
QFT Lectures Notes 

Jared Kaplan 

Department of Physics and Astronomy, Johns Hopkins University 

Abstract 

Various QFT lecture notes to be supplemented by other course materials. 



Contents 

1 Introduction 2 
1.1 What are we studying? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.2 Useful References and Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2 Fall Semester 4 
2.1 Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
2.2 Review of Lagrangians and Harmonic Oscillators . . . . . . . . . . . . . . . . . . . . 8 
2.3 Balls and Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.4 Special Relativity and Anti-particles . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
2.5 Canonical Quantization and Noether’s Theorem . . . . . . . . . . . . . . . . . . . . 24 
2.6 Free Scalar Quantum Field Theory with Special Relativity . . . . . . . . . . . . . . 27 
2.7 Dimensional Analysis, or Which Interactions Are Important? . . . . . . . . . . . . . 33 
2.8 Interactions in Classical Field Theory with a View Towards QFT . . . . . . . . . . 36 
2.9 Overview of Scattering and Perturbation Theory . . . . . . . . . . . . . . . . . . . . 39 
2.10 Relating the S-Matrix to Cross Sections and Decay Rates . . . . . . . . . . . . . . . 41 
2.11 Old Fashioned Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
2.12 LSZ Reduction Formula – S-Matrix from Correlation Functions . . . . . . . . . . . 51 
2.13 Feynman Rules as a Generalization of Classical Physics . . . . . . . . . . . . . . . . 56 
2.14 The Hamiltonian Formalism for Perturbation Theory . . . . . . . . . . . . . . . . . 59 
2.15 Feynman Rules from the Hamiltonian Formalism . . . . . . . . . . . . . . . . . . . 64 
2.16 Particles with Spin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
2.17 Covariant Derivatives and Scalar QED . . . . . . . . . . . . . . . . . . . . . . . . . 78 
2.18 Scattering and Ward Identities in Scalar QED . . . . . . . . . . . . . . . . . . . . . 83 
2.19 Spinors and QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 
2.20 Quantization and Feynman Rules for QED . . . . . . . . . . . . . . . . . . . . . . . 95 
2.21 Overview of ‘Renormalization’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
2.22 Casimir Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 
2.23 The Exact 2-pt Correlator – Kallen-Lehmann Representation . . . . . . . . . . . . . 106 
2.24 Basic Loop Effects – the 2-pt Correlator . . . . . . . . . . . . . . . . . . . . . . . . 109 
2.25 General Loop Effects, Renormalization, and Interpretation . . . . . . . . . . . . . . 116 
2.26 Large Logarithms and Renormalization Flows . . . . . . . . . . . . . . . . . . . . . 121 
2.27 QM Example of Wilsonian Renormalization . . . . . . . . . . . . . . . . . . . . . . 128 
2.28 Wilsonian Renormalization Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 
2.29 Path Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 
2.30 Generating Function(al)s and Feynman Rules . . . . . . . . . . . . . . . . . . . . . 140 
2.31 Path Integrals and Statistical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 146 
2.32 Soft Limits and Weinberg’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 148 

1 



3 Spring Semester 151 
3.1 Effective Actions, Renormalization, and Symmetry . . . . . . . . . . . . . . . . . . 151 
3.2 Schwinger-Dyson from the PI and Ward Identities . . . . . . . . . . . . . . . . . . . 153 
3.3 Discrete Symmetries and Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 
3.4 More on Spin and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 
3.5 QED Vacuum Polarization and Anomalous Magnetic Moment . . . . . . . . . . . . 169 
3.6 Renormalization and QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 
3.7 IR Divergences and Long Wavelength Physics . . . . . . . . . . . . . . . . . . . . . 182 
3.8 Implications of Unitarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 
3.9 Interlude on Lie Groups and Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . 197 
3.10 Overview of Lie Algebra Classification and Representations . . . . . . . . . . . . . . 201 
3.11 Spontaneously Broken Global Symmetries and Goldstone Bosons . . . . . . . . . . . 207 
3.12 Non-Abelian Gauge Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 
3.13 Quantization of Yang-Mills Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 222 
3.14 Renormalization in YM and Asymptotic Freedom . . . . . . . . . . . . . . . . . . . 225 
3.15 Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 
3.16 Lattice Gauge Theory, QCD, and Confinement . . . . . . . . . . . . . . . . . . . . . 234 
3.17 Parton Model and Deep Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . 238 
3.18 DIS, CFTs, and the OPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 
3.19 Anomalies – A Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 
3.20 Anomalies as Almost Local Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 
3.21 A Lecture on Cosmological Perturbation Theory . . . . . . . . . . . . . . . . . . . . 254 

1 Introduction 

1.1 What are we studying? 

Almost everything. 

• The Standard Model of particle physics, which accounts for all observed phenomena on length 
scales larger than ∼ 10−18 meters, is a quantum field theory. In traditional QFT courses one 
mostly learns how to compute the probabilities for various scattering processes in the standard 
model. 

• General Relativity can also be viewed as a quantum field theory, or an ‘effective quantum field 
theory’ describing the long-distance behavior of a massless spin 2 particle, the graviton, as it 
interacts with the particles from the rest of the standard model. (The division between GR 
and the SM is linguistic/historical, and not very sensible coneptually.) 

• The perturbations in the energy density in the early universe, which seeded structure formation, 
seem to have arisen from quantum fluctuations of a quantum field that we refer to as ‘the 
inflaton’. 
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• The behavior of systems near phase transitions, especially the universality of such systems. 
For example, systems of spins behave in the same way as water near its critical point – both 
are well-described by a simple quantum field theory, which we will study. 

• The universal long-distance theory of metals, as Fermi liquids of weakly interacting electrons. 
This accounts for the universal properties of metals as shiny materials that are good at 
conducting electricity and heat, and that superconduct at low temperatures. 

• Fluids and superfluids. Strangely enough, the latter are easier to understand than the former. 

• Sound waves in materials, such as metals and crystals, as we will discuss. 

• The quantum hall effect can be described using a very simple ‘topological’ quantum field 
theory, which is like electrodynamics, but much simpler. 

What aren’t we studying? Basically, all that’s left are some systems from condensed matter 
physics that have a finite size, or a detailed lattice structure that’s crucially important for the physics. 
Or systems full of dirt (e.g. systems exhibiting localization). Systems with very little symmetry 
usually aren’t well described by QFT. 

1.2 Useful References and Texts 

Here’s a list of useful references with a brief summary of what they are good for. 

• Official Course Textbook: Quantum Field Theory and the Standard Model, by 
Matt Schwartz 

• Weinberg’s Quantum Theory of Fields – A profound, instant classic, which you should eventually 
absorb as completely as possible. It’s not used as a primary textbook for a first course in QFT 
because of its sophistication and its various ideosyncrasies. 

• Zee’s QFT in a Nutshell – This book provides a wealth of the conceptual information about 
QFT and its applications; it can’t be used as a text because it’s not very systematic, and it 
doesn’t teach you how to calculate anything. 

• Howard Georgi’s Lie Algebras and Particle Physics – One major stumbling block for students 
learning QFT is that an understanding of Lie Groups and their Representation Theory is 
absolutely essential, and yet this sujbect is almost never taught. This book is the most useful 
way to learn Lie Theory... I’ve read mathematics books on the subject, but they are far less 
useful because they rarely compute anything. 

• Banks Modern Quantum Field Theory – This is an interesting alternative text, which basically 
forces readers to teach themselves QFT by working through a number of exercises. If you’re 
(re-)learning QFT on your own, or want a different, more self-directed perspective, this would 
probably be great... doing all the exercises would insure that you really understand the subject. 
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• Srednicki’s Quantum Field Theory – This seems to be a well-liked standard text based on the 
path integral. If you want to see everything developed from that perspective, this is probably 
the reference for you. 

• Peskin & Schroeder’s Introduction to QFT – This has been a standard text for teaching for a 
long time, because it immediately involves students in relevant particle physics calculations... 
it’s a great reference for computing Feynman diagrams and for some Standard Model subjects. 

• Weinberg’s Quantum Mechanics – this is a good reference for background on Lagrangian and 
Hamiltonian mechanics, as applied to Quantum Mechanics and Canonical Quantization (see 
chapter 9). It also has a lot of background on scattering. 

Here are a few more advanced texts that are a natural place to go after this course, or for 
independent reading this year: 

• Sidney Coleman’s Aspects of Symmetry – This is a classic text with many important and 
fascinating advanced topics in QFT. 

• Polyakov’s Gauge Fields and Strings – This is basically Polyakov’s notebook... deep and 
fascinating, touching on condensed matter and particle physics. 

• Wess and Bagger Supersymmetry – Classic, bare-bones text on supersymmetry. 

• Slava Rychkov’s CFT Lectures notes and my lectures notes on AdS/CFT from fall 2013. 

• Donoghue, Golowich, & Holstein’s Dynamics of the Standard Model – Nice book about all 
sorts of standard model phenomenology and processes, especially the description of low-energy 
QCD phenomena. 

