Unconditionals and conditionality

Kyle Rawlins (Johns Hopkins University)
UMass, Apr. 21, 2011

Overview

• “If”-conditionals: one of the best-studied constructions in natural language semantics.
 (i) If you make a salad, you should put feta cheese on it.

• However, vast inventory of conditional-like constructions in natural language, many of which don't involve “if”. Two examples:
 (2) Standing on a chair, Alfonso can touch the ceiling. (Stump 1983)
 (3) To get to Harlem, you have to take the A-train. (von Fintel and Iatridou 2005 inter alia)

• Larger goal: develop a theory of conditional meaning that explains both what is similar, and what is different among varieties of conditional adjuncts.

• Proposal (similarities): a conditional adjunct is any adjunct that serves to restrict the contextual domain of operators in its scope (Rawlins 2008).
 – Generalization of the Lewis-Kratzer-Heim analysis of “if”-conditionals as domain restrictors.

• Proposal (differences): variation in meaning of conditional adjuncts is caused by differences in internal structure of adjunct (conditional uniformity hypothesis).

• Means: case study of “if”-conditionals vs. unconditionals.

<table>
<thead>
<tr>
<th>“If”-conditional</th>
<th>(4) If you make a pizza or a calzone, you should put mushrooms in it.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative unconditional</td>
<td>(5) Whether you make a pizza or a calzone, you should put mushrooms in it.</td>
</tr>
<tr>
<td>Alternative unconditioned</td>
<td>(6) Whether you make a pizza or not, you should put mushrooms in the entree.</td>
</tr>
<tr>
<td>Constituent unconditioned</td>
<td>(7) Whatever entree you make, you should put mushrooms in it.</td>
</tr>
<tr>
<td>Headed unconditioned</td>
<td>(8) No matter what you make, you should put mushrooms on it.</td>
</tr>
</tbody>
</table>

• How are unconditionals related to “if”-conditionals?
 – Proposal: the two constructions involve temporary restriction of a contextual domain.
 – Semantic composition of adjunct with main clause proceeds by identical principles for each construction.

• What is the internal structure of an unconditional adjunct, and how does this affect its interpretation?
 – 3 previous ideas: interrogative structure (Zaefferer 1990, Lin 1996), free relative structure (Dayal 1997, Izvorski 2000a,b), or something in between (Gawron 2001).
 – (Note: Izvorski 2000a,b assumes FR structure, but argues that this is a CP, and involves a question semantics.)
 – My claim: interrogative structure, matching that of an alternative or “wh-ever” interrogative.
 – Semantics & pragmatics of such structures leads compositionally to semantics of unconditional.

Agenda:

• More details about semantic and pragmatic properties.
• Sketch proposal for unification of “if”-conditionals and unconditionals.
• Pieces of analysis: motivation for interrogative syntax, semantics of alternative and “-ever” questions, interaction of interrogative and conditional structures.
• Detailed implementation of analysis (time permitting).

1 Semantic and Pragmatic Properties

Main desideratum #1: Unconditionals entail their consequent.¹

(9) Whether Alfonso or Joanna brings the salad, it will have feta cheese in it.
Entails: The salad will have feta cheese in it.

(10) Compare: If Alfonso or Joanna brings the salad, it will have feta cheese in it.

• Unconditionals have a close paraphrase involving a sequence of “if”-conditionals (König 1986, Lin 1996):

(11) If Alfonso brings the salad, it will have feta cheese in it, and if Joanna brings the salad, it will have feta cheese in it.

1.1 Indifference and ignorance

Main desiderata #2: Unconditionals convey relational indifference.

(12) Whether Alfonso or Joanna comes to the party, it will be fun.
Conveys: it doesn’t matter who comes

(13) Whoever comes to the party, it will be fun.
Conveys: it doesn’t matter who comes

• Relational – it may matter for many other purposes who comes to the party.
 – But not for the issue of whether the party will be fun.
• Relational indifference is the main at-issue contribution of an unconditional.
• In addition, unconditionals (especially with past antecedents) characteristically convey ignorance:

¹This makes them similar to but still different from “concessive conditionals”, which in English are expressed with “even if”. These can, but do not have to, entail their consequent, depending on the scale structure involved. (They also involve something like the indifference implication.) Exx. from Guerzoni and Lin 2007:

(i) Even if the bridge were standing I wouldn’t cross.
(ii) Even if John drank [1 ounce] of whiskey she would fire him.

This also makes them similar to headed unconditionals, which in Rawlins 2008 I analyze in a parallel way:

(iii) Regardless of/no matter who comes to the party, it’ll be fun.
Whether Alfonso or Joanna came to the party, it must have been fun.
Conveys: it doesn’t matter (for funness) which one came, and the speaker doesn’t know.

Whoever came to the party, it must have been fun.
Conveys: it doesn’t matter who came, and the speaker doesn’t know.

1.2 Indifference in discourse

• Characteristic discourse use: avoid taking a stance on an issue, while moving the discourse forward.

1.3 Domain (un)restriction

• Lewis 1975, Kratzer 1978, 1986: “if”-clauses have a restricting effect on quantificational domain of nearby operators (modals, adverbs of quantification).

• Unconditionals and domain interaction:

19. Whether Alfonso or Joanna comes to the party, it should be fun.
20. Whoever comes to the party, it should be fun.

• Main desiderata #3: Domain must include all (possible) alternatives. “Unrestriction”

• Restriction vs. unrestricted:

21. a. # Whether Alfonso or Joanna comes to the party, if Alfonso comes, it should be fun.
 b. # Whoever comes to the party, if Alfonso comes, it should be fun.

22. Compare:
 a. Whether Henry or Joanna comes to the party, if Alfonso comes, it should be fun.
 b. Whoever else comes to the party, if Alfonso comes to the party, it should be fun.

Unconditionals keep a quantificational domain open.

