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Loca  y contrasting objects, e.g. a red app e surrounded by green app es, attract attention. Does this genera ize to 
diferences in feature space? That is, do unique objects-regard ess of their  ocation-stand out from a co  ection of 
objects that are simi ar to one another, even when the unique object has  ower  oca  contrast with the back-
ground than the other objects? Behaviora  data show indeed a preference for unique items but previous ex-
periments enab ed viewers to anticipate what response they were “supposed” to give. We deve oped a new 
experimenta  paradigm that minimizes such top-down efects. Pitting  oca  contrast against g oba  uniqueness, 
we show that unique stimu i attract attention even in not-anticipated, never-seen images, and even when the 
unique stimu i are faint ( ow contrast). A computationa  mode  exp ains how competition between objects in 
feature space favors dissimi ar objects over those with simi ar features. The mode  exp ains how humans se ect 
unique objects, without a  oss of performance on natura  scenes. 

1. Intr ducti n 

Human behavior depends on input from a   sensory moda ities. Most 
of the information co  ected by the sensory apparatus is, however, 
quick y discarded by a f tering process common y referred to as se-
 ective attention. It is this process that a  ows organisms with  imited 
information processing capabi ities to operate quick y and efcient y in 
a high y comp ex wor d (Tsotsos, 1990). Over the  ast decades, much 
progress has been made on understanding attentive se ection. In par-
ticu ar, computationa  “sa iency map” mode s (Koch & U  man, 1985), 
which are based on  oca  diferences of visua  (Itti, Koch, & Niebur, 
1998) and auditory (Kayser, Petkov, Lippert, & Logothetis, 2005) sen-
sory features, are quite successfu  in exp aining human behavior in both 
contro  ed  aboratory and rea  wor d situations (Borji & Itti, 2013). 
These mode s on y use image information (sa iency) but not observers’ 
goa s, memory, or other interna  states. 

It has  ong been suspected that the idea that perceptua  sa iency, 
which is derived from stimu us contrast and drives attention, can be 
genera ized to more abstract spaces. That is, that a stimu us that difers 
from others in feature space (rather than in geometrica  space) stands 
out by itse f, without needing he p from observer-inherent biases  ike 
anticipation, goa s etc. In the simp est case, which we test here, this 
wou d imp y that a stimu us that is weak by itse f but unique because it 
difers in one of its features from a   other stimu i present anywhere in a 
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scene is inherent y sa ient, and that it therefore attracts attention. As an 
examp e, consider the image in Fig. 1A showing a number of b ack 
squares and one gray square on a white background. By our hypothesis, 
uniqueness in co or (intensity) space shou d make the gray square the 
most sa ient stimu us even though  oca  y the b ack squares have higher 
contrast with the background, which genera  y wou d drive up their 
sa ience. 

There have been severa  behaviora  tests of this hypothesis, as dis-
cussed in Section 1.2, which confrm that unique stimu i are indeed 
preferentia  y attended. As discussed in that Section, it is not c ear, 
however, whether attentiona  a  ocation in these studies is contro  ed 
by bottom-up cues, our focus of interest, or by non-specifed top-down 
information that participants g eaned imp icit y or exp icit y from the 
task instructions. 

The situation is further comp icated by the fact that the sa iency 
map mode s which predict eye movements and other indicators of at-
tentiona  se ection quite we   (Borji & Itti, 2013; Jeck, Qin, Egeth, & 
Niebur, 2017; Masciocchi, Miha as, Parkhurst, & Niebur, 2009; 
Parkhurst, Law, & Niebur, 2002) predict that uniqueness by itse f does 
not enhance attentiona  dep oyment, Fig. 1B, C. We found that the same 
is the case for a   computationa  mode s of attentiona  contro  that we 
app ied to stimu i  ike those in Fig. 1A, see Section 1.1. It is thus not 
c ear whether the intuition that unique stimu i attract attention is 
rooted in rea ity. 
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We therefore decided to fnd out whether our intuition, that a un-
ique object attracts attention of human observers, is true even in the 
absence of any expectation or anticipation. We deve oped an experi-
menta  paradigm specifca  y designed to avoid biasing observers. The 
basic ideas are that (a) task instructions are kept to a bare minimum, (b) 
spontaneity of responses is encouraged over  ong de iberations, and (c) 
every participant performs the task on y a very  imited number of times. 
These features are designed to minimize expectations about which sti-
mu us wi   be de ivered next. It is impractica  to measure (overt) at-
tention by ftting subjects with an eye tracker and then have them 
perform a task for on y a few seconds or a few tria s. Therefore parti-
cipants were shown a short sequence of visua  scenes on a tab et 
computer and asked to “tap the frst p ace you  ook when the image 
appears” (Materia s and Methods). Our recent work (Jeck et a ., 2017) 
has shown that these tapping responses are signifcant y corre ated with 
other measures of attention. 

1.1. Model predictions for unique objects 

Consider the image in Fig. 1A, a number of b ack squares and one 
gray square on a white background. As  ong as the unique gray square is 
easi y discriminated from both the background and the b ack squares, 
our intuition suggested that its uniqueness makes it the most sa ient 
stimu us. However, sa iency mode s predict the opposite. First, we ob-
serve that on y intensity contributes to sa iency in this simp e scene (no 
co or etc). Second, the center-surround contrast of the gray square is 
sma  er than that of the b ack squares since its intensity is c oser to the 
background than that of the b ack squares. Therefore, the mode s pre-
dict that the b ack-on-white squares have higher sa iency than the gray-
on-white square. This is i  ustrated in Fig. 1B which shows center-sur-
round responses to the intensity channe  of the image in Fig. 1A at 
diferent spatia  sca es for the center and surround. For each of these 
center-surround computations, the gray square produces a weaker re-
sponse than the b ack squares. Because of the  owered center-surround 
responses, the resu ting sa iency map [Fig. 1C, computed from the 
mode  in Itti et a . (1998)] assigns a  ower sa iency  eve  to the unique 
gray square than to the b ack squares. Indeed, no  inear combination of 
these center surround maps can generate a sa iency map in which the 

Fig. 1. Visua  scene with unique stimu us 
and mode  resu ts. (A) Simp e scene with 
one unique stimu us. (B) Three examp e 
sca es (fne to coarse, top to bottom) of 
center-surround (CS) responses of the sa -
iency map mode  (Itti et a ., 1998) to the 
stimu us in (A). At a   sca es, the gray square 
has the weakest response. (C) Fina  output 
of the mode . Intensity represents sa iency. 
Co or and orientation channe s are inc uded 
in the computation but they do not make a 
substantia  contribution for this image. 

gray square has a higher va ue than both the b ack squares and the 
background (see Appendix A). 

One might expect that at  arge spatia  sca es the center-surround 
operation wou d compare the intensity of the squares with that of their 
neighbors, enhancing the gray square. Sa ience of a unique stimu us is, 
indeed, enhanced if the distance between this stimu us and the other 
stimu i is sma   enough that the  atter are  ocated in the surround (as 
defned by the mode ) of the former [see e.g. Niebur, Itti, and Koch, 
2002, Fig. 4]. However, for the stimu us in Fig. 1A, even though the 
surround of each square at  arger spatia  sca es inc udes the b ack 
squares, it a so inc udes much of the white background. The  atter 
dominates in a   cases, resu ting in a most y-white surround for a   
squares. When the center-surround operation computes the diference 
between the center (b ack or gray) and the surround (most y-white), the 
b ack squares produce a  arger diference than the gray one. We hy-
pothesize that what makes the gray square unique, and therefore 
sa ient, is the diference of intensity between it and the set of b ack 
squares. Thus, sa iency is sti   determined by a center-surround difer-
ence but this diference is computed in “feature space”, with compar-
isons between objects rather than between spatia  y defned regions of 
the visua  fe d. This raises a confict between predictions of sa iency 
map mode s [e.g. Itti et a ., 1998] and our intuition that the gray square 
is sa ient. The goa  of this paper is to test whether human behavior 
agrees with our intuition, or with this and other mode s of sa ience. In 
Section 3.3 we propose a nove  mode  of inter-object comparison that 
assigns high sa ience to unique objects. 