• Whatever you find interesting and engaging from Inspire searches, hearsay, etc. 

2 Fall Semester 

2.1 Philosophy 

Why is Quantum Field Theory the way it is? Does it follow inevitably from a small set of more 
fundamental principles? These questions have been answered by two very different, profoundly 
compatible philosophies, which I will refer to as Wilsonian and Weinbergian. Together with 
the Historical approach to QFT, we have three philosophies that motivate the introduction and 
quantization of spacetime fields. Now a bit about each philosophy. 
The Historical philosophy arose from the discovery of quantum mechanics, and the subsequent 

realization that theories should be ‘quantized’. This means that for any given classical theory of 
physics, we should look for a quantum mechanical theory that reduces to the classical theory in 
a classical limit. Since Maxwell’s theory of the electromagnetic field was known long before the 
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discovery of QM, physicists in the early twentieth century had the immediate task of ‘quantizing’ 
it. There is a general procedure for quantizing a classical theory, called ‘Canonical Quantization’ 
(Canonical just means standard; you can read about these ideas in chapters 2 and 6 of Shankar’s 
Quantum Mechanics textbook). So one can motivate QFT by attempting to quantize classical field 
theories, such as the theory of the electromagnetic field. We will start with a simpler theory in this 
course, but the motivation remains. 
The Wilsonian philosophy is based on the idea of zooming out. Two different physical systems 

that look quite different at short distances may behave the same way at long distances, because 
most of the short distance details become irrelevant. In particular, we can think of our theories as 
an expansion in ` short/L, where ` short is some microscopic distance scale and L is the length scale 
relevant to our experiment. We study the space of renormalizable quantum field theories because 
this is roughly equivalent to the space of universality classes of physical systems that one can obtain 
by ‘zooming out’ to long distances. Here are some famous examples: 

• The Ising Model is a model of spins on a lattice with nearest-neighbor interactions. We can 
zoom out by ‘integrating out’ half of the spins on the lattice, leaving a new effective theory for 
the remainder. However, at long distances the model is described by the QFT with action Z � � 

S = dd x 
1
(∂φ)2 − λφ4 (2.1.1)
2 

The details of the lattice structure become ‘irrelevant’ at long distances. 

• Metals are composed of some lattice of various nuclei along with relatively free-floating electrons, 
but they have a universal phase given by a Fermi liquid of their electrons. Note that the Fermi 
temperature, which sets the lattice spacing for the atoms, is around 10, 000 K whereas we 
are most interested in metals at ∼ 300K and below. At these energies metals are very well 
described by the effective QFT for the Fermi liquid theory. See [1] for a beautiful discussion of 
this theory and the Wilsonian philosophy. Research continues to understand the effective QFT 
that describes so-called strange metals associated with high temperature superconductivity. 

• Quantum Hall fluids seem to be describable in terms of a single Chern-Simons gauge field; one 
can show that this is basically an inevitable consequence of the symmetries of theory (including 
broken parity), the presence of a conserved current, and the absence of massless particles. 

• The Standard Model and Gravity. There are enormous hierarchies in nature, in particular 
from the Planck scale to the weak scale. 

• Within the Standard Model, we also have more limited (and often more useful!) effective 
descriptions of QED, beta decay, the pions and nucleons, and heavy quarks. Actually, general 
relativity plus ‘matter’ is another example of an effective description, where the details of the 
massive matter are unimportant at macroscopic distances (e.g. when we study the motion of 
the planets, it’s irrelevant what they are made of). 
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So if there is a large hierarchy between short and long distances, then the long-distance physics will 
often be described by a relatively simple and universal QFT. 
Some consequences of this viewpoint include: 

• There may be a true physical cutoff on short distances (large energies and momenta), and it 
should be taken seriously. The UV theory may not be a QFT. Effective Field Theories with a 
finite cutoff make sense and may or may not have a short-distance = UV completion. 

• UV and IR physics may be extremely different, and in particular a vast number of distinct UV 
theories may look the same in the IR (for example all metals are described by the same theory 
at long distances). This means that a knowledge of long-distance physics does not tell us all 
that much about short-distance physics – TeV scale physics may tell us very little about the 
universe’s fundamental constituents. 

• Symmetries can have crucially important and useful consequences, depending on whether they 
are preserved, broken, emergent, or anomalous. The spacetime symmetry structure is essential 
when determining what the theory can be – high-energy physics is largely distinguished from 
condensed matter because of Poincaré symmetry. 

• QFT is a good approach for describing both particle physics and statistical physics systems, 
because in both cases we are interested in (relatively) long-distance or macroscopic properties. 

For a classic review of the Wilsonian picture of QFT see Polchinski [1]. 
The Weinbergian philosophy [3] finds Quantum Field Theory to be the only way to obtain a 

Lorentz Invariant, Quantum Mechanical (Unitary), and Local (satisfying Cluster Decomposition) 
theory for the scattering of particles. Formally, a “theory for scattering” is encapsulated by the 
S-Matrix 

Sαβ = hαin|S|βouti (2.1.2) 

which gives the amplitude for any “in-state” of asymptotically well-separated particles in the distant 
past to evolve into any “out-state” of similarly well-separated particles in the future. Some aspects 
of this viewpoint: 

• Particles, the atomic states of the theory, are defined as irreducible representations of the 
Poincaré group. By definition, an electron is still an electron even if it’s moving, or if I rotate 
around it! This sets up the Hilbert space of incoming and outgoing multi-particle states. The 
fact that energies and momenta of distant particles add suggests that we can use harmonic 
oscillators ap to describe each momentum p, because the harmonic oscillator has evenly spaced 
energy levels. 

• The introduction of creation and annihilation operators for particles is further motivated by 
the Cluster Decomposition Principle1 . This principle says that very distant processes don’t 

1In AdS/CFT we can prove that this principle holds in AdS directly from CFT axioms. 
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affect each other; it is the weakest form of locality, and seems necessary to talk sensibly about 
well-separated particles. Cluster decomposition will be satisfied if and only if the Hamiltonian 
can be written as !ZX X 

H = d3 qid
3kiδ qi hmn(qi, ki)a †(q1) · · · a †(qm)a(k1) · · · a(kn) (2.1.3) 

m,n i 

where the function hmn must be a non-singular function of the momenta. 

• We want to obain a Poincaré covariant S-Matrix. The S operator defining the S-Matrix can 
be written as � Z ∞ � 

S = T exp −i dtV (t) (2.1.4) 
−∞ 

Note that this involves some choice of t, which isn’t very covariant-looking. However, if the 
interaction V (t) is constructed from a local Hamiltonian density H(x) as Z 

V (t) = d3 ~x H(t, ~x) (2.1.5) 

where the Lorentz-scalar H(x) satisfies a causality condition 

[H(x), H(y)] = 0 for (x − y)2 spacelike (2.1.6) 

then we will obtain a Lorentz-invariant S-Matrix. How does this come about? The point is 
that the interactions change the definition of the Poincaré symmetries, so these symmetries do 
not act on interacting particles the same way they act on free particles. To preserve the full 
Poincaré algebra with interactions, we need this causality condition. 

• Constructing such an H(x) satisfying the causality condition essentially requires the assembly 
of local fields φ(x) with nice Lorentz transformation properties, because the creation and 
annhiliation operators themselves do not have nice Lorentz transformation properties. The 
φ(x) are constructed from the creation and annihilation operators for each species of particle, 
and then H(x) is taken to be a polynomial in these fields. 

• Symmetries constrain the asymptotic states and the S-Matrix. Gauge redundancies must be 
introduced to describe massless particles with a manifestly local and Poincaré invariant theory. 

• One can prove (see chapter 13 of [3]) that only massless particles of spin ≤ 2 can couple in a 
way that produces long range interactions, and that massless spin 1 particles must couple to 
conserved currents Jµ, while massless spin 2 particles must couple to Tµν . This obviously goes 
a long way towards explaining the spectrum of particles and forces that we have encountered. 

In theories that include gravity, the Weinbergian philosophy accords perfectly with the idea of 
Holography : that we should view dynamical spacetime as an approximate description of a more 
fundamental theory in fewer dimensions, which ‘lives at infinity’. Holography was apparently not a 
motivation for Weinberg himself, and his construction can proceed with or without gravity. But the 
philosophy makes the most sense when we include gravity, in which case the S-Matrix is the only 
well-defined observable in flat spacetime. 
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2.2 Review of Lagrangians and Harmonic Oscillators 

The harmonic oscillator is probably the most important system in physics. This isn’t just bluster or 
experimental observation – there is a simple, universal reason. 
Consider some classical system whose state can be specified using a set of coordinates. If the 

system is (meta)stable, then if we apply some small, momentary perturbing force, its state will not 
change drastically – this is what we mean by metastability. But in order for that to be true, there 
must be a restoring force. The restoring force will be a smooth function of the coordinates which 
vanishes when the system is in equilibrium. This means that unless there is a tuning, the force can 
be expanded in the displaced coordinate as 

F = −kx (2.2.1) 

But this just means that for small x, the coordinate x is the position of a harmonic oscillator. Since 
most systems we encounter are metastable (otherwise they’d be undergoing rapid change right before 
our eyes) most of the degrees of freedom in most systems behave like harmonic oscillators under 
small perturbations. 
We will discuss a harmonic oscillator using the Lagrangian → Hamiltonain → Quantum 

Mechanical description. Why? 

