − Vr vd (u,f ,V ) = Vefe + nsuVinf − (8)
RC 

where Ve = weτs/C and Vin = prnrwinτs/C are, respectively, the 
mean instantaneous changes in membrane potential resulting from 
a single external and internal input event. 

The firing rate is the probability current that passes 
through threshold: 

∂P(θ,t )
f (t ) =−D(u,f ) (9)

∂V 

We calculate the time derivative of u analytically and of 
f numerically (Supplementary Methods S1.1) to analyse fixed 
points of the dynamical system. For typical parameter values 
for cortical neurons24,25, the system contains two stable fixed 
points, a quiescent down state with maximal synaptic utility 
and an up state with depressed synaptic utility, separated by a 
saddle node that sends trajectories to either stable state along the 
unstable manifold (Fig. 1a). 

Networks with weak synapses (small win) exhibit only a quiescent 
down state (f ≈ 0 spikes s−1). An unstable up state and a saddle node 
emerge with slightly stronger synapses, and with strong synapses the 
up state becomes stable. Increasing win further decreases the firing 
rate of the saddle node, thereby constricting the basin of attraction 
for the down state and making the up state the dominant feature. 
When vesicle replenishment is fast (short τR), the up-state firing 
rate is high. As replenishment becomes slower, the up-state firing 
rate decreases, then the up state becomes unstable and ultimately 
collides with the saddle node at a saddle-node bifurcation. Beyond 
the bifurcation, networks do not recover from STSD rapidly enough 
to sustain up states. 

The branching parameter, the average number of neurons that 
one neuron is able to activate during an avalanche, is equal to the 
probability that the membrane potential of a postsynaptic neuron 
will cross threshold as a result of one input, times the number of 
postsynaptic neurons to which a neuron connects. As the influence 
of any given synapse on a cortical neuron is small, the integral can 
be approximated by the slope near threshold.Z θ ns�2 ∂P(θ,∞)

σ = ns P(V ,∞)dV ≈− (10) 
θ−� 2 ∂V 

where � := uVin � (θ − Vr) is the strength of a synapse. This can 
be expressed in terms of the firing rate at stable states (see the 
Methods section), f ∗: 

2f ∗ 

σ = 
nsVin (11)

Ve
2fe(1 + prτRf ∗)2 + nsVin

2f ∗ 

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 

http://www.nature.com/doifinder/10.1038/nphys1757
http://www.nature.com/naturephysics


4 

LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS1757 

© 2010 Macmillan Publishers Limited.  All rights reserved. 

 

The analytical solution shows that (quiescent) down states 
are subcritical, and (active) up states are critical (Fig. 1b). In 
down states, external input dominates total synaptic input and 
the branching parameter approaches zero, indicative of subcritical 
networks. In up states, input from other neurons within the network 
dominates synaptic input, the branching parameter approaches 
unity and the network is critical. 

We simulated networks of neurons described in Equations (2)– 
(4), using a generalized linear LIF model26. The networks 
spontaneously alternate between two distinct levels of firing 
corresponding to up and down states (Fig. 2a). Our analytical 
solution for the branching parameter is in close agreement with 
simulations for instantaneous synaptic voltage steps assumed 
in ref. 23 (Supplementary Data S2.1). To increase biological 
realism, we also modelled exponential synaptic currents and we 
obtained up and down states that persist for simulated seconds, 
which is consistent with findings in cortex27. In agreement 
with previous findings2,21, up-state durations are exponentially 
distributed (Fig. 2b; see Supplementary Data S2.2 for up-state 
interspike interval distribution). 

The branching parameter follows the firing rate at state tran-
sitions. At down-to-up transitions, the branching parameter in-
creases from zero and overshoots unity as activity spreads before 
finally settling near unity (Fig. 2c). At up-to-down transitions, 
the branching parameter decays with the firing rate towards 
zero (Fig. 2d). See Supplementary Data S2.3 for further discus-
sion of state transitions. 

Each up or down state was composed of hundreds or thousands 
of avalanches. Avalanche size and lifetime distributions in the up 
state follow power laws with critical exponents near −1.5 and 
−2.0 (Fig. 3a,b; maximum likelihood estimators: −1.50 and −2.03; 
verified by Kolmogorov–Smirnov tests with the method described 
in ref. 28), respectively. Avalanche distributions in the down state 
drop off rapidly such that few avalanches of size greater than 10 
occur. We then increased the biological realism of our networks by 
introducing small-world connectivity (Supplementary Data S2.4), 
glutamatergic synapses of the NMDA type and inhibitory currents 
(Fig. 3c; Supplementary Data S2.5). Although NMDA receptor 
alone failed to reduce up-state firing rates to biological values, 
adding inhibition reduced the rates markedly (purely excitatory: 
64.0 spikes s−1; 1I:8E: 35.6 spikes s−1; 1I:4E: 8.7 spikes s−1; 1I:2E: 
8.7 spikes s−1; 1I:1E: 8.4 spikes s−1). In all of these conditions up 
states are critical and down states are subcritical, except for the 
highest levels of inhibition in which the power law in avalanche size 
distribution begins to break down near system size. 

Finally, we inspect the robustness of these results by varying 
crucial model parameters. Whereas up-state firing rates change only 
slightly with changes in win and τR (Fig. 4a), up-state durations 
vary widely (Fig. 4b). In all cases, the branching parameter remains 
near unity in the up state and near zero in the down state 
(Fig. 4c), and the up-state critical exponent near −1.5 (Fig. 4d). See 
Supplementary Data S2.6 and S2.7 for further parameters. 