Is the fai ure to assign higher sa iency to a unique object  imited to 
the origina  sa iency map studies (Itti et a ., 1998; Niebur & Koch, 
1996), or does it afect a  arger c ass of mode s? Since we be ieve that 
higher sa ience is assigned to unique objects because visua  scenes are 
processed in terms of objects rather than of e ementary visua  features 
(Discussion), we were frst particu ar y interested in mode s that in-
vo ve the formation of perceptua  objects (or proto-objects). discussed 
in Section 2.4. This is the case for the mode s deve oped by Russe  , 
Miha as, von der Heydt, Niebur, and Etienne-Cummings (2014) and 
Wa ther and Koch (2006). We therefore ran these mode s on the input 
shown in Fig. 1A, with resu ts shown in Fig. 2A and B, respective y. 
Both mode s assign  ower sa ience to the gray square compared to the 

Fig. 2. Output of mode s of sa ience for the input shown in Fig. 1A with white regions indicating high sa ience. (A) Wa ther and Koch (2006) (B) Russe   et a . (2014), 
(C) Perazzi et a . (2012), (D) Kümmerer et a . (2016). 
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b ack squares, in disagreement with our intuition. 
Given that we be ieve it is the uniqueness of the co or of the gray 

square that makes it stand out (or sa ient) in perception, we then 
searched for a mode  that is specifca  y designed to detect unique 
e ements. We narrowed the choice down further by demanding that the 
mode  takes into account the one feature, name y co or (of which in-
tensity is a specia  case) that distinguishes the unique stimu us from a   
others in our images. Both of these conditions are fu f  ed by a study by 
Perazzi, Krahenbuh , Pritch, and Hornung (2012). In their mode , an 
image is decomposed into compact regions of rough y simi ar co ors, 
and the sa ience of a region is driven by the re ation of two factors, the 
“uniqueness” and the “distribution” of a co or. Co ors that are far away 
in co or space from others present in the image (such as gray in Fig. 1A) 
are considered “unique” and therefore sa ient. Co ors that are spatia  y 
distributed in the image (b ack and white in Fig. 1A) are given a high 
“distribution”  eve , resu ting in  owered sa ience. 

The output of the Perazzi et a . (2012) mode  for the scene in Fig. 1A 
is shown in Fig. 2C. Given its design, we were surprised that it does not 
 abe  the gray square as sa ient. We ran the Perazzi et a . (2012) mode  
on a   of the ten stimu us arrays with faint objects that we used in our 
behaviora  experiments, described be ow and shown in the  eft pane s 
of Figs. S3 and S4. For eight of them, the unique square was not  abe ed 
as sa ient. We ana yzed the interna  mode  function and found that the 
distribution term (i.e. the spatia  extent of the co or) was estimated to 
be high because the co or of the unique square is c ose enough to the 
background co or to cause the mode  to group them together somewhat. 
By fne-tuning one of its mode  parameters ( c), we managed to have the 
unique square  abe ed as sa ient for each of the ten images. However, 
we do not know how the modifed mode  performs on images other 
than those ten for which its parameters were specifca  y tuned. We are 
a so uncertain how this parameter change afects the behavior of the 
mode  on natura  scenes. A further consideration is that the Perazzi 
et a . (2012) mode  is defned in pure y functiona  terms and its re-
 ationship with what we know about ear y visua  processing in bio o-
gica  systems is remote at best. 

Fina  y, we tested our hypothesis on a mode  that predicts sa ience 
which was deve oped by Kümmerer, Wa  is, and Bethge (2016). The 
mode  uses features from VGG-16, a deep network trained for object 
recognition. This mode  achieves high performance on natura  scenes 
and is current y ranked high y on the MIT300 sa iency benchmark 
which was introduced by Judd, Durand, and Torra ba (2012). For 
compatibi ity with other tested mode s, we used a version with no ex-
p icit preference for objects in the center of the image. As seen in 
Fig. 2D, this mode  a so assigns a  ower sa ience to the unique object, 
indicating that the training of the mode  does not genera ize we   from 
object recognition to sa iency computation. 

1.2. Attention to unique stimuli: behavioral studies 

Empirica  data from the visua  attention  iterature are consistent 
with our intuition that the gray square in Fig. 1A is sa ient. The gray 
square in Fig. 1A can be described as a sing eton, which is re ated, in a 
genera  way to ongoing research on the attention-capturing properties 
of sa ient sing etons [e.g. Bacon and Egeth, 1994; Ernst and Horstmann, 
2018; Fo k, Remington, and Johnston, 1992; Godijn & Theeuwes, 2002; 
Leber and Egeth, 2006; Theeuwes, 1992, 1994, 2010; Theeuwes and 
Van der Burg, 2011]. In these studies, subjects are given a visua  task 
(such as reporting the orientation of a sing e e ement) whi e a sing e 
e ement in the disp ay, which is irre evant to the task, is diferent from 
the rest in a sing e dimension. A decrease in task performance when the 
irre evant sing eton is present is interpreted as attentiona  capture by 
the sing eton, drawing attentiona  resources away from the assigned 
task. However, un ike Fig. 1A, in the sing eton  iterature it is usua  y the 
case that the feature contrast for the distracting irre evant sing eton is 
stronger than the feature contrast for the re evant sing eton. In order to 
determine whether the gray square in Fig. 1A is actua  y more sa ient 

than the b ack squares, we need to fnd studies where the feature 
contrast is actua  y weaker for the sing eton. 

In the rea m of visua  search experiments, Treisman and Gormican 
(1988) showed that search for a  ight gray target among dark gray 
distractors (on a white background) is efcient (independent of the 
number of distractors) when the distractor, backgroand and target 
co ors are a   easi y discriminated (their Tab e 2). Efcient search can 
be exp ained most easi y by assuming that attention is directed to the 
target. Bauer, Jo icoeur, and Cowan, 1996 support a simi ar intuition 
for a case with distractors of two co ors and the target fa  ing between 
them in co or space. Nothdurft (2006) a so reports on severa  psycho-
physica  experiments in which the participants assess the sa ience of 
diferent stimu i, and report the sa ience of a sing e  ow-contrast target 
among mu tip e high-contrast ones. 

A substantia  concern with a   of these experiments is, however, that 
a   of them informed participants about the upcoming visua  scene ei-
ther direct y, through the task instructions, or indirect y, by repeated y 
presenting simi ar scenes (e.g. circu ar disp ays of dots where one or a 
few difer from the rest). Such “top-down” infuences (which we defne 
as being dependent on the interna  state of the observer) of the task to 
be performed strong y afect participants’ eye movements (Yarbus, 
1967; DeAnge us & Pe z, 2009) and thus  ike y their attentiona  state 
(for more discussion see Section 4.2). Therefore, we cannot conc ude 
from the aforementioned evidence that the measured attentiona  efects 
are driven by “bottom-up” cues (dependent on the image on y). An 
experiment not afected by such anticipatory efects was performed by 
Pash er and Harris (2001) who showed that subjects se ected a unique 
fashing stimu us over severa  static ones, and a unique static stimu us 
over severa  fashing ones. Most scenes do not have fashing stimu i, 
though, and it remains unc ear whether uniqueness attracts attention in 
more genera  environments, in particu ar in static scenes. 

