Modeling questions and responses

Lecture 5: The dynamics of responses part 2

Kyle Rawlins
NASSLLI 2016, 15th July, 2016

Johns Hopkins University, Department of Cognitive Science
Outline
Review of lecture 4 stopping point

Questions and the table

Polar questions as the tip of the iceberg

Weak answers and ignorance

Summary
Course structure

- Lecture 1: Introducing questions and responses.
- Lecture 2: Representing question meanings.
- Lecture 3: The architecture of a QA system.
- Lecture 4-5: The dynamics of responses.
- Lecture 5: Integration.
Review of lecture 4 stopping point
The current project

Build up to a flexible, general pragmatic account of responses.

• Tool: a ‘Stalnakerian’ update semantics.
• Endpoint: update semantics with tables.
Current version: context sets as equivalence relations to represent inquisitivity (Groenendijk 1999).
A post-formalization example 1

Initial context

\[c_0 = \langle \{A, B\}, \{\langle w_1, w_1\rangle, \langle w_1, w_2\rangle, \langle w_1, w_3\rangle, \langle w_1, w_4\rangle, \langle w_2, w_1\rangle, \langle w_2, w_2\rangle, \langle w_2, w_3\rangle, \langle w_2, w_4\rangle, \langle w_3, w_1\rangle, \langle w_3, w_2\rangle, \langle w_3, w_3\rangle, \langle w_3, w_4\rangle, \langle w_4, w_1\rangle, \langle w_4, w_2\rangle, \langle w_4, w_3\rangle, \langle w_4, w_4\rangle \} \rangle \]

Facts: it’s raining (only) in \(w_1, w_2 \) and snowing (only) in \(w_4 \).
A post-formalization example 2

Is it raining?

\[c_1 = \langle \{A, B\}, \{ \langle w_1, w_1 \rangle, \langle w_1, w_2 \rangle, \langle w_1, w_3 \rangle, \langle w_1, w_4 \rangle, \langle w_2, w_1 \rangle, \langle w_2, w_2 \rangle, \langle w_2, w_3 \rangle, \langle w_2, w_4 \rangle, \langle w_3, w_1 \rangle, \langle w_3, w_2 \rangle, \langle w_3, w_3 \rangle, \langle w_3, w_4 \rangle, \langle w_4, w_1 \rangle, \langle w_4, w_2 \rangle, \langle w_4, w_3 \rangle, \langle w_4, w_4 \rangle \} \rangle \]

\[c_1 = c_0 + \text{is it raining?} = \langle H_c, c_{sc} \ominus [\text{it is raining}] \rangle \]
A post-formalization example 3

<table>
<thead>
<tr>
<th>A: Is it raining?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_1 = \langle {A, B},$</td>
</tr>
</tbody>
</table>
| $\left\{ \begin{array}{l}
 \langle w_1, w_1 \rangle, \quad \langle w_1, w_2 \rangle, \\
 \langle w_2, w_1 \rangle, \quad \langle w_2, w_2 \rangle, \\
 \langle w_3, w_3 \rangle, \quad \langle w_3, w_4 \rangle, \\
 \langle w_4, w_3 \rangle, \quad \langle w_4, w_4 \rangle
\end{array} \right\} \rangle$ |

$c_1 = c_0 + \overline{\text{is it raining?}} = \langle H_c, c_s c \otimes [\text{it is raining}] \rangle$
B: Yes, it’s raining.

\[c_1 = \langle \{A, B\}, \{ \langle w_1, w_1 \rangle, \langle w_1, w_2 \rangle, \langle w_2, w_1 \rangle, \langle w_2, w_2 \rangle \} \rangle \]

\[c_2 = c_1 + \llbracket \text{It’s raining} \rrbracket = \langle H_{c_1}, c_{S_{c_1}} \oplus \llbracket \text{it is raining} \rrbracket \rangle \]
A post-formalization example 4

B: Yes, it’s raining.

