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Abstract 

A crucial step in understanding visual input is its organization into meaningful components, in particular object 
contours and partially occluded background structures. This requires that all contours are assigned to either the 
foreground or the background (border ownership assignment). While earlier studies showed that neurons in 
primate extrastriate cortex signal border ownership for simple geometric shapes, recent studies show consistent 
border ownership coding also for complex natural scenes. In order to understand how the brain performs this 
task, we developed a biologically plausible recurrent neural network that is fully image computable. Our model 
uses local edge detector (B) cells and grouping (G) cells whose activity represents proto-objects based on the 
integration of local feature information. G cells send modulatory feedback connections to those B cells that 
caused their activation, making the B cells border ownership selective. We found close agreement between our 
model and neurophysiological results in terms of the timing of border ownership signals (BOSs) as well as the 
consistency of BOSs across scenes. We also benchmarked our model on the Berkeley Segmentation Dataset and 
achieved performance comparable to recent state-of-the-art computer vision approaches. Our proposed model 
provides insight into the cortical mechanisms of figure-ground organization. 
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Introduction 
Figure-ground organization is critical for understanding 

the visual world around us. This process requires image 
segmentation, i.e., dividing the input image into regions 

corresponding to objects and background. Determining 
the correct assignment of each region border to its cor-
responding object is difficult due to clutter, occlusion, and 
the wide variety of features present in natural scenes. This 
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Significance Statement 

Figure-ground organization is the process of segmenting an image into regions corresponding to objects 
and background. This process is reflected in the activity of cells in extrastriate cortex that show border 
ownership selectivity, encoding the location of an object relative to their receptive fields (RFs). We propose 
a model that can explain border ownership coding in natural scenes. Recurrent connections allow for 
integration of local and global object information, resulting in fast scene segmentation. 
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problem has long fascinated researchers from psychol-
ogy (Wertheimer, 1923; Koffka, 1935; Nakayama et al., 
1995), neuroscience (Zhou et al., 2000; Craft et al., 2007), 
and computer vision (Sajda and Finkel, 1995; Ren et al., 
2006; Teo et al., 2015; Wang and Yuille, 2016). Despite 
this long line of research, our understanding of the neural 
basis of figure-ground organization remains surprisingly 
limited. 

Zhou et al. (2000) first demonstrated that border own-
ership is implemented in the firing rates of individual 
neurons in extrastriate cortex. When the edge of an object 
is presented in the receptive field (RF) of one of these 
neurons, the cell responds with different firing rates de-
pending on which side of its RF the object is located. A 
neuron’s difference in firing rates for when the object is 
located on the neuron’s preferred side versus when it is 
located on its non-preferred side is called the border 
ownership signal (BOS). Border ownership coding has 
been studied using a wide variety of artificial stimuli, 
including those in which the difference between fore-
ground and background is defined by luminance (Zhou 
et al., 2000), motion (Von der Heydt et al., 2003), disparity 
(Qiu and von der Heydt, 2005), and transparency (Qiu and 
von der Heydt, 2007), as well as, more recently, by using 
natural stimuli such as faces (Hesse and Tsao, 2016; Ko 
and von der Heydt, 2018) and complex natural scenes 
(Williford and von der Heydt, 2016). A substantial fraction 

of neurons show consistent border ownership coding 
across natural scenes that matches their preference on 
artificial stimuli (Fig. 1A), with the timing of BOSs being 
similar for both types of stimuli (Fig. 1B). 

How can cortical neurons modulate their activity based 
on visual input from locations at distances many times the 
size of their classical RFs? Proposed mechanisms based 
on asymmetric surround processing or lateral connec-
tions have difficulties explaining the relative timing of 
neuronal responses (see Comparison to other models). 
One class of models that does not suffer from this prob-
lem involves populations of grouping (G) cells which ex-
plicitly represent (in their firing rates) the perceptual 
organization of the visual scene (Craft et al., 2007; Mihalas 
et al., 2011; Layton et al., 2012). These cells are recipro-
cally connected to border ownership selective (B) cells 
through feedforward and feedback connections. The 
combined activation of grouping cells and cells signaling 
local features represents the presence of a “proto-
object,” a term borrowed from the perception literature 
(Rensink, 2000). The use of proto-objects results in a 
structured perceptual organization of the scene. This 
proto-object-based approach, which we adopt here, is 
consistent with the results of psychophysical and neuro-
physiological studies (Duncan, 1984; Egly et al., 1994; 
Scholl, 2001; Kimchi et al., 2007; Qiu et al., 2007; Ho and 
Yeh, 2009; Poort et al., 2012). 

However, with the exception of some computer-vision 
studies (Sakai et al., 2012; Teo et al., 2015), we are not 
aware of any models that have quantitatively tested bor-
der ownership selectivity on natural scenes. Russell et al. 
(2014) developed a model that is related to ours and that 
includes a class of border ownership selective cells, but 
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Figure 1. Consistency of border ownership coding. A, Border ownership coding for an example cell. Upper panels, Red circles 
indicate the size and location of the cell’s RF. Visual stimulation within the RF is identical in the two presentations for the abstract 
figure (“square”), and nearly so for the natural scenes. This is achieved by rotating the object 180° about the RF and inverting color 
and luminance contrast of the image (Williford and von der Heydt, 2016). Stimuli with objects to the upper right of the cell’s RF (its 
“preferred” side) are outlined in red, while stimuli with objects to the lower left of the cell’s RF (“non-preferred” side) are outlined in 
blue. Lower panels, The cell’s peristimulus time histogram (PSTH) for the preferred side is shown by the red traces, while the PSTH 
for the non-preferred side is shown by the blue traces. The cell has a preference for objects located to the upper right of its RF on 
both the square and natural scene stimuli, as indicated by higher firing rates. Shading indicates 95% confidence intervals (note that 
shading is very narrow for the natural scenes data). B, Population BOS. Across the entire population of recorded cells, the mean BOS 
(difference in firing rate between preferred and non-preferred sides) is similar for natural scenes (red trace) and for squares (black 
trace), suggesting a common, robust cortical grouping mechanism. Panels A, B are modified from Figures 2 and 6, respectively, of 
Williford and von der Heydt (2016). 
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that model is focused on the computation of saliency 
rather than the responses of BOS cells. Here, we propose 
a model based on recurrent connectivity that is able to 
explain border ownership coding in natural scenes. We 
compare our model results with experimental data and 
find good agreement both in the timing of the BOSs and 
in the consistency of border ownership coding across 
scenes. We also benchmarked our model on a standard 
contour detection and figure-ground assignment dataset, 
BSDS-500 (Martin et al., 2001) and achieve performance 
comparable to state-of-the-art computer vision ap-
proaches. Importantly, these machine learning techniques 
achieve their performance through extensive training us-
ing thousands of labeled images and very large numbers 
of free parameters, e.g., �108 for VGGNet, a standard 
deep neural net model (Simonyan and Zisserman, 2014). 
In contrast, our model has less than ten free parameters 
and it requires no training whatsoever. 