2. Materials and meth ds 

We frst describe the methods used for the behaviora  experiments 
(Sections 2.1,2.2,2.3) and then the computationa  mode s (Sections 2.4 
and 2.5). 

2.1. Experimental paradigm 

A   methods were approved by the Johns Hopkins Institutiona  
Review Board and carriedout in accordance with the Code of Ethics of 
the Wor d Medica  Association (Dec aration of He sinki). In previous 
work (Jeck et a ., 2017) we have addressed the difcu ty of minimizing 
the contamination of behaviora  measurements by top-down efects. 
The essentia  ideas from that work are that (a) task instructions are kept 
to a bare minimum, (b) spontaneity of responses is encouraged over 
 ong de iberations, and (c) every participant performs the task on y a 
very  imited number of times. These features are designed to minimize 
expectation which stimu i wi   be de ivered next and anticipation of 
responses that participants might be ieve they are expected to provide. 
More specifca  y, we described a method of obtaining attentiona  re-
sponses from participants who were on y minima  y informed about the 
upcoming stimu us. 

Our approach was inspired by an experiment deve oped by 
Firestone and Scho   (2014). Participants were passers-by on the Johns 
Hopkins University Homewood Campus. They were approached and 
asked if they wanted to do a quick psycho ogy experiment on a tab et 
computer. If they agreed, they were shown a short sequence of comp ex 
natura  scenes on the tab et and asked to “tap the frst p ace you  ook 
when the image appears”. As shown by Jeck et a . (2017), tapping re-
sponses were found to be signifcant y corre ated with other measures 
of attention, specifca  y eye movements (Parkhurst et a ., 2002), con-
scious se ections of interesting image parts (Masciocchi et a ., 2009), 
and the computationa  mode  of Itti et a . (1998). 

In the present study, we use these methods to empirica  y address 
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the question of whether unique faint stimu i appear sa ient among a set 
of stronger stimu i,  ike the gray square among b ack squares in Fig. 1A. 
We used simp ifed images, simi ar to that fgure, that are designed 
specifca  y to address this question by minimizing other possib e in-
fuences a though we be ieve that the efect is a so present in more 
comp ex images. Instructions were identica  to that described for the 
Jeck et a . (2017) study. The scenes we use are described in detai  in 
Section 2.2. 

A   stimu i were shown on 
9.7

an iPad tab et (App e Computers, iOS 8.3 
operating system, screen with reso ution). The screen 
occupied approximate y ° °15 –35 of visua  ang e depending on how far 
away from the face it was he d by the participant. Participant were frst 
shown a white screen with two sma   b ack squares (see Fig. 4), which 
we ca   the initia ization screen. They were instructed to tap on either 
one of the squares to bring up a test image, and were to d “When the 
image appears, tap the frst p ace you  ook”. The image then appeared 
and, after the participant had tapped his or her se ected  ocation on it, 
the position of the tap and the reaction time (time between this tap and 
the tap on the initia ization screen) were recorded using the pixe  and 
time given by the operating system. Test images strict y a ternated 
between a natura  scene and a scene of co ored squares, see be ow. Each 
participant saw a tota  of 12 images of which the frst a ways was a 
natura  scene. 

We recorded 1512 taps on simp e scenes from 252 participants (101 
ma e, 151 fema e). Popu ation resu ts are shown in Fig. 6. Reaction time 
(RT) was defned as the time from tapping on the initia ization screen to 
tapping on the test image. Median RT was 1.3 s, the mean was 1.4 s. We 
did not ana yze RTs in detai  because our data co  ection system (iPad) 
did not a  ow contro  of the exact timing of image presentation. 

2.2. Stimuli 

The stimu us set consisted of 30 images, with each showing a set of 
co ored squares on a white background. We refer to these as “simp e 
scenes” to distinguish them from the natura  scenes that were presented 
in a ternation with them. As mentioned, responses to the natura  scenes 
have been ana yzed previous y (Jeck et a ., 2017); for the purpose of the 
current study they on y serve to separate the simp e scenes and to 
possib y reduce the predictabi ity of the image sequence. On each of the 
simp e scenes, the screen was divided even y into a ×5 3 grid. In ten of 
the grid  ocations (random y chosen) a square ( pixe s) was 
p aced. Each square was p aced at a random  ocation (uniform dis-
tribution) within the centra  80% of the grid ce   in the horizonta  and 
vertica  directions. This p acement pattern spaced out the squares 
even y on average without creating a percept of a predictab e pattern. 
The co or of the squares varied among the six square image types 
generated, Gray/B ack, A  -B ack, B ack/Gray, B ue/Ye  ow, Pink/Red, 
and A  -Red; an examp e of each is shown in Fig. 5. Five images were 
generated for each image type. Each of the A  -B ack images was 
identica  to one of the Gray/B ack images except that the co or of the 
sing e gray square was changed to b ack. This design a  owed for a 
direct comparison between the gray square and the corresponding b ack 
square since the geometries of one A  -B ack and one Gray/B ack image 
were identica . Likewise, each of the A  -Red images was identica  to 
one of the Pink/Red images except that the pink square was changed to 
red. Otherwise, a   images were independent of each other. A   com-
putationa  mode s we tested predict (Section 1.1) that in a pair of Gray/ 
B ack and A  -B ack images with the squares at the same positions, the 
b ack square in the A  -B ack image at the same position of the sing e 
gray square is more sa ient (see Fig. 1C) and therefore shou d be tapped 
more than the gray square. The ana ogous argument app ies to the A  -
Red and Pink/Red pairs of images. 

The simp e scenes were separated into fve groups of six, with each 
group containing one image from each type. Each participant saw ex-
act y one Gray/B ack image, and one matched A  -B ack image was 
a ways shown to the same participant. Likewise, each participant saw 

one Pink/Red image and its matched A  -Red image. Images were 
presented in randomized order, with the constraint that the frst simp e 
scene of a matched pair was a ways chosen such that each of the two 
members of a matched pairs of images had an equa  number of parti-
cipants see it frst. For instance, the number of participants that saw the 
frst Gray/B ack image was the same as that of participants that saw the 
matched A  -B ack image as their frst simp e scene. This a  owed us to 
perform a direct comparison of data gathered from the frst time a 
participant saw a simp e scene with matched samp e sizes. 

2.3. Statistics 

Data from the frst view were ana yzed using a one-tai ed Fisher’s 
exact test. Data from a   views were ana yzed using paired one-tai ed t-
tests. Signifcance of the fts for center bias and intercepts in Fig. 6 was 
assessed using F-tests, the  atter with Fa se-Discovery Rate correction 
(Benjamini & Hochberg, 1995) to contro  for mu tip e comparisons. The 
signifcance  eve  for a   statistica  tests was set to . 