\[c_1 = \langle \{A, B\}, \begin{cases} \langle w_1, w_1 \rangle, & \langle w_1, w_2 \rangle, \\
\langle w_2, w_1 \rangle, & \langle w_2, w_2 \rangle \end{cases} \rangle \]

\[c_2 = c_1 + \left[\text{It’s raining} \right] = \langle H_{c_1}, c_{S_{c_1}} \Theta [\text{it is raining}] \rangle \]

- The context is now uninquisitive.
A post-formalization example 4

B: Yes, it’s raining.

\[c_1 = \langle \{A, B\}, \begin{cases} \langle w_1, w_1 \rangle, & \langle w_1, w_2 \rangle, \\ \langle w_2, w_1 \rangle, & \langle w_2, w_2 \rangle \end{cases} \rangle \]

\[c_2 = c_1 + \lceil \text{It’s raining} \rceil = \langle H_{c_1}, cs_{c_1} \oplus \llbracket \text{it is raining} \rrbracket \rangle \]

- The context is now uninquisitive.
- Relevance constraint after Roberts:

(1) A question-response \(\alpha \) is relevant in a G-context \(c \) just in case there is some \(p \in \text{Alts}(cs_c) \) such that \(\llbracket \alpha \rrbracket \) decides \(p \) or \(\llbracket \alpha \rrbracket \) decides \(\neg p \).
How to get from polar to constituent questions? (Here I diverge quite a bit from Groenendijk.)

- Intuition: can get the effect of a constituent question with a set of polar questions of this type.
How to get from polar to constituent questions? (Here I diverge quite a bit from Groenendijk.)

- Intuition: can get the effect of a constituent question with a set of polar questions of this type.
- ‘What is the weather like?’ ~ ‘is it raining?’ + ‘is it sunny?’ + ‘is it snowing’?
- Suppose that a question denotation in general is a Hamblin alternative set (assume mutual exclusivity and exhaustivity).
Foreshadowing the details of polar questions

This generalizes the starting analysis of polar questions as long as polar questions denote singleton sets.
Restrict to alternative sets that partition some subset of \mathcal{W} (no overlap).

(2) **G-context definition for comparison:** Where Q is an alternative set and c a context,

$$c \otimes p = c \cap \{\langle w, v \rangle \mid \forall p \in Q : w \in p \leftrightarrow v \in p\}$$

(3) **Questions v. 2.1**

$$c' = c + \text{Question}_a \phi = \langle H_c, \cap \{cs_c \otimes p \mid p \in [\phi]\} \rangle$$

Felicity conditions in w: It is not the case that $\text{Dox}_a(w) \cap \text{Dom}(cs_{c'})$ resolves $cs_{c'}$.

12
Suppose it’s raining in w_1, w_2, sunny in w_3 and snowing in w_4.

What’s the weather like? \(\text{[What’s the weather like?]} = \{\{w_1, w_2\}, \{w_3\}, \{w_4\}\}. \)

\[
\cap \{c_{\mathcal{S}} \ominus p \mid p \in \text{[what’s the weather like]}\} =
\]

\[
\begin{align*}
\{ \langle w_1, w_1 \rangle, & \langle w_1, w_2 \rangle, \langle w_2, w_1 \rangle, \langle w_2, w_2 \rangle, \langle w_3, w_3 \rangle, \langle w_3, w_4 \rangle, \langle w_4, w_3 \rangle, \langle w_4, w_4 \rangle \} \\
\setminus & \\
\{ \langle w_1, w_1 \rangle, & \langle w_1, w_2 \rangle, \langle w_2, w_1 \rangle, \langle w_2, w_2 \rangle, \langle w_3, w_3 \rangle, \langle w_4, w_1 \rangle, \langle w_4, w_2 \rangle, \langle w_4, w_4 \rangle \} \\
\setminus & \\
\{ \langle w_1, w_1 \rangle, & \langle w_1, w_2 \rangle, \langle w_2, w_1 \rangle, \langle w_2, w_2 \rangle, \langle w_3, w_3 \rangle, \langle w_4, w_1 \rangle, \langle w_4, w_2 \rangle, \langle w_4, w_3 \rangle, \langle w_4, w_4 \rangle \} \\
\setminus & \\
\{ \langle w_1, w_1 \rangle, & \langle w_1, w_2 \rangle, \langle w_2, w_1 \rangle, \langle w_2, w_2 \rangle, \langle w_3, w_3 \rangle, \langle w_4, w_1 \rangle, \langle w_4, w_2 \rangle, \langle w_4, w_3 \rangle, \langle w_4, w_4 \rangle \}
\end{align*}
\]
Suppose it’s raining in w_1, w_2, sunny in w_3 and snowing in w_4.