Materials and Methods 
Model structure 

Our approach is inspired by the proto-object-based 
model of saliency proposed by Russell et al. (2014), and it 
includes recurrent connections for figure-ground assign-
ment, akin to the model from Craft et al. (2007). At the  
core of our model is a grouping mechanism which esti-
mates figure-ground assignment in the input image using 
proto-objects of varying spatial scales and feature types 
(submodalities). These proto-objects provide a coarse 
organization of the image into regions corresponding to 
objects and background. 

To achieve scale invariance, the algorithm successively 
downsamples the input image in steps of �2 to form an 
image pyramid spanning five octaves (Fig. 2). This is 
functionally equivalent to having similar RFs/operators at 
different spatial scales. The k–th level of the pyramid is 
denoted by using the superscript k. Unless explicitly 
stated, any operation applied to the pyramid is applied 
independently to each level and each feature type. Each 
layer of the network represents neural activity, which can 
be propagated from one layer to another via feedforward 
or feedback connections. We use a filter-based approach, 
where the RFs of neurons are described by filter kernels 
and the correlation operation (Eq. 3 below), is used to 

determine neuronal responses in a given layer from those 
in the previous layer. The model was implemented using 
MATLAB (MathWorks). 

The first stage of the model extracts edges from the 
input image based on either luminance or color informa-
tion (Fig. 2). We use the combination of RFs (CORF) 
operator, which is a model of V1 simple cells with push-
pull inhibition (Azzopardi et al., 2014). We chose this 
operator due to its texture suppression properties, which 
can be beneficial when applied to natural images and 
because it is more biologically realistic than other com-
puter vision algorithms. Our model does not require a 
specific edge detection method and could be modified to 
use other front-end edge detectors (e.g., Gabor filters). In 
the following, we only describe model computations on 
the luminance channel, but the exact same computations 
are also performed on the two-color channels (red-green 
and blue-yellow). As in Russell et al. (2014), the color 
channels were computed according to the methods out-
lined in the Itti et al. (1998) visual saliency model. 

For a given scale k, the output of the edge detection 
stage of the model consists of simple (S) cells of eight 
different orientations � and two contrast polarities, S�, L 

k 

�x, y� for light-dark edges L and S�, D 
k �x, y� dark-light edges 

D. For the two-color channels, the edge polarities are 
determined by color-opponent responses (e.g., red-green 
edges and green-red edges). Only the signal strength at 
the optimal orientation at each spatial location is used as 
input to the network. This simplification significantly re-
duces computation time by eliminating the calculation of 
responses for non-optimal orientations. 

In contrast to previous approaches which combine sim-
ple cell responses into a contrast-invariant complex cell 
response (Russell et al., 2014), we keep the contrast-
sensitive S cell responses available since they provide an 
informative cue for grouping along object edges. Objects 
tend to maintain similar contrast polarity along their 
boundaries, which may be useful for accurately determin-
ing figure-ground relationships. As a result, we have two 
sets of responses at each layer of our network corre-
sponding to the two different types of contrast polarity, 
light/dark on the foreground/background border, and its 
opposite. 

Figure 2. Overview of model computations. The image is edge filtered and then successively downsampled in half-octaves to create 
a pyramid of edge signal images (only three scales are shown). The same set of feedforward and feedback grouping operations is then 
applied at each level of the pyramid to achieve scale invariance. Feedback from grouping cells is combined across scales so that 
global context information can influence figure-ground segmentation. The model is run for a total of 10 iterations (one iteration 
includes one feedforward and one feedback pass through the model), and our final results are based on neural activity from the 
highest resolution scale of the image pyramid. 
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Next, for a given angle �, each S cell feeds into an 
opposing pair of border ownership (B) cells. As a result, B 
cells are also sensitive to contrast polarity, as is the case 
for many experimentally observed border ownership re-
ceptive cells (Zhou et al., 2000). For each contrast polar-
ity, we used one-to-one connections between S cells of 
one orientation and the corresponding pair of B cells. The 
two members of the pair have the same preferred orien-
tation but opposing side-of-figure preferences. 

To infer whether the edges in B�, L 
k �x, y� and B�, D 

k �x, y� 
belong to figure or ground, knowledge of proto-objects in 
the scene is required. This context information is retrieved 
from a grouping mechanism (Fig. 3). Grouping cells (G) 
integrate information from B cells, and a given G cell 
responds to either light objects on dark backgrounds, 
GL 

k�x, y�, or dark objects on light backgrounds, GD 
k �x, y�. 

This computation is similar to the use of center-surround 
cells in the Russell et al. (2014) model. In contrast to their 
approach, our model does not require an additional class 
of center-surround cells, but instead allows G cells to 
directly integrate local feature information from B cells 
and then bias the activity of these same cells using recip-
rocal feedback connections. Our model runs in an itera-
tive manner, with one iteration corresponding to one 
feedforward and one feedback pass through the model. G 
cell activity is combined across scales before each feed-
back pass, which allows the model to more accurately 
determine figure-ground assignment in a scale-invariant 
manner (Fig. 2). 

A more detailed view of the structure of our model is 
shown in Figure 3. G cells integrate the B cell activity in a 
roughly annular fashion. This allows G cells to show pref-
erence for objects whose borders exhibit the Gestalt prin-
ciples of continuity and proximity. G cell activity is defined 
by 

GL 
k(x, y) � < � 

� 

[B�,L 
k (x, y) � B���,L 

k (x, y)] � v�(x, y)= (1) 

GD 
k (x, y) � < � 

� 

[B�,D 
k (x, y) � B���,D 

k (x, y)] � v�(x, y)= (2) 

where � runs over all angles taken into account in the 
model (eight directed orientations, each with two side-of-
figure preferences), < is half-wave rectification, and � is 
the correlation operator defined as 

f(x, y) � g(x, y) � � 
m��  

  

� 
n��  

  

f(m, n)g(x � m, y � n) (3) 

The spatial structure of the G cell RFs is written in terms 
of the functions v��x, y�, defined as 

v�(x, y) � 
exp �(�x2 � y2 � R0)cos (tan �1(

y 
x 

) � � � 
� 
2 

)  
2�I0(�x2 � y2 � R0) 

(4) 

where � is the desired angle of the mask and the radius of 
the grouping cell RF R0 in this equation is set to two 