2.4. Proto-object comparison model: overview 

One strategy humans and other anima s use to cope with the com-
p exity of their environments is to transform raw sensory input into 
representations that match more c ose y the functiona  re ationships in 
the wor d. In the visua  and auditory moda ities this process is ca  ed 
perceptua  organization (Bregman, 1990; Kimchi, Behrmann, & O son, 
2003). In the visua  system, the fundamenta  units of this representation 
are no  onger activity  eve s of retina  gang ion ce  s but their corre ated 
patterns that correspond to visua  y perceived objects. We and others 
have deve oped quantitative mode s to understand the under ying 
computations (Ardi a, Miha as, von der Heydt, & Niebur, 2012; Craft, 
Schütze, Niebur, & von der Heydt, 2007; Hu, von der Heydt, & Niebur, 
2015; Brian, Kane-Jackson, & Niebur, 2016; Hu et a ., 2017; Miha as, 
Dong, von der Heydt, & Niebur, 2011; Pent and, 1986; Ramenaha  i, 
Miha as, & Niebur, 2014; Russe   et a ., 2014; Wa ther & Koch, 2006). 
As was observed by Rensink (2000) and Zhou, Friedman, and von der 
Heydt (2000), perceptua  organization does not require the formation 
of fu  y-formed objects as wou d be needed for tasks  ike object re-
cognition or discrimination. Instead, it is sufcient that the scene is 
segmented into entities that are characterized by a few e ementary 
features,  ike their position, size etc. Fo  owing Rensink (2000), we ca   
these entities proto-objects. For the sake of simp icity, we use the terms 
“object” and “proto-object” interchangeab y. 

E ectrophysio ogica  studies (Martin & von der Heydt, 2015; Qiu & 
von der Heydt, 2005, 2007; Wi  iford & von der Heydt, 2016; Zhou 
et a ., 2000) show that “ownership” of object borders is represented by 
the fring rate of individua  neurons in (main y) extrastriate visua  
cortex. Computationa  mode s (Craft et a ., 2007; Hu et a ., 2015; Hu 
et a ., 2016; Miha as et a ., 2011; Russe   et a ., 2014; Wagatsuma, von 
der Heydt, & Niebur, 2016) show that these resu ts can be exp ained by 
a popu ation of “grouping” ce  s that represent in their fring rates the 
proto-objects under ying the mode  in the present study (their name 
stems from their ro e of binding, or grouping, the diferent features of 
proto-objects). Grouping neurons receive input from striate and ear y 
extrastriate cortex and, in turn, modu ate activity of some neurons in 
these areas. It is this modu ation which imparts border-ownership se-
 ectivity on these “border-ownership se ective” neurons. Response 
properties of grouping neurons are quite simp e, in the simp est form 
their activity represents the presence of “something” within a certain 
size range at an approximate position. Therefore, any sing e grouping 
neuron can not represent objects with comp ex shapes. Our working 
hypothesis is that such objects are represented in the popu ation ac-
tivity of grouping ce  s. A mode ing study (Ardi a et a ., 2012) de-
monstrated that visua  activation by comp ex geometrica  shapes resu ts 
in an activity pattern at the grouping ce    eve  that reproduces the 
output of the media  axis transform, an abstract representation of 
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comp ex visua  shapes common y used in computationa  vision (B um, 
1973; Fe dman & Singh, 2006). The purpose of this ear y proto-object 
representation is on y to provide structure to the visua  input. Qiu, 
Sugihara, and von der Heydt (2007) showed that perceptua  organiza-
tion, or at  east the part that manifests itse f in the form of border 
ownership se ectivity, is a pre-attentive process on which other me-
chanisms can bui d, e.g. object recognition, attention to objects, or 
navigation. 

Our behaviora  resu ts (be ow) suggest that humans compute re-
 ative sa iency of simu taneous y present (proto-) objects by comparing 
the features of these objects, rather than properties of regions that are 
defned by simp e spatia  re ationships, as in center-surround contrast 
computations. To understand these behaviora  resu ts, we deve op a 
computationa  mode  of visua  sa iency based on comparisons between 
objects. The mode  genera izes the idea that objects that difer from 
other objects are sa ient, whi e repeated objects are not sa ient. Whi e in 
ear y mode s (Itti et a ., 1998; Itti & Koch, 2001; Koch & U  man, 1985; 
Niebur & Koch, 1996) the e ements to be compared were defned pure y 
spatia  y, newer approaches are based on proto-objects (Russe   et a ., 
2014; Wa ther & Koch, 2006). However, as discussed previous y (Sec-
tion 1.1), these mode s cannot exp ain that humans assign higher sa -
ience to unique objects over repeated objects. 

To obtain a representation of proto-objects in a visua  scene, we 
compute grouping ce   activity as in the Russe   et a . (2014) mode  but 
we remove the norma ization procedure that fo  ows in that mode  and 
rep ace it by a norma ization that takes into account other stimu i 
anywhere in the scene. Grouping ce  s ti e the entire image with over-
 apping proto-objects of many diferent radii, and are computed on 
diferent submoda ities (intensity, co or, and orientation). A grouping 
ce   in the Russe   et a . (2014) mode  wi   have a strong response if it is 
at the center of a set of co-circu ar edges at the preferred radius of the 
grouping ce  . Grouping ce  s in our mode  have a minimum preferred 
radius of 32 pixe s and a maximum of 256 pixe s. The mode  is i  u-
strated in Fig. 3 and defned forma  y in Section 2.5. Here we propose a 
simp e co or-based mode , as it is sufcient to exp ain the data co -
 ected. However, a number of other features (e.g. shape, orientation, 
etc.) cou d easi y be added to our norma ization procedure. 

2.5. Proto-object comparison model: formal defnition 

Proto-objects in our mode  are defned by their position ( X Y, ) and 
radius (r). We do not, however, assume a binary distinction between the 
presence and absence of proto-objects at any  ocation. Instead, the ac-
tivity of grouping ce   responses in the Russe   et a ., 2014 mode  pro-
vides a graded measure of the “be ief” that a proto-object with a specifc 

X Y( , )i i riradius is present at a specifc  ocation. Let , and represent po-
sition and radius for the 

ri
2

i-th proto-object. We defne its strength Si as 
the product of with the i-th grouping ce   response. Since proto-ob-
jects are ca cu ated by contrast-based mechanisms, the S va ues of 
proto-objects representing the gray square in Fig. 1A are  ower than 
those of b ack squares. An examp e of a set of grouping ce   responses 
with a radius of 32 pixe s to the stimu us in Fig. 3A is shown in Fig. 3B. 

In order to compare between proto-objects in our new norma -
ization step be ow, we must frst compute a set of features for each 
proto-object. For each proto-object, the proto-object comparison (POC) 
mode  computes 

X Y( , )i i

features over the 
ri

image region defned by the circ e 
with center at with radius (see 3C for an examp e). We com-
pute histograms of L a, , and b va ues from the CIELAB co or space 
(Ibraheem, Hasan, Khan, & Mishra, 2012). These co or dimensions have 
been found to be represented in a number of visua  areas (Brouwer & 
Heeger, 2009; Conway & Tsao, 2009; Li, Liu, Juuso a, & Tang, 2014). 
Each of these histograms has nine bins and is norma ized to sum to 1 so 
that patches of diferent radii can be compared appropriate y. We a so 
compute histograms with nine bins for the potentia  radii of proto-ob-
jects in the patch. Eight of the bins have the va ue zero and the one 
which corresponds to the actua  object radius having the va ue unity. 
For the i-th proto-object, this gives us a feature vector Fi whose com-
ponents are the va ues of 36 diferent bins (nine bins for each of the four 