1. There is a standard procedure called Canonical Quantization for finding a quantum mechanical 
version of a classical theory, once we have a Lagrangian description of the classical theory. We 
will review this as its one useful way to get to QFT. 

2. Lagrangians are the most natural formalism for relativistic QFT, because they make it easy to 
formulate a theory that’s manifestly Poincaré (Lorentz + Translation) invariant. You might 
ask, why not just start with the Hamiltonian, but to derive a Hamiltonian one must choose a 
specific time coordinate in order to define the canonical momenta, whereas the Lagrangian is 
agnostic about our choice of time. More generally, the Lagrangian formalism makes it easy to 
study other symmetries, and this will be crucial in QFT. 

Let’s review the harmonic oscillator from the point of view of canonical quantization and the 
Lagrangian and Hamiltonian formalisms. The action is Z � � 

S = dt 
1 
ẋ 2 − 

1 
ω2 x 2 (2.2.2)

2 2 

The Euler-Lagrange equations are derived by imposing that the action is invariant under variations 
δx(t) from the classical trajectory xcl: Z � � 

0 = δS = dt ẋ clδẋ − ω2 xclδx Z � � 
= dt −ẍ cl − ω2 xcl δx (2.2.3) 
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 �

Since this must vanish for any δx(t), we find that 

ẍ cl = −ω2 xcl (2.2.4) 

which is the usual EoM for a spring. 
Now let us discuss Canonical Quantization, in case it is unfamiliar. If you’d like to read about all 

the general details, I recommend Weinberg’s Quantum Mechanics, chapter 9. We have derived the 
classical equations of motion, but how do we find a quantum mechanical description that reduces to 
the classical oscillator in the ~ → 0 limit? 
We define the momentum canonically conjugate to the x operator via 

∂L 
p ≡ = ẋ (2.2.5)

∂ẋ 

and we impose the canonical commutation relation 

[x̂, p̂] = i~ (2.2.6) 

When canonically quantizing, we always impose this commutation relation between the coordinate 
variables and their canonical momenta defined by equation (2.2.5). 

There are several reasons for this. One explanation is that when x̂ actually measures the position 
of an object in space, then p̂  acts as the generator of translations, ie it acts to move hx̂i infinitesimally, 
so that � � 

ip�/ˆ ~ −iˆ e xeˆ p�/~ ≈ x̂+ 
i� 
[p̂, x̂] = hx̂i + � (2.2.7)

~ 

So at least we know that this canonical commutation relation makes sense when x̂ really is a 
position operator. A more general explanation is that insuring canonical commutation relations 
means that we recover Poisson brackets from commutators in the classical limit, so we recover the 
classical description of the system. In particular, these canonical commutation relations insure that 
symmetries work correctly – that is, that conserved currents associated with symmetries generate 
those symmetries. But we’re getting ahead of ourselves, so let’s leave it at the fact that we get the 
correct classical limit. 
Now we can construct the (classical or quantum) Hamiltonian, which is defined as 

1 1 1 12 2 2 2H ≡ pẋ − L = ẋ + ω2 x = p + ω2 x (2.2.8)
2 2 2 2 

and we just send x → x̂ and p → p̂  for the quantum version. The expression is the same whether p 
and x are functions (classical) or operators on a Hilbert space (quantum). In the latter case this 
Hamiltonian defines the time evolution of our system. Note that on the equations of motion, we have 

d 
H = ẋ ẍ+ ω2 xẋ = ẋ(ẍ + ω2 x) = 0 (2.2.9)

dt 
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so the Hamiltonian, or energy, is conserved. This follows whenever the Lagrangian has no explicit 
dependence on time; it is a consequence of a time translation symmetry, as we will discuss in more 
detail and generality later on. 
Furthermore, you might remember that the Hamiltonian operator is supposed to generate time 

translations. So notice that 

[ ˆ 
1 

H, x̂] = [p̂ 2 , x̂] = i~p = i~ẋ̂ (2.2.10)
2 

and 

2[H,ˆ p̂] = 
1
[ω2 x̂ , p̂] = −i~ω2 x = i~ẍ = i~ṗ̂ (2.2.11)
2 

where in the second case we have used the equations of motion. This means that [H, Ô] generates 
the time translations of an operator Ô made out of x̂ and p̂. 
Note that the canonical commutation relation [x,ˆ p̂] = i~ is satisfied if we choose the representation 

p̂ = −i~∂x. Note that this is an example of an explicit choice for p̂  that satisfies the canonical 
commutation relation, but it’s not necessarily the only choice – there can be many representations 
for a given algebra of commutators. Now we can write the Schrodinger equation (switching now 
from the Heisberg to the Schrodinger picture, that is from a picture where operators depend on 
time, but states don’t, to a picture where operators do not depend on time, and states do) � � 

~2 1ˆ ∂2 ω2 2HΨ(t, x) = − + x Ψ(t, x) (2.2.12)−i~∂tΨ = x2 2 

and get the usual result for a non-relativistic harmonic oscillator. If instead we had a general V (x) 
potential, we would have recovered that correctly too. This is another, more familiar way of saying 
that the Hamiltonian generates time translations – it literally tells us the time derivative of the 
Schrodinger picture state. 
To solve the system we must diagonalize the Hamiltonian. As you know, if we define annihilation 

and creation operators a and a† , with 

[a, a †] = 1 (2.2.13) 

then we can write r r 
x = 

~ †)(a + a 
2ω 

and p = i 
~ω 
(a † − a)

2 
(2.2.14) 

so that the canonical commutation relation is satisfied. But the real reason to do this is that now 
the Hamiltonian is just � � 

H = ~ω a † a + 
1 

(2.2.15)
2 
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The overall constant of ω/2 doesn’t have any meaning in the absence of gravity. The Hilbert space 
consists of the vacuum with 

a|0i = 0 (2.2.16) 

and the states built from it as (a†)n|0i. These have energy ω(n + 1/2). 
We explained above why harmonic oscillators are universal. But what do they have to do with 

QFT and particle physics? 
The point is to think deeply about what it means to have a free particle. If I have several different 

free particles with various energies, the energy of the total state is just a sum of the energies of each 
particle. But this is a feature of the harmonic oscillator system – the energy of the (n + m)th level 
is just the sum of the energies of the nth and mth level! This is why, as we will see in the next few 
lectures, in QFT, the oscillator creation operators and annihilation operators will become particle 
creation and annihilation operators. And the free particle Hamiltonian will just be an (infinite) sum 
of oscillator Hamiltonians, where the oscillators are labeled by the momenta and energies of the free 
particles. 
As a final comment, what if we consider adding a small correction to the Hamiltonian � �n ~ 2n †)2nHI = gx = g (a + a (2.2.17)

ω 

If we treat this correction in perturbation theory, it looks like an interaction between 2n of the 
oscillator modes (for example it could create 2n, destroy 2n, etc). This does not seem very interesting 
in the case of the oscillator, but in QFT these sort of interactions will be the perturbations that 
create and destroy particles, and lead to non-trivial scattering processes. 

2.3 Balls and Springs 

(See John McGreevy’s notes http://physics.ucsd.edu/ mcgreevy/s14/239a-lectures.pdf for some more 
material on getting a QFT from a lattice.) 
Consider a model for a solid, or more specifically, a crystal. There’s a regular pattern of atoms 

in specific positions. We will put the atoms in a position 

xi = x0i + φi (2.3.1) 

so φi represents the displacement from the resting position. With our definitions, this means that φi 
has units of length. 
We are about to study sound waves in the solid. When these are quantized they are called 

phonons. We will learn much later in the course why their properties are universal (namely, because 
they are Goldstone bosons). 
So back to basics – what happens if we try to move the ith atom? It cannot be held in place 

by anything other than its neighbors, since both the laws of physics and an empty universe are 
translation invariant. This means the potential must be a function 

V (φi − φj ) (2.3.2) 
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where i and j are different atoms and φi and φj are their positions relative to their resting states. 
Let us define φi = 0 for all i when the atoms are at rest. 
The neighbors don’t exert a force on the atom when it’s at rest, because otherwise it wouldn’t 

be able to stay stably at rest. So the potential for the solid must satisfy 

∂ 
V (φa − φb) = 0 (2.3.3)

∂φi all φa=0 

for any φi Furthermore, the locality of the interactions means that atoms that are far apart do not 
exert significant forces on each other. 
This means that the Lagrangian should take the form (we’ll discuss a 1-d solid for simplicity) " #� �2 � �3 � �4X 1 1 φi − φi+1 φi − φi+1 φi − φi+1