2 A SEMANTICS FOR UNCONDITIONALS

• Proposal: compositional interaction of the meaning of a conditional structure, and the meaning of an interrogative structure, lead to an understanding of unconditionals and their relation to “if”-conditionals.

• Lewis/Kratzer/Heim theory of conditionals (LKH): the semantic function of an “if”-clause is to restrict the domain of a quantificational operator.

23. If it rains very hard, my roof always leaks.

24. If Alfonso comes to the party, you should come too.

25. S

• The effect of a semantics for interrogatives: An unconditional adjunct provides not just one but a set of domain restrictions.

• Compositional Hamblin semantics (Hamblin 1973, Kratzer and Shimoyama 2002) provide a generalized mode of meaning combination – pointwise combination. (Pointwise function application.)

26. Whether Alfonso comes to the party or not, you should come.

27. Whoever (else) is coming to the party, you should come.

• Meaning of a regular “if”-clause is a singleton set.
 – When two singleton sets combine, pointwise combination reduces to regular semantic combination.
 – “if”-conditionals behave as we want – behavior reduces to standard LKH analysis.

28. If Alfonso comes to the party, you should come.

• Analysis realizes the intuition about paraphrase with multiple “if”-conditionals.
Because of question meaning, alternatives quantified over will be exhaustive.

Exhaustivity presupposition in the context of a conditional structure: amounts to presupposing that we are looking at every possible way of restricting the domain.
- (In the context of a regular question, simply constrains possible answers.)

Because of meaning of modal, each conditional claim will be non-trivial.

Consequences:
- Exhaustive set of non-trivial conditional claims – it doesn't matter what domain restrictions we make, the main clause is true!
- Derives both the contribution of indifference, and the fact that unconditionals entail their consequent.

Details to fill in:
- Interrogative syntax
- Semantics for alternative questions
- Semantics for -ever questions
- Semantics for conditionals
- A question meaning in a conditional adjunct
- Composition of adjunct with main clause
- Detailed implementation

3 Unconditional Adjuncts as Interrogatives

- Compositional analysis |= semantics follows from syntax.
 - What is the syntax of an unconditional adjunct?

3.1 Alternative unconditionals

- Alternative interrogative structure.
- Structural properties: disjunction, interrogative syntax/morphology.

36) Whether the party is cancelled or is not cancelled, we should go out tonight.
37) Whether the party is cancelled or not, we should go out tonight.
38) Whether or not the party is cancelled, we should go out tonight.

- In general: no properties to distinguish alternative interrogatives from alternative unconditional adjuncts.
- This is a good time to note the following facts:

39) * Whether the party is canceled, we should go out tonight.
40) * Whether Alfonso brings a salad or an entree, it will be good. (polar interrogative with disjunction)
41) * Whether Alfonso brings a salad or an entree, it will be good. (Roelofsen and van Goor's 2009 'open questions')

- I.e. alternative interrogative clauses are the only type of "whether"-clause that can be adjoined.

3.2 Constituent unconditionals

- Previous assumptions/proposals:
 - Free relatives (Dayal 1997, Izvorski 2000a,b).
 - A type of nominal construction distinct from both plain free relatives and interrogatives (Gawron 2001).

- All three hypotheses are a priori plausible.
- Free relatives – synonymy with "-ever" FR examples:

42) Whoever comes to the party will have fun.
43) Whoever comes to the party, they will have fun.

 correlative construction in Hindi:

44) [TP [CP jo laRkii khaRii hai] [TP vo lambii hai]]
REL girl standing is DEM tall is
'The girl who is standing is tall.' (Ex. from Srivastav (1991))

- Interrogatives – "-ever" can appear in questions:

45) Whoever could have done that?
46) Whatever is Alfonso be saying to that woman?
47) Whatever happened to Joanna?

- See also Grosu 2002, 2003, Rawlins 2008 for additional arguments against a FR account.

\(^6\)Contra Gawron 2001 who claimed the adjuncts were a kind of NP. The motivation, aside from uniformity, is that such clauses can appear in argument positions, including subject position. But it is well known that subject clauses differ from nominal subjects in many ways, e.g. default agreement.
In favor of an interrogative analysis: appearance of a question-only idiom.
• “What was X doing Y” (Pullum 1973, Kay and Fillmore 1999)
• Huddleston and Pullum 2002 (§5.1.6 fn. 17): this is ok in interrogatives, but not FRs. Also allowed in unconditionals.

(48) What were they doing reading her mail?
(49) * She didn’t complain about whatever they were doing reading her mail.
(50) Whatever they were doing reading her mail, it didn’t lead to any legal problems.

• If “wh-ever” adjunct were a FR, this wouldn’t be possible.

Against a free relative/nominal analysis: multiple “wh”.

(51) Alfonso knows who said what.
(52) * Alfonso talked to who(ever) said what.
(53) Whoever buys whoever’s property, the town council will still grant a building permit. (Gawron)
(54) ? Whoever said what to whom, we’ve got to put this incident behind us and work together as a team. (Huddleston and Pullum)

In favor of an interrogative analysis: echo question licensing.

(55) A: Alfonso knows who Joanna talked to.
B: What does Alfonso know? / Alfonso knows who?
B’: * Who does Alfonso know? / Alfonso knows who?

(56) A: Alfonso talked to whoever Joanna did.
B: * What did Alfonso talk to? / Alfonso talked to who?
B’: Who did Alfonso talk to? / Alfonso talked to who?

• Difficult to apply directly to unconditionals; can’t directly question or echo-question the adjunct.
• However, a very interesting echo pattern:

(57) A: Whoever Joanna talked to, Alfonso will be jealous.
B: Alfonso will be jealous regardless of what?
B’: * Alfonso will be jealous regardless of who?

• “Regardless of” takes a question complement.

• Would not predict the B response to be licensed if “wh-ever” adjunct were a free relative.3

Summary of syntactic evidence
• Alternative unconditional adjuncts look like run-of-the-mill alternative interrogative CPs.
• Constituent unconditionals pattern with interrogative CPs as well. No evidence for new kind of “wh”-structure. (Root “wh-ever” questions.)
• English constituent unconditionals are clearly not free relatives, contra Dayal 1997, Izvorski 2000a,b.

