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Abstract 

Spatial construction—creating or copying spatial 
arrangements—is a hallmark of human spatial cognition. 
Spatial construction appears early in development, predicts 
later spatial and mathematical skills, and is used throughout 
life. Despite its importance, we know little about the cognitive 
processes underlying skilled construction. Construction tasks 
are highly complex but analyses have tended to focus on 
broad-stroke measures of end-goal accuracy. In this paper we 
introduce a novel behavioral coding formalism to characterize 
an individual’s entire construction process, examine many 
individuals’ processes in aggregate, and summarize patterns 
that emerge. The results show high consistency at certain 
points occurring throughout the construction, but also indicate 
flexibility in the interim paths that lead to and diverge from 
these points. Our approach offers a new method that can more 
precisely describe the behavioral patterns observed during 
construction in order to reveal the underlying cognitive 
processes engaged, and capture individual differences in 
building expertise. 
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Introduction 
Spatial construction—the activity of creating novel spatial 
arrangements or copying existing ones—is a hallmark of 
human spatial cognition. These activities naturally occur 
during childhood and adolescence and are related to later 
achievements in science, technology, engineering, and 
mathematics (STEM) fields (Hsi, Linn, & Bell, 1997; Kell, 
Lubinski, Benbow, & Steiger, 2013; Verdine, Golinkoff, 
Hirsh-Pasek, Newcombe, et al., 2014). Moreover, spatial 
play during early schooling—including spatial building 
tasks—contributes to school readiness (Verdine, Golinkoff, 
Hirsh-Pasek, & Newcombe, 2014; Wai, Lubinski, & 

Benbow, 2009), developmental of logico-mathematical 
abilities (Casey et al., 2008; Cheng & Mix, 2012; Nath & 
Szücs, 2014), and math performance in middle and high 
school (Stannard, Wolfgang, Jones, & Phelps, 2001; 
Wolfgang, Stannard, & Jones, 2003). 

Despite the importance of spatial construction skills, little 
is known about the cognitive processes underlying their 
origins and development. Part of the reason for this is that 
spatial construction skills are highly complex, yet the 
cognitive characterization of these skills and their 
measurement has been quite limited. For example, although 
evaluation of block construction tasks has long been 
recognized as an important assessment of spatial skills 
(Bailey, 1933), most methods of assessment only evaluate 
the end product (accuracy), and fail to measure the 
construction process. Studies have generally reported broad 
stroke outcome measures such as time to complete a 
structure (Akshoomoff & Stiles, 1996; Frick, Hansen, & 
Newcombe, 2013), binary measures of block placement as 
correct or incorrect (Brosnan, 1998; Hoffman, Landau, & 
Pagani, 2003; Stiles & Stern, 2001), or summary ratings for 
the complexity, planning, or organization of free-play block 
designs (Caldera et al., 1999; Casey & Bobb, 2003; Stiles-
Davis, 1988; Stiles & Stern, 2001). Even studies that aim to 
characterize development of construction processes or 
strategies have used analytic categories that are limited in 
their generality for understanding construction. For 
example, some have suggested that children start with 
simple iterative methods (i.e. stacking blocks on top of one 
another), then move to sequential combinations of methods 
(i.e. first creating a line of blocks next to one another, then 
creating a stack), and finally come to flexibly shift between 
multiple methods (Stiles-Davis, 1988; Stiles & Stern, 2001; 
Stiles, Stern, Trauner, & Nass, 1996). These 
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characterizations tell us little about the step-by-step 
processes that the user takes when carrying out a complex 
construction, nor how the ever-expanding set of outcomes 
grows over time. 

More recent studies have attempted to provide a more 
precise characterization of the process occurring during 
construction. Verdine and colleagues characterized 
children’s placement errors, including whether a block was 
placed in the correct layer, in correct orientation relative to 
other blocks, and with the correct attachment studs 
connected (Verdine, Golinkoff, Hirsh-Pasek, Newcombe, et 
al., 2014; Verdine, Golinkoff, Hirsh-Pasek, & Newcombe, 
2016). Researchers in computer science have generated 
step-by-step instructions for assembling block models based 
on physical constraints such as avoiding ‘floating blocks’ 
not supported from below (Zhang, Igarashi, Kanamori, & 
Mitani, 2016). Both studies begin to characterize the 
temporal and incremental nature of block construction. 