L a b, ,i i i rifeatures , and ). We refer to the va ue for the i-th proto-object 
in the j-th bin as Fij. In the brain, we presume that these features are 
computed simu taneous y with the computation of proto-objects 
themse ves. The entries in the histograms correspond to activity pat-
terns of separate neurona  popu ations that are tuned to the features 
represented by the histogram bins. We chose those features in our 
mode  part y for reasons of computationa  efciency rather than as 

Fig. 3. Simp ifed i  ustration of the POC mode . (A) Examp e input image. (B) Map of the strengths of proto-objects with a radius of =r 32 pixe s on y. Three co ored 
dots correspond to proto-objects used in the fo  owing pane s. Note the weak response to the gray square, centered on green dot. (C) I  ustration of the feature 
computation for the proto-object high ighted by the green dot in B. Histograms are formed over the pixe s within the circ e of radius r around the center X Y( , ) of the 
proto-object. Note that a   pixe s are gray, which corresponds to the sixth  uminance bin in pane  D. (D) Top pane , feature representations for three proto-objects. 
Two are on b ack regions (red and b ue dots in B, over apping red and green histogram bins in the 3 pane s of D), these proto-objects have identica  co ors (b ack) and 
their va ues in the histogram are identica , unity in the frst histogram bin and zero in a   others. The third is on the gray region of the image (green dot in pane  B, 
zoom-in in Pane  C, and green histogram bin in D), it has unity va ue in bin 6 and zero e sewhere. Midd e pane , feature va ues mu tip ied by proto-object strength S. 
Bottom pane , strength after norma ization. (E) Top pane , sa iency output for the three proto-objects processed in D. Output for a   other proto-objects omitted for 
c arity. Bottom pane , output for a   proto-objects. Note the enhanced sa iency of the gray square in D, E. (For interpretation of the references to co our in this fgure 
 egend, the reader is referred to the web version of this artic e.) 
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detai ed imp ementations of bio ogica  processes. For instance, we do 
not c aim that there are neurona  popu ations that one-by-one code 

, and b va ues from the CIELAB co or space but we do be ieve that 
co or is represented exp icit y in neurona  activity patterns. 
L a,

Interaction between proto-objects is introduced through a norma -
ization process, 

=N
S F

F
ij

i ij

k k
kj

(1) 

if S F 0k i kj , otherwise =N 0ij
Si

. In this equation, the va ue in each 
histogram bin is mu tip ied by so that strong y detected objects are 
given more weight in the norma ization process, and strong y detected 
objects with the same feature va ues wi   suppress one another. This is 
i  ustrated in Fig. 3D for three proto-objects: two with high Si that share 
the same feature va ues and one with a  ower Si va ue that is unique. 
The strength of each proto-object is then computed as 

=P Ni
j

ij
(2) 

and a sa iency map Q is defned as a sum of Gaussians with weight given 
by Pi and  ocations given by the proto-object. 

= +Q x y x X y Y( , ) exp ( ) ( )
2i i

i i

i

2 2

2
(3) 

where the spread =i
r
2
i of the Gaussian ensures that most of a proto-

object’s activation is near its center. A sa iency map for the three proto-
objects and the fu   output using a   proto-objects is shown in Fig. 3E. 

We noted that the sa iency maps generated by the POC mode  are 
b urrier than the Russe   et a . (2014) mode , which has in the past 
corre ated with improved performance on natura  scenes (Judd et a ., 
2012). To i  ustrate the importance of the norma ization process rather 
than the other imp ementation detai s of the mode  (e.g. the creation of 
the sa iency map using a sum of Gaussians), we a so generate a sa iency 
map using Eq. (3) but rep acing Pi with Si. Note that this is equiva ent 
(up to 

=F 1j ij
0.464

a sca ing factor) of computing Eq. (1) without the denominator, 
since . We found that the average R for this modifed mode  
was , simi ar to the va ues found for the non-modifed mode  
(Resu ts). 

3. Results 

3.1. First view only 

Participants were approached on a campus of Johns Hopkins 
University and asked whether they were wi  ing to do a quick psy-
cho ogy experiment on a tab et computer. By tapping on the screen, 
they made appear an a ternating sequence of natura  scenes and “simp e 

scenes” consisting of co ored squares (Methods; see Fig. 4). They were 
instructed to tap with a fnger of their choice on the frst p ace they 
 ooked at in the scene. Each participant saw a tota  of 12 images of 
which the frst a ways was a natura  scene. For the purposes of this 
study, on y responses to simp e scenes are ana yzed, natura  scenes on y 
served to minimize potentia  interactions between subsequent simp e 
scenes. One c ass of simp e scenes consisted of one unique gray square 
among severa  b ack squares, as in Fig. 1A. Each observer who saw one 
of these scenes a so saw an identica  one in which the unique gray 
square was rep aced by a b ack square, Fig. 5A. In this case existing 
mode s predict that the b ack square shou d be more sa ient than the 
gray square due to its higher contrast with the background despite 
having the uniqueness property removed. Other patterns of uniqueness 
(or its absence) were a so created with other co ored squares, Fig. 5B, C. 

We obtained the main resu t of this study by ana yzing tap  ocations 
for the very frst tria  on which a subject was presented with a simp e 
scene (this was a ways the second tria  since the frst was a natura  
scene). Examp e stimu i with a   taps shown as over aid green dots are 
in Fig. 5 (for frst taps on y see Supp . Figs. S1 and S2 in AppendixB). 
Participants tapped the unique (“sing eton”) square (gray or pink) sig-
nifcant y more frequent y than the matched square on a contro  image 
(b ack or red). This resu t ho ds both for a gray square among b ack 
squares (Fig. 6A) and for a pink square among red squares (Fig. 6C). In 
the former case, we observed 14 taps on the gray square taps vs. 6 taps 
on the b ack square, both out of 51 taps. A one-tai ed Fisher’s exact test 
gives . In the  atter case, we observed 16 taps on the pink 
square vs. 8 on the red square, both out of 47 taps. A one-tai ed Fisher’s 
exact test gives . Note that in both cases, the  oca  contrast of 
the unique object to the background is  ower than that of the non-un-
ique objects which is what  eads the computationa  mode s astray. A so 
note that the b ack among gray and the b ue among ye  ow tria s do not 
speak to the issue of whether a faint object attracts attention. 

This resu t confrms the intuition that a unique stimu us is more 
sa ient than a non-unique stimu us, even if the  atter has higher contrast 
to the background. 

3.2. All presentations 

In the next ana ysis, we studied the re ative tapping rates of a   six 
simp e scenes a given participant saw, averaged over a   participants. 
Each image had a diferent sing eton tap rate, defned as the fraction of 
times that participants tapped on the sing eton square. We did not en-
force that the same number of participants saw the same scene as their 
frst, second, or n-th simp e scene. Therefore, it is difcu t to quantify 
whether the  ocation of an image in the image sequence infuences tap 
rates. For the remainder of our ana ysis, we therefore aggregate data 
over a   six presentations of simp e scenes. 

