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ABSTRACT 

The spatial variations in the probability density functions (PDFs) of relative humidity (RH) in the tropical 
and subtropical troposphere are examined using observations from the Atmospheric Infrared Sounder 
(AIRS) and the Microwave Limb Sounder (MLS) instruments together with a simple statistical model. The 
model, a generalization of that proposed by Sherwood et al., assumes the RH is determined by a combination 
of drying by uniform subsidence and random moistening events and has two parameters: r, the ratio of the 
drying time by subsidence to the time between moistening events, and k, a measure of the variability of the 
moistening events. The observations show that the characteristics of the PDFs vary between the tropics and 
subtropics, within the tropics or subtropics, and with altitude. The model fits the observed PDFs well, and the 
model parameters concisely characterize variations in the PDFs and provide information on the processes 
controlling the RH distributions. In tropical convective regions, the model PDFs that match the observations 
have large r and small k, indicating rapid random remoistening, which is consistent with direct remoistening 
in convection. In contrast, in the nonconvective regions there are small r and large k, indicating slower, less 
random remoistening, consistent with remoistening by slower, quasi-horizontal transport. The statistical 
model derived will be useful for quantifying differences between, or temporal changes in, RH distributions 
from different datasets or models, and for examining how changes in physical processes could alter the RH 
distribution. 

1. Introduction 

Water vapor plays a crucial role in the earth’s climate 
system, and the potential for water vapor feedbacks is a 
major challenge for understanding and predicting cli-

mate change. It is therefore important to know the 
distribution of atmospheric water vapor and the pro-

cesses controlling this distribution. As the radiative effect 
of water vapor is roughly logarithmic in the concentra-

tion (e.g., Spencer and Braswell 1997; Held and Soden 
2000; Pierrehumbert et al. 2006), it is important to know 
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the full distribution of atmospheric water vapor and not 
just the mean and variance. 

In recent years there have been several studies that 
have aimed at addressing these issues by examining the 
probability density functions (PDFs) of observed tropo-

spheric humidity (Soden and Bretherton 1993; Gierens 
et al. 1999; Spichtinger et al. 2002; Zhang et al. 2003; 
Sherwood et al. 2006, hereafter S06; Luo et al. 2007; 
Ekströ m et al. 2007; Read et al. 2007). These stud-

ies all showed that the water vapor PDFs are very 
broad and non-Gaussian, but the characteristics of the 
PDFs have varied between studies. For example, Soden 
and Bretherton (1993) noted a lognormal distribution 
for 200–500-hPa upper-tropospheric humidity, whereas 
Zhang et al. (2003) and Luo et al. (2007) have reported 
bimodal PDFs. It is unclear whether the differences 
in reported PDFs are caused by differences in the 
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instruments making the measurements (including re-

mote versus in situ measurements), differences in the 
space–time resolution of the data used, or whether the 
differences are due to the different regions and time 
periods considered in the studies. 

We investigate some of these issues by examining 
PDFs for different subregions of the tropics and sub-

tropics (and the whole tropics) using daily measure-

ments from three satellite instruments: the Atmospheric 
Infrared Sounder (AIRS) instrument on the Aqua sat-

ellite (Aumann et al. 2003) and the Microwave Limb 
Sounder (MLS) instruments on the Upper Atmospheric 
Research Satellite (UARS) (Read et al. 2001) and Aura 
satellite (Read et al. 2007). We examine how the PDFs 
vary between regions and between measurements. 

We also examine whether the observed PDFs can be 
reproduced by simple theoretical models. One is the 
model recently derived by S06. In this model the rela-

tive humidity (RH) is assumed to be determined by 
uniform subsidence and random remoistening process. 
These simple assumptions are supported by studies that 
show tropical humidity can be reproduced using the 
large-scale to advect a water tracer with no micro-

physics other than condensation when RH exceeds 
100% (e.g., Sherwood 1996; Salathe and Hartmann 
1997; Pierrehumbert 1998; Dessler and Sherwood 2000; 
Galewsky et al. 2005). In the S06 model, the PDF of RH 
has a simple algebraic form (with exponent related to 
the ratio of drying to remoistening time). We also 
consider a generalization of this model that includes an 
additional parameter, which can be interpreted as a 
measure of the variability of the remoistening events. It 
will be shown that this generalized model fits the ob-

servations better than the model that S06 proposed and 
can capture the spatial variations in the PDFs. 

The data and theoretical models used in this study are 
described in the next section. In section 3, the spatial 
and vertical variations of AIRS PDFs of RH are ex-

amined and compared with the theoretical model. 
Measurements from other instruments are considered 
in section 4, to check the robustness of the results based 
on AIRS measurements. Finally, conclusions and future 
work are discussed in section 5. 

2. Data and methods 

a. Data 

The AIRS data examined are level 2 data retrievals 
(version 5) that have been binned into a 18 3 18 
latitude–longitude grid as in Gettelman et al. (2006). 
The level 2 data include temperature and water vapor at 
vertical resolution of around 1–2 km and horizontal 

resolution of around 50 km. RH is computed from 
AIRS water vapor and temperature retrievals as in 
Gettelman et al. (2006): RH over water is calculated for 
temperatures .273 K, RH over ice is calculated for 
temperatures ,253 K, and a linear combination is cal-

culated between these temperatures. The AIRS water 
vapor is an average for a layer between two pressure 
levels and is archived on 28 levels from the surface to 
the mesosphere. Following the AIRS convention, each 
layer is referenced by the pressure at the bottom of the 
layer; for example, RH at 250 hPa corresponds to the 
RH averaged from 250 to 200 hPa. We examine AIRS 
RH from 2002 to 2007 on layers with bottoms between 
850 and 200 hPa. 