$\overline{\text{What’s the weather like?}} = \{\{w_1, w_2\}, \{w_3\}, \{w_4\}\}$.

$\cap\{c \circ p \mid p \in \overline{\text{what’s the weather like}}\} =$

$$\begin{cases}
\langle w_1, w_1 \rangle, & \langle w_1, w_2 \rangle, \\
\langle w_2, w_1 \rangle, & \langle w_2, w_2 \rangle, \\
\langle w_3, w_3 \rangle, & \\
\langle w_4, w_4 \rangle &
\end{cases}$$
Questions and the table
Can simply add an assertion stack to the G-context structure. Is this enough?

(4) **Tabular contexts v. 1.1**

A context is a tuple $\langle H,A,cs \rangle$, where H is a non-empty set of agents, A is a stack, and cs a G-context set.
How to incorporate tables into this picture?

- **assertions**: coordinating on evolution of the common ground.
 - Interaction with content: acceptance.
 - **Common ground management** (Repp 2013): rejection, postponement (others).
How to incorporate tables into this picture?

- **assertions**: coordinating on evolution of the common ground.
 - Interaction with content: acceptance.
 - Common ground management (Repp 2013): rejection, postponement (others).

- **questions**: coordinating on goals of an inquiry.
 - Interaction with content: (partially) resolve.
 - Common ground management?
How to incorporate tables into this picture?

- **assertions**: coordinating on evolution of the common ground.
 - Interaction with content: acceptance.
 - Common ground management (Repp 2013): rejection, postponement (others).

- **questions**: coordinating on goals of an inquiry.
 - Interaction with content: (partially) resolve.
 - Common ground management? reject question, start subinquiry, clarify, ...
Like assertions, we need a direct representation of a question under discussion in order to target common ground management appropriately.
(5) **Contexts v. 3**
A context is a tuple $\langle H, Q, A, cs \rangle$, where H is a non-empty set of agents, Q and A are stacks of sentences, and cs is a (regular) context set.

(6) **Tabular assertion v. 2** (additional felicity conditions to be filled in)

$c + \text{Assert}_a(\phi) = \langle H_c, \text{push}(A_c, \phi), Q_c, cs_c \rangle$

Felicity condition in w: $\forall w' \in \text{Dox}_w(a): w' \in \llbracket \phi \rrbracket$

(‘a is committed to ϕ.’)
(5) **Contexts v. 3**
A context is a tuple \(\langle H, Q, A, cs \rangle \), where \(H \) is a non-empty set of agents, \(Q \) and \(A \) are stacks of sentences, and \(cs \) is a (regular) context set.