Inc uding a   six views by each participant, gray squares are tapped 
signifcant y more than the b ack squares in corresponding positions, 

Fig. 4. Experimenta  procedure. 
Participants frst saw an initia ization screen 
and tapped on one of the sma   b ack 
squares at the bottom. This brought up a test 
image (a ternating natura  scenes and 
simp e scene). They then tapped on it at a 
p ace of their choosing which was, ac-
cording to instructions, the frst p ace they 
 ooked at when the image had appeared. 
Tapping position and reaction time were 
co  ected, the initia ization screen re-
appeared, and the cyc e re-commenced. 
(Natura  scenes were shown in fu   co or, see 
the web version of this artic e.) 
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with 90 taps 
<p 10 14

on gray squares vs. 21 on b ack squares, out of 252 taps in 
both cases ( paired t-test; Fig. 6B). The same ho ds for pink 
squares 

<p 10 5
vs. corresponding red squares, 101 taps vs. 59 out of 252 

( ; Fig. 6D). Note that a paired t-test is appropriate in these 
cases because the same participants saw paired Gray/B ack and A  -
B ack images on diferent presentations (and the same for Pink/Red and 
A  -Red images). More detai ed ana ysis shows that direct comparisons 
between Gray/B ack and A  -B ack images were signifcant individua  y 
for each of the fve pairs (Supp . Fig. S3), as we   as for three out of the 
fve pairs of Pink/Red and A  -Red images (Supp . Fig. S4). For the two 
images without signifcant y increased tap rates on the pink squares, the 
corresponding red square was the most tapped square on the A  -Red 
image and in both images it was  ocated c ose to the center of the scene. 
A cei ing efect,  ike y due to the geometrica  arrangements of stimu i 
(center bias, see next paragraph), may thus be the reason why we did 
not fnd a signifcant efect in these cases. 

As in previous studies (Buswe  , 1935; Parkhurst et a ., 2002; Tseng, 
Carmi, Cameron, Munoz, & Itti, 2009), we found a strong center bias in 
our resu ts. Fig. 6E shows the rates at which participants tapped on a 
sing eton square as a function of the square’s Euc idean distance from 
the center of the image. The  ines in the fgure are generated from a 
 inear regression mode  where each type of stimu us and the distance 
from the center are used to predict the tap rate. A so shown are the tap 

Fig. 5. Examp e set of simp e scenes, over aid 
(green dots) with tap  ocations of a   participants 
who saw this set. A   taps shown are in response 
to the frst time participants saw these scenes. 
(A) Gray/B ack ( eft) and corresponding A  -
B ack (Right) images. Note that the corre-
sponding image has an identica  spatia  ar-
rangement of squares. (B) Pink/Red ( eft) and 
corresponding A  -Red (right) images. Again, the 
spatia  arrangement is identica . (C) B ack/Gray 
( eft) and B ue/Ye  ow (right) images. The 
B ack/Gray and B ue/Ye  ow images had in-
dependent spatia  arrangements. (For inter-
pretation of the references to co our in this 
fgure  egend, the reader is referred to the web 
version of this artic e.) 

rates and  inear fts for the non-sing etons in the A  -B ack and A  -Red 
images. A signifcant 

<p 10 5
efect of distance from the center was found for 

each  ine (F-test, a   ). The negative s ope of a    ines confrms 
the existence of a center bias in a   conditions. Interaction terms be-
tween the distance from the center and the stimu us type were not 
found to be signifcant except in the case of the non-sing etons. 

By ana yzing the intercepts of the ft  ines (Fig. 6F) we can rough y 
gauge the sa ience for the diferent image types independent y of the 
center bias. By performing pairwise comparisons between the inter-
cepts, we found that the B ue/Ye  ow intercept was signifcant y higher 
than the Gray/B ack and the Pink/Red intercepts (F-test, a   <p 0.05), 
and intercept of the ft  ine for non-sing etons was  ower than for any of 

<p 10 11the images containing sing etons (a   ). These resu ts he d after 
performing a Fa se-Discovery Rate correction (Benjamini & Hochberg, 
1995) to contro  for mu tip e comparisons. We a so found that the 
sing etons in B ack/Gray and B ue/Ye  ow images are genera  y more 
sa ient than either the sing etons in Gray/B ack or sing etons in Pink/ 
Red images. These resu ts agree qua itative y with previous search 
asymmetry studies (Treisman & Gormican, 1988) since the Gray/B ack 
sing etons are  ess sa ient than the B ack/Gray sing etons, (Fig. 6E) 
whi e confrming that the sing eton gray squares in the Gray/B ack 
images can sti   be sa ient. 
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Fig. 6. (A–D) Rates at which participants tapped on sing eton (sing.) squares vs. non-sing eton corresponding squares (Non-sing.) in a contro  image. Error bars 
represent standard error. (A) Gray/B ack vs. A  -B ack comparison for each participant’s frst tap. (B) Gray/B ack vs. A  -B ack comparison for a   taps. (C) Pink/Red vs. 
A  -Red comparison for each participant’s frst tap. (D) Pink/Red vs. A  -Red comparison for a   taps. (E) Rates at which participants tapped on the sing eton squares 
(co ored circ es, see  egend), and each of the various non-sing eton squares in the A  -Red and A  -B ack images (green circ es). The horizonta  axis is the Euc idean 
distance from the center of the image. Fit  ines were generated for each sing eton image type individua  y and for Non-sing etons combined, co ors same as for the 
corresponding circ e symbo s. (F) The vertica  intercept of each ft  ine from (E) with standard error bars (G/B = Gray/B ack, P/R = Pink/Red, B/G = B ack/Gray, B/ 
Y = B ue/Ye  ow, NS = Non-sing etons). The symbo  indicates that no pairwise diference was found ( p 0.05). A   other intercept pairs difered signifcant y 
( <p 0.05). (For a fu   co our version of this fgure, the reader is referred to the web version of this artic e.) 

Fig. 7. Mode  behavior on an examp e simp e scene (top row) and natura  scene (bottom). (A) Input image. (B) Output of the Russe   et a . (2014) mode . (C) Output 
of the mode  without norma ization, using Si instead of Pi in Eq. (3). (D) Output of the POC mode . (E) Image with tap data (top; green dots) and fxation map 
(bottom) over aid. For the natura  scene sa iency and fxation maps are downsamp ed to the ×12 16 reso ution used by Jeck et a . (2017). (For interpretation of the 
references to co our in this fgure  egend and a fu   co our version of the  ower pane  of (A), the reader is referred to the web version of this artic e.) 

3.3. Inter-object competition in feature spaces features of these objects, rather than properties of regions that are de-
fned by simp e spatia  re ationships, as in center-surround contrast 

Our behaviora  resu ts suggest that humans compute re ative sa - computations. To understand these behaviora  resu ts, we use the Proto-
iency of simu taneous y present (proto-) objects1 by comparing the Object Comparison (POC) mode  defned in Sections 2.4 and 2.5. For 

each of the simp e scene stimu i shown to participants, the POC mode  
was ab e to predict that the unique object was the most sa ient object in 

1 We refer to “proto-objects” rather than to “objects” because our focus is on the image (see Fig. 7, top row for an examp e). This he d for a   stimu i 
 ow- eve  perception which does not require many of the properties of an object, shown in Supp . Figs. S3 and S4, even without accounting for center 
see Rensink (2000) and Zhou et a . (2000); see Section 2.5 for more detai s. 
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bias. It wou d be simp e to add such a bias (Parkhurst et a ., 2002) but 
since the POC mode  a ready has perfect performance in this respect, it 
seems besides the point to add this modifcation. 

We a so wondered whether the POC mode  is ab e to maintain the 
same  eve  of performance on natura  scenes as the Russe   et a . (2014) 
mode  on which it is based. We tested the output of the POC mode  on 
images where we had previous y recorded fxations to generate sa iency 
maps, and used the Pearson corre ation R between fxation maps and 
these sa iency maps as our measure of performance (see Jeck et a ., 
2017 for detai s). Average R over the 100 images we tested [the same as 
used by Russe   et a . (2014)] was 0.484 for the POC mode , actua  y 
s ight y higher than the va ue of for the Russe   et a . (2014) 
mode . 