The UARS MLS instrument made upper-tropospheric 
water measurements from September 1991 to July 1997 
(with limited coverage after 1994). Measurements were 
made every 4.18 along an orbit track, with 15 orbits per 
day, on four pressure surfaces between 147 and 464 hPa 
(Read et al. 2001). We examine here version 4.9 RH 
measurements on the 215-hPa surface for northern win-

ters [December–February (DJF)] 1991/92 to 1993/94. 
These measurements have approximately 3-km vertical 
resolution, with accuracy and precision of 22% and 10%, 
respectively (Read et al. 2001). 

Aura MLS provides water vapor measurements since 
July 2004. Water vapor mixing ratios are retrieved from 
calibrated Aura MLS observations (Livesey et al. 2006), 
and RH with respect to ice is computed from water 
vapor and temperature retrievals as for AIRS (Read 
et al. 2007). We examine here Aura MLS version 2.2 RH 
measurements at 215 hPa for the northern winters 
2005/06 and 2006/07. 

A detailed comparison of AIRS and Aura MLS water 
vapor measurements has recently been reported by 
Fetzer et al. (2008). They showed that there was a high 
correlation between the measurements from the two 
instruments at 250 hPa, although Aura MLS had a 
greater dynamical range, with drier values in dry regions 
and wetter values in moist regions. 

b. Probability density functions 

Our primary method of analysis in this paper is ex-

amination of PDFs. We form and examine PDFs of RH 
from each of the above datasets. An important issue 
when calculating and examining PDFs is the space–time 
scales included in the PDFs. The characteristics of the 
PDFs can be sensitive to these scales. This is illustrated 
in Fig. 1, which shows PDFs of AIRS RH measurements 
at 400 hPa, for different spatial regions and temporal 
resolution. 

Figure 1a compares PDFs for all AIRS data at 400 hPa 
within the ‘‘whole tropics’’ (308S–308N, 08–3608E) for 
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FIG. 1. PDFs of AIRS 400-hPa RH data for (a) the whole tropics (308S–308N, 08–3608E), (b) a tropical convective subregion 
(58S–58N, 1208–1408E), and (c) a tropical nonconvective subregion (58S–58N, 808–1008W). Solid curves show PDFs using daily data, 
while dashed curves show PDFs from monthly-mean data. All PDFs are formed using data at resolution 18 longitude by 18 latitude. 

the 2002/03 to 2006/07 northern winters (December 
to February), using either daily data (solid curve) or 
monthly-mean data (dashed curve). In both cases the 
data are on a 18 longitude by 18 latitude grid. There are 
significant differences between the two PDFs, even 
though the same measurements where used. The PDF 
using daily data is much broader with a large peak at low 
RH and a second, much broader, peak at high RH. In 
contrast, the PDF of monthly-mean data is much nar-

rower (no very low or very high values) and has a 
broader peak at moderate RH. In other words, the av-

eraging process in computing monthly-mean data tends 
to remove extreme values and produce a PDF with a 
peak close to the long-term average. 

The characteristics of the PDFs also depend on the 
regions considered. This can be seen by comparing the 
three panels in Fig. 1. Figures 1b,c show PDFs using 
same data source as Fig. 1a except for two different 
108 latitude by 208 longitude subregions. Again there are 
significant differences between PDFs using daily and 
monthly-mean data. There are also, as noted by Ryoo 
et al. (2008), significant variations between regions. 
Whereas the PDF for the whole tropics is bimodal, the 
PDFs for the subregions are unimodal with peaks at 
high (Fig. 1b) or low (Fig. 1c) RH. These differences are 
examined in more detail below. 

As mentioned in the introduction, the logarithmic 
dependence of water vapor absorption to the water 
vapor concentration means that it is important to 
quantify the full variation in RH. Because of this we 
focus on PDFs of daily data rather than monthly-mean 
data, which averages out extreme values. Furthermore, 
as we would also like to link the characteristics of the 
PDFs to the processes controlling the humidity distri-

bution and the key processes varying between regions 
(e.g., Ryoo et al. 2008), we examine the PDFs of 

108 latitude by 208 longitude subregions as well as PDFs 
of the whole tropics. 

c. Statistical model 

In addition to examining the PDFs from the various 
measurements, we also compare these observed PDFs 
with a statistical model for distributions of RH. This 
model is a generalization of the model derived in S06. 
As in the S06 model, the generalized model is based on 
the ‘‘time of last saturation’’ paradigm for tropospheric 
humidity, in which a parcel’s humidity is equal to the 
lowest saturation value it has experienced since it has 
left the boundary layer. 

In deriving their model, S06 assumed there is uniform 
subsidence, and the relative humidity R can then be 
approximated as 

t 
R 5 exp , (1)

tdry 

where t is the time since the parcel was last saturated 
and tdry is the uniform drying time by subsidence. S06 
further assumed that ‘‘remoistening’’ of parcels occurs 
by random moistening events, which are independent of 
the parcel history (i.e., a Poisson process). The PDF of 
the time t of last saturation is then 

P(t) 5 exp( t/tmoist)/tmoist, (2) 

where tmoist is the mean time of last saturation. The 
standard deviation of t is also tmoist, which implies that 
the coefficient of variation (CV) of the time of last 
saturation is 1. Combining Eqs. (1) and (2) yields the 
PDF of the relative humidity R: 

1P(R) 5 rRr , (3) 
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where r 5 tdry/tmoist is the ratio of drying to moistening 
time. This distribution is a special case of the beta dis-

tribution 

b 1Ra 1(1 R)
PBeta(R) 5 , (4)

B(a, b) 

where B(a, b) is the beta function (Wilks 1995). The 
PDF in (3) is the beta distribution with b 5 1 and  a 5 r. 
The corresponding cumulative distribution is C(R) 5 Rr . 