4 On the semantics of interrogatives

(i) An answer to a question is a sentence, or statement.
(ii) The possible answers to a question form an exhaustive set of mutually exclusive possibilities.
(iii) To know the meaning of a question is to know what counts as an answer to that question.

 – An interrogative denotes a set of propositions, corresponding to possible answers.

 (8) [Did Alfonso come to the party?]= \{ \lambda w. Alfonso came to the party in w, \lambda w. Alfonso did not come to the party in w \}

 \lambda w. Alfonso came to the party in w,
 \lambda w. Joanna came to the party in w,
 \lambda w. Henry came to the party in w,

(9) [Who came to the party?]= \{ \lambda w. Alfonso came to the party in w, \}

• Compositional Hamblin semantics: all constituents denote sets (Hamblin 1973, Kratzer and Shimoyama 2002).
 – Singleton sets correspond to standard denotations.
 – Certain items (disjunction, “wh-ever” items, free choice indefinites) introduce non-singleton alternative sets into composition.
 – Operators such as [q] manipulate alternatives.

3To really see this prediction, one needs to examine why the test works the way it does. See Rawlins 2008 for such an examination, or ask.
4.1 Alternative interrogatives

- First pass (Karttunen 1977, Groenendijk and Stokhof 1984):

 \begin{align*}
 (60) & \quad \text{[(Q Did)\textsubscript{C} Alfonso or Joanna bring an entree?]} = \{ & \lambda w. \lambda w. \text{Alfonso brought an entree in } w, \} \\
 & \quad \text{at} \quad \{ & \lambda w. \lambda w. \text{Joanna brought an entree in } w \}
 \end{align*}

Mutual exclusivity and exhaustivity

- What about part (ii)?
- Propositional alternatives are:
 - exhaustive if they cover all the situations. (There are no situations where neither are true.)
 - mutually exclusive if they don’t overlap on any situations. (There are no situations where both are true.)
- First-pass denotation guarantees neither property.
- Alternative unconditionals illustrate the need for both principles as linguistic presuppositions of the clause. ³

Exhaustivity: ³

(61) Scenario: Alfonso, Joanna, or Henry might bring the salad to the potluck.
 a. # Whether Alfonso or Joanna brings the salad, it will have feta cheese in it.
 b. Whether Alfonso, Joanna, or Henry brings the salad, it will have feta cheese in it.

- Example also illustrates the point the exhaustivity must be relativized to the context of utterance.
- Mutual exclusivity:
 - Without mutual exclusivity (or some other modification) alternatives in (63) will overlap. (Given exhaustivity.)

 \begin{align*}
 (62) & \quad \text{Scenario: If we get two more entrees we will have enough food, but one won’t do.} \\
 & \quad \text{Given exhaustivity.} \\
 & \quad \text{A. Whether Alfonso or Joanna brings an entree, we will have enough food. (FALSE)} \\
 & \quad \text{B. Whether Alfonso or Joanna brings an entree, we won’t have enough food. (TRUE)} \\
 \end{align*}

- If alternatives overlapped, would go the opposite way.
 - See recent work by Pruitt and Roelofsen (as well as Groenendijk and Roelofsen 2009, Roelofsen and van Gool 2009) for a different approach to exhaustification/exclusification.
 - Ultimately, I think exclusivity below needs to be replaced by an exclusification procedure, in particular, Alonso-Ovalle’s innocent exclusion algorithm/operator ”♥” (Alonso-Ovalle 2006). Pruitt and Roelofsen in their very latest work make a similar proposal.

\[\text{\[Q \text{Did}\textsubscript{C} Alfonso or Joanna bring an entree?\]} = \{ \lambda w. \lambda w. \text{Alfonso brought an entree in } w, \} \]

Presupposes:
(i) Every situation (in the domain) is in some alternative in \[\lambda t. \text{(exhaustivity)}\]
(ii) No situation (in the domain) is in more than one alternative in \[\lambda t. \text{(mutual exclusivity)}\]

- “Domain” : domain of discourse – situations under consideration by discourse participants.
 - Following Groenendijk 1999, Isaacs and Rawlins 2008, I take this to be the context set (Stalnaker 1978) – same domain partitioned by questioning.
 - Groenendijk’s proposal (cf. Hulstijn 1997): while asserting removes worlds, questioning partitions the context (set).
 - Accommodating mutual exclusivity or exhaustivity ⇒ removing appropriate worlds from domain prior to partitioning it.

(64) Interpretation of a root alternative question

\[\text{domain} \quad \text{accommodation as needed} \quad \text{partitioning} \quad \text{domain} \]

\[\text{goals: situations where either A or J brings an entree} \quad \text{situations where both or neither bring an entree} \quad \text{situations where only J brings an entree} \quad \text{situations where only A brings an entree} \]

\[\text{\[Q \text{Did}\textsubscript{C} Alfonso or Joanna bring an entree?\]} = \{ \lambda w. \lambda w. \text{Alfonso brought an entree in } w, \} \]

\[\text{Presupposes:} \]

(65) \[\text{\[Q \text{Did}\textsubscript{C} Alfonso or Joanna bring an entree?\]} = \{ \lambda w. \lambda w. \text{Alfonso brought an entree in } w, \} \]

\[\text{Presupposes:} \]

- “Domain” : domain of discourse – situations under consideration by discourse participants.
 - Following Groenendijk 1999, Isaacs and Rawlins 2008, I take this to be the context set (Stalnaker 1978) – same domain partitioned by questioning.
 - Groenendijk’s proposal (cf. Hulstijn 1997): while asserting removes worlds, questioning partitions the context (set).
 - Accommodating mutual exclusivity or exhaustivity ⇒ removing appropriate worlds from domain prior to partitioning it.

