
3. NUMERICAL METHODS II
JHU Physics & Astronomy
Python Workshop 2015

Lecturer: Mubdi Rahman

INTRODUCING ASTROPY!

Contains lots ‘o useful astronomical functionality.
The Docs: http://astropy.readthedocs.org/en/stable/

http://astropy.readthedocs.org/en/stable/

INTRODUCING ASTROPY!

Contains lots ‘o useful astronomical functionality.
The Docs: http://astropy.readthedocs.org/en/stable/

astropy is not installed by
default in the Enthought Canopy
installation. Please install it now
(if you haven’t already) through
the package manager.

http://astropy.readthedocs.org/en/stable/

FITS FILES!
A useful (binary) format
commonly used in astronomy to
store image or tabulated data. astropy

astropy.io.fits
(from astropy.io
import fits)

astropy.table
(from astropy.table

import Table)

We’ll use this for FITS images

We’ll use this for FITS (and other)
tables

FITS FILES!
A useful (binary) format
commonly used in astronomy to
store image or tabulated data. astropy

astropy.io.fits
(from astropy.io
import fits)

astropy.table
(from astropy.table

import Table)

We’ll use this for FITS images

We’ll use this for FITS (and other)
tables

When you import something with
a capital letter first (i.e., from
astropy.table import Table),
you’re importing a class. These
are special types of variables
with useful methods

FITS FILES!
A useful (binary) format
commonly used in astronomy to
store image or tabulated data. astropy

astropy.io.fits
(from astropy.io
import fits)

astropy.table
(from astropy.table

import Table)

We’ll use this for FITS images

We’ll use this for FITS (and other)
tables

You can also deal with tables
through the normal astropy.io.fits
interface. The “table” interface is
quite slick, however and makes
life easier (especially when
making new tables).

FITS IMAGES
FITS files can store
multidimensional data
(commonly 2 or 3
dimensions).

Any given FITS file can
contain multiple images (or
tables) called extensions

Every FITS extension contains
a header and data.

FITS headers can contain
World Coordinate System
(wcs) information that
indicates where a given pixel
is on the sky

A FITS file open in DS9 (a common viewer)

FITS IMAGES
FITS files can store
multidimensional data
(commonly 2 or 3
dimensions).

Any given FITS file can
contain multiple images (or
tables) called extensions

Every FITS extension contains
a header and data.

FITS headers can contain
World Coordinate System
(wcs) information that
indicates where a given pixel
is on the sky

A FITS file open in DS9 (a common viewer)

Unlike python, FITS convention
has indexing starting at 1.
Generally astropy covers this
up – but you should be
aware of this.

READING IN FITS IMAGES
Convenience functions make reading FITS images easy:

from astropy.io import fits
img1 = fits.getdata(filename) # Getting the image
head1 = fits.getheader(filename) # and the Header

This opens the image as a Numpy array, and the header as a
“dictionary-like” object (i.e., you can access the individual header
keywords through “head1[‘key’]”).

To open other extensions in the fits file:

img1 = fits.getdata(filename, 0) # Primary Ext
img2 = fits.getdata(filename, 1) # Second Ext
img2 = fits.getdata(filename, ext=1) # Equivalent

READING IN FITS IMAGES
Convenience functions make reading FITS images easy:

from astropy.io import fits
img1 = fits.getdata(filename) # Getting the image
head1 = fits.getheader(filename) # and the Header

This opens the image as a Numpy array, and the header as a
“dictionary-like” object (i.e., you can access the individual header
keywords through “head1[‘key’]”).

To open other extensions in the fits file:

img1 = fits.getdata(filename, 0) # Primary Ext
img2 = fits.getdata(filename, 1) # Second Ext
img2 = fits.getdata(filename, ext=1) # Equivalent

In addition to local files, you
can open FITS files on the
internet by using the url as
opposed to the file name.

READING IN FITS IMAGES
Convenience functions make reading FITS images easy:

from astropy.io import fits
img1 = fits.getdata(filename) # Getting the image
head1 = fits.getheader(filename) # and the Header

This opens the image as a Numpy array, and the header as a
“dictionary-like” object (i.e., you can access the individual header
keywords through “head1[‘key’]”).