In this paper we consider a two-parameter generali-

zation of the PDF (3). A purely statistical approach 
would naturally lead to the two-parameter form of the 
beta PDF where we do not restrict b to be equal to 1 as 
in (3). This approach, however, cannot be explained in 
terms of the physics of the underlying phenomena. A 
more physically based approach that keeps the concepts 
of uniform subsidence and random remoistening events 
is to retain Eq. (1) to model the RH in terms of the time 
t of last saturation and to generalize the PDF in (2) for 
this time t. The natural generalization in this context is 
to use the gamma PDF, given by 

1kkexp( kt/tmoist)tk 

P(t) 5 , (5) 
tk G(k)

moist 

where G(k) is a gamma function, rather than the expo-

nential PDF in (2). This PDF is still a member of the 
family of PDFs associated with Poisson processes with 
the same mean time of last saturation, tmoist, but in-

cludes an additional parameter k, which is a measure of 
the variability of this time. The standard deviation of pffiffiffi 
the time t of last saturation is tmoist/ k, so the CV of t ispffiffiffi 
1/ k. For k 5 1, the CV is 1 and the PDF reduces to the 
exponential form (2), while larger k corresponds to less 
variable events. For the data considered herein, we find 
that k is less than 10, which corresponds to moderate to 
large relative variability in the time of last saturation. 

The PDF of the relative humidity R is now given by 

kk kRkr 1 r k 1P(R) 5 ( log R) , (6)
G(k) 

and the cumulative distribution function (CDF) is 

log R 
C(R) 5 1 g , (7)

tdry 

where g is the incomplete gamma function. Both 
equations reduce to the original S06 distributions in the 
limit k 5 1. In the following we refer to distributions of 
RH given by (3) as the S06 model and distributions 
given by (6) as the ‘‘generalized’’ model. Below we 
compare PDFs of the form (6) with the PDFs of the 

observations discussed in the previous section. How-

ever, before this we examine the characteristics of PDFs 
given by (6). 

Figure 2 illustrates the relationship between the rel-

ative subsidence model, the gamma PDF, and the PDF 
of the RH of the generalized model. In the top plots, the 
inverse of the relative subsidence model (1) is shown, 
where the normalized time of last saturation t/tdry is 
plotted with respect to the relative humidity R. To  
represent the range of variability that is implicit in the 
gamma PDF, we indicate with horizontal lines the mean 
and the mean plus or minus one standard deviation of 
the time of last saturation. On the left, these three 
values are shown for r 5 2 and k 5 3, which, as shown 
later in the paper, roughly corresponds to a convective 
region of the tropics, while on the right the three values 
are shown for r 5 0.6 and k 5 10, which corresponds to a 
nonconvective region. The bottom pair of plots shows 
the PDFs of the RH (6) associated with the values for 
r and k in the top plots. The purpose of this figure is to 
illustrate the relationships between the mean and stan-

dard deviation of the time of last saturation and the 
PDF of the RH. It can be seen that short mean times 
correspond to high RH, while long mean times corre-

spond to low RH, which is physically explained by the 
drying process during subsidence. The figure also shows 
that the standard deviation of the time of last saturation 
causes larger variability in the RH at long mean times as 
compared with short mean times. This is because the 
RH curves shown in the top plots have a more highly 
negative slope at long mean times. 

The P(R) for several values of r and k are illustrated 
in Fig. 3. This shows that a wide range of PDFs can be 
formed by varying the two parameters. For example, the 
location of the peak RH varies with r: the peak occurs at 
RH 5 0 for r , 1 regardless of the value of k, whereas 
the peak is at high RH for r . 1. It can be shown that the 
peak of the PDF occurs at 

k 1 
Rpeak 5 exp 

kr 1 
(8) 

for k . 1. This shows that as r increases (for fixed k) the  
peak occurs at larger values, with P / 0 as  r / 0 and  
P / 1 as  r / ‘. This differs from the S06 model where 
the peaks only occur at RH 5 0 (for  r , 1) or 1 (for 
r . 1). Figure 3 also shows that the widths of the PDFs 
vary with k, with narrower distribution for larger k and 
smaller r. 

It is more common to examine the mean and standard 
deviation of the RH distribution than the full PDFs, so it 
is of interest to consider the mean and standard devia-

tion of the above distributions. For distributions given 
by (6) the mean is 
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FIG. 2. Relationship between time to last saturation t and RH for (a) r 5 2, k 5 3 and  (b)  r 5 0.6, 
k 5 10. Horizontal dashed lines show mean time to last saturation, and horizontal dotted lines show 
mean plus and minus standard deviation. (c),(d) Corresponding PDFs of RH. 

r k pends primarily on r and is only weakly dependent on k 
mR 5 , (9) 

r 1 1/k (Fig. 4a), and  sR is primarily dependent on k and only 
weakly dependent on r (Fig. 4d). As a result, r can be 

and standard deviation is 
estimated from mR using (9) with, say, k 5 2, and k can qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi be estimated from sR using (10) with, say, r 5 2. 