Each of the approaches discussed above provides a 
description of the accuracy of a block construction at points 
intermediate to building or at the end; but none provides a 
characterization of an individual’s complete construction 
process. Yet, variability and/or consistency across 
individuals’ construction processes may reveal much about 
the underlying cognitive and perceptual abilities and biases 
that influence the builder’s construction choices. 

The incremental process of adding blocks to a structure 
can unfold in many ways, with different strategies leading to 
the same successful solution. Some of this variation may be 
unimportant—merely small tweaks in the options one can 
use to complete a construction. Other aspects of variation 
are likely to reflect important cognitive processes. For 
example, limitations of attention and memory make it likely 
that certain strategies or processes will be preferred as they 
may reflect more efficient use of available cognitive 
resources (Ballard, Hayhoe, Pook, & Rao, 1997). Certain 
strategies may also reflect the builder’s understanding of the 
physical principles engaged during building. For example, 
the effect of gravity could bias the builder to construct from 
the bottom layer upwards (Zhang et al., 2016). Finally, 
construction strategies may be related to perceptual or 
semantic groupings of the blocks within the structure. The 
sub-parts which the builder chooses to construct, and the 
order in which they are created may be driven by the 
builder’s perceptual parsing of the model being copied. 
More generally, there may be systematic commonalities in 
the construction paths that builders use, and these may vary 
depending on the builder’s level of skill. 

Understanding the principles underlying construction 
requires methods that can characterize the builder’s full 
construction process. Ideally, the best analysis would 
completely describe the entire construction process, 
capturing any imaginable construction outcome as well as 
each step of building along the way. This kind of 
characterization would be as relevant for a simple stack of 
blocks as it would be for an elaborate castle or an abstract 
collection of connected pieces. 

To our knowledge, such methods have never been 
reported. Therefore, in this paper, we report a new method 
for characterizing the precise nature of processes involved 
when people carry out a relatively simple construction task: 
using blocks to copy a target model. To do this, we ask 
adults to carry out a simple building task, using a set of 
Duplos™. We describe our new method for coding block 
construction behavior that uses a novel computer interface. 
Our method characterizes each partial assembly created 
during the building process as a step taken along a path 
from the start to the end of construction. We then evaluate 
common states and predominant path types traversed by 
adults as they move through the construction process. 
Finally, we make inferences about the underlying cognitive 
mechanisms engaged during block construction. 

Method 

Participants 
Twenty-seven healthy adults 18-53 years old (M = 21;4, SD 
= 6;6) participated in the study. A university ethical review 
board approved the study’s procedures, and all participants 
provided informed consent. 

Materials 
Participants were asked to copy six different block models 
of varying size, each consisting of 4, 6, or 8 blocks. Each 
participant copied each of the six models in randomized 
order, but always began with the two smallest models 
(models 1 and 2). Figure 1 shows each of the six models. 

We used Duplo™ blocks for the construction copy task. 
These blocks were chosen for several reasons. First, the 
attachment mechanism allowed the blocks to be connected 
to each other in fixed ways. The attachment studs permitted 
precise specification of the relationships between blocks 
above and beside one another. In addition, the limited set of 
colors (red, yellow, green, blue) of each shape (2x2 square, 
4x2 rectangle) were ideal for the precise measurement 
system we developed. 

Figure 1: The block models used in this study. Models 1 and 
2 contain four blocks, models 3 and 4 contain six blocks, 
and models 5 and 6 contain 8 blocks. 

We mounted a PrimeSense Carmine RGBD camera in an 
overhead configuration to record participants’ behaviors as 
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they carried out the construction task, at a rate of 30 frames 
per second. All videos were coded using our annotation 
interface. The coder viewed the video recording frame-by-
frame on a desk-top computer. 