To open other extensions in the fits file:

img1 = fits.getdata(filename, 0) # Primary Ext
img2 = fits.getdata(filename, 1) # Second Ext
img2 = fits.getdata(filename, ext=1) # Equivalent

This is not the most efficient
way to open a FITS file,
especially larger ones. If you
want to manipulate large
data sets multiple times,
there’s a faster way.

Header Data Unit List (HDU List)

FITS FILES: A MORE TECHNICAL REVIEW
Basic structure of a FITS file:

Header Data
Unit (HDU)

Header

Data

Header Data
Unit (HDU)

Header

Data

Header Data
Unit (HDU)

Header

Data

…

Primary Extension (0) Secondary Extension (1) Secondary Extension (N-1)

Header Data Unit List (HDU List)

FITS FILES: A MORE TECHNICAL REVIEW
Basic structure of a FITS file:

Header Data
Unit (HDU)

Header

Data

Header Data
Unit (HDU)

Header

Data

Header Data
Unit (HDU)

Header

Data

…

Primary Extension (0) Secondary Extension (1) Secondary Extension (N-1)

FITS tables cannot be in the
primary extension.

READING IN A FITS FILE (EXPANDED)

Reading a file, now knowing what a FITS file consists of:

hdulist = fits.open(filename) # Getting the HDUlist
hdulist.info() # The composition of the file

Now getting the header and/or data:

head0 = hdulist[0].header # Primary Ext Header
data0 = hdulist[1].data # Second Ext Data

Writing to a new file and closing:

hdulist.writeto(filename)
hdulist.close() # Closing the FITS file

READING IN A FITS FILE (EXPANDED)

Reading a file, now knowing what a FITS file consists of:

hdulist = fits.open(filename) # Getting the HDUlist
hdulist.info() # The composition of the file

Now getting the header and/or data:

head0 = hdulist[0].header # Primary Ext Header
data0 = hdulist[1].data # Second Ext Data

Writing to a new file and closing:

hdulist.writeto(filename)
hdulist.close() # Closing the FITS file

FITS files are read in such that
the first axis (often the RA for
astronomical images) is read in
as the last axis in the numpy
array. Be sure to double check
that you have the axis you need.

READING IN A FITS FILE (EXPANDED)

Reading a file, now knowing what a FITS file consists of:

hdulist = fits.open(filename) # Getting the HDUlist
hdulist.info() # The composition of the file

Now getting the header and/or data:

head0 = hdulist[0].header # Primary Ext Header
data0 = hdulist[1].data # Second Ext Data

Writing to a new file and closing:

hdulist.writeto(filename)
hdulist.close() # Closing the FITS file

writeto will, by default, fail if
you try to overwrite an
existing file. To force an
overwrite, pass the clobber
argument:

clobber = True

WRITING OUT A FITS IMAGE
Making a new FITS image is also easy from a Numpy array:

Making a Primary HDU (required):
primaryhdu = fits.PrimaryHDU(arr1) # Makes a header
or if you have a header that you’ve created:
primaryhdu = fits.PrimaryHDU(arr1, header=head1)

If you have additional extensions:
secondhdu = fits.ImageHDU(arr2)

Making a new HDU List:
hdulist1 = fits.HDUList([primaryhdu, secondhdu])

Writing the file:
hdulist1.writeto(filename, clobber=True)

SHORT DETOUR: GLOB MODULE

In one of the many useful python packages, glob lets you get lists of
files using wildcards:

import glob

Getting list of all files in current directory:
filelist1 = glob.glob(‘*’) # or
filelist1 = glob.glob(‘./*’)

Getting list of all files in all directories two
levels down with the extension ‘.fits’:
filelist2 = glob.glob(‘*/*/*.fits’)

SHORT DETOUR: OS MODULE
Additionally, the os module provides a large number of useful
filesystem functions:

import os

Basic File Operations:
os.remove(filename) # Delete file named filename
os.rename(oldfilename, newfilename) # Rename file
os.mkdir(dirname) # Making new directory

Path functions:
os.path.exists(loc) # Checks if loc exists
Splits loc into directory and file
os.path.split(loc)
Splits loc into path+file and extension
os.path.splitext(loc)