4. Discussi n 

4.1. Simple scenes and models of salience 

Using the nove  tapping paradigm we have shown that participants 
preferentia  y report that the frst p ace they  ook is at a unique (sin-
g eton) object, even when that item is faint ( ow contrast) compared to 
other items in the disp ay. This suggests that subjects have a defau t set 
in p ace when they view an unknown scene. Defau t sets have been 
discussed in genera  terms [see, e.g. Fo k, Remington, and Johnston, 
1993]. As mentioned in Section 1.2, our resu ts are simi ar to those in 
the ongoing research on the attentiona  capture of sing etons [e.g. 
Bacon and Egeth, 1994; Fo k et a ., 1992; Leber and Egeth, 2006; 
Theeuwes, 1992, 2010; Ernst and Horstmann, 2018]. However, those 
approaches difer in two important ways from the present study. First, 
in the capture  iterature it is typica  y the case that subjects have an 
exp icit task such as fnding a sing eton on one dimension, whi e an 
irre evant sa ient sing eton is present or not. Thus competing atten-
tiona  sets may be in p ay. Second, the feature contrast for the dis-
tracting irre evant sing eton (e.g., a green item when the others are a   
red) is typica  y stronger than the feature contrast for the re evant 
sing eton (e.g., a diamond shape in an array of circ es). Indeed, when 
the discriminabi ities of the shape and co or dimensions are adjusted 
appropriate y such that form is easier to discriminate than co or, then 
search for a form target is not s owed by the presence of a unique co or, 
whi e search for co or is afected by the presence of a unique form 
(Theeuwes, 1992). 

It was to be expected, and is predicted by quantitative mode s of 
sa ience computation, that sing etons that have high contrast re ative to 
a   other scene e ements inc uding the background are attended pre-
ferentia  y. We show that this is the case for intensity contrast (b ack 
square surrounded by white background and gray squares) and for 
co or contrast (b ue square surrounded by white background and 
ye  ow squares). In contrast, a   computationa  mode s we tested predict 
the opposite outcome for a “faint” sing eton object: As  ong as the 
sing eton is we  -iso ated from other objects so that  oca  center-sur-
round diferences incorporate substantia  input from the background, 
mode s assign  ow sa ience to a sing eton with  ower contrast against 
the background than other objects in the image (gray or pink squares 
surrounded by white background and b ack/red squares). We show that 
humans se ect these sing etons over otherwise identica  stimu i that are 
not sing etons. As  ong as the sing eton, background, and other objects 
are sufcient y far apart from each other in co or space, the sing eton 
wi   be preferentia  y se ected. 

Whi e previous research in the visua  search and psychophysica  
 iterature has arrived at simi ar conc usions about sa ience (Bauer et a ., 
1996; Nothdurft, 2006; Treisman & Gormican, 1988), the participants 
invo ved in those studies were either exp icit y informed about the 
nature of the images being presented, or they performed enough tria s 
that they  ike y expected certain types of images. It is therefore not c ear 
to what extent responses infuenced by systematic top-down efects 
rather than contro  ed by the perceptua  qua ities of the visua  stimu i. 

We therefore deve oped an experiment in which participants received 
minima  information on the stimu i. Our resu ts show signifcant y in-
creased sa ience of unique objects even for the very frst time a parti-
cipant sees a scene. 

4.2. Top down infuences and possible experimental confounds 

Our experimenta  paradigm makes it feasib e to measure behaviora  
responses from a  arge number of participants whi e minimizing ex-
pectations of stimu us contents they may have or deve op during the 
experiment. Neverthe ess, given the comp exity of the human mind, it is 
extreme y difcu t to comp ete y exc ude top-down infuences. In the 
fo  owing, we discuss potentia  remaining top-down efects that may 
have biased our resu ts, from the more generic to the more specifc. 

Our experimenta  paradigm certain y does not remove a   top-down 
infuences on attention. Participants’ behavior wi   natura  y be afected 
by outdoor distractions, their interna  state etc. However, we contend 
that remova  of (exp icit y or imp icit y provided) information about the 
visua  stimu i removes those top-down infuences that are specifc to the 
images they see,  eaving on y those of a generic nature that are in-
dependent of the images. In our experiment each image with a faint 
sing eton square is paired with another one that is identica  in a   re-
spects except that the sing eton is rep aced by a distractor square. There 
is no reason to assume that top-down infuences due to generic dis-
tractions etc are diferent between the two images of a pair. Therefore, 
diferences in interna  state of a genera  nature cannot exp ain our re-
su ts. 

A diferent, rather pessimistic interpretation of our resu ts is that the 
participants were priming themse ves to  ook for unusua  objects be-
cause they knew that they were participating in a psycho ogy experi-
ment, and that they responded in a way that they be ieved the scientist 
wanted them to respond [“demand bias;” (Firestone & Scho  , 2016)]. It 
has, indeed, been found that participants in psycho ogy experiments 
wi   modu ate their responses based on what they be ieve the purpose of 
the experiment is. For examp e, Durgin et a . (2009) showed that par-
ticipants wi   give a higher estimate of a s ope to be sca ed whi e 
wearing a heavy backpack if they infer that experimenters expect that 
the weight wi   infuence their judgment, compared to a situation where 
they carry the same backpack but be ieve its weight is irre evant for 
estimating the s ant (because they are to d that it contains measurement 
equipment). See a so Brown (1953) for an ear ier account of experi-
menta  design afecting subjective assessments. We acknow edge the 
possibi ity that subjects tap the unique object because they think the 
experimenter wants that response, though it does not seem probab e. 
Our experiment was designed specifca  y to minimize this efect which, 
if present, shou d be much more preva ent in the cited previous beha-
viora  studies of the sa ience of faint objects. In our experiment, a sig-
nifcant efect is observed when participants respond to the very frst 
sing eton image they ever see (after one other image showing an un-
re ated natura  scene), with the response given within about one 
second. It seems high y un ike y that participants come to a conc usion 
of what the experimenter expects from them in  itera  y a sp it second 
without any additiona  information but the image itse f. In addition, the 
fact that our previous resu ts (Jeck et a ., 2017) showed signifcant 
corre ations between behavior in this task and severa  measures of 
sa iency strong y suggests that taps do occur on sa ient stimu i. Fur-
thermore, in informa  debriefng of participants after the experiment, 
none of the participants asked if they were supposed to tap on the 
sing etons. A   this supports the interpretation that our resu ts are not 
due to demand bias or simi ar efects. 

Another criticism may be that the participants had enough time 
viewing the image to engage in a mixture of top-down and bottom-up 
processing. Under this view, the fact that the participants have a re-
action time greater than a second is a serious design  imitation. Rather 
than their attention being drawn immediate y to the most sa ient sti-
mu us and then reporting it, during that amount of time the participants 
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may saccade to mu tip e  ocations and modify their choice of where 
they report they frst  ook based on a higher- eve  interpretation of the 
scene. Whi e it is true that the median reaction time of 1.3 s wou d 
theoretica  y a  ow severa  fxations, this does not take into account the 
time needed for making a contro  ed hand-movement to a specifc  o-
cation in a task executed without any previous training, performed in a 
casua  environment (standing on a wa kway on campus), and without 
encouragement for a rapid response. We consider it  ike y that most of 
the 1.3 s  ong period between the time the image was presented and the 
fnger reached the tab et surface was devoted to motor p anning and 
actua   imb motion. We a so note that this criticism wou d  ikewise 
app y to fxation data which is typica  y gathered over severa  seconds 
of free viewing per scene (Borji & Itti, 2013). 