Procedures 
Participants were seated at a table marked with an outline of 
a rectangular area (14.75 x 24.00 in.) in which they 
completed their block construction copy. During data 
collection, the experimenter observed participants in real 
time on a video display monitor. A vertical black barrier 
was placed on the table behind the construction area to 
obscure the video display monitors from the participant and 
to avoid distraction. Figure 2 shows the testing equipment 
setup used for the study. 

In the procedure, the experimenter first placed the model 
at a 45° angle in the rear left corner of the marked 
construction area on the table. Each model was presented in 
a standardized orientation so that the greatest number of 
model surfaces were visible to the participant. Then, the 
experimenter placed the corresponding loose blocks on the 
table in the center of the construction area by emptying 
them from a small bag. This ensured random starting 
positions for each of the blocks used to construct the copy. 
Participants were instructed to take their time and to copy 
the model, building as efficiently and accurately as possible. 

Figure 2: Overhead camera and blocks set up for the block 
copying task. The model was placed at the rear left of the 
table, and blocks for the copy construction were placed at 
the center. 

Analytic Rationale 
To account for the broad range of construction behaviors 
and resulting complex patterns in the copy, we developed a 
new behavioral coding system, executed in a custom 
designed computer interface. The video frames for each trial 
from each participant were coded as a series of actions, each 
of which culminated in a state. Each action captured the 
start and end time of a change made to the copy as it was 
being constructed. Actions could be comprised of a single 
relationship, such as placing two blocks adjacent on the 

table. Other actions included a complex set of simultaneous 
relationships such as adding a single block in a location that 
was both above and beside other blocks. Actions could be 
constructive, such as adding a block or connecting multiple 
parts, or deconstructive, such as removing a block or 
separating a structure into two parts. 

Each relationship was defined specifically by the set of 
attachment studs involved. For example, if two rectangle 
blocks were placed horizontally adjacent to each other along 
the principal (long) axis, then four studs on each block 
would be involved in the adjacency. Alternatively, if they 
were attached along the secondary (short) axis, only two 
studs on each block would be implicated. Block studs were 
identified according to the column and row on each block, 
so the coded data specified the exact relationship between 
sets of two blocks. 

Each action modified the environment to result in a new 
block state, defined as a set of block attachments present in 
the copy. Since the construction process occurred over time, 
each action included a time stamp that allowed block states 
to be ordered. Here, we refer to the ordered sequence of 
states over time as a construction path, where actions 
represent transitions connecting one state to the next. To 
illustrate, Figure 3a shows six observed states (illustrated as 
images of block configurations) and 11 observed actions 
(directed arrows). Any set of arrows that lead from the first 
null state to the final correct copy state could comprise a 
construction path. 

Data analysis 
One researcher coded all videos. The initial state of the 
model was always a null state in which no blocks were 
connected. Each other state along the path to the final copy 
was attained via a constructive or deconstructive action 
taken at the preceding state. Since each participant could 
take any number of actions, construction path length was 
not balanced across individuals. We also used the coded 
data to count the number of unique state transitions for all 
participants in aggregate. Results of the analysis are 
described below. Principles of the results are true across all 
six models, but we illustrate using two models as examples. 

Results 
Overwhelmingly, the most common actions were correct 
single-block placements over time. Participants tended to 
take efficient paths that traversed an average of just over n-1 
states for a model that contains n blocks. This held true for 
all six of the models, including the four-block models 1 and 
2 (M = 3.3, SD = 0.9 and M = 3.1, SD = 0.6, respectively), 
the six-block-models 3 and 4 (M = 5.0, SD = 0.7, and M = 
5.5, SD = 1.8, respectively), and the eight-block-models 5 
and 6 (M = 7.4, SD = 0.9, and M = 7.9, SD = 1.7, 
respectively). Strikingly, the observed correct states 
represented only a small proportion of total possible correct 
states. For example, for the six-block model 3 (shown in 
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Figure 3b), 79 possible correct states exist1. In aggregate, 
our sample executed a total of 136 actions, but only created 
16 different correct states (27% of all possible correct 
states). An additional three erroneous states were observed 
in model 3; these will be discussed later. 

Figure 3: Observed paths for models 2 (a) and 3 (b). Paths 
begin at the top, where the null state represents no blocks 
connected. Images represent block states; arrows connecting 
images represent actions. Numbers adjacent to arrows 
represent the number of times that action was executed. 