Figure 3. Structure of the recurrent neural network. Each circle represents a population of neurons with similar RFs and response 
properties. Red and blue lines represent excitatory and inhibitory projections, respectively. Solid and dashed lines represent purely 
feedforward and reciprocal feedforward/feedback connections, respectively. Edges and other local features of a figure (black square 
outline) activate simple cells (S) whose RFs are shown by green ellipses. S cells project to border ownership cells (B) that have the 
same preferred orientation and retinotopic position as the S cells they receive input from. For each location and preferred orientation, 
there are two B cell populations with opposite side-of-figure preferences. In the example shown, these are B�, whose neurons 
respond preferentially when the foreground object is to the left of their RFs, and B0, whose members prefer the foreground to the right 
side of their RFs. B cells have reciprocal, feedforward excitatory and feedback modulatory connections with grouping cells, G, which 
integrate global context information about objects. The RF of a G cell is shown by the gray annulus. It is also the projective field of 
this neuron for the modulatory feedback connections to B cells. Opposing B cells compete indirectly via feedback inhibition from G 
cells, which bias their activity and thus generate the BOS used to determine figure-ground assignment. The structure shown exists 
for both light objects on dark background [cell types B�, L 

k �x, y� and GL 
k�x, y�] and dark objects on light background [cell types B�, D 

k 

�x, y� and GD 
k �x, y�]. Grayed-out G cells represent proto-objects left and right of the one which is represented by the G cell in the center. 
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pixels. Because we rescale the input image at each level 
k of the image pyramid, the effective radius of each G cell 
RF Gk�x, y� grows with the level of the pyramid, providing 
approximate scale invariance. The factor � / 2 rotates the 
mask to ensure it is correctly aligned with the edge cells. 
I0 is the modified Bessel function of the first kind. We 
normalize each v��x, y� by dividing by the maximum value 
over all positions (x, y). Conceptually, the G cell RF is a 
“donut” whose size is determined by the radius R0. We  
split this donut up into separate pieces according to the 
preferred orientations of the B cell neurons that project to 
the G cell. 

Input to G cells is based on differences in preferred and 
non-preferred B cell activity (Eqs. 1, 2). This feedforward 
inhibition is not necessary for model convergence, but 
provides a means by which G cells can compete with 
each other via inhibition from B cells to G cells. In our 
simulation, the activity at the time of stimulus onset of 
each cell in a pair of B cells is numerically identical since 
both cells receive the same initial bottom-up input. As the 
difference in B cell activity is zero on the first iteration, we 
omit inhibition from non-preferred B cells and compute 
the activity of G cells based only on the preferred B cells 
on the first iteration. We also implement a simple form of 
local inhibition between the two complementary grouping 
pyramids, GL 

k�x, y� and GD 
k �x, y�. The reason is that many 

objects are either dark on a lighter background or the 
inverse. Therefore, at each spatial location, only one type 
of G cell should be active, representing either a light or a 
dark object at that location. For each level of the pyramid 
k, we perform a winner-take-all value assignment, 

GL 
k(x, y) ¢ �GL 

k(x, y)  if  GL 
k(x, y) � GD 

k (x, y) 
0 otherwise 

(5) 

GD 
k (x, y) ¢ �GD 

k (x, y)  if  GD 
k (x, y) � GL 

k(x, y) 
0 otherwise 

(6) 

Feedback from G cells to B cells is used to bias the 
responses of the B cells to correctly signal figure-ground 
assignment. The feedback depends on the contrast po-
larity of the G cell and the B cell. B�, L 

k , the border owner-
ship activity for a light object on a dark background is 
given by 

B�,L 
k (x, y) � 2S�,L 

k (x, y) 
1 

1 � exp (� ( � 
k 

1 
2�k 

v���(x, y) � GL(x, y) � � 
k 

1 
2�k 

v�(x, y) � GD(x, y))) 

(7) 

and B�, D 
k , the border ownership activity for a dark object 

on a light background is given by 

B�,D 
k (x, y) � 2S�,D 

k (x, y) 
1 

1 � exp (� ( � 
k 

1 
2�k 

v���(x, y) � GD(x, y) � � 
k 

1 
2�k 

v�(x, y) � GL(x, y))) 

(8) 

where v��x, y� is the kernel responsible for mapping object 
activity in the grouping pyramids back to the object edges 

(which is just the reciprocal kernel for the feedforward 
connections; Eq. 4), and the factor 2j k normalizes the 
v�(x,y) operator across scales. Scales j greater than k in 
the equations above represent more global information. 
The model pools information across different spatial 
scales in a coarse-to-fine manner, with information from 
coarser scales first being upsampled to the resolution of 
the finer scale before being combined additively. The 
logistic function in the equations above enforces compe-
tition between B cells such that their total activity is 
always conserved, and each B cell has activity between 
zero and two times its bottom-up input activity, S� 

k�x, y�. 
In the equations above, B cell activity is facilitated by G 

cell activity on its preferred side and suppressed by G cell 
activity on its non-preferred side. In other words, B cells 
receive (modulatory) facilitating feedback from G cells of 
the same contrast polarity on their preferred side and 
(modulatory) suppressive feedback from G cells of the 
opposite contrast polarity on their non-preferred side. 
This is motivated by neurophysiological results which 
show that image fragments placed within the extra-
classical RF of a border ownership neuron can cause 
enhancement of the neuron’s activity when placed on its 
preferred side, and suppression if placed on the non-
preferred side (Zhang and von der Heydt, 2010). Further-
more, modulating the scale-specific bottom-up S cell 
responses with G cell activity summed across spatial 
scales ensures that the B cell responses are scale-
invariant. Neurophysiological results show border owner-
ship coding for stimuli of varying sizes, with the latency of 
the BOS being essentially independent of the size of the 
figure (Zhou et al., 2000; Sugihara et al., 2011). 

As discussed, figure-ground assignment occurs for 
both light objects on dark backgrounds and dark objects 
on light backgrounds. In our model, this is achieved by 
computing B cell activity independently for each contrast 
polarity and then summing the final steady-state activities 
for both the light and dark cell responses to give a final 
border ownership response independent of figure-ground 
contrast polarity. The B cell responses for light and dark 
objects can be combined giving a contrast polarity invari-
ant result, 

B� 
k(x, y) � B�,L 

k (x, y) � B�,D 
k (x, y) (9) 

While neurons with contrast-invariant border ownership 
responses are observed physiologically (Zhou et al., 
2000), we do not implement them explicitly in our model 
for the sake of simplicity and computational efficiency. 
Their difference 

B� 
k(x, y) � B��� 

k (x, y) (10) 

is called the BOS by Zhou et al. (2000), a notation that we 
adopt. Its sign determines the direction of border owner-
ship at pixel (x, y) and orientation �, and its magnitude 
gives a confidence measure for the strength of border 
ownership. 

Similarly, the G cell responses for light and dark objects 
are combined to a contrast polarity invariant result repre-
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senting the presence of a proto-object of either polarity at 
location (x, y) and scale k: 

Gk(x, y) � GL 
k(x, y) � GD 

k (x, y) (11) 

The output of the model is the G pyramid activity 
summed over all spatial scales and the differences in B 
cell activity at the highest spatial resolution, which pro-
vides a perceptual organization of the visual scene. 

Objects can be perceptually segregated from each 
other or from the background because of differences in 
relative color or luminance. There are many other features 
underlying figure-ground segmentation, e.g., differences 
in texture, motion, etc. As mentioned previously, we use 
both luminance and color information from the image to 
perform the grouping operation. The same exact opera-
tions that were performed on the luminance channel are 
also performed on the two-color channels. We combine 
the final outputs of the B and G cells with an 80% weight-
ing for the luminance channel and a 10% weighting each 
for the red-green and the blue-yellow color channels. 
Modifying the exact relative weighting does not qualita-
tively change our results. 