Fina  y, we briefy address two concerns that are not re ated to top-
down infuences. The frst concerns the scene gist hypothesis [for 
Review see O iva, 2005], stating that the overa   structure of the scene 
may begin to have an efect on attention immediate y (within 

). This is not a top-down efect by our defnition since the gist 
is a property of the scene, rather than of the interna  state of the ob-
server. It wou d be extreme y difcu t to separate this efect from gui-
dance of attention to sa ient stimu i in any experiment. In fact, if the 
gist of our sing eton scenes can be described by “severa  simi ar objects 
and one dissimi ar object on a homogeneous background” it wou d even 
conceptua  y be difcu t to distinguish its efect from sa ience-driven 
guidance of attention to the sing eton. Both exp anations may simp y be 
diferent descriptions of the same under ying process. 

One possib e methodo ogica  concern may be that participants may 
not fo  ow our instructions to “tap the frst p ace you  ook”. Indeed, we 
do not contro  whether they do but we see this formu ation rather as a 
non-technica  way to instruct participants to indicate where they are 
attending than as an action that needs to be fo  owed precise y. Our 
interest is to assess where attention is dep oyed, rather than fnding a 
precise surrogate for eye movements. Pointing with a fnger is a very 
natura  and universa  human behavior (Kita, 2003) which a ready ap-
pears during infancy, at about one year of age (Leavens, Hopkins, & 
Bard, 2005; Tomase  o, Carpenter, & Liszkowski, 2007). The purpose of 
fnger pointing is typica  y to direct attention (either that of another 
person or occasiona  y of the pointing person him or herse f) towards a 
specifc part of the wor d. This behavior is thus a direct, vo untary 
expression of attentiona  se ection. 

4.3. Object-based models 

Regard ess of interpretation, a mode  that wou d capture the ob-
served behavior must re y on a computation more advanced than spa-
tia  y defned center-surround operations. A natura  step in this direc-
tion is the formation of proto-objects by grouping together  ow  eve  
features of the same type. A computationa  mode  by Perazzi et a . 
(2012) breaks an image into compact co or patches of approximate y 
equa  size and assigns heightened sa ience to a patch of unique co or. 
However, it does not take into account that most ce  s in ear y primate 
cortex are orientation se ective and, more important y, it fai s to assign 
high sa ience to the unique objects in our stimu i (see Section 1.1). More 
bio ogica  y rea istic mode s are based on exp icit representations of 
proto-objects. Proto-objects ofer a representation that has more fde ity 
to the physica  wor d, with distinct objects of wide y varying size oc-
cupying consistent  ocations in visua  space. Such representations are 
more behaviora  y usefu  than co or patches, as predictab e changes in 
the visua  scene cou d be encoded for a proto-object but not for a co or 
patch, which may arbitrari y break up an object over mu tip e patches. 
Russe   et a . (2014) defne proto-objects based on the strength and 
organization of edges in the image. Wa ther and Koch (2006) identify 
the submoda ity with the highest contribution at the peak of the sa -
iency map (Itti et a ., 1998) and defne proto-objects by spreading ac-
tivation in this submoda ity around the sa iency peak. Both mode s are 

unab e to capture the observed behavior because they do not perform 
any comparison between proto-objects (Section 1.1). Our new mode  
imp ements this competition in feature space and we show that it is in 
agreement with human behavior. 

4.4. Future work 

This work opens the possibi ity for a number of avenues for further 
research. Despite the existence of a vibrant  iteration on the capture of 
attention by sing etons (Bacon & Egeth, 1994; Ernst & Horstmann, 
2018; Fo k et a ., 1992; Godijn & Theeuwes, 2002; Leber & Egeth, 2006; 
Theeuwes, 1992, 2010; Theeuwes & Van der Burg, 2011), the nature of 
the under ying mechanisms is sti   unreso ved. Perceptua  grouping, 
spatia  organization and feature simi arities a    ike y p ay a ro e by 
themse ves or in combination (Be opo sky, Zwaan, Theeuwes, & 
Kramer, 2007). A question to answer is the spatia  extent over which 
comparisons between objects infuence their re ative sa ience. Simi-
 ar y, the detai s of the comparison in feature space have not been 
rigorous y determined. Space and feature dimensions can a so be 
combined, as in the norma ization theory of attention (Reyno ds & 
Heeger, 2009). Our mode  assigns co or into bins rather than doing a 
continuous comparison across co or space, which may a so provide a 
p ausib e exp anation of the data. Either of these wou d  ike y necessi-
tate their own studies. Furthermore, the addition of features beyond 
co or wou d open up the possibi ity that mu tip e features wou d con-
fict with each other. 

5. C nclusi n 

We show that uniqueness makes objects perceptua  y sa ient, even 
when uniqueness is pitted against features that by themse ves suppress 
their sa iency. These resu ts cannot be exp ained by top-down infu-
ences on behavior (Section 4.2). Existing computationa  mode s do not 
capture this fundamenta  behavior but a mode  that inc udes competi-
tion in (non- oca ) feature space agrees both with intuition and with 
observed human behavior. Our new mode  points to the importance of 
inter-object comparisons when predicting human behavior and our 
fndings demonstrate the uti ity of the tapping paradigm in testing 
mode s of visua  attention. These resu ts are of wide-ranging im-
portance for understanding human behavior, as they have theoretica , 
methodo ogica , and practica  imp ications. They may a so be of interest 
to the human factors community in the design of visua  interfaces. 

Data and c de availability 

Data is made free y avai ab e at https://github.com/dannyjeck/ 
Proto-Object-Comparison. 
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avai ab e at https://github.com/dannyjeck/Proto-Object-Comparison. 
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Appendix A. Linear separability  f the unique faint square in feature space 

Whi e Fig. 1C shows that the Itti et a . (1998) mode  of visua  sa ience does not produce a strong response for the unique gray square, we 
wondered whether any  inear combination of the intensity features in that mode  cou d produce the observed behavior where the unique square is 
se ected more than an otherwise identica  b ack square at the same  ocation. If a  inear combination of the intensity center-surround features cou d 
produce the desired behavior, then there wou d exist some set of weights on the center-surround maps that enhance the gray square whi e sup-
pressing the b ack squares as we   as the background. 

We therefore set up a set of  inear constraints. If they are impossib e to satisfy then the feature space is unab e to rep icate human behavior. The 
center surround features c generated by the origina  code from 

x y( , )
Itti et a . (1998) 

c x y( , )
are six ×48 64 pixe  maps, one at every spatia  sca e in the Lap ace 

pyramid of the intensity submoda ity. For 
x y( , )

a given  ocation on the image, is therefore a vector with six e ements corresponding to each 
center surround feature va ue at . Our constraints are that a set of weights w must satisfy 

<w c x y K( , )T (4) 

for some constant  , when x y( , ) is outside of the gray square. Additiona  y, for some point x y( , ) inside the gray square, 

>w c x y K( , )T (5) 

must a so be satisfed. For a given va ue of x y( , ) this set of constraints can be reformu ated as a  inear programming prob em which a  ows us to 
check the satisfabi ity of the constraints using of-the-she f software (Mat ab R2012b). We found that for the image in 

x y( , )
Fig. 1A the constraints cou d 

not be satisfed for any given va ue on the gray square. 

Appendix B. Supplementary data 

Supp ementary data associated with this artic e can be found, in the on ine version, at https://doi.org/10.1016/j.visres.2019.04.004. 
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