\[\text{domain} \quad \text{accommodation as needed} \quad \text{partitioning} \quad \text{domain} \]

\[\text{goals: situations where either A or J brings an entree} \quad \text{situations where both or neither bring an entree} \quad \text{situations where only J brings an entree} \quad \text{situations where only A brings an entree} \]

\[\text{\[Q \text{Did}\textsubscript{C} Alfonso or Joanna bring an entree?\]} = \{ \lambda w. \lambda w. \text{Alfonso brought an entree in } w, \} \]

\[\text{Presupposes:} \]

(66) \[\text{\[Q \text{Did}\textsubscript{C} Alfonso or Joanna bring an entree?\]} = \{ \lambda w. \lambda w. \text{Alfonso brought an entree in } w, \} \]

\[\text{Presupposes:} \]

- “Domain” : domain of discourse – situations under consideration by discourse participants.
 - Following Groenendijk 1999, Isaacs and Rawlins 2008, I take this to be the context set (Stalnaker 1978) – same domain partitioned by questioning.
 - Groenendijk’s proposal (cf. Hulstijn 1997): while asserting removes worlds, questioning partitions the context (set).
 - Accommodating mutual exclusivity or exhaustivity ⇒ removing appropriate worlds from domain prior to partitioning it.

\[\text{domain} \quad \text{accommodation as needed} \quad \text{partitioning} \quad \text{domain} \]

\[\text{goals: situations where either A or J brings an entree} \quad \text{situations where both or neither bring an entree} \quad \text{situations where only J brings an entree} \quad \text{situations where only A brings an entree} \]

\[\text{\[Q \text{Did}\textsubscript{C} Alfonso or Joanna bring an entree?\]} = \{ \lambda w. \lambda w. \text{Alfonso brought an entree in } w, \} \]

\[\text{Presupposes:} \]

(67) \[\text{\[Q \text{Did}\textsubscript{C} Alfonso or Joanna bring an entree?\]} = \{ \lambda w. \lambda w. \text{Alfonso brought an entree in } w, \} \]

\[\text{Presupposes:} \]

- “Domain” : domain of discourse – situations under consideration by discourse participants.
 - Following Groenendijk 1999, Isaacs and Rawlins 2008, I take this to be the context set (Stalnaker 1978) – same domain partitioned by questioning.
 - Groenendijk’s proposal (cf. Hulstijn 1997): while asserting removes worlds, questioning partitions the context (set).
 - Accommodating mutual exclusivity or exhaustivity ⇒ removing appropriate worlds from domain prior to partitioning it.

\[\text{domain} \quad \text{accommodation as needed} \quad \text{partitioning} \quad \text{domain} \]

\[\text{goals: situations where either A or J brings an entree} \quad \text{situations where both or neither bring an entree} \quad \text{situations where only J brings an entree} \quad \text{situations where only A brings an entree} \]

\[\text{\[Q \text{Did}\textsubscript{C} Alfonso or Joanna bring an entree?\]} = \{ \lambda w. \lambda w. \text{Alfonso brought an entree in } w, \} \]

\[\text{Presupposes:} \]

(68) \[\text{\[Q \text{Did}\textsubscript{C} Alfonso or Joanna bring an entree?\]} = \{ \lambda w. \lambda w. \text{Alfonso brought an entree in } w, \} \]

\[\text{Presupposes:} \]

- “Domain” : domain of discourse – situations under consideration by discourse participants.
 - Following Groenendijk 1999, Isaacs and Rawlins 2008, I take this to be the context set (Stalnaker 1978) – same domain partitioned by questioning.
 - Groenendijk’s proposal (cf. Hulstijn 1997): while asserting removes worlds, questioning partitions the context (set).
 - Accommodating mutual exclusivity or exhaustivity ⇒ removing appropriate worlds from domain prior to partitioning it.

\[\text{domain} \quad \text{accommodation as needed} \quad \text{partitioning} \quad \text{domain} \]

\[\text{goals: situations where either A or J brings an entree} \quad \text{situations where both or neither bring an entree} \quad \text{situations where only J brings an entree} \quad \text{situations where only A brings an entree} \]

4.2 Wh-ever interrogatives

- How do “wh-ever” interrogatives differ from plain constituent interrogatives?

(69) Scenario: S and H are at a conference, and see Alfonso outside the door to the poster session talking to some woman X that S does not recognize.
 a. S: Who is Alfonso talking to?
 b. S: Whoever is Alfonso talking to?

- Ignorance.
- “wh-ever” interrogatives not compatible with implicit domain narrowing.

(70) Scenario: A reality show is nearing the end of its season. 5 candidates are left, and the competition is fierce. On the task for this episode, all of the competitors do extremely well. It is hard to tell who the judges will pick as the person to send home.
a. Who will they pick?
b. Whoever will they pick?

- Each competitor is an unlikely pick.
- Ignorance persists when set of individuals under consideration is fixed.
 - Also, the effect cannot be derived from an extensional domain shifting/widening analysis (cf. den Dikken and Giannakidou’s 2002 treatment of “the hell” questions).
- Proposal: “ever” indicates that the domain of discourse is as wide as possible, relative to the issue the question raises. (cf. widening in Kadmon and Landman 1993)
 - Set of individuals under consideration will have to be wide as a consequence (but won’t necessarily widen).
- Domain: same domain as before.
- What does it mean to be wide? Domain includes worlds where propositions in question are very unlikely but still possible.
 - Domain: same domain as before.
 - Proposal: ever indicates that the domain of discourse is as wide as possible, relative to the issue relevant by default.
 - Ignorance persists when set of individuals under consideration is fixed.
 - Each competitor is an unlikely pick.
 - Widening explains ignorance – a consequence of speaker requiring even the unlikely possibilities to be included in domain.

Lewis 1979: In normal circumstances we tend to ignore possibilities that we consider unlikely or not relevant by default.
- E.g. implicit domain narrowing.
- However, the boundary can be explicitly shifted outwards via accommodation.
 - Widens presupposition enforces attention to the unlikely possibilities in just this way.
 - Ensures that worlds where an alternative is extremely unlikely are contained in the alternative.