2k kkkrk(kr 1 1) (kr 1 2) We note that while the generalization in the proposed 
sR 5 kk/2 k/2 r . (10)

k/2 k model can be described mathematically by the gamma(kr 1 2) (kr 1 1) 
PDF (5) with the additional parameter k, there is also an 

The variation of mR and sR with r and k is shown in important physical difference from S06. In S06, the air 
Fig. 4. Both mR and sR depend on r and k, but mR de- parcels in the tropics are assumed to be remoistened 



3362 J O U R N A L  O F  C L I M A T E  VOLUME 22 

FIG. 3. PDFs of RH for various r and k generated by generalized 
models: (a) r 5 0.5, (b) r 5 1, and (c) r 5 2 for k 5 1, 2, 4, and 10, 
respectively. 

according to a Poisson process, which, along with the 
subsidence model for the RH (1), implies that a single 
PDF would be used to approximate the RH in the entire 
tropical region at a given pressure level. In the gener-

alized model, we focus only on the remoistening time at 
last saturation to allow for any dependence of the mean 
and standard deviation of this last saturation time on 
location in the tropics. For instance, in the subtropics, 
we expect that the last saturation would occur closer to 
the tropics and that some time would elapse as the air 
parcels subside into the subtropical region. This would 
correspond to the right plots of Fig. 2, where the mean 
value of the time of last saturation is relatively large and 
the corresponding PDF of the RH has a peak at low 
RH. The point here is that the remoistening events are 
location dependent and can no longer be considered as 
a Poisson process. However, it is not necessary to model 
the entire process of remoistening; only the time of last 
saturation is relevant to the RH and we are using the 
gamma PDF (5) for this event. In the next sections we 
show how we can model location dependence in the 
remoistening process using the generalization of S06. 

3. AIRS PDFs 

We now examine the PDFs from AIRS RH mea-

surements and compare with the above theoretical dis-

tributions. We first investigate AIRS measurement for 
the 250 hPa layer during Northern Hemisphere winter 
(DJF), and then consider other seasons and altitudes. 

a. 250 hPa, DJF 

The symbols in Fig. 5 show the PDF (Fig. 5a), and 
corresponding CDF (Fig. 5b), of AIRS RH for all 
northern winter data (2002–07) within the tropics and 
subtropics (308S–308N, 0–3608E). The observed PDF is 
broad and asymmetric with a peak around 20% and 
long tail of moist air. Such broad distributions of upper-

tropospheric RH have also been observed in data from 
other satellite instruments, for example, MLS, global 
positioning system (GPS) (S06), and Odin (Ekströ m 
et al. 2007). 

Also shown in Fig. 5 are fits to the AIRS data for the 
S06 and generalized models. The values of r and, in the 
case of the generalized model, k, are found by mini-

mizing the mean square error between model and 
observed PDFs. We choose this method over other stan-

dard statistical techniques, such as the maximum like-

lihood method, because it is not overly sensitive to the 
low-probability regions of the PDF. These comparisons 
show that the generalized model is a better fit to the 
observed PDF and CDF than the original S06 model. In 
particular, the generalized model can reproduce the 
peak of the PDF at RH close to 20%, whereas the peak 
of the S06 model occurs at RH 5 0% (as noted in the 
discussion of Fig. 1, the peaks of the PDFs from the S06 
model can only appear at RH equal to 0% or 100%). 
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FIG. 4. Plots of (a) mean (mR) and (b) standard deviation (sR) vs  r, and (c) mean (mR) and (d) standard 
deviation (sR) vs  k, for generalized model. 

This comparison indicates that inclusion of an addi-

tional parameter in the statistical model greatly im-

proves the agreement with the AIRS data. Further 
evidence of this improved agreement is presented below. 
Note that S06 examined CDFs from GPS and the two 
MLS instruments but not AIRS data. The agreement 
between the S06 model and GPS PDFs is better than that 
in Fig. 5b, but the disagreement with MLS PDFs is sim-

ilar to that for AIRS. The differences between different 
datasets are examined further in section 5. 

We now consider the PDFs for smaller subregions 
than the whole tropics. As the differences between 
distributions are more visible if we are considering the 
PDFs rather than the CDFs, in the remainder of 
the paper we focus on the PDFs of RH, rather than the 
CDFs, as considered by S06, but similar results are ob-

tained if CDFs were used (i.e., the best-fit values of 
r and k are very similar for fits to PDFs or CDFs). Figure 
5 shows the PDFs of AIRS RH for six 108 latitude by 
208 longitude regions in the tropics (58S–58N) and the 
subtropics (158–258N). As noted by Ryoo et al. (2008), 
the PDFs vary between regions, both with longitude and 

between the tropics and subtropics. The location of the 
peaks of the PDFs varies from around 20% to around 
60%, and the width and skewness of the distributions 
also vary. The fits to the AIRS PDFs for the various 
subregions for the S06 (k 5 1) and generalized (variable k) 
models are also shown in Fig. 6. The generalized model 
can fit the data for all subregions. This includes not only 
the peak values but also the range and skewness of the 
PDFs. Some differences between generalized model 
and observed PDFs can be seen for high RH, especially 
in the tropical eastern Pacific (58S–58N, 808–1008W). 
However, these are relatively small differences. 