φ̇2L = m i − k − g3 − g4 − · · · (2.3.4)
2 2 a a a 

i 

There’s much to unpack here. We have assumed that all interactions are nearest neighbor. The 
mass m of the atoms appears as a coefficient of the kinetic term (we have assumed they all have 
the same mass). The parameter a we have inserted could be absorbed away, but we have included 
it because it is the physical distance between atoms, or the ‘lattice spacing’. So it is the natural 
short-distance length scale in our problem. Realizing that such short-distance ‘cutoffs’ exist will be 
absolutely crucial for understanding what’s going on throughout the QFT course. You may have 
heard that there are ‘infinities’ in various QFT calculations; most of these come from imagining that 
cutoffs like a are simply zero. 
Now let’s consider dimensional analysis. Clearly k, g3, g4, etc have the same units, namely 

units of energy (the same units that the Lagrangian has). It’s reasonable to guess that since these 
parameters can be compared, they are numerically comparable, i.e. no one of them is much bigger 
or smaller than the others. But this means that since (so that the solid is near its rest state, and is 
not anywhere close to breaking, or melting) � � 

φi − φi+1 � 1 (2.3.5) 
a 

that the terms proportional to g3 and g4 are unimportant compared to k! So now let’s just study 
the simplified Lagrangian " #� �2X m m 2 φi − φi+1

φ̇2L = i − c (2.3.6)
2 2 a 

i 

where I have re-labeled k → mc2 . I will also assume that our lattice is periodic, so site N + 1 is the 
same thing as site 1. 
We interpret the first term in the Lagrangian as the kinetic energy of each atom, while the second 

term is −V , the negative of the potential energy stored in the bonds between atoms. 
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This is just a theory describing coupled harmonic oscillators. If we can diagonalize their interaction 
then we can solve the theory. Let’s look at the equations of motion: � � 

2φn − φn+1 − φn−1
φ ¨ n = −c 2 (2.3.7)

2a 

Now note that if we write φn in terms of a Fourier series in n, then we have the transform and 
inverse transform 

2π/a X X1 ikanφn 
1 −ikanφk(t)φk(t) ≡ √ e (t) and φn(t) = √ e (2.3.8) 

N N n k>0 

where 

2π 
k = s (2.3.9)

Na 

for integers s and N is the total number of atoms in the 1d solid. The equation of motion becomes ⎡ ⎤ 
2π/a 2π/a 2π/a 2π/a X 2 X X X1 −ikan ¨ c 1 −ikanφk − −ika(n+1)φk − −ika(n−1)φk⎦√ e φk = − √ ⎣2 e e e 

2N a N
k>0 k>0 k>0 k>0 

2π/a 2 X �c 1 −ikan 
� −ikaφk − e ikaφk = − √ e 2φk − e 

a2 N 
k>0 

2π/a 2 X 
= − 

c √ 
1 

e −ikanφk (2 − 2 cos(ka)) (2.3.10) 
a2 N 

k>0 

If we take the inverse Fourier series, then we must have 

c¨ 
2 

φk = − (2 − 2 cos(ka)) φk (2.3.11)
2a 

so by Fourier representing, we have diagonalized the equations of motion! In other words, we have 
N independent harmonic oscillators with frequencies � � 

c ka 
ω(k) = 2 sin (2.3.12) 

a 2 

2π 4π 2π N−1where k = , , · · · . Note that there are only N − 1 modes because the lagrangian only 
Na Na a N 

depended on the differences φi − φi+1. 
Plot value of ω as a function of k. Also now look at what a single wave with definite k 

looks like on the lattice. It’s a sound wave! Clearly k just sets the wavelength. We can use 
π(N−2) π(N−4) πk = −π , , , · · · instead for a more symmetric set of k. This is called the Brillouin zone. 

a aN aN a 
These oscillator modes are called phonons, or more specifically, acoustic phonons. 
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2.3.1 Quantization of Phonons and Fock Space 

We are studying a theory of atoms with nearest neighbor interactions, or ‘balls and springs’. How 
do we quantize this theory? Diagonalizing the equations of motion also diagonalizes the Lagrangian 
and Hamiltonian, for example the kinetic term is X X X1 −i 2π (sn+rn) ˙φ̇2 ˙N 

i = e φsφr (2.3.13)
N 

n n s,r X1 ˙ ˙= Nδs,−rφsφr (2.3.14)
N 

s,r 

N/2X 
˙ ˙= φsφ−s (2.3.15) 

s=−N/2 

where k = 2πs as usual. You might be surprised to see φsφ−s, instead of φ2 , but note that
Na s !† 

φ† 
1 X 

ikanφn 
1 X 

−ikanφnk ≡ √ e = √ e = φ−k (2.3.16)
N N n n 

because φ† n = φn, so in effect we have N real degrees of freedom packaged into N/2 complex modes. 
This can also be understood as conservation of momentum – the sum of the momenta has to vanish. 
We can re-write the Lagrangian as 

π N 
Na 2 � � � �X 21 c ka ˙ ˙L = φkφ−k − 

2 
sin2 φkφ−k (2.3.17)

2 a 2 
π Nk=− 
Na 2 

where I set m = 1 for simplicity. Now we just have N − 1 independent harmonic oscillators. We 
recalled how to quantize oscillators in a past lecture. 
Thus we can write v u � � u |k|as � � tc sin 

2 
� � a 

φk = � � ak + a−
† 
k and πk = i a−k − ak 

† (2.3.18)
|k|a a4c sin 
2 

for the canonical variables φk and their canonical momenta. Don’t confuse the lattice spacing a 
with the annihilation operators ak. Remember that k is a label here, which can take N − 1 different 
values. The crucial point is that the Hilbert space is the space generated by states like 

† † †(a )n1 (a )n2 · · · (a )nl |0i (2.3.19)k1 k2 kl 

where all ak annihilate the vacuum |0i. This state is a superposition of ni waves with momentum 
ki. The space of states is a Fock Space. This is simple, but it’s important to understand what this 
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means. Note that the fact that energies add is related to a very familiar property of waves (e.g. 
water waves) – that they pass right through each other without scattering! This is also what free 
particles do. 
What is the Hamiltonian? It is just a sum of Hamiltonians for each oscillator, so it is 

π � �Xa 1 
H = ~ω(k) a † kak + (2.3.20)

2 
k=− π 

a 

The total energy is just the sum of energies in each k mode. Note that the zero mode’s 1/2 now 
gets summed over all of these modes, so the sum may be quite large! 

2.3.2 Continuum Limit 

Now let us consider the continuum limit of the theory. This means we send the lattice spacing 
a → 0 keeping other parameters fixed. However, since a is dimensionful, its numerically value is 
meaningless; what we really mean by the continuum limit is that a/L goes to zero, where L is 
some length scale at which we are conducting an experiment. Since we have modes with inverse 
wavelength k, this means ka → 0. 
First, let us consider what happens to k itself. The dimensionless combination ka = 2 

N
πn for 

integer n, so the fact that this is small means that we should take N → ∞. In this case (ka) 
becomes a continuum, so the inverse wavelength just becomes a real parameter. What happens to 
the energies (frequencies)? We find � � 

c ka 
ω(k) = 2 sin → ck (2.3.21) 

a 2 

This is the relativistic dispersion relation for a massless particle. For example, this is the dispersion 
relation for photons, if c is the speed of light. In our case we have phonons, or quantized sound 
waves, and c is the speed of sound. 

What happens to the Lagrangian and Hamiltonian? The sums over k must become integrals, so 

2π N−1 
a N � � � � ZX 2 h i1 c ka 1 

L = φ̇ 
kφ̇ −k − sin2 φkφ−k → dk φ̇ 

kφ̇ −k − c 2k2φkφ−k (2.3.22)
22 a 2 2 

2πk= 
Na 

This is the momentum space version of a simple, position space Lagrangian Z 
1 � � 

L = dx (∂tφ)
2 − c 2(∂xφ)

2 (2.3.23)
2 

This is actually obvious from our original form of the Lagrangian – the finite differences 

φi − φi+1 → ∂xφ (2.3.24) 
a 
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in the limit that a → 0 and N → ∞, the continuum limit. We’re just using the definition of the 
derivative. 
The quantized fields become s � � p � �1 

φk = ak + a † k and πk = i ω(k) ak − a † k (2.3.25)
ω(k) 

where now ak annihilates a continuum wave with momentum k. So we have a Fock space of states 
† † †(a )n1 (a )n2 · · · (a )nl |0i (2.3.26)k1 k2 kl 

except that the labels ki are continuous. Taking the mature point of view that ~ = 1, so that 
frequencies and energies are the same thing, the Hamiltonian becomes Z ∞ � � Z ∞ � � 

1 1 
H = dkω(k) a † kak + = dkc|k| a † kak + (2.3.27)

2 2−∞ −∞ 

You might notice that the 
2
1 part of the integral is infinity! This is our first QFT infinity. It’s a 

contribution to the energy of the vacuum, the lowest energy state, and it’s meaningless here, since it 
cannot be measured. It would clearly have been finite if we still had our shortest distance a, since 
then k < 1/a would have been mandatory. So the short distance cutoff is also a high-energy cutoff. 