5 Interrogatives in a Conditional Structure

5.1 Implementing the Lewis/Kratzer/Heim Theory

- Conditional adjunct provides a restriction to a modal.

(67) A domain $D \in \mathcal{D}(W)$ is wide relative to a modal base f and ordering source g, and set of alternatives A, iff

$$D \supseteq \{w \exists p \in A : p \text{ is a slight possibility in } w \text{ relative to } f_c \text{ and } g_c\}$$

(68) $c + \text{whatever/on earth } [\alpha]\ = c + \text{what } [\alpha]$ defined only if $\text{Dom}(c)$ is wide relative to $[\text{what } [\alpha]]^c$, f_c, and g_c.

- Discourse circumstances radically underspecify contexts: the context is subject to vagueness.
- Lewis 1979: In normal circumstances we tend to ignore possibilities that we consider unlikely or not relevant by default.
 - E.g. implicit domain narrowing.
- However, the boundary can be explicitly shifted outwards via accommodation.\(^6\)
 - Widens presupposition enforces attention to the unlikely possibilities in just this way.
 - Ensures that worlds where an alternative is extremely unlikely are contained in the alternative.

\(^6\)“Suppose I am talking with some elected official about the ways he might deal with an embarrassment. So far, we have been ignoring those possibilities that would be political suicide for him. He says: ‘You see, I must either destroy the evidence or else I can’t do that’, he is mistaken.” (Lewis 1979 p.18, my emphasis)
• Key assumption: + updates conversational backgrounds in e. (Or, context set is conversational background.)
 - Domain of questioning = domain of domain restriction = domain of widening = domain of exhaustification.

5.2 Pointwise combination and interrogative adjuncts

• Normal mode of semantic combination: function application (Frege). Denotations are functions, and combine with arguments.

 \[
 FA(f, x) = f(x)
 \]

• Hamblin's pointwise function application: when a set of functions and a set of arguments combine, every argument is applied to every function. (Used for interpretation of questions, free choice items, disjunction, etc.)

 - Special case A: singleton sets. One function and one argument – combine as in regular function application.

 \[
 \text{PointwiseFA} (\{f\}, \{x\}) = \{f(x)\}
 \]

 - Special case B: singleton function, set of arguments. Each argument applied to the function in turn; size of resulting set is the same as size of set of arguments.

 \[
 \text{PointwiseFA} \left(\left\{ f_1, f_2, \ldots, f_n \right\}, \{x_1, x_2, \ldots, x_n\} \right) = \left\{ f(x_1), f(x_2), \ldots, f(x_n) \right\}
 \]

 - Special case B': reverse of B, multiple functions and one argument. Similar result.

 \[
 \text{PointwiseFA} \left(\left\{ f_1, f_2, \ldots, f_n \right\}, \{x\} \right) = \left\{ f_1(x), f_2(x), \ldots, f_n(x) \right\}
 \]

5.3 Composition with main clause

• Combination of unconditional adjunct with main clause.

 - Main clause – singleton set containing a proposition; proposition is sensitive to contextual domain restriction because of modal.
 - Set of domain restrictors combines pointwise with main clause (case B').
 - Result: set of conditionalized propositions.

 \[
 (\forall w . \text{Alfonso comes to the party in } w) \supset \left\{ (\forall w . \text{Alfonso comes to the party in } w) \supset \left(\lambda w . \text{Alfonso doesn't come to the party in } w \right) \right\}
 \]

 (where f is an appropriate selection function, here (specified by “should”) providing the set of accessible worlds closest to the speaker's desires.)

 - This is the compositional step that is based on Alonso-Ovalle's work.
 - Missing some details – what about the extra twists in question meanings? (exhaustivity, mutual exclusivity, wideness)

 - Project as presuppositions of entire sentence.
 - Alternatives most exhaust the possibilities – it is presupposed that at least one of them is true, relative to domain of discourse.
– Alternatives must be mutually exclusive – it is presupposed that no more than one of them is true, relative to domain of discourse.

- Denotation for a constituent unconditional works the same way.
 – Wideness presupposition applies to domain of interpretation for entire sentence.

- Final step: denotation is a non-singleton set, but sentence is declarative. Need a singleton set denotation.

- Hamblin ∀ operator: all alternatives are true (cf. generalized conjunction.).
 – I take ∀ to be a default operator, inserted up to interpretability, following Menéndez-Benito 2006. Forced by root assertion operator requiring singleton.
 – Also following a similar proposal by Cheng and Huang 1996 for Chinese bare conditionals.
 – Main difference from Alonso-Ovalle: he builds this into “if”. We can talk about why I think this is wrong, at least for unconditionals.

- Non-triviality presupposition of necessity modal: projects as a distribution presupposition – each alternative is non-trivial.
- Possibility modal leads to distribution without presupposition, in virtue of truth-conditions.

- Interrogative syntax
- Semantics for alternative questions
- Semantics for -ever questions
- Semantics for conditionals
- A question meaning in a conditional adjunct
- Composition of adjunct with main clause
- Detailed implementation

6 ALL THE DETAILS

6.1 Conditionality without "if"

- Wide range of structures that are conditional-like in some sense:

(73) Standing on a chair, John can touch the ceiling. (Weak adjuncts; Stump 1985)

(74) Had John eaten the calamari, he might be better now. (Inverted counterfactuals; Iatridou and Embick 1994)

(75) a. Whenever it rains, it pours. ("Whenever" adjuncts; Lewis 1973)7
 b. John is grouchy when he is hungry. (Restrictive "ifthen"-clauses; Farkas and Sugioaka 1983)

(76) To get to Harlem, you have to take the A-train. (Infinitival adjuncts; von Fintel and Iatridou 2005 etc.)

