Relaxation Measurements
Two Relaxation Mechanisms

T₁: **Spin-lattice** or **longitudinal relaxation** is the average lifetime of the nuclei in the higher spin state.

T₂: **Spin-spin** or **transverse relaxation** corresponds to a de-coherence of the transverse nuclear spin magnetization.
Spin-Lattice Relaxation Time or T_1

- Any factor which slows molecular motion (e.g. increasing solution viscosity, aggregation, or rigidifying the molecule) shortens the spin-lattice relaxation time.
- A short T_1 favors sensitivity but too short can result in line broadening and degradation of resolution since T_2 cannot be longer than T_1.
- 3 principal magnetic interactions that contribute to T_1 relaxation of spin $\frac{1}{2}$ nuclei:
 - Dipole-dipole interaction - the nucleus experiences a fluctuating field due to the motions of neighboring dipoles, unpaired electrons, or other nuclei.
 - Chemical shift anisotropy - chemical shielding of the nucleus is a function of molecular orientation with respect to B_0 field direction.
 - Spin rotation interaction – small magnetic fields are induced at the nucleus as a molecule reorients; this field fluctuates because the motions are not uniform but proceed by a series of small jumps.
- Small amounts of paramagnetic substances speed up relaxation.
- Inversion recovery experiment measures T_1.
T_1 Measurement: Inversion Recovery

Parameters to note & Optimize

- To change the value of the delay, $d7$, a variable delay list must be created.
- In the acquisition parameters a VDLIST can be generated which contains values that typically cover a time range which extends past the expected T_1 value.

\[I_z = I_0(1-2\exp(-d7/T_1)) \]

\[\ln(I_0-I_z) = \ln(2I_0)-d7/T_1 \]

\[T_{null} = T_1*\ln2 \]
Spin-Spin Relaxation Time or T_2

- $T_1 = T_2$ when molecular tumbling is fast compared with the Larmor frequency; this is the condition for small molecules.
- Mechanisms of spin-spin relaxation:
 - Chemical exchange
 - Scalar spin-spin coupling if modulated at a ‘suitable rate’; these are detectable when a ^1H is coupled to a quadrupolar nuclei such as ^{14}N, ^{35}Cl, or ^{37}Cl
- In a frozen sample, line broadening increases as the result of static dipole-dipole interactions.
- T^*_2 describes the magnetization (M_γ) decay resulting from B_0 inhomogeneity.
T_2 Measurement: CPMG Experiment

;cpmg1d
;1D experiment with T2 filter using Carr-Purcell-Meiboom-Gill sequence

"p2=p1*2"
"d11=30m"

1 ze
2 30m
d1
p1 ph1
3 d20
p2 ph2
d20
10 to 3 times l4
go=2 ph31
30m mc #0 to 2 F0(zd)
exit

ph1=0 0 2 2 1 1 3 3
ph2=1 3 1 3 0 2 0 2
ph31=0 0 2 2 1 1 3 3

; d20: fixed echo time to allow elimination of J-mod. effects
; d20 should be $<< 1/J$, but $(50 * P2)$ $[1-2 \text{ msec}]$
;l4: loop for T2 filter $[4 - 20]$
T_1 & T_2 Relaxation Analysis

1. First popup select “FID”, second popup enter a value of “1”
2. This will process all slices based on the first slice.

- Select “Manual Integration” and integrate regions of interest.
- Once regions are selected, save integrals to the relaxation module through the “Save Region as…” icon (see below).
T_1 & T_2 Relaxation Analysis

- Will extract integrals and plot for fitting.
- Calculates relaxation parameter for single site. Click for all sites.

Relaxation Report

$I(t)=I(0)+P\cdot\exp(-t/T_1)$

8 points for Peak 1, Peak Point at 2.714 ppm

Results Comp. 1

$I(0) = -1.488e+000$
$P = 2.335e+000$
$T_1 = 5.186s$
$\text{SD} = 1.790e-002$

<table>
<thead>
<tr>
<th>tau</th>
<th>ppm</th>
<th>integral</th>
<th>intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.000m</td>
<td>2.714</td>
<td>2.5114e+009</td>
<td>1.0285e+008</td>
</tr>
<tr>
<td>500.000m</td>
<td>2.714</td>
<td>1.7393e+009</td>
<td>7.2504e+007</td>
</tr>
<tr>
<td>1.000s</td>
<td>2.714</td>
<td>1.1713e+009</td>
<td>5.0455e+007</td>
</tr>
<tr>
<td>1.500s</td>
<td>2.714</td>
<td>6.5604e+008</td>
<td>3.0787e+007</td>
</tr>
<tr>
<td>2.000s</td>
<td>2.714</td>
<td>1.8077e+008</td>
<td>1.2362e+007</td>
</tr>
<tr>
<td>4.000s</td>
<td>2.714</td>
<td>-1.3507e+009</td>
<td>-4.725e+007</td>
</tr>
<tr>
<td>6.000s</td>
<td>2.714</td>
<td>-2.4432e+009</td>
<td>-8.9516e+007</td>
</tr>
<tr>
<td>8.000s</td>
<td>2.714</td>
<td>-3.2185e+009</td>
<td>-1.2001e+008</td>
</tr>
</tbody>
</table>