(6) **Tabular assertion v. 2 (additional felicity conditions to be filled in)**
\[
c + \text{Assert}_a (\phi) = \langle H_c, \text{push}(A_c, \phi), Q_c, cs_c \rangle
\]
Felicity condition in \(w \):
\[
\forall w' \in \text{Dox}_w(a) : w' \in \llbracket \phi \rrbracket
\]
\((\text{‘} a \text{ is committed to } \phi \text{.’}) \)

(7) **Acceptance v. 2**
\[
c + \text{Accept}_a = \langle H_c, \text{pop}(A_c), Q_c, cs_c \oplus \llbracket \text{pop}(A) \rrbracket \rangle
\]
Felicity condition in \(w \):
\[
\forall w' \in \text{Dox}_w(a) : w' \in \llbracket \text{pop}(A) \rrbracket
\]
Where p is a proposition, $\text{inq}(p) = \{\langle w, v \rangle \mid w, v \in p\}$

Hybrid QUDs: where c is a context,

$$QUD(c) = \begin{cases} \cap \{\text{inq}(cs_c) \otimes p \mid p \in [\text{top}(Q_c)]\} & \text{if } |Q_c| \geq 1 \\ \text{inq}(cs_c) & \text{otherwise} \end{cases}$$

- The idea: use Groenendijk-style technology to model the dynamics of answering. (Many other possible choices here.)
(10) **Dispelling a question**: where c is a context, $c + \text{Dispel} = \langle H_c, A_c, \text{pop}(Q_c), cs_C \rangle$ Felicitous only if $|Q_c| \geq 1$
(10) **Dispelling a question**: where c is a context,
$c + \text{Dispel} = \langle H_c, A_c, \text{pop}(Q_c), cs_c \rangle$ Felicitous only if $|Q_c| \geq 1$

(11) **The full QUD in a context**: where c is a context,
$$FQUD(c) = \begin{cases}
\text{inq}(cs_c) & \text{if } |Q_c| = 0 \\
\text{QUD}(c) \cap FQUD(c + \text{Dispel}) & \text{otherwise}
\end{cases}$$
(This is the QUD summed over every question in the stack.)
(12) **Questions with the table**

\[c' = c + \text{Question}_a(\phi) = \langle H_c, \text{push}(Q_c, \phi), A_c, cs_c \rangle \]

Felicity conditions: appropriate in \(c \) at \(w \) only if

(i) If \(|Q_c| \geq 1 \) then \(FQU(c) \subseteq QUD(c') \), and

(ii) It is not the case that \(\text{Dox}_a(w) \cap cs_{c'} \) resolves \(QUD(c') \).

(13) **Automatic dispelling**

At any point \(c_n \) in a conversation, if \(QUD(c_n) = \text{inq}(cs_{c_n}) \), adjust \(c_n \) to \(c'_n = c_n + \text{Dispel} \).
Relevance again: (two versions)

(14) An assertion \(\alpha \) is relevant in a table context \(c \) just in case

\[
\exists p \in \text{Alts}(\text{QUD}(c)) : \neg \exists p' \in \text{Alts}(\text{QUD}(c + \alpha)) : p' \subseteq p
\]

(15) A response \(\alpha \) is relevant in a table context \(c \) just in case

\[
\text{Alts}(\text{QUD}(c + \alpha)) \subseteq \text{Alts}(\text{QUD}(c))
\]
Relevance again: (two versions)

(14) An assertion α is relevant in a table context c just in case $\exists p \in \text{Alts}(QUD(c)) : \neg \exists p' \in \text{Alts}(QUD(c + \alpha)) : p' \subseteq p$

(15) A response α is relevant in a table context c just in case $\text{Alts}(QUD(c + \alpha)) \subseteq \text{Alts}(QUD(c))$

Relevance in discourse (preliminary)
If the QUD in c is inquisitive, agents in c should make moves that are relevant to that QUD.

• Independent ban on uninformative updates (cf. Crone talk yesterday).
Polar questions as the tip of the iceberg
Current analysis of the semantics of polar questions is a departure from Hamblin:

(16) \[\text{Is it raining?} = \{ \lambda w. \text{it's raining in } w \} \]

How to think about question-question sequences?

(17) What's the weather like? Is it raining?
Current analysis of the semantics of polar questions is a departure from Hamblin:

(16) $\llbracket \text{Is it raining?} \rrbracket = \{\lambda w. \text{it's raining in } w\}$

How to think about question-question sequences?

(17) What's the weather like? Is it raining?