2.3.3 Other Interaction Terms in Perturbation Theory, and Scaling 

Let us look at what sort of effect we would have from the interaction terms we ignored. For example, 
we discussed a possible term � �4

φi − φi+1 
g4 → g4(∂xφ)

4 (2.3.28) 
a 

in the continuum limit. Let us consider a situation where the effect of this term is extremely small, 
so it can be treated in perturbation theory in g4. In such a case it is just a small perturbative 
correction to the Hamiltonain. Schematically, since ∂x ∼ k, this correction looks like X 

† † † †HI ∼ g4 δ(k1 + k2 + k3 + k4)k1k2k3k4(a−k1 + ak1 
)(a−k2 + ak2 

)(a−k3 + ak3 
)(a−k4 + ak4 

)(2.3.29) 
ki 

The integral over x gave a momentum conserving delta function, the ∂x factors became ki, but most 
importantly, this is an interaction among 4 sound waves. If we included it, they wouldn’t just pass 
through each other anymore, but could scatter. Note that although it appears that it could create or 
destroy four sound waves out of nothing, that actually can’t happen, due to momentum and energy 
conservation. 
Notice that this term is of order (momentum)4 . Another example of such a term would have 

been 

(∂x 
2φ)2 ∼ k4φ2 

k (2.3.30) 

Since we are studying the long wavelength limit, λ →∞, we want k → 0 (or more precisely ka → 0), 
and so higher powers of the momenta are smaller. So by ignoring such terms we are not really 
leaving anything out – we are just making a long-distance approximation. 
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2.4 Special Relativity and Anti-particles 

For our purposes, special relativity is tantamount to the statement that space and time have certain 
symmetries. 

2.4.1 Translations 

The most obvious part of those symmetries is translation invariance – the fact that the laws of 
physics are the same everywhere, and at all times. Let us consider what this means in an extremely 
simple context, namely just the space of functions of various spatial variables xi labeling a bunch of 
points scattered in space. 
If a function f(x1, x2, · · · , xn) is translation invariant, then 

f = f(xi − xj ) (2.4.1) 

Translation invariance is the reason that momentum space (and the Fourier Transform) is a useful 
idea. We have that 

y∂x f(x)f(x + y) = f(x) + y∂f(x) + · · · = e (2.4.2) 

so we translate a function using spatial derivatives. But in Fourier space !Z ∞ nY dpi −ipixif(xi) = f̃(pi)e (2.4.3)
2π−∞ i=1 

which means that 

∂
f(xi) = ipif̃(pi) (2.4.4)

∂xi 

so momentum space linearizes the action of translations. Instead of having to compute a (spatial) 
derivative, in momentum space we can differentiate by simply multiplying by ipi. This exponentiates, 
so moving f(x) → f(x + y) just requires multiplication by the phase eipy. 
Translation invariance implies that !Z Yn 

dpi −ipixi δ(p1 + p2 + ·f(xi − xj ) = f̃(pi)e · · + pn) (2.4.5) 
2π 

i=1 

In other words, translation invariance implies momentum conservation, and vice versa. Momentum 
and energy are conserved because the laws of physics are invariant under translations in space and 
time, respectively. We will explain this again in a more sophisticated way very soon. In general, the 
fact that symmetries imply conservation laws is called Noether’s Theorem. 
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2.4.2 Lorentz Transformations and Invariants 

Next we want to talk about the part of special relativity that seems non-trivial – Lorentz trans-
formations. But first, rotations, because Lorentz transformations are essentially just a mixture of 
rotations and rotations with a sign flip. If we just have an (x, y) plane this is just ��� �� � 

x cos θ sin θ x → (2.4.6)
y − sin θ cos θ y 

As a bit of notation, we can write this as 

xi → Rij xj ≡ Ri1x1 + Ri2x2 (2.4.7) 

this is the Einstein summation convention, where repeated indices are summed. Sometimes the 
summed indices are referred to as having been contracted. Note that RT = R−1 , so �� 

RT R = (RT )ij Rjk = δik = 1ik = 
1 0 

(2.4.8)
0 1 

This algebraic definition RT R = 1 is the most useful and generalizable; it tells us that rotations 
form the group SO(2), the special orthogonal group acting on 2-vectors. Note that the norm �� 

xi 2 2 x xi = (x y) = x + y (2.4.9)
y 

is invariant under rotations, so 

x i xi = (x iRij
T )(Rjkxk) = x iδikxk = x i xi (2.4.10) 

In fact, it’s probably best to define SO(2) as the set of transformations preserving this inner product. 
Now we can consider the larger group SO(4), which preserve an inner product τ 2 + x2 + y2 + z2 

on the vector (τ, x, y, z). This is very close to the Lorentz group... the only difference is in the way 
it treats time. The Lorentz group, or SO(1, 3), is simply the group of linear transformations that 
preserves 

2 µ µ ν = ηµνt2 − x 2 − y 2 − z = xµx = ηµν x x xµxν (2.4.11) 

So in other words, Lorentz transformation matrices must satisfy 

ΛT 

⎛ ⎜⎜⎝ 
⎞ ⎟⎟⎠Λ = 

⎛ ⎜⎜⎝ 
⎞ ⎟⎟⎠ = ηµν (2.4.12) 

1 0 0 0 1 0 0 0 
0 −1 0 0 0 −1 0 0 
0 0 −1 0 0 0 −1 0 
0 0 0 −1 0 0 0 −1 

This includes the SO(3) group of rotations in space, plus Boosts, which are just ‘rotations’ between 
time and space. However, to satisfy this defining equation, we need to switch from cosines and sines 
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to cosh and sinh, e.g. 

Λ = 

⎛ ⎜⎜⎝ 
cosh βx sinh βx 0 0 
sinh βx cosh βx 0 0 
0 0 1 0 
0 0 0 1 

⎞ ⎟⎟⎠ (2.4.13) 

where the β are hyperbolic angles sometimes called rapidities. We can relate this to a velocity (a 
boost just means that we’ve shifted to a moving frame) by noting that 

x + vt t + vx 
x → √ ,

21 − v
t → √ 

21 − v
(2.4.14) 

2leave t2 − x invariant and reduce to the Galilean transformation x → x + vt at small v. Thus we 
see that 

v 
sinh β = √ 

21 − v
(2.4.15) 

and β ≈ v when these quantities are small. 
When it comes to symmetries such as those of special relativity, the major question is how do 

various quantities of interest transform under the symmetry? In mathematical language, this is the 
question of the representation of the symmetry group. 
The book doesn’t really talk about Lorentz transformations in a fully consistent way. Surprisingly, 

these issues can get really confusing, and there are even two distinct ways of discussing them, often 
called ‘active’ and ‘passive’, depending on whether we think of the fields as transforming, or the 
coordinates. 
So first let’s mention what the book says, implicitly using ‘passive’ transformations: 

The simplest thing that can happen is that a particular quantity doesn’t transform at all. Such a 
quantity is called a scalar. If the quantity takes values throughout spacetime, it is called a scalar 
field, and we say 

φ(x) → φ(x) (2.4.16) 

under a Lorentz transformation Λµν . Scalars are completely fixed under Lorentz transformations. 
You might get confused and think that φ(x) → φ(Λx), but this is just a relabeling of points – the 
field is not changing as long as we evaluate it at the same spacetime point, which has a fixed physical 
meaning (and in particular, the fact that we can relabel points doesn’t tell us anything about the 
symmetries of the theory). 
OK, so that was the passive point of view. It’s useful because it sounds very simple, but it 

brushes a lot under the rug. The simplest example of the ‘active’ point of view, where the fields 
transform, is the case of translations. Under an infinitesimal translation x → x + � we have 

φ(x) → φ(x) + �ν ∂ν φ(x) (2.4.17) 
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This defines how translations act on scalar fields. In the example where we discussed sound waves, 
we had an action that compared φn and φn+1, ie it compared φ(x) to its translation φ(x + a). In the 
continuum limit this (the difference between the two) became the derivative, as above. 
From the ‘active’ point of view, all fields also transform under Lorentz transformations. If we 

consider an infinitessimal transformation Λµν = 1+ Lµν (where Lµν is an element of the ‘Lie algebra’ 
with LT η = ηL as a matrix), then 

φ(x) → φ(x) + Lµν xµ∂ν φ(x) (2.4.18) 

Note that this is just a generalizations of how rotations act on functions of position. 
Perhaps an even more familiar example is a vector or vector field V µ(x). In the passive language 

of the book, it transforms as 

V µ → Λµν V ν (2.4.19) 

where as usual, repeated indices are summed. As concrete examples, one can consider the more 
~ ~ ~familiar case of rotations, and the electric field E and its scalar potential φ, where E = −rφ. 

