Cosmology Large Angular Scale Surveyor

Toby Marriage for the CLASS Collaboration Okinawa — CMB2013 — June 13, 2013

CLASS Collaborators

NASA GSFC D. Chuss K. Denis A. Kogut N. Miller H. Moseley K. Rostem E.Wollack

<u>UBC</u> M. Amiri M. Halpern G. Hinshaw

<u>Northwestern</u> G. Novak

<u>JHU</u> A.Ali J.Appel C. Bennett (PI) J. Eimer **T. Essinger-Hileman** D. Gothe K. Harrington J. Karakla D. Larson T. Marriage Z. Xu

Red=Present

<u>NIST</u> H-M. Cho K. Irwin G. Hilton C. Reintsema

<u>CfA-SAO</u> L. Zeng

<u>PUC de Chile</u> R. Dünner

> <u>Columbia</u> D.Araujo G. Jones M. Limon A. Miller

ŃSF	CLASS Collaborators		
NASA GSFC D. Chuss K. Denis A. Kogut	J <u>HU</u> A.Ali J.Appel C. Bennett (PI)	<u>NIST</u> H-M. Cho K. Irwin G. Hilton	Columbia University
H. See Joseph Eimer's CLASS Poster for			
K. E. Wollack	more information	on L. Zeng	
<u>UBC</u> M.Amiri	J. Karakla D. Larson	<u>PUC de Chile</u> R. Dünner	TERN STATES
M. Halpern G. Hinshaw	I. Marriage Z. Xu	<u>Columbia</u> D.Araujo	
<u>Northwestern</u> G. Novak	Red=Present	G. Jones M. Limon A. Miller	

CLASS targets CMB **B-modes** at **large angles**.

I) Recombination bump packs a lot of signal.

2) Avoids lensing B-modes.

Also E-mode **Reionization** Constraints!

CLASS targets CMB **B-modes** at **large angles**.

I) Recombination bump packs a lot of signal.

2) Avoids lensing B-modes.

Also E-mode **Reionization** Constraints!

1.5°

40'

24'

To detect large-angle modes, CLASS needs a wide survey.

The Atacama is the best site for large sky coverage.

Site in Atacama Desert is not far from the equator: **most of sky** is surveyed at zenith angle 45 deg.

To detect large-angle modes, CLASS needs a wide survey.

To detect **large-angle modes**, CLASS needs a **wide survey**. Multiple observing angles through **sky** and **deck rotation**

in the JHU highbay

Site in Atacama Desert is not far from the equator: **most of sky** is surveyed at zenith angle 45 deg.

To detect **large-angle modes**, CLASS needs a **wide survey**. Multiple observing angles through **sky** and **deck rotation**

- I. Systematics control with front end modulation.
- 2. Sensitivity with high efficiency optics and TES bolometers cooled to 150 mK.
 - 3. Galactic foreground cleaning with multifrequency telescope array.

- I. Systematics control with front end modulation.
- 2. Sensitivity with high efficiency optics and TES bolometers cooled to 150 mK.
 - 3. Galactic foreground cleaning with multifrequency telescope array.

- I. Systematics control with front end modulation.
- 2. Sensitivity with high efficiency optics and TES bolometers cooled to 150 mK.
 - 3. Galactic foreground cleaning with multifrequency telescope array.

Continuous Operation with 50 μ W at 100 mK

One of the four CLASS receivers (PT+DR Cooler) undergoing tilt test.

- I. Systematics control with front end modulation.
- 2. Sensitivity with high efficiency optics and TES bolometers cooled to 150 mK.
 - 3. Galactic foreground cleaning with multifrequency telescope array.

40 GHz Focal Plane Assembly.

Sensitivity Discussion

Photons: $\sigma_{P} = \frac{h\nu\Delta\nu}{\eta\sqrt{\Delta\nu\tau}} \left[\eta n_{0}(1 + \eta n_{0})\right]^{1/2}$ (Zmuidzinas 2003)

 $\eta\text{=}65\%$ instead of $\eta\text{=}40\%\text{:}25\%$ less shot NET

v=90 GHz instead of 150 GHz gives further reduction (generic v dependence and higher atmosphere emissivity)

Phonons: $\sigma_{Phonon} = \eta^{-1} \sqrt{4(GT)k_bT}$ $\sim \eta^{-1} \sqrt{4(\eta P) k_bT}$ $= \eta^{-1/2} \sqrt{4P k_bT}$ (P is total power from atm etc)

 η =65% instead of η =40%: 25% less Phonon NET

T=150 mK instead of T=450 mK: 70% less Phonon NET

At 90 GHz, total power from atmosphere is lower.

While generally less than 50% of total power, phonon contribution is not far below that of photons.

Mitigate other practical effects that traditionally have caused problems (more grit):

Able to select best/most uniform detectors to give **better yield** (through fab and biasing)

Able to multiplex readout faster given current electronics options -- **less aliased readout noise**.

*examples for argument; not exact; for instance need to add amplifier noise

*examples for argument; not exact; for instance need to add amplifier noise

D.Fixsen: I feel like a ballerina on a football field.

A Variable-Delay Polarization Modulator (VPM) is the front-end optical element.

Modulates signal at ~5 Hz to separate signal from the I-to-Q leakage of atmosphere and other instrumentrelated drift.

CMB Simulation

Atmosphere + Differential Gain*

*Both the atmosphere and gain time streams have $1/f^2$ power spectra. The atmosphere has an amplitude of 0.05 K at 0.1 Hz and the gain fluctuation has an amplitude of 0.5% at 0.005 Hz.

Integrated backshort + transmission line shielding

CLASS Detectors

Horns and Planar OMT produce simple single-moded beams.

High-efficiency and design repeatability is

achieved through use of monocrystalline silicon dielectric.

Intrinsic OMT design achieves **broad 50% fractional bandwidth**, which may be divided for multi-frequency operation.

On-chip transmission line filtering, shielding and niobium gap provide **well defined bandpass** and **stringent blue leak control**.

90 GHz Prototype wafer

Individual 90 GHz

devices under test

40 GHz Detector

Integrated backshort + transmission line shielding

CLASS Detectors

Horns and Planar OMT produce simple single-moded beams.

High-efficiency and design repeatability is

achieved through use of monocrystalline silicon dielectric.

Intrinsic OMT design achieves broad 50% fractional

Individual 90 GH7 equency operation. Significant testing infrastructure! Testbeds at GSFC, JHU, and Columbia and niobium gap provide Ide leak control.

with dedicated scientist-operators.

Crosschecks and high throughput.

re (K)

7.6

Wednesday, June 12, 13

devices under

90 GHz Prototype

Exploring Constraints with Sky Cuts and Foregrounds

(Pixel-based likelihood as in Katayama & Komatsu 2011)

Note Non-Gaussian likelihood using large angular scales can yield a detection with tail to high r.

tensor-to-scalar ratio

Preliminary!!! More work to be done.

Stay tuned! Deploying telescopes 2014-2015.

Mounts

Cryostats

Atacama Site Preparation

Optics

Focal Planes

VPMs