In the G-context system, this would involve a redundant update. But this seems felicitous!
Current analysis of the semantics of polar questions is a departure from Hamblin:

\[(16) \quad \llbracket \text{Is it raining?} \rrbracket = \{ \lambda w_s . \text{it’s raining in } w \}\]

How to think about question-question sequences?

\[(17) \quad \text{What’s the weather like? Is it raining?}\]

In the G-context system, this would involve a redundant update. But this seems felicitous!

These are already licensed in the current system.
Licensing question-question sequences. Where c is the initial context:

$$QUD(c + \text{"What's the weather like?"}) =$$

$$\{ \langle w_1, w_1 \rangle, \langle w_1, w_2 \rangle, \langle w_2, w_1 \rangle, \langle w_2, w_2 \rangle, \langle w_3, w_3 \rangle, \langle w_4, w_4 \rangle \}$$

is a subset of

$$QUD(c + \text{"What's the weather like?"} + \text{"Is it raining?"}) =$$

$$\{ \langle w_1, w_1 \rangle, \langle w_1, w_2 \rangle, \langle w_2, w_1 \rangle, \langle w_2, w_2 \rangle, \langle w_3, w_3 \rangle, \langle w_3, w_4 \rangle, \langle w_4, w_3 \rangle, \langle w_4, w_4 \rangle \}$$
Where should we go for lunch? Should we go to Mamoun’s?

Biezma & Rawlins (2012): the function of a polar question relative to a bigger QUD is to characterize an alternative by ‘name’ – identify constraint on the domain.

• The felicity condition acts as an informative presupposition (Prince 1978, Stalnaker 1973, 1974, a.o.)
(18) Where should we go for lunch? Should we go to Mamoun’s?

Biezma & Rawlins (2012): the function of a polar question relative to a bigger QUD is to characterize an alternative by ‘name’ – identify constraint on the domain.

- The felicity condition acts as an informative presupposition (Prince 1978, Stalnaker 1973, 1974, a.o.)
- Biezma & Rawlins (2012) suggest that polar questions can never establish a big question. Stronger than the present constraint: could implement by adding a polar-specific presupposition (content alternative is part of the input QUD).
Similar puzzle arises for alternative questions. On a naive implementation in a G-context system, they would involve redundant updates:

(19) Where should we go for lunch? Should we go to Mamoun’s or to Tacoria? (falling pitch)
Similar puzzle arises for alternative questions. On a naive implementation in a G-context system, they would involve redundant updates:

(19) Where should we go for lunch? Should we go to Mamoun’s or to Tacoria? (falling pitch)

Biezma & Rawlins (2012) proposal – alternative questions list by ‘name’ all of the propositions in the current QUD. Implicate falling pitch in this (though this is controversial; see ?). Sketch:

(20) Where α is a disjunction structure, $[[\alpha + \text{falling pitch}]]^c = [[\alpha]]^c$

Presupposes: $QUD(c) = QUD(c + [[\alpha]]^c)$
Similar puzzle arises for alternative questions. On a naive implementation in a G-context system, they would involve redundant updates:

(19) Where should we go for lunch? Should we go to Mamoun’s or to Tacoria? (falling pitch)

Biezma & Rawlins (2012) proposal – alternative questions list by ‘name’ all of the propositions in the current QUD. Implicate falling pitch in this (though this is controversial; see ?). Sketch:

(20) Where α is a disjunction structure, $\llbracket \alpha + \text{falling pitch} \rrbracket^c = \llbracket \alpha \rrbracket^c$

Presupposes: $QUD(c) = QUD(c + \llbracket \alpha \rrbracket^c)$

- This may force accommodation that eliminates alternatives that are in principle viable in c.
Intermediate summary

What have we accomplished?

