Relaxation Measurements

Two Relaxation Mechanisms

T₁: Spin-lattice or **longitudinal relaxation** is the average lifetime of the nuclei in the higher spin state

T₂: Spin-spin or transverse relaxation corresponds to a de-coherence of the transverse nuclear spin magnetization

Spin-Lattice Relaxation Time or T_1

- Any factor which slows molecular motion (e.g. increasing solution viscosity, aggregation, or rigidifying the molecule) shortens the spin-lattice relaxation time
- A short T_1 favors sensitivity but too short can result in line broadening and degradation of resolution since T_2 cannot be longer than T_1
- 3 principal magnetic interactions that contribute to T_1 relaxation of spin ½ nuclei:
 - Dipole-dipole interaction the nucleus experiences a fluctuating field due to the motions of neighboring dipoles, unpaired electrons, or other nuclei
 - Chemical shift anisotropy chemical shielding of the nucleus is a function of molecular orientation with respect to B₀ field direction
 - Spin rotation interaction small magnetic fields are induced at the nucleus as a molecule reorients; this field fluctuates because the motions are not uniform but proceed by a series of small jumps
- Small amounts of paramagnetic substances speed up relaxation
- Inversion recovery experiment measures T_1

T₁ Measurement: Inversion Recovery

Parameters to note & Optimize

- To change the value of the delay,
 d7, a variable delay list must be created.
- In the acquisition parameters a VDLIST can be generated which contains values that typically cover a time range which extends past the expected T₁ value.

Spin-Spin Relaxation Time or T_2

- $T_1 = T_2$ when molecular tumbling is fast compared with the Larmor frequency; this is the condition for small molecules.
- Mechanisms of spin-spin relaxation:
 - Chemical exchange
 - Scalar spin-spin coupling if modulated at a 'suitable rate'; these are detectable when a ¹H is coupled to a quadrupolar nuclei such as ¹⁴N, ³⁵Cl, or ³⁷Cl
- In a frozen sample, line broadening increases as the result of static dipole-dipole interactions.
- T_2^* describes the magnetization (M_Y) decay resulting from B₀ inhomogeneity.

T₂ Measurement: CPMG Experiment


```
;cpmg1d
;1D experiment with T2 filter using Carr-Purcell-
Meiboom-Gill sequence
"p2=p1*2"
"d11=30m"
1 ze
2 30m
 d1
 p1 ph1
3 d20
 p2 ph2
 d20
 lo to 3 times 14
 go=2 ph31
 30m mc #0 to 2 F0(zd)
exit
ph1=00221133
ph2=13130202
ph31=0 0 2 2 1 1 3 3
; d20: fixed echo time to allow elimination of J-mod.
effects
; d20 should be << 1/J ,but > (50 * P2)
                                        [1-2 msec]
;l4: loop for T2 filter
                                   [4 - 20]
```


Image from:

Ridgway Journal of Cardiovascular Magnetic Resonance 2010 12:71

$T_1 \& T_2$ Relaxation Analysis

- 1st popup select "FID", 2nd popup enter a value of "1"
- This will process all slices based on the first slice.

- Select "Manual Integration" and integrate regions of interest.
- Once regions are selected, save integrals to the relaxation module through the "Save Region as..." icon (see below).

$T_1 \& T_2$ Relaxation Analysis

Will extract integrals and plot for fitting.

Calculates relaxation parameter for single site. Click properties for all sites.

Creates a relaxation report.