SHORT DETOUR: LAMBDA FUNCTIONS

Sometimes you want to define a simple function without the full
function syntax. Lambda functions exist for this exact reason:

Defining the Function:
funct1 = lambda x: x**2 # Returns the square of x

Using the Function:
tmpvar1 = funct1(5)

Can use multiple variables:
funct2 = lambda x,y: x + y

Using the Function:
tmpvar2 = funct2(5, 6)

TABLES (& FITS TABLES)

While you can use the FITS interface to open tables, Astropy makes it
very easy and convienient with the astropy.table interface:

from astropy.table import Table

Getting the first table
t1 = Table.read(filename.fits)

Getting the second table
t2 = Table.read(filename.fits, hdu=2)

This provides a really flexible Table object that is a pleasure to deal
with. It is easy to access different types of data, and read in and
output to a wide variety of formats (not just FITS)

TABLE FORMATS

Pretty much anything
you’d ever want!

PLAYING WITH TABLE DATA

A table is both a dictionary-like and numpy array-like data type
that can either be accessed by key (for columns) or index (for rows):

Getting column names, number of rows:
t1.colnames, len(t1)

Getting specific columns:
t1[‘name1’], t1[[‘name1’, ‘name2’]]

Getting specific rows (all normal indexing works):
t1[0], t1[:3], t1[::-1]

Where searching also works:
inds = np.where(t1[‘name1’] > 5)
subtable = t1[inds] # Gets all columns

PLAYING WITH TABLE DATA

A table is both a dictionary-like and numpy array-like data type
that can either be accessed by key (for columns) or index (for rows):

Getting column names, number of rows:
t1.colnames, len(t1)

Getting specific columns:
t1[‘name1’], t1[[‘name1’, ‘name2’]]

Getting specific rows (all normal indexing works):
t1[0], t1[:3], t1[::-1]

Where searching also works:
inds = np.where(t1[‘name1’] > 5)
subtable = t1[inds] # Gets all columns

Extracting a single column will
give you a Numpy array-like
variable with all your
favourite methods attached.

MAKING A TABLE

To make a table manually is easy with Numpy arrays:

Given two columns (1D) arr1 and arr2:
t1 = Table([arr1, arr2], names=(“a”, “b”))

The columns are named “a” and “b”.

Adding an additional column:
col1 = Table.Column(name=“c”, data=arr3)
t1.add_column(col1)

Adding an additional row:
row = np.array([1, 2, 3])
t1.add_row(row)

WRITING OUT A TABLE

Writing out a table is also quite simple:

Writing out FITS table:
t1.write(filename.fits)

Writing out specific text type:
t1.write(filename.txt, format=‘ascii.tab’)

Can even write out to LaTeX:
t1.write(filename.tex, format=‘ascii.latex’)

WRITING OUT A TABLE

Writing out a table is also quite simple:

Writing out FITS table:
t1.write(filename.fits)

Writing out specific text type:
t1.write(filename.txt, format=‘ascii.tab’)

Can even write out to LaTeX:
t1.write(filename.tex, format=‘ascii.latex’)To quickly investigate a table in

a nicely formatted manner, you
can do:

t1.show_in_browser()

EXERCISE TIME! Yes, I’d like to visit the
moon, but I don’t think I’d
like to live there.

	3. Numerical Methods II
	Introducing Astropy!
	Introducing Astropy!
	FITS Files!
	FITS Files!
	FITS Files!
	FITS Images
	FITS Images
	Reading In FITS Images
	Reading In FITS Images
	Reading In FITS Images
	Fits Files: A More Technical Review
	Fits Files: A More Technical Review
	Reading In a FITS File (Expanded)
	Reading In a FITS File (Expanded)
	Reading In a FITS File (Expanded)
	Writing Out A FITS Image
	Short Detour: Glob Module
	Short Detour: OS Module
	Short Detour: Lambda Functions
	Tables (& FITS Tables)
	Table Formats
	Playing with Table Data
	Playing with Table Data
	Making a Table
	Writing Out a Table
	Writing Out a Table
	Exercise Time!