Code accessibility 
The code/software described in this paper is freely 

available online at https://github.com/brianhhu/FG_RNN. 
The code is also available as Extended Data. 

Model implementation 
All simulations were performed on a 300-core CPU 

cluster running Rocks 6.2 (Sidewinder), a Linux distribu-
tion intended for high-performance computing. This al-
lowed us to simultaneously run our model on multiple 
images, speeding up our testing time. We ran the model 
for a total of 10 iterations, with each iteration being one 
feedforward pass of B cell to G cell activity, followed by 
one feedback pass of G cell to B cell activity (Fig. 2). We 
generally found that the model converged after only a few 
iterations. 

After convergence, the result is the self-consistent so-
lution (fixed point) of the feedforward-feedback loop 
equation. Contour detection and figure-ground assign-
ment results are computed from the population of B cells 
at the highest resolution level of the image pyramid, which 
has the same resolution as the input image. B cell activity 
is converted into a population vector code by summing 
the final activity across orientations, where the magnitude 
of the resulting vector at each pixel location represents 
the BOS (which we use as a measure of strength of 
contour detection, Model performance for contour detec-
tion and figure-ground assignment: comparison with 
standard benchmarks), and the direction of the vector 
provides a continuous figure-ground orientation label. For 
a given image, we normalize the BOS at each pixel (x, y) 
by its maximum value across the entire image, such that 
the BOS is bounded between –1 and 1. Negative BOS 
values indicate a predicted figure-ground orientation label 
which is opposite that of the ground-truth label. 

Comparison between model behavior and cell 
responses 

To compare our model results with experimental re-
sults, we used a publicly available dataset of border own-
ership cell responses recorded during viewing of natural 
scenes by Williford and von der Heydt (2017), see the 
documentation of that dataset for more details about the 
stimuli, experimental design, and data analysis. Briefly, 
the dataset includes BOSs for each scene that was 
viewed by each recorded cell. Adopting the terminology 
of Williford and von der Heydt (2017), a “scene point” is a 
specific location in a specific image that is projected onto 
the RF of a cell. Scene points are selected such that they 
always lie on an object boundary. Note that an image can 
contain more than one scene point. In the following, we 
define consistency for the model or a given cell as the 
ratio of scene points with the same sign of BOS divided by 
the total number of tested scene points. For our analyses, 
we first selected a subset of cells (N � 13) from the 
population of recorded cells (N � 140) which had highly 
consistent border ownership responses, defined as hav-
ing the same sign of border ownership on �80% of their 
tested scene points. To perform our analyses, we calcu-
lated the model’s BOS for the same set of scene points 
shown to the cells. We used a combination of different 
metrics to compare the BOS responses of one cell to that 
of another cell, or of one cell to the model, on the set of all 
common scene points viewed by both. Metrics used were 
cosine similarity, bootstrap and equivalence testing, and 
goodness of fit, which are explained below. The use of 
multiple metrics provides slightly different views of the 
model’s performance that is not biased by any one single 
metric. We found that the model’s performance was over-
all consistent across all measures that we used. 

Cosine similarity 
We characterize the behavior of a cell or the model by 

its BOS responses. When considering the correlation be-
tween responses of two cells, or a cell with the model, we 
first note that the Pearson correlation coefficient between 
the response vectors across scene points is not a suitable 
metric because it requires mean-centering the BOS re-
sponses. We therefore use an alternative measure of 
correlation between vector-valued functions that avoids 
this problem, the cosine similarity, which is commonly 
used in the field of natural language processing (Mihalcea 
et al., 2006), with some applications to neuroscience 
(Bruffaerts et al., 2013; Komorowski et al., 2013). For this 
method, all BOS responses of a given cell are described 
in terms of a single vector in a high-dimensional vector 
space where each (orthogonal) axis is the BOS re-
sponse to one specific scene point. The component of 
the vector for one cell is the observed BOS for this 
dimension. The same applies for the comparison of a 
cell and the model. 

For two arbitrary vectors A and B of equal dimensions, 
cosine similarity is defined as the scalar product of the 
two vectors normalized by the product of their lengths: 
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where Ai and Bi are the Cartesian components of the 
vectors A and B, respectively. 

We can then compute the cosine similarity between any 
two vectors (e.g., between one cell and another cell or 
between a cell and the model) from Equation 12. It is  
bounded between –1 and 1, with the geometric interpre-
tation that it measures the cosine of the angle between 
two vectors. Two vectors which are exactly the same will 
have a cosine similarity of 1, two vectors that are exactly 
opposite will have a cosine similarity of –1, and a cosine 
similarity of 0 indicates two vectors that are orthogonal or 
decorrelated. 

To test the hypothesis that the model performs similarly 
to the most consistent cells from the experiment, we used 
bootstrap testing on the cell-cell and cell-model cosine 
similarities computed above. To perform the bootstrap 
test, means of the cell-cell and cell-model cosine similar-
ities were calculated using resampling with replacement 
under the null hypothesis that the cell-cell and cell-model 
cosine similarities come from the same distribution. When 
computing means of cosine similarities, we used the 
Fisher z-transformation, which is a variance-stabilizing 
transformation for correlation coefficients. We calculated 
the bootstrap estimate of the difference in the means 
using a total of N � 10,000 samples. 

Equivalence testing 
Equivalence testing is a technique frequently used, for 

example, in the bioequivalence setting to determine 
whether the efficacy of a new drug or treatment is similar 
to that of an existing drug or treatment (Walker and 
Nowacki, 2011; Lakens, 2017). In standard hypothesis 
testing, the null hypothesis is that the means of two 
distributions are not different in a statistically significant 
manner. However, failure to reject the null hypothesis is 
not sufficient proof to conclude that the two distributions 
are actually similar, as the test may also fail due to not 
having enough statistical power (“absence of evidence is 
not evidence of absence”). In equivalence testing, the null 
hypothesis is, instead, that the means of the two distribu-
tions lie outside a pre-determined “zone of scientific in-
difference,” i.e., that they differ by more than the bounds 
of an interval within which two results are considered 
essentially equivalent. The alternative hypothesis (where 
the burden of proof lies) is that the means of the two 
distributions fall within this zone and can thus be consid-
ered equivalent. We consider the cell-cell and cell-model 

BOS values to be equivalent if the difference in their 
means falls with the interval [– 0.25, 0.25], which is our 
zone of indifference. The equivalence test is performed by 
using two one-sided t tests from the Python statsmodels 
package. 

Goodness of fit 
We expressed goodness of fit by the coefficient of 

determination, which is defined as the fraction of total 
variance explained by the model (Holdgraf et al., 2017). 
Because neural BOS and model BOS have different 
scales, we added a scale factor to the model that was 
determined for each cell by a least-squares fit. 