(77) No Hitler, no A-bomb. (Quantified correlatives; Lewis 1973 p-4)8

(78) You’re gonna kill yourself, you keep driving like that. (Bare TP Adjuncts; Haiman 1986)

(79) Unless it rains, we will play soccer on Sunday. ("Unless" exceptives; von Fintel 1994)

(80) The longer John has to wait, the angrier he gets. (Comparative conditionals; Beck 1997 etc.)

- “Then” is disallowed with all of these constructions, except a subset of “if”-conditionals.
- Clearly, a general theory of conditionality can’t be keyed on “if” or “then”.
- What does it mean to be a conditional?

(81) Generalized LKH conditionals (strict)
A conditional adjunct is any adjunct which serves to restrict the domain of an operator.

(82) Generalized LKH conditionals (broad)
A conditional adjunct is any adjunct which interacts with the domain of an operator (by restriction, exception, etc.).

- Unconditionals are conditionals in both the broad, and the strict sense, on my proposal.

6.2 Conditionality

- Main choice point in implementing the LKH theory: how you transmit the content of the [cond] clause to restricted operators.

- Option 1: movement. Get the [cond]-clause to be the sister of the modal, i.e. build an LF tripartite structure. Heim 1982, Diesing 1992, etc. Many authors assume this for presentational purposes.

- In other words: how to implement the ‘+’ operator used pseudo-formally in previous section.

- von Fintel 1994: “It is very probably though that tripartite structures are merely a convenient metalevel notation.”

- I won’t spend time here today discussing the movement account (unless you want me to).
- Most plausible version: [cond]-clauses base-generated adjacent to modal, and move out by SS. (cf. Bhatt’s 2003 account of locality in DP correlatives.)

- Schlenker 2004, Bhart and Pancheva 2006: “if”-clause adjuncts are like definite descriptions over D1 (as opposed to D2) – a sort of free relative.
- Interaction with operator via variable binding – like correlatives in Hindi and other languages.

(83) jo-bhii laRkii vahaaN khaRii hai vo ravi-ki dost hai which-ever girl there standing be-PR she Ravi-G friend be-PR ‘Whichever girl is standing there, she is Ravi’s friend.’ (Hindi; Dayal 1996 ch. 6 ex. 39)

(84) IPs: t

which-ever girl there standing be-PR λt IPs: et she; Ravi-G friend be-PR

7While I won’t address them specifically in this talk, these adjuncts are actually a special case of unconditional built from a “when” question.

8This is my own term. Lewis called them shortened counterfactual conditionals, and while this one is certainly counterfactual, they needn’t be. The quantifiers involved are restricted to weak quantifiers.
The correlation requirement in correlatives
Every relative pronoun in a correlative adjunct must have a corresponding proform in the main clause.

- Schlenker, Bhatt & Pancheva: “then” is the correlative proform. (See also Izvorski 1987, 1988, 1996.)
 - Perhaps true for “if”-conditionals in some sense, but not true for conditional adjuncts more generally.
 - Only “if”-conditionals, and only a subset of those, take “then”.
 - My claim: covert propositional variable (or plural world variable if you prefer) is the correlated proform. See below.

If he is sick, Alfonso can stay home from school.

Bound variables: For any variable x in the syntax and type A, \([x]_{A} = [h]_{l} \) defined for h only if \(l \in \text{Dom}(h) \) and \(h(l) \in D_{l} \).

Assume a type-shifting operation \(\wedge \) to convert from \(\{X \} \subseteq D_{l(l)} \) to type \(\langle t \rangle \): \(\wedge \langle \{X \} \rangle = \{ \lambda u. \wedge v_{p} \langle t \rangle s.t. X(p) : p(u) = 1 \} \).

Generalized Hamblin predicate modification
If \(\alpha \) and \(\beta \) are the daughters of \(\gamma \), and are of type \(\langle At \rangle \) for some type A, then:

\[\{ \gamma \}^{h} = \{ \lambda p_{A}, o_{w} \exists a \in [a]^{h} \exists b \in [b]^{h} : P = \lambda x_{A}, aX = h(x) = 1 \} \]

- Composition of modal complex leads to standard Kratzer-style result.

Convention: will use terms like \(\text{mb}_{5} \) in metalanguage formulas derived relative to an assignment \(h \), to refer to \(h(5) \).

How to interpret binding?
 - Ultimate solution: move assignments into metalanguage, one per alternative. (Novel/Romero)
 - Solution here: only deal with special case with binding into singleton sets.
 - Other cases fail badly for binding of world variables.

Hamblin binding: For any constituent \(a \) of type B,

\[
\begin{align*}
\beta \quad \alpha \quad h & = \{ \lambda_{p_{A}}(h) : \forall X \in D_{A} : P(X) = \{ \alpha \}^{h} X = 1 \} \\
\end{align*}
\]

Defined only if for any assignment \(h \), \([\alpha]^{h} = 1 \).

Ordering and closest worlds (From von Fintel and Heim 2010 (105-6, modified slightly), among many others)

a. Given a set of world \(X \) and a set of propositions \(P \), define the strict partial order \(<_{P}\) as follows:

\[
\forall w_{1}, w_{2} \in X : w_{1} <_{P} w_{2} \quad \text{if} \quad (p \in P : p(w_{2}) = 1) < (p \in P : p(w_{1}) = 1).
\]

b. For any set of worlds \(X \) (the domain), set of propositions \(P \) (the ordering source), and strict partial order \(<_{P}\), let \(\text{Max}_{P} \) be defined as follows:

\[
\text{Max}_{P}(X) = \{ w \in X : \exists \exists w' \in X : w' <_{P} w \}
\]

Somewhat non-standard is the fact that these presuppositions do not operate directly on the conversational backgrounds themselves. It is far from clear whether such presuppositions are implementable in this form at all, least for the modal base. But, as long as these presuppositions are lexical properties of modals, the assumption is a commitment of the syntactized version of Kratzer’s analysis. An alternative, more promising approach, would be to derive the circumstantial epistemic distinction from the syntactic position of the modal, rather than its lexical properties per se (Hacquard 2006).
(98) LF constraints for a binding account of conditionals
a. A constituent marked with [\texttt{COND}] must be sister to a binder of type (at) at LF.
b. If a (modal) operator is in the immediate scope of a [\texttt{COND}]-clause, it must (at LF) c-command a variable bound by that clause.