• **Core answers.** (Fairly standard machinery in an update semantics context.)
• Basics of *rejections / dismissals* for assertions and questions. (For a bit more, see Asher & Gillies (2003), Maier & van der Sandt (2003), van Leusen (2004), Spenader & Maier (2009))
 • Subcoordination – structurally similar to subinquiry.
• Room for resistance, strategies for acceptance – but not the full story.
• Question-question sequences and *subquestions*.

What's still missing?

• Weak answers (possibility claims, ignorance claims).
• Presupposition denials.
• A fuller story for resistance. (Not this class.)
Intermediate summary

What have we accomplished?

• **Core answers.** (Fairly standard machinery in an update semantics context.)
• Basics of **rejections / dismissals** for assertions and questions. (For a bit more, see Asher & Gillies (2003), Maier & van der Sandt (2003), van Leusen (2004), Spenader & Maier (2009))
 • Subcoordination – structurally similar to subinquiry.
• Room for resistance, strategies for acceptance – but not the full story.
• Question-question sequences and **subquestions**.

What’s still missing?

• Weak answers (possibility claims, ignorance claims).
• Presupposition denials.
• A fuller story for resistance. (Not this class.)
Weak answers and ignorance
Some data about weak answers

(21) Q: Will you come to the party? (Büring 2003 fn. 6)
A: Presumably.

(22) Q: Did Jane win the contest? (Simons 2001 fn. 15)
A: Either she won, or she didn’t win and now she’s weeping in the bathroom.

(23) A: Who did we invite to give a talk this semester?
B: All I know is that we might have invited Alfonso.

(24) (Ginzburg (2012) ex. 18b, modified from BNC)
Anon: Are you voting for Tory?
Denise: I might.
Strategies for weak answers

Possibility 1: they aren’t answers at all (contra intuition).

- Standard: also a feature of our current update semantics.
Strategies for weak answers

Possibility 1: they aren’t answers at all (contra intuition).

• Standard: also a feature of our current update semantics.

Possibility 2: weaken the notion of answerhood.

• Developed (briefly) by Büring (2003).
• This is probably much, much too weak.

(25) **Probabilistic answerhood** (Büring)
A is an answer to Q if A shifts the probabilistic weights among the propositions denoted by Q.
Possibility 3: Drop excluded middle (Ginzburg 2012).

• That is, use an underlying logic where $p \lor \neg p$ is not a tautology.
(26) (Ginzburg’s aboutness) p is about q iff p entails a (finite) disjunction of simple answers.

• I find this strategy very worrying. (As well as counterintuitive for this data.)

• Still, worth emphasizing that Ginzburg provides the only real treatment of this data I’ve found.
Ignorant responses

(27) A: Are you going to the party?
 B: I don’t know.
 B’: I don’t know whether I’m going to the party.

(28) Who is coming for dinner tonight? (Ciardelli et al. 2013 ex. 7d)
 a. I don’t know.
Ignorant responses

(27)
A: Are you going to the party?
B: I don’t know.
B’: I don’t know whether I’m going to the party.

(28)
Who is coming for dinner tonight? (Ciardelli et al. 2013 ex. 7d)
a. I don’t know.

(29)
(example from Colin Wilson, p.c.)
A: Who is coming for dinner tonight?
B: I don’t know.
 ... later, A describes B’s response to C ...
A: #B didn’t answer the question.
Strategies for ignorant responses

Possibility 1: They aren’t answers at all.

• Again, entailed by typical proposals.
• How to license them?
Strategies for ignorant responses

Possibility 1: They aren’t answers at all.

- Again, entailed by typical proposals.
- How to license them?

Possibility 2: They probably are answers by probabilistic answerhood. (Not going to go down this road.)
Strategies for ignorant responses

Possibility 1: They aren’t answers at all.
- Again, entailed by typical proposals.
- How to license them?

Possibility 2: they probably are answers by probabilistic answerhood. (Not going to go down this road.)

Possibility 3: They are some special type of response that is not an answer. (Hamblin 1971, Asher & Lascarides 2003)
Collapsing weak and ignorant responses

Generalization: both types of response serve to indicate the limits of the responders ability to address the question.