Of the 16 observed states for model 3 (Fig 3b), some were 
created by a majority of participants, while others were rare. 
We found the same pattern in the observed paths, that is, the 
actions moving from state to state. Though all observed 
paths led to a correct copy construction, some were highly 
likely, while others were highly unlikely. For example, the 
first image in the fourth row in Figure 3b was created by a 
great majority of participants (96.3%). The most common 

1 For a given model with n blocks, we define the set of possible 
correct states as the set of unique states traversed along any path 
which begins at the null state, ends at the goal state, and contains n 
states. These states can be enumerated computationally. 

path to achieve this state led from the fifth image in the third 
row of Figure 3b, such that 17 of the 26 (65.4%) people who 
created the same penultimate state achieved it by placing the 
green square on the second layer. 

The most commonly traversed states created points of 
convergence. Convergence points represented a single 
subassembly that results from several different preceding 
actions. We observe that convergence points tend to be 
highly likely states, which most or all participants created 
along the way to a complete construction. As shown in 
Figure 3b, most participants (66%) passed through the state 
in which three blocks are joined with horizontal adjacency 
to create the base of the copy (second image, second row). 
The observed frequencies of convergence points are 
remarkable when one considers that only a fraction of all 
possible efficient paths go through these states. 

We also observed points of divergence. Divergence points 
represented cases where participants, when presented with 
identical partial assembly states, chose to proceed with 
several different actions. For example, about 70% of those 
who created the base of model 3b proceeded to place the 
green then the blue square in the second layer. The other 
30% instead placed the same two blocks in the opposite 
order, first placing the blue and then the green square in the 
second layer. This is illustrated in Figure 3b, in the third and 
fifth images of the third row. 

Our results demonstrated some commonalities across the 
six different models. The most frequently constructed partial 
assembly states for all six of the models represented a 
complete layer. Across all six models, 83.6% of participants 
began their copy construction by creating the base layer. For 
the models with six or eight blocks, 77.4% and 86.5% of 
participants created the complete second layer as a partial 
assembly, respectively. Across all six models, each 
complete layer state is visited more frequently than would 
be expected by chance, even with the most conservative 
comparison against only other observed states with the same 
number of blocks (all p’s < .001). 

Many participants’ construction paths (75.5%) traversed 
all complete layer states, although this is by no means 
necessary in order to achieve a correct copy. Specifically for 
the most complex model, model 6, those participants who 
traversed each complete layer partial assembly state in their 
individual construction path also tended to have the shorter 
path lengths (t(24) = −2.57, p = .017). In other words, when 
faced with a complex block copying task, building layer by 
layer appears to be both highly likely and highly efficient. 
These observations provide insight into the importance of 
layers, which may be driven by the builder’s understanding 
of physical properties such as gravity and/or perceptual 
biases that suggest a natural parse in terms of layers. 

Although most block placements were correct (i.e. 
replicated part of the model in the copy), there were some 
errors—that is, states that did not represent a correct part of 
the model. These errors contributed to deviations from the 
main construction paths. If erroneous states are included in 
our calculation, the number of possible block states in given 
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a starting set of 4, 6, or 8 blocks is vast, but finite. For 
example, a mathematician recently estimated that there are 
nearly a billion possible ways to connect six uniform 
rectangular Lego™ blocks contiguously (Abrahamsen & 
Eilers, 2011). The model and our instructions to participants 
constrained their behavior such that even though errors 
occurred, only an extremely small proportion of all possible 
states were observed. 

The errors observed in this sample also provided insight 
into the cognitive limitations of our adult participants. Two 
categories of errors were observed. First, spatial errors 
occurred when a participant utilized the correct block, but 
placed it in incorrect orientation relative to the rest of the 
copy. For example, in model 2, one participant placed the 
yellow square block with incorrect relationship relative to 
the red and green rectangles underneath, shown in the first 
image of the first row in Figure 3a. Second, block identity 
errors occurred when a participant created the correct form 
in their copy, but used the wrong color block relative to the 
model. For example, for model 3, one participant used the 
yellow rectangle to create the base of their copy instead of 
the green rectangle (first image, first row of Figure 3b). 