• First constraint is clearly a version of the correlation requirement, but for \(D_{(at)}\) correlatives.

• Note: in a pure shifting account these constraints by and large follow.
 – But, binding account more general in certain ways – what gets restricted.

6.3 Alternative unconditionals

(99) Whether he is sick or not, Alfonso can stay home from school.

\[
\text{TP}^3: \begin{array}{ll}
\text{TP} & \text{TP}_2: \langle \text{at}\rangle \text{at} \\
\text{CP}: \langle \text{at} \rangle & \text{TP}_2: \langle \text{at}\rangle \text{at} \\
\text{he is sick or not} & \text{TP}_1 \\
\text{TP} & \lambda_{2,[\text{at}]} \\
\text{can} & \text{TP}_1 \\
\alpha_{[\text{at},\lambda_{2,[\text{at}]}]} & \text{TP} \\
\text{Alfonso stay home from school} & \lambda_{[\text{at}]} \\
\text{mb}_{[\text{at},\lambda_{2,[\text{at}]}]} & p_{[\text{at},\lambda_{2,[\text{at}]}]} \\
\text{w}_{[\text{at}]} \\
\end{array}
\]

(100) Disjunction (Alonso-Ovalle 2006)

\([A \text{ or } B] = [A] \cup [B]\)

(102) Question operator v. 2

\[\left[q \right] \alpha' = [\alpha']^c \]

defined for \(c, \alpha\) only if \([\alpha']^c \subseteq D_{\alpha'}\) and

(1) \(\forall \alpha' \in C_{\alpha'} \exists p \in [\alpha']^c : p(w) = 1 \) (exhaustivity)

(ii) \(\forall p, p' \in [\alpha'] : (p \neq p') \rightarrow -\exists w \in C_{\alpha'} : (p(w) \land p'(w)) \) (mutual exclusivity)

(103) [whether \(q \) he is sick or not] \(^c_h = (\lambda w. \text{he is sick in } w, \lambda w. \text{he is not sick in } w) \)

defined for \(c, \alpha\) only if

(i) \(\forall w \in C_{\alpha} : \exists p : (p(w) = 1) \) (exhaustivity)

(ii) \(\forall p, p' \in \lambda w. \text{he is sick in } w : (p \neq p') \rightarrow -\exists w \in C_{\alpha} : (p(w) \land p'(w)) \) (mutual exclusivity)

• Composes with abstracted main clause via PFA.

(104) \(\text{TP}^3: \begin{array}{ll}
\lambda w^0.\exists w \in \text{Max}_{\alpha}(w^0): (\lambda w^1. \text{A is sick in } w^1) : \\
\text{A stays home from school in } w \\
\lambda w^0.\exists w \in \text{Max}_{\alpha}(w^0): (\lambda w^1. \text{A is not sick in } w^1) : \\
\text{A stays home from school in } w \\
\end{array}
\)

defined for \(c, h\) only if (presuppositions on \text{os}_\text{s}, \text{mb}_h\) omitted, see earlier

(i) \(\forall w \in C_{\alpha} : \exists p : (p(w) = 1) \) (exhaustivity)

(ii) \(\forall p, p' \in \lambda w. \text{A is sick in } w : (p \neq p') \rightarrow -\exists w \in C_{\alpha} : (p(w) \land p'(w)) \) (mutual exclusivity)

• Distribution effect: possibility unconditionals are strictly stronger than plain possibility sentences.
 – Require at least two verifying worlds, one for each alternative.

• Do we derive similar effect for necessity sentences? Not without further assumption.

• Stalnakerian assumption that domain of quantification cannot be empty.

(105) \(\text{should}^{w,h,c} = \lambda_{r,\alpha} \lambda_{p,\alpha}. \text{Max}_{\alpha}\langle r \rangle \neq \emptyset. \forall w': \text{Max}_{\alpha}(r)^c \}

\(\text{p}(w') = 1 \) defined only if \(r \) is circumstantial, and \(\alpha \) is deontic.

• Non-emptiness presupposition forces distribution over the modal space.

(106) Whether he is sick or not, \(\lambda_{\alpha} \) Alfonso should \((\text{mb}_{\alpha} \land \text{p}_{\alpha} \land \text{os}_{\alpha}) \) stay home from school.

(107) \(^{\text{ch}} = \begin{array}{ll}
\lambda w^0. \text{Max}_{\alpha}(w^0): (\lambda w^1. \text{A is sick in } w^1) : \\
\text{A stays home from school in } w \\
\lambda w^0. \text{Max}_{\alpha}(w^0): (\lambda w^1. \text{A is not sick in } w^1) : \\
\text{A stays home from school in } w \\
\end{array}
\)

defined for \(c, h\) only if (presuppositions on \text{os}_{\alpha}, \text{mb}_{h}\) omitted, see earlier

(i) \(\forall w \in C_{\alpha} : \exists p : (p(w) = 1) \) (exhaustivity)

(ii) \(\forall p, p' \in \lambda w. \text{A is sick in } w : (p \neq p') \rightarrow -\exists w \in C_{\alpha} : (p(w) \land p'(w)) \) (mutual exclusivity)

• A case where exhaustivity is not semantically guaranteed.

(108) Whether he has a cold or the flu, \(\lambda_{\alpha} \) Alfonso should \((\text{mb}_{\alpha} \land \text{p}_{\alpha} \land \text{os}_{\alpha}) \) stay home from school.