This function collapses in certain future-oriented questions:

(30) A: Are you going to the party?
 a. [B: I don’t know.
 b. [B’] I might.
Generalization: both types of response serve to indicate the limits of the responders ability to address the question.

This function collapses in certain future-oriented questions:

(30) A: Are you going to the party?
 a. [B: I don’t know.]
 b. [B’] I might.

Intuition about B’: B is unable at the moment to reject the possibility that they won’t go.
Two senses of answerhood

Public answering: a question is sufficiently addressed when it is fully resolved or dispelled in context.

vs.

Agent-oriented answering: a question is sufficiently addressed when the agent(s) it is targeted at have done their best.
Agent-oriented answerhood sketch

(31) \(QUD(c) \) has been sufficiently addressed by an agent \(a \in H_c \) if either (a) \(a \) asked the question in \(c \), or (ii) \(\forall w \in cs_c : Dox_a(w) \) is not relevant in \(QUD(c) \)

(32) **Automatic dispensing part 2**: At any point \(c_n \) in a conversation, if \(QUD(c_n) \) has been sufficiently addressed by all \(a \in H_{c_n} \), adjust \(c_n \) to \(c'_n = c_n + \text{Dispel} \).
Agent-oriented answerhood sketch

(31) \(QUD(c)\) has been sufficiently addressed by an agent \(a \in H_c\) if either (a) \(a\) asked the question in \(c\), or (ii) \(\forall w \in cs_c : Dox_a(w)\) is not relevant in \(QUD(c)\)

(32) **Automatic dispelling part 2:** At any point \(c_n\) in a conversation, if \(QUD(c_n)\) has been sufficiently addressed by all \(a \in H_{c_n}\), adjust \(c_n\) to \(c'_n = c_n + \text{Dispel}\).

Paraphrase: an agent has sufficiently addressed a QUD just in case it is common ground that their doxastic state can’t contribute (further) to the QUD.

- NEI responses follow straightforwardly!

\[(33)\quad cs \oplus \lozenge p = \begin{cases} \emptyset & \text{if } cs \oplus p = \emptyset \\ cs & \text{otherwise} \end{cases}\]

Felicity condition for speaker a: a’s doxastic state is compatible with $\neg p$.

• Speaker is unable to reject the possibility that p is false.
• Implicates ignorance about p.
• With appropriate (expressivist) felicity condition and implicature, triggers dispelling.

\[
\text{cs} \oplus \Box p = \begin{cases}
\emptyset & \text{if } \text{cs} \oplus p = \emptyset \\
\text{cs} & \text{otherwise}
\end{cases}
\]

Felicity condition for speaker \(a\): \(a\)’s doxastic state is compatible with \(\neg p\).

Paraphrase: crash if \(p\) is not possible, do nothing otherwise.

- Speaker is unable to reject the possibility that \(p\) is false.
- Implicates ignorance about \(p\).
- With appropriate (expressivist) felicity condition and implicature, triggers dispelling.
A more elaborate analysis (not formalized here):

• Responses are licensed if they decide for or against some licensed discourse future. (Generalization of Roberts-relevance)

• NEI/weak answers decide against discourse futures where the agent contributes to resolving the question.
Summary
Responses come in two kinds:

1. Address an element on the table (relevance).
 (What is the common ground like?)
 - Accept or dispute an assertion.
 - Contribute to resolving a question.
Responses come in two kinds:

1. Address an element on the table (relevance).
 (What is the common ground like?)
 • Accept or dispute an assertion.
 • Contribute to resolving a question.

2. Manipulate the table. (What is the discourse like?)
 • Enter/exit the discourse.
 • Reject a move (question/assertion) altogether.
 • Contribute to dispelling a QUD (deny presupposition, express ignorance, ...)

Maier, Emar & Rob van der Sandt. 2003. Denial and correction in layered DRT. In *Proceedings of DiaBruck’03*.