Each cell’s response contains a repeatable component 
response 
2 which is the same in response to the same stim-

ulus and which we attempt to capture with our model in 
the variable predicted 

2 , and a noise component, noise 
2 . The 

latter is random and its contribution can be estimated 
from the responses to repeated presentations of the same 
stimuli. Because our model is deterministic, it is unable to 
capture the noise component present in the cell re-
sponses. We only care about the explainable variance, 
which is the total response variance minus the noise 
variance. As a result, we define our goodness of fit mea-
sure by computing the fraction of explainable variance 
that is actually explained by the model, 

R2 � 
[ predicted 

2 � (1/Ns) noise 
2 ] 

[ response 
2 � noise 

2 ] 
(13) 

where we apply a correction term in the numerator for the 
fraction of the noise variance captured by fitting a scale 
factor. This is determined by the ratio of the degrees of 
freedom in the least-squares fit (1 for the scale factor) and 
the degrees of freedom in the data (the number of scene 
points, Ns; see DiCarlo et al., 1998; Wu et al., 2006). 
Because the noise variance is estimated from the data, 
the computed model goodness of fit may contain small 
errors. Therefore, we also report average values over the 
population of cells. Our statistical analyses are summa-
rized in Table 1. 

Results 
Model performance for contour detection and figure-
ground assignment: comparison with standard 
benchmarks 

We benchmarked our model on the publicly available 
Berkeley Segmentation Dataset, BSDS-500 (Martin et al., 
2001). We did this in the context of two tasks: contour 
detection and figure-ground assignment. For the contour 
detection results, we report F-scores, the harmonic 
means of precision and recall, averaged over all test 
images. Precision is the fraction of boundary pixels de-
tected by the model that are true boundary pixels (i.e., 

Table 1. Statistical analysis 

Line Data structure Type of test Power 
a Approximately normal Bootstrap p � 0.11 
b Approximately normal Equivalence test p � 0.03 
c Normal Significance of correlation coefficient p � 0.5 
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those marked by humans). Recall is the fraction of true 
boundary pixels detected by the model. The F-score pro-

vides a summary score that captures the trade-off be-
tween the accuracy and noise of contour detection. For 
the figure-ground assignment results, we report mean 
accuracy (percentage of correctly labeled figure-ground 
edges) averaged over all test images. We used publicly 
accessible benchmarking code made available by the 
authors of the original papers for contour detection (Ar-
beláez et al., 2011) and figure-ground assignment (http:// 
users.umiacs.umd.edu/~cteo/BOWN_SRF/) to do our  
analysis and comparisons with other approaches. We 
report our results on the contour detection and figure-
ground assignment tasks in Tables 2, 3, respectively. 

Importantly, parameters were not tuned separately for 
the two tasks: our model uses the same set of parameters 
for both contour detection and figure-ground assignment. 
Examples of our model output are shown in Figure 4. We  
show the original input image, the edge maps, the BOSs, 
and the final grouping maps. Although we did not specif-
ically design our model to achieve good performance on 
the contour detection task, we hypothesized that BOS is 
a good correlate of the perceptual saliency of object 
contours. As such, we use the strength of the BOS (ab-
solute value, independent of figure-ground orientation) as 
the model output for the contour detection task. 

We compare our model to three state-of-the art ap-
proaches from the computer vision field: ultrametric con-
tour maps (gPb-owt-ucm; Arbeláez et al., 2011), 

Table 2. Contour-detection results on the BSDS-500 dataset 

Contour 
ODS OIS AP 

Human 0.80 0.80 
Our approach 0.64 0.65 0.51 
gPb-owt-ucm 0.73 0.76 0.73 
SE 0.73 0.75 0.77 
SRF 0.73 0.74 0.76 

Numbers shown are the F scores when choosing the optimal scale for the 
entire dataset (ODS) or per image (OIS), as well as the AP. Average agree-
ment between human subjects is captured by the “human” scores, which 
provides an upper bound on model performance. In this table and in 
Table 3, an absolute performance maximum by an algorithm is indicated by 
boldface numbers. 

Table 3. Figure-ground assignment results 

Figure-ground 
Mean accuracy 

Human 83.9% 
Our approach 71.5% 
SRF 74.7% 
Global-CRF 68.9% 
2.1D-CRF 69.1% 

Numbers shown are the mean accuracy across all matched scene points. 

Figure 4. Example results of our model on images from the Berkeley Segmentation Dataset. Columns from left to right are the original 
images, the edge activity, the border ownership cell activity (representing figure-ground assignment), and grouping cell activity. For 
the figure-ground assignment, each edge is represented by a hue and a saturation value (see color wheel inset). The hue of the edge 
represents the figure-ground orientation label with the arrow convention shown in the color wheel (e.g., red represents an object 
located to the right) and the saturation of the edge represents the strength of the BOS. Grouping cell activity is color coded and 
normalized, with warmer colors representing higher activity (see color bar at right). 
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structured edges (SE; Dollár and Zitnick, 2015), and struc-
tured random forests (SRFs; Teo et al., 2015). We quantify 
performance for the contour detection task using three 
different measures: the best F-score on the dataset for a 
fixed scale (ODS), the average F-score on the dataset 
using the best scale for each image (OIS), and the average 
precision (AP), which is the area under the precision-recall 
curve. We refer the reader to Arbeláez et al. (2011) for a 
more in-depth discussion of these metrics. Overall, we 
achieved an F-score of 0.64 on the contour-detection task 
when evaluating using the optimal dataset scale. Our 
F-score improves slightly (to 0.65) when evaluating using 
the optimal image scale. We achieve lower AP (0.51) 
compared to the other models due to the lower recall 
range of our model, which may be the result of limitations 
in the initial edge detection method we used. All three 
cited models achieve F-scores of 0.73 using the optimal 
dataset scale (Table 2). Again, we emphasize that we did 
not design our model for the contour detection task, but 
we were nevertheless able to use computed BOSs from 
the model as a measure of contour detection strength. 

For the figure-ground assignment task, we quantify our 
results using the mean accuracy of figure-ground assign-
ment across all labeled contours in the test images. The 
model’s figure-ground label for a given scene point in the 
image is considered correct if it falls within �90° of the 
true (i.e., human-defined) figure-ground label. We com-
pared our model to SRFs (Teo et al., 2015) and two 
conditional random field approaches, Global-CRF (Ren 
et al., 2006) and 2.1D-CRF (Leichter and Lindenbaum, 
2009). SRFs achieved a mean accuracy of 74.7%, ex-
ceeding that of the two other conditional random fields 
approaches (Ren et al., 2006; Leichter and Lindenbaum, 
2009) which were below 70%. Surprisingly, despite the 
lack of training, our model outperforms these latter mod-
els with a mean accuracy of 71.5% (Table 3). There is also 
a recent deep learning approach to the same problem 
(Wang and Yuille, 2016), but since the results of this 
method were not benchmarked using the standard tests 
employed by the other methods, we did not include them 
in our comparison. 