The S06 model cannot match the variations in the 
peak of the observed PDFs for subregions. As noted in 
section 2c, the S06 model was originally developed to 
model the PDF of the RH for the entire tropics. Hence 
the S06 model is not expected to produce a close fit to 
the PDFs of the RH in subregions. However, it will be 
shown later that the S06 model does yield good results 
for r in most subregions. 

Figure 6 shows that the PDFs of AIRS RH for dif-

ferent tropical or subtropical regions can be represented 
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FIG. 5. (a) PDFs of 250-hPa RH and the whole tropics (308S–308N, 08–3608E) from AIRS data (symbol) 
and fits by S06 (k 5 1; dotted) and generalized (variable k; solid) models. (b) As in (a) except for CDFs. 

by the theoretical generalized model. The variations in 
the PDFs can hence be summarized by variations in 
r and k. Figure 7 shows the longitudinal variation of 
r (Figs. 7a,d), k (Figs. 7b,e), and error e (Figs. 7c,f) (see 
below) for the S06 and generalized model fits to PDFs 
for 108 by 208 regions in the (upper panels) subtropics or 
(lower panels) tropics. As could be expected from Fig. 6, 
both r and k vary with longitude and latitude. 

The value of r for the tropics is generally larger than 
in the subtropics, and the longitudinal variation of r is 
much larger in the tropics than the subtropics (Figs. 7a,d). 
The r for the S06 and generalized models have very 
similar spatial variations and even quantitative agree-

ment, except in tropical Indian (;408E), western Pacific 
(;1208E), and Atlantic (;508W) Oceans. This is 
somewhat surprising given the different shapes of the 
PDFs for the S06 and generalized models (e.g., Fig. 6). 
The similarity in r between the fits using the S06 and 
generalized model can be understood in terms of rela-

tionships between r and the mean value mR. As dis-

cussed in section 2, r is closely related to mR, with only 
weak sensitivity to k. Hence, for both k 5 1 (S06 model) 
and k . 1 (generalized model), r will depend primarily 
on the mean, and not other characteristics, of the RH 
distributions. 

The parameter k also varies with both longitude and 
latitude; see Figs. 7b,e. In the subtropics k varies be-

tween 2 and 6, while in the tropics k varies from 3 to 10. 
In both the tropics and subtropics the longitudes with 
maximum in k are generally the longitudes where r is a 
minimum; for example, in the tropics large k and small r 
occur around 608E and 908W. 

The r and k shown above were determined by mini-

mizing the error between the observed and modeled 

PDF. To estimate the uncertainty in these estimates, a 
moving-blocks bootstrap analysis (Kü nsch 1989) has 
been performed (where moving time blocks of data are 
used to account for correlation in time). The vertical 
bars in Fig. 7 show the uncertainty (61 s) in the cal-

culated r and k. The uncertainty for r is very small in the 
both subtropics and tropics and much smaller than the 
spatial variations in r. The uncertainty in k is larger but 
still less than spatial variations in k. 

As discussed above, the generalized model fits the 
data better than the S06 model. To quantify this, and the 
spatial variations in how well the models fit the data, we 
calculate the root-mean-square error e between the 
PDFs of the model and data. Figures 7c,f show that the 
error for the generalized model is about 10 times less 
than that of S06 model. Also, longitudinal variations in e 
for the S06 model are very similar to the variations of k 
of generalized model. This is because the S06 model is 
identical to the generalized model when k 5 1, and as k 
of the generalized model increases the S06 model de-

viates from the data, resulting in larger e when k is 
larger. 

To examine the spatial variations of r and k further we 
compare maps of these fields. Figures 8a,b show that 
r and k have similar spatial variations, with small (large) 
k in regions of large (small) r. Specifically, there is large 
r and small k in the tropical western Pacific (58S–58N, 
1208E) and tropical America (58S–58N, 608W), and small 
r and large k in the tropical eastern Pacific (58S–58N, 
1208W) and the northern subtropical mid-Pacific (158– 
258N, 1508E). Maps of mR and sR calculated from the 
AIRS data are shown in Figs. 8c,d. As expected 
from Fig. 4 and the related discussion, there is a strong 
resemblance between maps of mR and sR to those of 
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FIG. 6. As in Fig. 3a except for subregions in the subtropics (158–258N): (a) 408–608E, (b) 1208–1408E, and (c) 808–1008W; and the 
tropics (58S–58N): (d) 408–608E, (e) 1208–1408E, and (f) 808–1008W. 

r and k, respectively; that is, there is large mR where r is 
large and large sR where k is small. 

The variations in r and k could provide insight into the 
variations in the characteristics of the moistening pro-

cesses. If the drying time is assumed constant, large 
r and small k indicates rapid, random remoistening, 
whereas small r and large k implies slower, more regular 
moistening processes. There are large r and small k, and 
hence by the above arguments rapid, random remois-

tening, in the tropical convective regions. In contrast, 
there are small r and larger k in the dry regions, indi-

cating slower more regular remoistening. 
We conjecture that these variations in the remois-

tening are consistent with our understanding of the 
physical processes. In the tropical convective regions 
the moistening is thought to occur by direct rapid 
moistening by vertical transport in convective systems, 
whereas lateral mixing by ‘‘large scale’’ advection plays 
a larger role in the remoistening the drier tropical and 

subtropical regions (e.g., Sherwood 1996; Salathe and 
Hartmann 1997; Pierrehumbert 1998; Waugh 2005; 
Ryoo et al. 2008). This lateral mixing is produced by 
transient wave activity (Pierrehumbert and Roca 1998), 
including Rossby wave breaking along the tropopause 
(Waugh 2005; Ryoo et al. 2008), and is slower and more 
regular than convection. The process is not so regular as 
to be periodic (which would correspond to k of the or-

der of 100) but is considerably less random than pro-

cesses where k is of order 1. 

b. Seasonal and altitudinal variations 

The above analysis considered only northern winter 
data at 250 hPa. We now examine the seasonal and al-

titudinal variations of AIRS PDFs and whether these 
PDFs are still well fit by the generalized model. 