Some important examples of vectors (but not fields) 

xµ = (t, x, y, z) (2.4.20) 
∂ 

∂µ = = (∂t, ∂x, ∂y, ∂z) (2.4.21)
∂xµ 

pµ = (E, px, py, pz) (2.4.22) 

We build Lorentz invariants by contracting together indices, e.g. 

V µWµ = V µW ν ηµν (2.4.23) 

This contraction is Lorentz invariant because it transforms like a scalar field. Tensors of rank k 
transform linearly, e.g. 

T µν → Λµ T αβΛν 
α β (2.4.24) 

We tend to forget which indices are upper and lower because we can raise and lower with ηµν , which 
is (almost) the identity matrix, and this also works for Λ and ΛT . 
Lorentz invariants are things like 

V 2 = VµV µ, φ, 1, ∂µV µ (2.4.25) 

while Lorentz covariant objects are e.g. 

Vµ, Fµν , ∂µ, xµ (2.4.26) 

Note that some quantities are neither, for example the energy density is the 00 component of the 
energy-momentum tensor Tµν . 
The book wisely informs you that almost all you really need to know about special relativity is 

how to identify if a given quantity is invariant, covariant, or none of the above. For this purpose the 
passive point of view is easier, but you should watch out, as it can be tricky to use once you scratch 
the surface. 
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2.4.3 Discrete Transformations and Invariants 

There are two discrete transformations that may or may not be symmetries, parity and time reversal: 

P : (t, x, y, z) → (t, −x, −y, −z) (2.4.27) 

T : (t, x, y, z) → (−t, x, y, z) (2.4.28) 

These can easily be written as diagonal matrices acting on general vectors and tensors via ΛT and 
ΛP transformations. Parity and time reversal cannot be written as products of rotations and boosts, 
and usually I won’t refer to them as ‘Lorentz transformations’. Note that P and T leave inner 
products like VµV µ invariant, because (−1)2 = 1. 
Note that no Lorentz transformation changes the sign of invariants such as 

V µVµ (2.4.29) 

so we say that when this is positive, Vµ is timelike, when it vanishes it is null or lightlike, and when 
it’s negative it’s spacelike. Obviously (t, 0, 0, 0) is timelike and (0, x, 0, 0) is spacelike. All one-particle 
momenta are timelike (if the particle is massive) or lightlike (if the particle is massless). So photon 
momenta are always lightlike. 
An important conceptual point is that causality is ambiguous for spacelike separations. Concretely, 

if we have some spacelike separation between two spacetime points A and B, say at 

A = (0, 0, 0, 0) and B = (0, x, 0, 0) (2.4.30) 

then we can perform a Lorentz transformation so that A0 > B0 or A0 < B0, so there time coordinates 
can have any order. This is impossible for time-like separated points, whose time-ordering is 
unambiguous in all reference frames. 
This means that for time-like vectors, the sign of the zero component is a Lorentz invariant. 

Concretely, if we have a timelike vector Vµ = (1, 0, 0, 0), no Lorentz transformation can make V0 

negative, and so sign(V0) is Lorentz invariant. This is easy to see since VµV µ = 1 is invariant, so 
t2 > 1 + x2 and t cannot change sign. 

2.4.4 Need for Anti-particles and QFT due to Relativity 

When we discussed atoms and phonons, or ‘balls and springs’, we saw that an ω = ck dispersion 
relation and the creation and destruction of ‘particles’ can emerge naturally from the long-distance 
limit of a fairly conventional system. This provides one motivation for QFTs, without any requirement 
for special relativity. 
However, it turns out that once we demand both quantum mechanics and special relativity, 

quantum field theory becomes nearly obligatory. In particular, one cannot simply pursue a ‘relativistic 
version’ of the problems you studied in non-relativistic quantum mechanics. Let us see why via a 
beautiful and classic thought experiment. Apologies if it seems a bit abstract at first; it’ll be clearer 
why certain quantities appear later in the semester once you know more QFT. 

Consider a classical apparatus that has a probability amplitude JE (x) of producing a particle at 
position x = (x0, xi) in space-time, and an absorption apparatus with amplitude JA(y) to absorb a 
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particle at y. Let us assume that the particle propagates freely between the emission and absorption 
apparati, with a mass m. Quantum mecanics tells us that the total amplitude for this process is Z 

−iH(x0−yA = d4xd4 yhx|e 0)|yiJA(x)JE(y) (2.4.31) 

−iH(x0−yLet’s unpack this formula. The formula hx|e 0)|yi, often called a propagator, is the amplitude 
for a particle to propagate from x to y in the Schrodinger picture. We have integrated over all x and 
y because we are summing over all the places and times where the emission could have occurred, 
followed by an absorption. 
Now we ask – is this expression Lorentz invariant? Note that the energy of this free particle isp

just p~2 + m2 , so we can put that into the Hamiltonian if we use momentum space states. This 
gives Z Z 

−ip·(x−y)d3A = d4xd4yJA(x)JE (y) p|h(z = 0)|pi|2 e (2.4.32) 

Note that the propagator only depends on x − y, as one would expect (by invariance under 
translations), and that the product in the exponent is the manifestly Lorentz-invariant 4-vector 
product. The matrix element h(z = 0)|pi is the overlap of a particle at z = 0 with the momentum 
state |pi. It is the only part of the expression that may not transform nicely under Lorentz 
transformations. 
However, we can guess its Lorentz invariant form by writingZ Z 

−ip·(x−y) ∝ ip·(x−y)d3 p |h0|pi|2 e d4p δ(p 2 − m 2)θ(p 0)e (2.4.33) 

Doing the integral over p0 = ωp using the delta function means 

1 h0|pi ∝ √ (2.4.34)
ωp 

√ 
Note that in the non-relativistic limit this is just 1/ m, so the particle is spread out over its compton 
wavelength. 
Now with this relativistic wavefunction, the overall amplitude is Lorentz invariant (when the J 

transform as scalar fields), but there seems to be a paradox: the amplitude is non-zero even when the 
separation between points is spacelike. The causal order of spacetime points is not Lorentz invariant 
when they are spacelike separated, so this is a problem. To see this, note that the propagator is Z Z Z∞ 2 1dp p−ip·(x−y) d cos θeiRp cos θd3 p |h0|pi|2 e = p (2.4.35)

(2π)2 m2 + p2 Z0 
∞

−1 

dp p sin(Rp) 
= p (2.4.36)

(2π)2 2 + p2 R0 m 

We can evaluate this when the mass is zero to find Z 
1−ip·(x−y) ∝d3 p |h0|pi|2 e (2.4.37)
R2 
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so it’s non-vanishing outside the lightcone. This means that we cannot interpret this as a process with 
definite causal ordering, because spacelike separated events can have either order in time, depending 
on the reference frame. 
We cannot fix the problem by making the propagator vanish outside the lightcone, because we 

already wrote down the most general Lorentz invariant expression for this function, given that the 
2 2 2 2particle has positive energy and p = m . This follows because the only Lorentz invariant is p = m , 

and additional m2 dependence would not change the dependence on x − y. 
Thus we have learned that every emission source must be an absorption source, and vice versa. 

So we can take J = JE + JA and write Z Z 
d3p � � −ip·(x−y) ip·(x−y)A = d4xd4yJ(x)J(y) θ(x 0 − y 0)e + θ(y 0 − x 0)e 
2ωpZ 

= d4xd4yJ(x)J(y)DF (x − y) (2.4.38) 

The step functions θ impose that one term can be interpreted as emission at y and absorption at x, 
and the other has the opposite interpretation. The point is that different observers will disagree 
on which events were emission and absorption when x − y is spacelike, but they will agree on the 
amplitude. 
Now let’s imagine that the particle carries some conserved and Lorentz invariant charge, such 

as electric charge. In such a case one could associate emission and absorption with charge flow. 
But this would be inconsistent with the fact that for spacelike x − y, there is no preferred causal 
order. Thus we must accept that for every particle of with some given mass and charge, there must 
be an otherwise identical anti-particle with opposite charge. Note that in the absence of charge, 
particles can be their own anti-particle (note, though, that we can think of a + helicity photon as 
the anti-particle of a − helicity photon). 
Next let us consider a more complicated scenario, where the particle scatters off of a potential 

located at a space-time point z after it is emitted and before it is absorbed. Z 
Ascatter(z) = d4xd4yJ(x)J(y)S(z)DF (x − z)DF (z − y) (2.4.39) 

where S(z) is some amplitude for scattering there. We can draw a simple diagram for this. The 
point is that the amplitude will be non-zero even when x − z, y − z, and x − y are all spacelike 
separated. This means that there will be a Lorentz frame where the scattering at z occurs before 
the emission and absorption at x and y. This means that an observer in this frame sees the creation 
of a pair of particles by the scatterer at z! Thus scattering processes necessarily entail the creation 
and destruction of particles. 
Thus quantum mechanics, special relativity, and causality imply that there must exist processes 

where particles are created and destroyed. These arguments also show that it’s difficult to localize a 
particle in a region smaller than its Compton wavelength – to do so we would need to probe the 
particle with much larger momenta, but this would lead to the production of more particles, not to 
the localization of a single particle in a smaller region. 
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Finally... if these arguments seemed too quick for you, consider returning to them after we study 
perturbation theory, especially the so-called ‘Old Fashioned Perturbation Theory’ a few lectures on. 
In that case one can study the annihilation of two charged particles into a pair of neutral particles 
through a t-channel exchange of a charged particle, making the argument for anti-particles extremely 
explicit and physically accurate. 