In summary, we find that some current computer 
vision approaches are able to achieve better perfor-
mance than our model based on the evaluation metrics 
described above, but they require extensive training, 
i.e., tuning of a large number of parameters using large 
sets of training data. In contrast, our model is built based 
on first principles and does not require any specific form 
of training. Although our model is outperformed by some 
state-of-the-art methods, it does represent an alternative 
approach based on biologically plausible neural compu-
tations that require very little training or tuning of param-
eters. It therefore may add substantial insight into the 
underlying mechanisms involved in solving these tasks 
which is not readily available through solutions that rely on 
extensive training. 

Timing of the BOS 
We tested our model on the standard square stimuli 

used to determine border ownership preference in exper-

iments (Zhou et al., 2000), as well as a wide array of 
natural scenes from the Berkeley Segmentation Dataset. 
We found that our model converges within a few itera-
tions, typically two to three, demonstrating that only a few 
feedforward and feedback passes are needed to deter-
mine figure-ground assignment for a given image (Fig. 5). 
Given that white-matter projections in the brain are quite 
fast, we assume that a single feedforward and feedback 
pass in our model takes  10 ms. As the model converges 
within two to three iterations, the BOS will reach its peak 
within 20 –30 ms of the initial visual response. A similar 
time course has been observed in the experimental data, 
with the BOS appearing  30 ms after visual response 
onset (Zhou et al., 2000; Williford and von der Heydt, 
2016). The similar time course of BOS tuning on both 
artificial and natural stimuli suggests a common cortical 
mechanism for grouping, which is also supported by pre-
vious experimental results demonstrating consistent bor-
der ownership coding across these different types of 
stimuli. Our model is able to reproduce this result, show-
ing a similar time course for border ownership coding on 
both the square and natural scene stimuli. 

Model performance on border ownership coding: 
comparison with experimental results 

The model exhibits consistent border ownership coding 
across a large number of natural scenes, similar to the 
most consistent cells (consistency being defined in Com-
parison between model behavior and cell responses) from 
the experiment. Figure 6 compares the BOSs sorted in 
descending order by scene point for an example cell (Fig. 
6B) and for the model (Fig. 6C). We chose this cell be-
cause it was tested with 177 scene points, the largest 
number for any single cell in the dataset. It showed a 
consistency of 74.0%. A large number of cells in the 
dataset were highly consistent, even more so than the cell 
illustrated in Figure 6, including 13 cells with �80% con-
sistency. Within this subset of cells, three cells exceeded 
90% consistency. In comparison, the model showed an 
overall consistency of 69.0% across 2205 tested scene 
points (the full set of scene points viewed collectively by 
any of the highly consistent cells). Although the model 
was tested with more than an order of magnitude more 
scene points than the example cell in Figure 6, it still 
remained highly consistent. This level of consistency is 
similar to the  70% accuracy the model achieved on the 
figure-ground assignment benchmark. 

We also used the cosine similarity metric (see Cosine 
similarity) to quantify similarity in BOS responses between 
cells and similarity between cells and the model on a 
shared set of scene points. Despite the large diversity in 
cells and their responses, we found that our model was 
able to largely explain the border ownership coding of 
highly consistent cells on natural scenes. Figure 7 shows 
the comparison of cosine similarities between model and 
cells on a per-cell basis for all 13 highly consistent cells. 
The model-cell cosine similarities were all positive, rang-
ing from 0.21 to 0.69, with a mean similarity of 0.44. Given 
biological noise and inter-cell differences, it is impossible 
that the model-cell cosine similarities reach unity. To 
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characterize an upper bound on the cosine similarity val-
ues, we also calculated the cosine similarities between all 
pairs of highly consistent cells (13 cells, N � 58 pairs). For 
the cell-cell comparisons, the cosine similarities ranged 
from 0.14 to 0.91, with a mean similarity of 0.54. Boot-
strap testing revealed no significant statistical difference 
between the means of the cell-cell and cell-model cosine 
similarities (p � 0.11). 

Since the absence of statistically significant difference 
between two distributions by itself is not evidence that 
they are the same, we used equivalence testing (see 
Equivalence testing) on the means of the cell-cell cosine 
similarities and model-cell cosine similarities. In contrast 
to standard hypothesis testing, in equivalence testing the 
null hypothesis is that a significant difference between the 
two population means does exist. Our results revealed no 
significant difference between the cell-cell and model-cell 
cosine similarity values based on a zone of scientific 
indifference of [– 0.25, 0.25], leading us to reject the null 
hypothesis (p � 0.03). We conclude that the performance 
of our model is indistinguishable from that of the set of 
highly consistent cells in the dataset. 

We also computed linear regression fits between the 
cell BOS responses and the model BOS responses on a 
per-cell basis. Each regression results in an R2 goodness 
of fit value (Eq. 13), which gives a measure of the percent-
age of variance that the model is able to explain. The 
noise variance for each cell was estimated from the re-
sponses of the cell to separate presentations of the iden-
tical scene point and averaged over all scene points 
presented. The R2 goodness of fit values for the highly 
consistent cells ranged from 0.05 to 0.55, with a mean 
value of 0.24. For two of the 13 highly consistent cells, the 

R2 values exceeded 0.3, indicating that the model was 
able to capture �30% of the explainable variance. When 
we computed the R2 goodness of fit values over all cells, 
the mean value was 0.14. Figure 8 shows a histogram of 
the goodness of fit values over the entire dataset. This 
shows that the model was better able to predict the 
responses of the highly consistent cells. The fact that the 
fraction of the variance explained by the model is low 
when cells with low consistency are included is not sur-
prising because low consistency across scene points 
indicates that these cells are not primarily concerned with 
computing figure-ground relationships. Single-cell re-
cording studies like the one by Williford and von der Heydt 
essentially pick cells at random, and the visual cortex 
contains different populations of cells performing a variety 
of computations in parallel. 

Discussion 
Understanding the cortical mechanisms of figure-
ground organization 

We propose that a simple grouping mechanism can 
explain figure-ground organization in natural scenes. 
Grouping cells in our model have annular RFs, which 
implement Gestalt principles like convexity, continuity, 
and proximity. Importantly, the design of these RFs was 
based on first principles, and not due to any training or 
parameter tuning on natural scenes, as is common in 
machine learning approaches. We show that this RF 
structure is useful for assigning figure-ground relation-
ships on both artificial and natural stimuli. These RFs 
capture the convex shape of objects, which has been 
shown to be an important cue from the analysis of natural 

Figure 5. Time course of border ownership coding in the computational model, which achieves correct border ownership assignment 
within two to three iterations. The RF of one model border ownership cell is shown by the red circle. The input image and time course 
of this BOS cell are shown for both standard square stimuli commonly used in experiments (A) and an example scene from the 
Berkeley Segmentation Dataset (B). 

New Research 10 of 16 

May/June 2019, 6(3) ENEURO.0479-18.2019 eNeuro.org 

https://eNeuro.org


scene statistics (Sigman et al., 2001). Our model does not 
use higher-level object identity information, which may 
influence segmentation based on object familiarity. While 
such information likely is used in certain situations, the 
fast time course of border ownership assignment in ex-
trastriate cortex makes it unlikely that these signals are 
informed by cortical object recognition modules, like 
those found in inferotemporal cortex where response la-
tencies are considerably longer. Instead, we propose that 
the grouping mechanisms in our model operate at inter-
mediate levels of the visual hierarchy to structure the 
visual scene into proto-objects useful for further visual 
processing. 