Overall, our results provided rich detail about the step-by-
step process undertaken by our adult participants in the 
block copying task. We observed only a small portion of all 
possible correct states, and a yet smaller portion of all 
possible states including erroneous ones. The distribution of 
the sample across different construction paths was not 
uniform, but rather demonstrated commonalities across the 
six models. Specifically, convergence points were observed 
corresponding to completed copy layers, and divergence 
was observed in the order of block placement within a 
single layer. Most common construction paths involved the 
sequential construction of horizontal layers, beginning with 
the base and building upward. 

Discussion 
Our study presented a precise, quantitative method for 
understanding how people carry out a simple block 
construction task. Using a novel behavioral coding method 
together with computational modelling, we precisely 
described the block construction process as a temporal 
sequence of states. This approach shed light on the cognitive 
processes that support spatial construction tasks. 

A description of state transitions illustrated commonalities 
among the construction paths that participants used for each 
of the six models. Convergence points tended to correspond 
to the completion of a horizontal layer in the model, while 
divergence points tended to correspond to various orders of 
placing blocks within a layer. We hypothesize that 
convergence points can be interpreted as boundaries 
between perceptual or semantic chunks—that is, they 
represent sub-goals that builders had in mind as they 
approached and carried out the task. Although we did not 
provide any pre-determined conceptual units or clear 
perceptually-based chunks (such as sub-parts built from 
same-colored blocks), participants nonetheless created these 

chunks in systematic ways. The location of convergence 
points, for example, at the completion of a horizontal layer, 
may indicate that participants grouped or chunked the 
models principally into horizontal layers or “floors”. 

It is likely that the underlying structure of sub-goals will 
vary substantially, depending on a variety of factors. For 
example, a model that is organized to highlight salient 
perceptual units, such as multiple vertically adjacent blocks 
of the same color, could induce a construction path that 
would take most builders through a convergence point 
organized as a vertical chunk, and not the horizontal layers 
observed in the present study. In this case, we anticipate that 
adults would attend to the imposed perceptual units and 
change their construction strategy to build using sub-goals 
defined by these color-units. Similarly, incorporating 
conceptual structure into the models could radically alter 
people’s construction paths—heads and eyes on structures 
that look like animals, or wheels on structures that look like 
vehicles could serve as the chunks or sub-goals to be built. 
The role of conceptual knowledge in the reproduction of 
complex figures has a long history in the domain of chess, 
where experts are known to reproduce board configurations 
using sub-structures that reflect high-level concepts such as 
attack and defend (Chase & Simon, 1973). 

In our simple construction task, errors were relatively 
rare. Errors were characterized as either spatial relationship 
or block identity errors. We hypothesize that spatial errors 
indicate problems with spatial working memory, in 
translating information observed in the model into the 
working copy. Block identity errors, on the other hand, may 
involve object working memory, or a prioritization of 
spatial configuration over color information. These error 
types are likely linked to the relative simplicity of the 
models we used; analysis of error patterns for more complex 
models may well reveal more variation. 

We see our method as a powerful way to examine the 
nature of sub-goals and errors, applicable to a variety of 
visual-spatial construction tasks involving conceptual or 
perceptual chunks. The extent to which observed 
construction paths and construction errors change over 
variations in the target model would provide insight into 
how building principles change across target types. In 
addition, our method permits evaluation of variation in 
construction paths across different participant populations 
including construction experts compared to novices, and 
developmental populations of children at different ages. 

We believe that our analytic method has great potential 
for revealing the fine-grained nature of many tasks that 
require step-by-step actions, which in turn require rich 
cognitive capabilities, including representation of the goal 
as well as strategies for moving from a start state to an end 
state. Such general task requirements are ubiquitous 
throughout life—from the toddler who learns to operate an 
iPad to the adult who learns to cook a gourmet meal. Our 
insight is that understanding complex skills requires a fine-
grained and precise approach, exemplified by the method 
we have introduced. Block construction serves as a first 
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demonstration of the utility of our approach, but it is by no 
means the end. 
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