Figure 9 shows PDFs of AIRS data for the whole 
tropics (308S–308N, 08–3608E) for different seasons and 
at several different altitudes. At all levels there are only 



3366 J O U R N A L  O F  C L I M A T E  VOLUME 22 

FIG. 7. Longitudinal variation (a),(d) r; (b),(e) k; and (c),(f) error e for S06 (dotted curves) and generalized (solid) models for (top) 
subtropics and (bottom) tropics. The vertical bars indicate the one-sigma bounds computed by the moving-blocks bootstrap distribution. 

weak seasonal variations, which are reasonable for 
the tropics. There are, however, large variations in the 
shape of PDFs with altitude. At 400 and 600 hPa the 
peak occurs at or less than RH 5 10%, which is much 
drier than the peak at 250 hPa, whereas at 850 hPa there 
is limited dry air and the dry peak occurs around RH 5 
40%. In contrast to 250 hPa, the PDFs are bimodal at 
400, 600, and 850 hPa, with a second moist peak at 
RH ’70%–80%. Also shown in Fig. 9 are the fits to the 
data using the generalized model. Because the seasonal 
variations are small, we only show the fit for DJF data. 
The model can capture the general characteristics of 
the vertical variations, in particular the variation in the 
peak values. As at 250 hPa, the generalized model is a 
much better fit than the S06 model at the lower levels 
(not shown). However, the generalized model cannot 
reproduce the observed bimodal PDFs, and the dis-

agreements between the observed and generalized 
model is largest when the observed PDFs are most bi-

modal. 
The PDFs shown in Fig. 9 come from the collection of 

dry and moist RH over the whole tropical region, which 
includes moist air from the convective region and dry air 
from the nonconvective region. When we look at the 
PDFs for smaller 108 latitude by 208 longitude subre-

gions, most of them are unimodal. For example, in 
tropical convective regions [e.g., the western Pacific 
(58S–58N, 1008–1408E)], the PDFs have a peak in high 
RH, while in nonconvective regions like the eastern 
Pacific (58S–58N, 1208–1608W) the peak of PDF is at low 
RH. These observed PDFs for the subregions can be 
well fit by the generalized model. When these different 
regions are combined, the resulting PDF is simply the 
average of the PDFs of all subregions. Hence, given that 
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FIG. 8. Maps of (a) best-fit r, (b) best-fit k, (c) mean (mR), and (d) standard deviation (sR) of 250-hPa AIRS RH. 

the peaks of the PDFs of convective and nonconvective 
subregions are at different RH values, bimodality in the 
PDF of the combined region is expected. There are 
some subregions at the edge of the tropical convective 
regions where bimodal PDFs occur (e.g., 58S–58N, 408– 
608W), but the distinction between low values and high 
values is small (not shown). In addition, this bimodal 
behavior is tightly related to temporal variations because 
of the movement of convection into or out of a region, 
where in this case the PDF is a temporal rather than a 
spatial average of PDFs with variable locations of peaks. 

The bimodal distributions in the midtroposphere are 
consistent with Zhang et al. (2003), who observed bi-

modal features in the PDFs of precipitable water using 
monthly-mean data. Furthermore, if monthly-mean 
AIRS data rather than daily values are used, the PDFs 
for midtropospheric RH look similar to the PDFs of 
precipitable water averaged over 500–300 hPa shown in 
Zhang et al. (2003); for example, compare Fig. 1a with 
Fig. 8 of Zhang et al. (2003). [The difference is due to 
differences in measurements, regions of interest, and 
time periods. The similarity is much clearer when we 
compare 3-monthly-mean data with them (not shown).] 

The vertical variations of r, k, and e for PDFs, for the 
whole tropics and whole year, are shown in Fig. 10. 
There is a minimum in r in the midtroposphere, for both 

the S06 and generalized models. A midlevel minimum 
in the mean RH from AIRS has already been reported 
(Gettelman et al. 2006; Ryoo et al. 2008), and the 
minimum in r could be expected given the close rela-

tionship between r and mR. Also, S06 found a minimum 
at the same altitude in their calculations of r from GPS 
data. 

The parameter k also varies in the vertical, with an 
increase with altitude above 500 hPa. As larger k re-

flects less variable remoistening processes, so this in-

crease of k suggests the moistening processes in the 
upper troposphere are more affected by more regular 
and relatively slow large-scale process such as subsi-

dence, rather than by rapid moistening by convective 
updraft from the surface. 

The error e between model and data is shown in Fig. 10c. 
As at 250 hPa, e for the S06 model is much larger than 
the generalized model, and the variation of e for the S06 
model is similar to the variation in k. The vertical var-

iation of e for the generalized model differs from that of 
r and k, with local maximum between 300 and 400 hPa 
and between 600 and 700 hPa. These are altitudes where 
the PDFs are most bimodal. 