Our model border ownership responses show close 
agreement with the responses of highly consistent cells 
from the Williford and von der Heydt (2016) experiments. 
This is surprising given the diversity of cell responses to 
different natural scenes, even highly consistent cells 
themselves are not entirely consistent with each other, 
perhaps indicating that a population of neurons is needed 
to accurately encode figure-ground relationships (Hesse 
and Tsao, 2016). However, our model, which is based on 

the simple principle of an annular grouping cell RF, is able 
to capture the responses of many of these neurons. 

The model relies on feedforward and feedback connec-
tions via fast white-matter projections between visual ar-
eas. This is consistent with the rapid appearance of BOSs 
after visual stimulus onset. This is a clear difference be-
tween our model and others which rely either on feedfor-
ward or on lateral connections. Our model makes testable 
predictions about the role of feedback in figure-ground 
segmentation. One experimental prediction is that dis-
rupting feedback from higher visual areas (specifically, the 
feedback from grouping cells) would impair the figure-
ground assignment process, and potentially result in poor 
border ownership assignment and segmentation of ob-
jects in the scene. Models based purely on feedforward 
processing do not make this prediction. We also predict 
the existence of contrast-sensitive and color-sensitive 
grouping cells, which send reciprocal feedback connec-
tions to similarly-tuned border ownership cells. This is a 
prediction awaiting experimental testing. 

We also use a variety of grouping cells of different 
scales, which allows our model to achieve relative scale 

Figure 6. Cell and model consistency across scene points. A, Examples of scene points that were used to test border ownership 
selectivity during the experiments. Red circles represent scene points within the images, which were centered on the RFs of border 
ownership selective neurons during the experiments and during our testing of the model. A single image could contain multiple scene 
points, as shown by the example in the bottom row. B, The normalized BOS for example cell 27lj2d is shown according to each scene 
point, with scene points sorted in decreasing order by strength of BOS for this cell. The cell achieved a consistency of 74.0% across 
all tested scene points (N � 177). C, The normalized BOS for the model is shown with the same convention as in B, with scene points 
sorted by strength of model BOS. The model achieved an overall consistency of 69.0% across all tested scene points (N � 2205). 
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invariance across the range of object sizes present in 
natural scenes. The main contribution of our present work 
is the development of a fully-image computable model of 
figure-ground organization that can be applied to natural 
scenes. Our model provides a quantitative means to study 
the potential cortical mechanisms of this process, includ-
ing the relative contribution of feedforward and feedback 
processing. 

Comparison to other models 
A number of computational models have been devel-

oped to explain border ownership selectivity. One model 

class assumes that border ownership coding is achieved 
purely by feedforward mechanisms, such as the asym-
metric organization of surrounds (Nishimura and Sakai, 
2004, 2005; Sakai et al., 2012) or global surround inhibi-
tion (Supèr et al., 2010). Pure feedforward models predict 
similar latencies of the BOS regardless of the stimulus, 
but recent results show that border ownership assign-
ment of stimuli with illusory contours is delayed by ~30 ms 
compared to full stimuli (Hesse and Tsao, 2016). 

Other models propose propagation of neural activity 
along horizontal connections within early visual areas us-
ing a diffusion-like process (Grossberg, 1994; Sajda and 

Figure 7. BOSs of each of the highly consistent cells (N � 13) plotted against BOS of the model. Each subplot shows a scatter plot 
of one cell’s normalized BOS against the model’s normalized BOS on the common set of scene points viewed by both. Each dot 
corresponds to one scene point. Note that all data points in the upper-right and lower-left quadrants indicate agreement of model and 
cell behavior while data points in the other two quadrants indicate disagreement. The cosine similarity metric along with the 
associated p values (test whether the cosine similarity metric is different from zero) are shown above each scatter plot. Cosine 
similarities for the cell-model comparisons ranged from 0.21 to 0.69, with 7/13 cells having cosine similarities that were significantly 
different from zero. 

Figure 8. Model goodness of fit to the BOSs across images of all cells in the dataset (red) and to only the highly consistent cells in 
the dataset (blue). There was a total of 140 cells and 13 highly consistent cells. The model is able to better predict the BOSs of highly 
consistent cells, with a mean goodness of fit value of 0.21 compared to 0.08 for all cells in the dataset. 
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Finkel, 1995; Pao et al., 1999; Kikuchi and Akashi, 2001; 
Baek and Sajda, 2005; Zhaoping, 2005; Zucker, 2012). 
Like the feedforward paradigms, these models have dif-
ficulties explaining the exact timing of neuronal signals. 
Zhou et al. (2000) showed that the BOS appears as soon 
as �25 ms after the first response to the stimulus. Prop-
agation along horizontal fibers over the distances used in 
the experiments would imply a delay of at least �70 ms 
(based on the conduction velocity of horizontal fibers in 
primate V1 cortex from Girard et al. (2001), we are not 
aware of corresponding data for V2). Such models are 
also difficult to reconcile with the observation that the time 
course of border ownership coding is largely independent 
of figure size (Sugihara et al., 2011). Furthermore, these 
models (as well as others, Layton et al., 2012) are largely 
untested on natural stimuli, and it remains to be seen if 
previous results on artificial stimuli will generalize to more 
difficult real-world conditions. 

The only other models that we are aware of that have 
been tested on natural stimuli either used locally com-
puted cues (Fowlkes et al., 2007) or feedforward process-
ing to determine figure-ground assignment (Nishimura 
and Sakai, 2005; Sakai et al., 2012; Russell et al., 2014). 
The Fowlkes et al. (2007) model required human-labeled 
image contours as input, and operated only on local 
boundary information from image patches but did not 
incorporate luminance or color information. The Russell 
et al. (2014) model is conceptually similar to ours, involv-
ing similar classes of grouping and border ownership 
neurons. However, their model is purely feedforward and 
involves an additional class of center-surround neurons 
which are needed to generate a coarse segmentation of 
the image. Furthermore, Russell et al. (2014) did not quan-
titatively study border ownership in their model, instead 
focusing on applications to visual saliency. The Sakai 
et al. (2012) model is also a purely feedforward model 
which determines figure-ground relationships based on 
asymmetric surround contrast. Different from our model, 
their approach was not fully image-computable. Instead, 
Sakai et al. (2012) tested model performance on human-
labeled contours from the Berkeley Segmentation Data-
set. In addition, their model was only applied to luminance 
information and ignored color information, so all input 
images were first converted to grayscale. Our model is 
fully image-computable, which means that it can be ap-
plied to any image, including those without human-
labeled contours. Our model is also able to incorporate 
both luminance and color information from images, which 
will allow for future study of the relative contributions of 
these two cues on grouping. 