(109) \(^{\text{ch}} = \begin{array}{ll}
\lambda w^0. \text{Max}_{\alpha}(w^0): (\lambda w^1. \text{A has a cold in } w^1) : \\
\text{A stays home from school in } w \\
\lambda w^0. \text{Max}_{\alpha}(w^0): (\lambda w^1. \text{A has the flu in } w^1) : \\
\text{A stays home from school in } w \\
\end{array}
\)

defined for \(c, h\) only if (presuppositions on \text{os}_{\alpha}, \text{mb}_{h}\) omitted, see earlier

(i) \(\forall w \in C_{\alpha} : \exists p : (p(w) = 1) \) (exhaustivity)

(ii) \(\forall p, p' \in \lambda w. \text{A has a cold in } w : (p \neq p') \rightarrow -\exists w \in C_{\alpha} : (p(w) \land p'(w)) \) (mutual exclusivity)

• Pointwise Function Application

If \(a \) and \(b \) are daughters of \(\gamma \), and \([a] \subseteq D_{\alpha} \) and \([b] \subseteq D_{\beta} \) for some types \(A \) and \(B \), then

\[\text{PFA}([a], [b]) = \{ Y \in D_B \mid \exists f \in [a] : \exists X \in [b] : f(X) = Y \} \]
• Finally: collect alternatives with \forall:

(110) $\forall a^h \in D_{(a,c)}$,

$\forall a^h = \{ \lambda w, \forall p_{(a,c)} \in [a]^h : p(w) = 1 \}$

(Kratzer and Shimoyama 2002 §3)

6.4 Constituent unconditionals

(111) No matter what Alfonso has, he should stay home from school.

(112) Whatever Alfonso has, he should stay home from school.

(113) Alfonso has the flu,

Alfonso has a cold, ...

Alfonso has the measles,

must be restricted:

... should stay home

(114) Whatever, Alfonso has,

\[\text{ForceP,} \]

\[[q] \]

\[[\text{whatever}_2] \]

\[\text{TP} \]

\[\lambda_{w,e}(w) \]

\[(w_{[i]} e) \]

\[\text{TP} \]

\[\lambda_{w,e}(w) \]

\[(w_{[i]} e) \]

\[\text{TP} \]

\[\lambda_{w,e}(w) \]

\[(w_{[i]} e) \]

\[\text{TP} \]

\[\lambda_{w,e}(w) \]

\[(w_{[i]} e) \]

• "wh"-items with domain restriction:

(115) $[\text{who}_i]^h = [\text{whoever}_i]^h = \{ x \in D_e | x \text{ is human and } x \in h(i) \}$

defined for h only if $h(i) \in D_{(a,c)}$

(116) $[\text{what}_i]^h = [\text{whatever}_i]^h = \{ x \in D_e | x \text{ is non-human and } x \in h(i) \}$

defined for h only if $h(i) \in D_{(a,c)}$

(117) $[\text{TP}^2]^h = \{ \lambda w, \text{Alfonso has disease } h(2) \text{ in } w \}$

(118) $[\text{CP}^1]^h = \{ \lambda x, \lambda w, \text{Alfonso has disease } x \text{ in } w \}$

(119) $[\text{CP}^2]^h = \{ p \in D_{(a,c)} | \exists x \in D_e : x \text{ is non-human and } x \in h(20) \land p = \lambda w, \text{Alfonso has disease } x \text{ in } w \}$

(120) $[\text{ForceP}]^e = [\text{CP}^2]^e$

defined only if:

(i) $\forall w \in c_{\text{ks}} : \exists p \in [\text{CP}^2]^e : p(w) = 1$

(ii) $\forall w, p', p' \in [\text{CP}^2]^e : (p \neq p') \rightarrow \exists w \in c_{\text{ks}} : (p(w) \land p'(w))$

7 Summary

Explanation of unconditional behavior

• Analysis directly realizes the intuition about paraphrase with multiple “if”-conditionals...with some twists.

• Consequences of the compositional interaction of pieces of an unconditional:

 – Exhaustivity presupposition – unconditionals interpreted against a domain where they exhaust all the possibilities.
 – Mutual exclusivity – unconditionals interpreted against a domain where no alternatives overlap.
 – Distribution presupposition – alternatives are distributed throughout the domain.

• Exhaustive conditional claims ⇒ consequent entailment.

• Exhaustive non-trivial conditional claims ⇒ relational indifference.

 – Formal realization of relational indifference: can prove that antecedent issue is orthogonal to main clause proposition relative to modal domain, in the sense of Lewis 1988: proposition cross-cuts each alternative.

• Characteristic discourse effect:

(123) A: Alfonso is very intelligent.

B: Whether or not he’s intelligent, he shouldn’t get an A in this class.

• B’s lack of commitment to Alfonso being very intelligent follows from analysis, as does the fact that the discourse moves forward.

• Dialogues of this kind appear in larger discourses where the question under discussion (Roberts 1996, Büring 2003) is e.g. what grade he should get – question addressed independently of unconditional antecedent.
Broader results

- Bring together a range of analyses of different phenomena (modals, conditionals, questions, free choice) and show how they can work together.
- Unconditionals and "if"-conditionals work the same way – differences follow from internals.
 - Because adjunct "if"-clauses don't have a question meaning, non-exhaustive (single-alternative) domain restriction.
 - Because adjunct interrogatives have a question meaning, exhaustive, multiple-alternative, domain restriction.
 - A unified account of unconditionals and "if"-conditionals. (Extension to other conditional-like structures.)
- Conditional uniformity hypothesis: differences among conditional adjuncts follow entirely from their contents.
 - Challenge: non-interrogative unconditionals.

Rawlins – unconditionals

A more general hypothesis: Clausal adjunct uniformity

- Small, fixed, universal inventory of features like Cond. Ex: Cause, Explain, Contrast – all instantiated at discourse level as well.
- Differences among all clausal adjuncts follow from compositional interaction of contents with this fixed inventory of features.

Acknowledgements

Bibliography

lishers.

Pullum, Geoffrey K. 1973. What’s a sentence like this doing showing up in english? *York Papers in