Similar vertical variations of r and k occur for sub-

regions, although there are variations with longitude (see 
Fig. 11). As expected from the discussion in section 2, the 



3368 J O U R N A L  O F  C L I M A T E  VOLUME 22 

FIG. 9. PDFs for the whole tropics (308S–308N, 08–3608E) for AIRS data at 250, 400, 600, and 850 hPa. 
Different colors are for different seasons, and dotted curve is fit to DJF data for generalized model. 

vertical and longitudinal variations of r and k are similar 
to those of mR and sR, respectively (see Fig. 1 of Ryoo 
et al. 2008). It is interesting to note that in the tropical 
convective regions (1008–1408E, 408–608W) there are 
local minima in both r and k at midlevels (;400 hPa), 
whereas in nonconvective regions there is a maximum in 
k at midlevels. 

The vertical variations of r and k in convective regions 
are consistent with analysis of radiative processes and 
the energy balance, which show a minimum in convec-

tive detrainment at midlevels (Hartmann and Larson 
2002; Folkins et al. 2002, 2008). This analysis indicates 
that in convective regions the air at and above 200 hPa is 
composed mainly of very moist air parcels that have just 
detrained from convection, whereas around 400 hPa 
there is a combination of moist air from recent detrain-

ment and very dry air that has subsided from 200 hPa. As 
a result the remoistening time at midlevels is longer than 
aloft, resulting in smaller r (and mR). Also, there is larger 
variability in the moisture and more regularity in re-

moistening at midlevels, resulting in a larger k. 

4. Other data 

Having examined PDFs from AIRS we now consider 
the PDFs of RH measurements from other instruments 
to test the robustness of the above results. We first 
compare with measurements made by UARS MLS 
(1992–94) and Aura MLS (2005–07) instruments. The 
latter overlaps with the AIRS data record enabling a 
comparison of PDFs for the same time periods. We also 
compare our results with those shown in S06 for GPS 
data. 

For our analysis of MLS measurements we focus 
on northern winter (DJF) measurements at 215 hPa 
(which can be compared with the AIRS 200–250-hPa 
layer). Figure 12 shows the PDFs of AIRS, UARS MLS 
(1992–94), and Aura MLS (2005–07) RH for subregions 
in the tropics (58S–58N) and subtropics (158–258N). 
Here two different AIRS PDFs are shown. One was 
formed using all available data and the other using only 
data sampled at the same locations as Aura MLS. PDFs 
from different datasets show good agreement except the 
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FIG. 10. Vertical variation of (a) r, (b) k, and (c) error e for fits 
to PDFs of whole tropics and whole year for S06 (dotted) and 
generalized (solid) models. 

tropical convective region (58S–58N, 1208–1408E). In this 
region the AIRS PDFs are narrower, with peak around 
60%, whereas the UARS MLS and Aura MLS PDFs are 
broader, with low values less than 20% and high values 
larger than 100% (see also Read et al. 2007). According to 
Fig. 4d, this would imply that k from AIRS should be 
considerably larger than k from both MLS measurements. 

Figure 13 compares the longitudinal variation of r and 
k for the tropics (58S–58N) and subtropics (158–258N) 
for PDFS of AIRS, Aura MLS, and UARS MLS mea-

surements shown in Fig. 12. Consider first the parameter r. 
There is good agreement in r from all three datasets 

even though they cover different years. All three data-

sets show generally higher values of r in the tropics than 
the subtropics, with largest values in the tropical con-

vective regions (around 1208E and 608W), and larger 
longitudinal variations in the tropics than the subtrop-

ics. The largest disagreements between the values of r 
from the different measurements are in the tropical 
locations with local maximum in r, where r from AIRS is 
generally larger than from both MLS measurements. 
This is true even if the same measurement locations are 
used for the AIRS and Aura MLS PDFs, indicating that 
this is a difference in the measurements and not due to 
differences in the sampling or different years. 

The agreement between k from the different datasets 
is not as good as for r. There is qualitative agreement in 
the longitudinal variations of k, but there are quantitative 
differences. In the tropics, k from AIRS are consistently 
larger than those from both MLS measurements, even 
when sampling the same air as Aura MLS. The largest 
difference between AIRS and MLS occur in tropical 
convective regions (see above). There is better agree-

ment between the two MLS datasets, although differ-

ences occur when k is larger (with larger k from Aura 
MLS). The differences in subtropical k among the da-

tasets are not as consistent as the tropics, but the general 
tendency is the same; for example, k is generally larger 
from AIRS than MLS. 

The above comparison is focused only on upper-

tropospheric measurements. As a check on the robust-

ness of the vertical variations, we briefly compare our 
results with the GPS data shown in S06. As discussed 
above, r from the GPS data show a minimum at the 
same height as that from AIRS (see Fig. 6 of S06). The 
values from GPS are smaller than those of AIRS; for 
example, for the S06 model the r at 400 hPa is 0.42 from 
GPS (for January 2002 measurements) compared with 
0.53 from data (for DJF 2002/03–2006/07 measurements). 
S06 fit their model to CDFs rather than PDFs and used a 
different criterion to determine the best-fit r, but  tests  
show that neither of these causes significant differences in 
the estimates of r. The difference in our estimate r from 
AIRS and S06 calculations of r from GPS data is thus due 
to actual differences in the PDFs from the two datasets. 