2.5 Canonical Quantization and Noether’s Theorem 

We’ve seen a simple example of a (not necessarily relativistic) QFT, and we’ve reviewed special 
relativity and its implications when combined with Quantum Mechanics. From now on we’ll mostly 
be studying relativistic theories. 

2.5.1 General Lagrangians and Noether 

To study a relativistic theory, we introduce a Lagrangian, and then canonically quantize it to get 
a quantum Hamiltonian. Why bother with a Lagrangian at all? The reason is that Lagrangian 
densities are Lorentz scalars, while Hamiltonians, which require inputting an explicit notion of time, 
are not. The Hamiltonian is just the T00 component of the energy-momentum tensor, so it is neither 
invariant nor covariant. Thus it is easy to obtain a Lorentz invariant theory by writing down Lorentz 
invariant Lagrangians, and then deriving a Hamiltonian; if we write down a random Hamiltonian, 
it’s hard to know if it will give rise to a Lorentz invariant theory. This is why all relativistic QFT 
begins with Lagrangians. In condensed matter physics, you can just start with a Hamiltonian if you 
like, since Lorentz invariance is usually not relevant. 
You’re already familiar with Lagrangians L(qi, q̇i, t), where the qi are the (many, possibly infinitely 

many) coordinates, e.g. the φi, the displacements of the atoms in a crystal. We demand that the 
action Z 

S = dtL(qi, q̇i, t) (2.5.1) 

is stationary with respect to variations δqi(t) in the trajectories, and this gives 

∂L d ∂L 
= 

∂qi dt ∂q̇i 
(2.5.2) 

the Euler-Lagrange equations of motion. 
Now we will discuss one of the most important theorems in physics, Noether’s theorem, which 

says that symmetries =⇒ conservation laws. This theorem is extremely useful in QFT, although 
it’s true in classical mechanics, non-relativistic quantum mechanics, and classical field theory as well. 
Consider some infinitesimal transformation of the coordinate variables qi(t) 

qi → qi + �Fi(q) (2.5.3) 

where � is an infinitesimal constant, and the Fi are functions of the qi that depend on the symmetry. 
Our transformation is a symmetry of the Lagrangian if� �X ∂L ∂L ˙0 = δL = Fi + Fi (2.5.4)

∂qi ∂q̇ii 
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Note that this does not use the equations of motion. However, we can now use the Euler-Lagrange 
equations to write this as �� � �X d ∂L ∂L d˙0 = Fi + Fi = F (2.5.5)

dt ∂q̇i ∂q̇i dt 
i 

where X ∂L 
F ≡ Fi(q) (2.5.6)

∂q̇ii 

is a conserved quantity. So we have derived a conservation law from the symmetry! 
For example, if we have a theory of two harmonic oscillators with the same frequency 

1 � � 1 � � 
2 2 2 2ω2L = ẋ + ẏ − x + y (2.5.7)

2 2 

then we could have Fx = y and Fy = −x. Then 

δL = 
1
(2ẋẏ + 2ẏ(−ẋ)) − 

1 
ω2(2xy + 2y(−x)) = 0 (2.5.8)

2 2 

so we have discovered a symmetry under rotations in the x-y plane. This implies that X ∂L 
` ≡ Fi(q) = xy˙ − yx˙ (2.5.9)

∂q̇ii 

is a conserved quantity. Of course it is just the usual angular momentum in the x-y plane. 

2.5.2 Hamiltonians and the Hamiltonian Formalism 

There’s another, special conserved quantity associated with time translation symmetry, namely the 
Hamiltonian or energy. We define the canonical momenta as 

∂L 
pi ≡ (2.5.10)

∂q̇i 

and then obtain the Hamiltonian X 
H = q̇ipi − L (2.5.11) 

i 

Its rate of change is (using the E-L equations) � �Xd ∂L ∂L d 
H = q̈  i + q̇i − L (2.5.12)

dt ∂q̇i ∂qi dt 
i 

∂ 
= − L (2.5.13)

∂t 
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because each of the terms in the first line is also a term in the rate of change of the Lagrangian. So if 
the Lagrangian has no explicit time dependence (so it’s time translation invariant), the Hamiltonian 
is conserved. 
The purpose of the Hamiltonian formalism is to trade 2nd order differential equations in qi for 

first order differential equations in the phase space variables (qi, pi). So if we eliminate q̇i for pi 
everywhere, then we obtain 

∂H ∂H 
ṗi = − and q̇i = (2.5.14)

∂qi ∂pi 

although I haven’t shown you the details. 

2.5.3 Canonically Quantizing 

The point of canonical quantization is to transform qi, pi, H, and F (for any of the system’s 
symmetries) so that H generates time translations, and F generates its associated symmetry 
transformation, in the sense that 

[F, qi] = −i~Fi(q) (2.5.15) 

and in the case of the Hamiltonian 

[H, qi] = −i~q̇i and [H, pi] = i~ṗi (2.5.16) 

Note that this is in the Heisenberg picture, where operators depend on time but the states do not. 
Both of these relations are satisfied if we make the canonical choice 

[qi, pj ] = i~δij (2.5.17) 

and all other commutators between the qi and pj vanish. Let’s check this for F , which we defined as X X∂L 
F ≡ Fi(q) = piFi(q) (2.5.18)

∂q̇ii i 

Now we see immediately that X 
[F, qn] = [piFi(q), qn] = −i~Fn(q) (2.5.19) 

i 

because the i = n term is picked out by the commutator, and Fn(q) commutes with qn. So canonical 
quantization guarantees that symmetries are generated by commutation relations. 
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2.6 Free Scalar Quantum Field Theory with Special Relativity 

When we studied a system of atoms in a crystal, ie sound waves in materials, or ‘Balls and Springs’, 
we already found a motivation for the study of a system with the action Z � � 

S = dtd3 x 
1 
φ̇2 − 

1 
c 2(∂~ 

xφ)
2 (2.6.1)

2 2 

where here we have upgraded to 3 + 1 spacetime dimensions. A useful point of view is to think of ~x 
as a label, as though the field φ(t, x) = φx(t) is just an infinite collection of coordinates. This was 
exactly how we obtained φ(t, x) in the case of balls and springs. 
When we studied balls and springs, we were even able to understand why this Lagrangian is 

the leading term at long distances – namely because other possible potentials/interactions that we 
might add to the Lagrangian are small when the spacing between atoms is small compared to the 
momenta of interest. 
Now that we’ve reviewed special relativity, we can view c as the speed of light, instead of the 

speed of sound, and set c = 1, to find the same LagrangianZ � � 
S = dtd3 x 

1 
∂µφ∂

µφ (2.6.2)
2 

Thus we have a new, independent motivation for studying this Lagrangian – it is the unique Poincaré 
invariant action for a scalar field φ that’s quadratic in φ and only has 2 derivatives. 
When we discussed balls and springs, we viewed m 

2 φ̇
2 as the kinetic energy of the atoms, and 

1 c2(∂xφ)
2 as the potential energy stored in the springs (bonds betwen atoms). In relativistic QFT,

2 
we call the entire (∂µφ)2 the ‘Kinetic Term’. The term 

1 
F 2 1 

E~ 2 B~ 2)= ( + (2.6.3)µν4 2 
in electrodynamics is the kinetic term for the electromagnetic field Aµ. Roughly speaking, all 

1 2φ2quadratic terms in the fields are kinetic terms, including the mass term 
2 m , which we haven’t 

talked about yet. 
The book makes a big deal about kinetic terms, mostly to distinguish them from interaction 

terms, which have more (than two) powers of the fields. For example, we’ll talk extensively about 

gφ3 , λφ4 (2.6.4) 

as interaction terms in scalar field theories. In electrodynamics the interactions come about, roughly 
speaking, from a coupling of the photon field Aµ to electromagnetic currents Jµ made from other 
fields. 
The kinetic terms are motivated by the fact that they describe freely propagating particles, 

which is definitely the right start for both particle physics and for the physics of ‘quasi-particles’ 
like phonons. The point is that we will view the kinetic term, as the part of the theory that we can 
solve exactly, while the interaction terms are treated in perturbation theory. 
You might be wondering what we should choose for the interactions, in general, and why 

something as simple as gφ3 would naturally appear, and not e.g. log cos(φ2) or some such. We’ll be 
able answer such questions soon enough. 
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2.6.1 Canonical Quantization of the Free Scalar 

Let us finally apply what we learned about Canonical quantization in order to study a free scalar 
field in 3 + 1 spacetime dimensions, which has an action Z � � 

S = dtd3 x 
1 
∂µφ∂

µφ − 
1 
m 2φ2 (2.6.5)

2 2 

This is just the continuum limit of our ‘Balls and Springs’ action, except that we have taken c = 1 = 
1 2φ2the speed of light, we are in 3 + 1 dimensions, and we have added a potential term, V (φ) = 
2 m . 