Our model is a member of a broad class of theoretical 
models that achieve image understanding through 
bottom-up and top-down recurrent processing (Ullman, 
1984; Hochstein and Ahissar, 2002; Roelfsema, 2006; 
Epshtein et al., 2008). Our model is explicit in that feed-
back connections from higher visual areas modulate the 
responses of early feature-selective neurons involved in 
the related processes of contour detection and figure-
ground segmentation. Despite requiring feedforward and 
feedback passes of information through the model, our 

model converges quickly, consistent with the fast estab-
lishment of figure-ground assignment in the visual cortex. 

Experimental results also suggest that feedback from 
higher visual areas may be useful for tasks such as con-
tour tracing (Roelfsema et al., 1998) and segmentation of 
texture-defined figures (Lamme, 1995). As in our ap-
proach, computational models of these processes involve 
a hierarchy of visual areas that are recurrently connected 
(Poort et al., 2012). While our model deals primarily with 
the segmentation of contour-defined objects, grouping of 
the surfaces that belong to objects and the filling-in of 
these surfaces from contour information remains an ac-
tive area of research. 

As mentioned above in Model structure, where we de-
fined the structure of the model, the purpose of our study 
is to demonstrate how neuronal circuitry can integrate 
information from different classes of features to achieve 
perceptual organization. For this reason, we combined a 
small number of different features (contrast in intensity 
and two-color opposites). Nevertheless, there are obvi-
ously many other cues used by the visual system to set 
apart objects from each other and from the background, 
e.g., texture contrast, stereo/disparity, motion, etc. In ad-
dition to these context-defined cues, local information 
likely plays a role, e.g., the presence of L, X, and T 
junctions. Craft et al. (2007) showed that such local infor-
mation (using the example of T junctions) can be incor-
porated into a recurrent network that has an overall 
structure similar to ours (although their model works on 
highly abstracted input information and is not image com-
putable). 

Another class of available information is based on dif-
ferences in image statistics on the two sides of the border. 
These differences can be quantified in the spectral do-
main and they contribute significantly to figure-ground 
segmentation in natural scenes (Palmer and Ghose, 2008; 
Ramenahalli et al., 2014). Although Williford and von der 
Heydt (2016) did not find an influence of local edge struc-
ture on the border ownership responses in nonhuman 
primate visual cortex, the edge profile is known to be used 
by humans to distinguish foreground from background 
(Von der Heydt and Pierson, 2006; Palmer and Ghose, 
2008). The parallel architecture of our model (as well as 
that of the primate visual system) makes it easy to add 
these additional channels, as well as others, to the exist-
ing three channels (intensity, red-green, blue-yellow). This 
remains the topic of future work. 

One criticism addressed at many computational mod-
els is that they are “tailor-made” to explain one particular 
phenomenon. While their performance may be impressive 
in this regard, it is clear that a biological nervous system 
needs to cope with more than one task. The model we are 
presenting in this study is designed to primarily explain 
border ownership coding, the phenomenon for which we 
have quantitative neurophysiological data. The model, 
indeed, explains these data quite convincingly. In addi-
tion, as we have shown in Model performance for contour 
detection and figure-ground assignment: comparison 
with standard benchmarks, the model’s performance is 
also competitive with state-of-the-art computational 
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models that have been specifically designed for two dif-
ferent standardized tasks: contour detection and figure-
ground assignment in a benchmark data set of natural 
scenes. We find it very encouraging that our simple model 
with a minimal number of tuned parameters (many orders 
of magnitude less than standard machine-learning algo-
rithms) can explain several intermediate-vision processes 
simultaneously. 

Grouping neurons 
There is as yet no direct neurophysiological evidence 

for grouping neurons, although previous studies have 
found neurons in V4 that respond to contour segments of 
various curvatures (Gallant et al., 1996; Pasupathy and 
Connor, 2002; Brincat and Connor, 2004). Our choice of 
an annular, donut-shaped grouping cell kernel is a sim-
plification which, prima facie, seems ill-suited to represent 
objects like thin, elongated shapes or concave shapes. A 
standard representation of complex shapes in computer 
vision is the medial axis transform which can generate a 
skeleton-type abstraction of any shape (Blum, 1967; 
Hung et al., 2012). Previous work has shown that the 
population activity of grouping cells is a close approxima-
tion of the medial axis transform (Ardila et al., 2012) and 
thus can represent any arbitrary shape. Furthermore, al-
though we do not make use of the population activity in 
this study, in practice we find that the combination of 
scale invariance and recurrent processing allows the 
model to accurately predict figure-ground relationships in 
natural scenes. We also do not rule out the possibility that 
other types of grouping neurons may also exist, including 
those that respond to straight contours (Hu and Niebur, 
2017), gratings (Hegdé and Van Essen, 2007), illusory 
surfaces (Cox et al., 2013), or 3D surfaces (He and Na-
kayama, 1995; Hu et al., 2015). For the sake of simplicity 
in this proof-of-concept study, we do not attempt to 
model the whole array of grouping neurons that may exist. 

Furthermore, there is indirect evidence showing the 
potential influence of grouping cells on the spike timing of 
border ownership selective neurons in extrastriate cortex. 
Martin and von der Heydt (2015) showed that action 
potentials of border ownership selective neurons that rep-
resent the same object are more synchronized than those 
neurons that represent different objects (see also Dong 
et al., 2008). This is exactly what is expected if the former 
group of cells receives common input from grouping cells 
that represent one object while neurons coding for differ-
ent objects receive input from different grouping cells that 
fire independently. 

Grouping neurons may also interact with higher-level 
object recognition centers, such as inferotemporal cortex, 
as familiarity with certain objects such as faces may 
influence figure-ground assignment. This is currently an 
area of active research (Ko and von der Heydt, 2018). 
Furthermore, grouping neurons may be multi-modal, in 
that they respond to many different features that may aid 
the scene segmentation process, such as disparity, mo-
tion, etc. In fact, experimental results show that border 
ownership selective neurons have consistent border own-
ership tuning across 2D luminance and 3D disparity cues 

(Qiu et al., 2005). We have not yet incorporated these 
additional features into our model, but this represents a 
potential area of future research. 

Scope and limitations of the model 
Our model assigns distinct roles to the different visual 

areas, e.g., edge processing in V1 by simple cells, figure-
ground assignment in V2 by border ownership selective 
cells, and grouping of proto-objects, possibly in V4. Neu-
rons in these different areas have additional ranges of 
selectivity than the ones we assign them in our model. Our 
model also produces a rough approximation of the time 
course of border ownership coding through a rate-based, 
iterative process. As such, it does not allow us to study 
the dynamics of the recurrent network at a finer timescale. 
For example, the attention-dependent modulation of 
spike-spike synchrony between border ownership neu-
rons that are part of the same object is of particular 
interest (Martin and von der Heydt, 2015; Wagatsuma 
et al., 2016). Furthermore, we focused more closely on the 
border ownership cell activity in our model and did not 
specifically study the grouping cell responses of our 
model, but the combined activity of grouping cells across 
scales could be used to study a wide range of other visual 
phenomena, including object segmentation and visual 
saliency. 
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