The exact cause of the above differences between the 
different datasets is not known, but the broader PDFs 
from Aura MLS than from AIRS is consistent with the 
analysis of Fetzer et al. (2008). Even though there are 
some quantitative differences in the values of r and k for 
PDFs from different datasets, there is overall good 
agreement in the spatial variations of r and k, both 
horizontally and vertically. This gives us some confi-

dence in general conclusions primarily based on analysis 
of the AIRS data. 
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FIG. 11. The cross section of longitudinal vs altitudinal variation of (a) r and (b) k for the subtropics (158–258N) and 
tropics (58S–58N). 

5. Conclusions 

Measurements of tropospheric relative humidity (RH) 
from three different satellite instruments indicate that 
the probability density functions (PDFs) of daily RH 
are broad and non-Gaussian. This applies not only for 
PDFs of the whole extended tropical region (308S– 
308N) but also for PDFs of smaller 108 latitude by 208 
longitude subregions. Although the ‘‘local’’ PDFs are 
all broad, the location of the peak, the skewness, and the 

width vary between the tropics and subtropics, within 
the tropics or subtropics, and with altitude. 

The observed PDFs for all subregions can be well fit 
using a simple statistical model that is a generalization 
of that proposed by S06. This model assumes the RH is 
determined by a combination of drying by uniform 
subsidence and random remoistening events and has 
two parameters: r, the ratio of drying time (via subsi-

dence) and remoistening time, and k, a measure of 
variability of the remoistening time. 
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FIG. 12. PDFs for three subregions in the (a) subtropics (158–258N) and (b) tropics (58S–58N) for 250-hPa AIRS, Aura MLS, and 
UARS MLS measurements, respectively. Dashed curves are for AIRS data sampled at Aura MLS locations. 

The parameters r and k not only provide a concise 
way to characterize the RH distributions, but also may 
provide insight into the processes controlling the RH 
distributions. In the tropical convective regions there is 
large r and small k in the upper troposphere, indicating 
rapid, more variable remoistening in these regions. In 
contrast, in dry regions in the subtropics and tropical 
eastern Pacific there is small r and large k, indicating 
slower, more regular remoistening there. 

We conjecture that these variations in the remois-

tening process are consistent with our understanding of 
the physical processes in different regions. Previous 
studies have shown that convection and vertical mixing 
play the key role in regulating humidity near tropical 
convective regions, but remoistening in the subtropics 
comes from lateral advection of moist air from convec-

tive regions (e.g., Sherwood 1996; Salathe and Hartmann 

1997; Pierrehumbert 1998; Dessler and Sherwood 2000; 
Galewsky et al. 2005; Dessler and Minschwaner 2007). 
Thus, in tropical convective regions we expect direct 
remoistening by rapid, random vertical motions, whereas 
in dry, nonconvective regions the remoistening occurs 
by slower, more regular lateral mixing by large-scale 
advection. The r and k that fit the observed PDFs also 
vary in the vertical. In the tropics r and k both have a 
midlevel (300–500 hPa) minimum, indicating slower and 
more regular remoistening in the midtroposphere. This is 
consistent with a midlevel minimum in convective de-

trainment and midlevel air being a mixture of recently 
detrained moist air and very dry air that has subsided 
from below (Folkins et al. 2002). 

Although the satellite datasets considered here show 
a consistent spatial variation in the PDFs, there are 
some quantitative differences. For example, the MLS 
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FIG. 13. Longitudinal variation (a),(c) r and (b),(d) k for generalized model fit to AIRS, Aura MLS, and 
UARS MLS measurements. Dashed curves are for AIRS data sampled at Aura MLS locations. 

PDFs are generally broader than the AIRS PDFs, with 
a higher probability of low RH and high RH in the MLS 
data (and as a result k is smaller from MLS data). The 
magnitude of these differences varies with location, and 
in some regions the differences are very small (see 
Figs. 10 and 11). The cause of these differences needs to 
be examined further. It will also be important to con-

sider other water vapor datasets, in particular those 
from in situ measurements. Luo et al. (2007) recently 
presented PDFs of upper-tropospheric (UT) RH from 
the Measurement of Ozone and Water Vapor by Airbus 
In-Service (MOZAIC) aircraft program. These PDFs 
are often bimodal, and appear to differ from the AIRS 
and MLS PDFs for similar regions and seasons. More 
analysis is needed to quantify and understand the dif-

ferences between different datasets. 
As discussed above, the spatial variations in r and k 

appear consistent with our understanding of the physi-

cal processes controlling RH distribution. However, this 
is primarily a qualitative comparison and a more 
quantitative link between the different physical pro-

cesses and the parameters r and k is needed. One ap-

proach to do this might involve using trajectory-based 
water vapor simulations. Previous studies have shown 
that trajectory-based simulations can reproduce upper-

tropospheric RH observations (Pierrehumbert and Roca 

1998; Dessler and Sherwood 2000; Waugh 2005; Dessler 
and Minschwaner 2007). Analysis of these calculations 
would enable some of the assumptions used to derive 
the statistical model to be tested and would provide an 
opportunity to examine the origin of moisture and the 
control mechanisms. 

There are several potential uses of the statistical 
model derived here. Given that the model parameters 
r and k concisely characterize the RH distributions, 
fitting this model to climate model output may be useful 
for quantifying differences in RH distributions between 
climate models and observations. Although, care will be 
needed to make sure similar spatial and temporal scales 
are used for both the data and models. The statistical 
model may also provide a concise way to characterize 
any temporal changes in simulated RH distributions 
(e.g., in simulations with increasing greenhouse gases). 
Finally, the statistical model may also be useful for ex-

ploring how changes in physical processes could alter 
the RH distribution. 
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