In this contribution, we bring together two phenomena of 
complex networks that have been observed experimentally in 
neural systems: self-organized criticality and up- and down-state 
behaviour. We predict that biological up and down states are 
fundamentally different from a dynamical systems perspective: up 
states are critical and down states are subcritical. Up states achieve 
criticality because (1) a high firing rate ensures that avalanches 
propagate through the system faster than new avalanches are 
initiated (fe � f ∗), and (2) activity is maintained at a constant level 
by compensating for leaks with an equivalent amount of synaptic 
input, arising primarily from recurrent activation, which makes the 
system temporarily quasi-conservative on average. 

Memory consolidation is hypothesized to take place during 
sleep29, in which hippocampal and neocortical up and down states 

are phase-locked18. This process may be enhanced during critical 
up states, when information transmission7 and storage30 approach 
their theoretical maxima. 

Methods 
Analytical solution for synaptic utility u̇. The time derivative of the mean synaptic 
utility is the sum of the rate of recovery and the rate of depression, u̇ = kR + kD. 
Recovery happens between releases and the average rate can be obtained from the 
time derivative of equation (3), 

dUj (t ) exp(− (t − 
τR

tr j ) ) 1−Uj (t )
= = (12)

dt τR τR 

dhUj (t )i 1−hUj (t )i 1−u
kR = = = (13)

dt τR τR 

to yield the first term on the right-hand side of equation (5). 
A release site fully depletes following a vesicle release, which happens 

with probability pr for each spike (which occur at rate f ). Thus, the average 
rate of depletion is, 

kD =−uprf (14) 

yielding the second term on the right-hand side of equation (5). 

Analytical solution for the branching parameter σ. We approximate the 
branching parameter at fixed points (u ∗ ,f ∗) using the slope near threshold 
from equation (10) 

ns�2 ∂P(θ,∞)
σ =− (15)

2 ∂V 

where � = uVin � (θ − Vr) was defined after equation (10), and we know the 
stationary firing rate from equations (8) and (9) 

∗ ,f ∗) 
∂P(θ,∞) 1 2 f ∗) 

∂P(θ,∞)
fstat =−D(u =− (Ve

2fe +nsu ∗2Vin (16)
∂V 2 ∂V 

Solving for ∂P(θ,∞)/∂V in equation (16) and inserting it into 
equation (15) yields 

ns u ∗2Vin
2fstat 

σ = (17)
Ve

2fe +nsu ∗2Vin
2f ∗ 

In addition, the u-nullcline can be calculated analytically from equation (5) to 
yield u ∗ in terms of f ∗ : 

u ∗ = 
1 

(18)
1+prτRf ∗ 

Combining equations (17) and (18), and noting that fstat = f ∗ at fixed 
points, we obtain equation (11), the analytical solution for the branching 
parameter at fixed points. 

Two distinct stable states. Up and down states were established along two criteria 
of the firing rate: bimodality and contiguity. Hartigan’s dip test was carried out 
on the firing-rate histograms to test for bimodality; the firing-rate histogram 
is bimodal (p-value = 0.015). Thus, we refer to time bins with a mean firing 
rate <5 spikes s−1 as being in the down state and those with rates greater than 
5 spikes s−1 as being in the up state. To establish that ‘states’ are contiguous in time, 
which we consider the equivalent of stability from the mean-field approximation, 
we calculated whether firing rates remained at distinct levels for more consecutive 
time bins than expected by chance. Take the proportion of time bins in the up state 
to be p and in the down state to be 1−p. Therefore, the binomial probability that 
consecutive time bins are in the same state is p2 

+ (1−p)2 and the probability that 
they differ is 2p(1 − p). The probability of N total time bins having X0 or more 
consecutive pairs in the same state is, 

N −1� �X 
P(X > X0) = 

N −1
(p2 
+(1−p)2)i(2p(1−p))N −1−i (19)

ii=X0 

We find that the probability of obtaining the observed number of consecutive 
time bins in the same state is significantly smaller than expected if bins were 
independent, with significance P < 10−308 (the smallest possible number in the 
double-precision floating representation we use). For the up-state duration 
histogram, we plot only states that are maintained for more than 200 ms. Thus, 
networks remain in one state for more consecutive time bins than expected by 
chance before spontaneously switching to the other state. 

Avalanches. Spatiotemporal activity is characterized in terms of neuronal 
avalanches. By definition a new avalanche is initiated when a background (external) 

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 

http://www.nature.com/doifinder/10.1038/nphys1757
http://www.nature.com/naturephysics


5 

NATURE PHYSICS DOI: 10.1038/NPHYS1757 LETTERS 

© 2010 Macmillan Publishers Limited.  All rights reserved. 

 

input is the first input to drive the membrane potential of a neuron above threshold. 
If, however, the membrane potential of a neuron first surpasses threshold as a 
result of a synaptic input from an existing avalanche member, then that neuron is 
considered a member of the same avalanche. 

The branching parameter is defined as the average number of neurons 
activated directly by the initiating avalanche member (that is, second generation 
of the avalanche). This measure is consistent with that used in other studies7 and 
maintains a common metric for both large and small avalanches. 

We follow the method presented in ref. 28 to statistically validate criticality. 
Briefly, we find the maximum likelihood estimators under the assumption that 
avalanche distributions follow either a power law or an exponential. We then 
generate random power-law and exponential distributions given the calculated 
maximum likelihood estimators to determine by bootstrap the probability of 
obtaining a Kolmogorov–Smirnov distance at least as great as the sample. In 
all cases, we fail to reject the null hypothesis that avalanche distributions are 
power-law-distributed (Kolmogorov–Smirnov test p values: 0.46 and 0.29 for 
avalanche size and lifetime, respectively), but we do reject the null hypothesis 
that the distributions are exponentially distributed (p-values < 0.01 for avalanche 
size and lifetime). 

Received 8 February 2010; accepted 21 July 2010; published online 
5 September 2010 
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