
QFT Problem Set 7 - Due Dec. 8 

You should read chapters 18, 19, 21, 22, and (especially) 23 of the book, focusing general principles. 
For some history you might enjoy reading Weinberg’s (http://arxiv.org/pdf/0908.1964.pdf). As 
usual, *problems* are for theorists and extra credit seekers, although everyone should look at them. 

1. Sum Rule for Kallen-Lehmann Show that the Kallen-Lehmann spectral function ρ(µ2) 
obeys a sum rule Z 

dµ2ρ(µ 2) = 1 (1) 

when we use it to represent the 2-pt function of a canonically normalized exact, Heisenberg 
picture scalar field with 

[φ̇(t, x), φ(t, y)] = −iδ3(~x − ~y) (2) 

so that φ has the same canonical commutation relation as a free field (as it should). 

2. Renormalization and Symmetry Consider a theory with two massless scalar fields in 3 + 1 
dimensions, with an interaction Lagrangian 

g2 2λ LI = − (φ4
1 + φ2

4) − φ1
2φ2

2 (3)
4! 4! 

Note that when g2 = λ there is an O(2) symmetry under rotations in the (φ1, φ2) plane. Now 
renormalize this theory at one-loop. Are the renormalized mass terms symmetric at one-loop? 
Compute the renormalization flow equations for the couplings and note that the symmetric 
limit is preserved under flow. Furthermore, show that if the initial values satisfy λ/g2 < 3 then 
the theory becomes O(2) symmetric in the low-energy limit... so one can have a low-energy 
symmetry that ‘emerges’ from a less symmetric theory. 

3. Asymptotic Behavior of Diagrams in φ4 Theory Compute the leading term in the 
S-Matrix elements for 2-to-2 scattering in 

4! 
λ φ4 theory in the limit s →∞, with t fixed. Ignore 

all masses on internal lines, and only keep the mass non-zero as a useful low-energy regualator 
where it’s needed. Show that 

λ2 5λ3 

iM(s, t) ≈ −iλ − i log s − i log2 s + · · · (4)
(4π)2 2(4π)4 

Note that by ignoring internal masses there are some nice simplifications in the Feynman 
parameter integrals. 

4. Old Fashioned Renormalizability An idea that used to be sacred in QFT, but that is now 
viewed as pretty unimportant, is that of theories where one can cancel all short-distance (UV) 
divergences with a finite number of counterterms. Such theories were called ‘renormalizable’; 
this classification was first understood by Dyson, and was alluded to in class. 
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Argue that at one-loop, the theory with Lagrangian 

1 1 λ L = (∂φ)2 − m 2φ2 − φ4 (5)
2 2 4! 

is renormalizable in d ≤ 4 dimensions, and that we only need counterterms for two of the three 
terms that appear in the Lagrangian. At what loop order do we need counter-terms for all 
three? Now consider a theory 

1 1 λ4 λ6L = (∂φ)2 − m 2φ2 − φ4 − φ6 (6)
2 2 4! 6! 

What infinite set of counter-terms do we need to absorb the UV divergences in d = 4? What 
about the case where instead of φ6 we add a 

(∂φ)4 

(7)
Λd 

interaction to the Lagrangian? What would be different if we added a φ5 interaction? 

Renormalizability was viewed as important because there was a (feared) loss of predictivity in 
the presence of an infinite number of counterterms. You should make sure you understand 
why this isn’t a problem for predictivity at low energies, but why it does mean that the theory 
under discussion will be incomplete (ie it cannot be extrapolated to arbitrarily short distances). 
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