The Euler-Lagrange equation is 

�φ = m 2φ (2.6.6) 

where � ≡ ∂µ∂µ, which has solutions 

ipµxµ 2 2 2fp(t, ~x) = e where p = ωp 
2 − p~ = m (2.6.7) 

So the addition of the 1
2 m

2φ2 potential led us to the dispersion relation for a massive relativistic 
particle, with the mass set by m. Again we have an infinite number of harmonic oscillators labeled 
by spatial momenta ~p. 
The canonical ‘q’ variable is just φ(t, x) where we can think of x as a continuous label. Its 

canonical conjugate is 

δL ˙π(t, x) = = φ(t, x) (2.6.8) 
δφ̇(t, x) 

The canonical commutation relations 

[φ(t, ~x), π(t, ~y)] = iδ3(~x − ~y) (2.6.9) 

are the continuum limit of what we had in the balls and springs case, where a Kronecker delta on 
atom labels has become a delta function on spatial positions. We must also demand that φ(t, ~x) 
satisfies its equations of motion, as above. This means that φ must be a linear combination of the 
functions fp(t, ~x). 
We can find such a linear combination of fp satisfying the canonical commutation relations by 

introducing 

[ak, a † p] = (2π)3δ3(p~ − ~k) (2.6.10) 

These operators create and destroy particles, and describe a Fock space of free particle states. We 
usually normalize 

1 
a † p = p |p~i (2.6.11)

2ωp 

where the |p~i is a single-particle state. 
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The field φ0 at a fixed time t0 is Z 
d3p 1 � � 

i~p·~x † −i~p·~xφ(t0, ~x) = p ape + ape (2.6.12)
(2π)3 2ωp 

In QFT we usually work in the Heisenberg Picture, where operators depend explicitly on time and 
the state is time independent. So the operator φ(t, x) should depend on time. In fact the full result 
is just Z 

d3p 1 � �−ip·x † ip·xφ(t, ~x) = p + a e (2.6.13)ape p(2π)3 2ωp 

where we promoted p~ · ~x → pµxµ. Note that this field obeys the equations of motion, which just say 
that p2 = m2 . We also obtain Z r 

d3p � �ωp −ip·x − a † ip·xπ(t, ~x) = −i ape pe (2.6.14)
(2π)3 2 

from the time derivative. Note that the integrands are just what we’d expect for a harmonic oscillator 
for the p-mode. 
Let’s check the commutation relations. First, note that Z Z 

d3p d3q 1 �� � � �� 
i~p~x † −i~p~x i~q~x † −i~q~x[φ(t, ~x), φ(t, ~y)] = p ape + ape , aqe + aqe (2π)3 (2π)3 4ωpωqZ Z 

d3 d3 1 � �p q i~p~x−i~q~ † −i~p~x+i~q~ † = p e y[ap, a ] + e y[a , aq] (2.6.15)
(2π)3 (2π)3 4ωpωq

q p 

~But the commutator of the ak gives (2π)3δ3(~p − k), so we have Z 
d3p 1 � � 

i~p(~x−~ −i~p(~x−~y)y) − e[φ(t, ~x), φ(t, ~y)] = e = 0 (2.6.16)
(2π)3 2ωp p

Now note that the region of integration, the measure, and ωp = m2 + p~2 are symmetric under 
p~ → −p~, so this commutator vanishes, as claimed. 
Next let’s compute Z Z r 

d3 d3 � �q p 1 ωp −i~q~x+i~p~ † i~q~x−i~p~ †[φ(t, ~x), π(t, ~y)] = −i e y[a , ap] − e y[aq, a ]
(2π)3 (2π)3 2 ωq

q p 

i 
Z 

d3p � � 
i~p(x~−~y) −i~p(~x−~y)= e + e (2.6.17)

2 (2π)3 

= iδ3(~x − ~y) 

So we have verified that the canonical commutation relation holds. 
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You should check on your own that Z � � 
d3p 1 

H = ωp ap 
† ap + (2.6.18)

(2π)3 2 

and 

[H, φ(t, ~x)] = −i∂tφ(t, ~x) (2.6.19) 

by using the commutation relations. 
Finally, let’s re-derive the familiar Schrodinger equation for our free particles. We get back 

1-particle QM by restricting to 1-particle states. A position space basis for these is given by 

hx| = h0|φ(t, ~x) (2.6.20) 

which follows because φ creates or destroys one single particle. The Schrodinger picture wavefunction 
is 

ψ(t, x) = hx|ψi = h0|φ(t, ~x)|ψ > (2.6.21) 

for some generic 1-particle state |ψi. Since φ(t, ~x) satisfies � � 
~−∂t 2φ = m 2 −r 2 φ (2.6.22) 

we have that q 
i∂tψ(t, x) = m2 −r ~ 2ψ(t, x) 

~ 2r ≈ mψ(t, x) − ψ(t, x) (2.6.23)
2m 

which is the non-relativistic Schrodinger equation, once we remove the constant energy mc2 . 

2.6.2 Noether’s Theorem in Field Theory 

Everything we said about Noether’s theorem applies when we study field theory, where the qi → φ(x) 
are continuous and ‘labeled’ by the space(-time) position x. But there’s more – not only do we 
obtain conserved charges, but in field theories we also have currents Jµ(x) that are conserved at 
every point in space and time. 
Let’s look at an example, with Lagrangian 

L = ∂µφ
†∂µφ − m 2φ†φ (2.6.24) 

a(x)+ib(x)where in this case φ is a complex field. We could, of course, decompose it as φ(x) = √ in 
2 

terms of real fields, to give a Lagrangian 

21 1 m 
L = (∂µa)

2 + (∂µb)
2 − (a 2 + b2) (2.6.25)

2 2 2 
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In either case the Lagrangian has a symmetry 

−iαφφ → e (2.6.26) 

which we could write in infintesimal form as 

φ → φ − iαφ, φ† → φ† + iαφ† (2.6.27) 

or alternatively 

a → a + αb, b → b − αa (2.6.28) 

in components. This is a U(1) = SO(2) symmetry; it is the symmetry associated with electric 
charge. It is also a kind of continuum version of the x-y plane symmetry we found in the ordinary 
mechanical example. 
Our derivation of Noether’s theorem would lead us to the conserved quantity (global charge) � �X ∂L ∂L 

Q = (−iφn) + (iφ† n) (2.6.29)
∂φ̇ 

n ∂φ̇† nn Z 
∂L ∂L 

= −i d3 x φ(x) + (iφ†(x)) (2.6.30) 
∂φ̇(x) ∂φ̇†(x)Z � � 

= i d3 x φ̇(x)φ†(x) − φ̇†(x)φ(x) (2.6.31) 

this a single conserved charge that cannot change throughout the whole universe. 
However, in field theory we can do better than this – we can derive a conserved current Jµ(x). 

This is important because... who cares if there’s one single number that’s conserved in the universe! 
How could one ever derive any useful, local effects from such an object, if a loss of charge on earth 
can be compensated by more charge in another galaxy? Current conservation is the physically useful 
idea that replaces global charge conservation in field theory. 
A cute way to derive this is to imagine that the parameter α → α(x). There are two steps. The 

idea is that when α is constant, the action is invariant under the symmetry (even when the fields do 
not satisfy their EoM!), so if we perform the transformation with α(x) a function of x, we find a 
shift in the action Z � � 

δS = d4x ∂µα(x)i ∂µφ(x)φ
†(x) − ∂µφ

†(x)φ(x) (2.6.32) 

The point is that the shift of the action is proportional to derivatives of α, because the variation 
must vanish when α is a constant. Here we have shown our example above, although the idea is 
completely general. Now if we integrate by parts (remembering that fields vanish rapidly at infinity), 
we find Z 

δS = − d4xα(x)∂µJµ (2.6.33) 
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Now we derived this equation by varying the Lagrangian, without imposing the EoM. But when the 
fields do satisfy their equation of motion, the action must be invariant under any variation, even 
when α(x) is a general function of x. 
Thus we find the current � � 

Jµ(x) = i ∂µφ(x)φ
†(x) − ∂µφ

†(x)φ(x) (2.6.34) 

must be conserved. In fact we can check directly that when the EoM are satisfied this current is 
conserved, because � � 

∂µJµ = i �φ(x)φ†(x) + ∂µφ(x)∂
µφ†(x) − ∂µφ

†(x)∂µφ(x) − �φ†(x)φ(x) (2.6.35) 

= im2(φ†φ − φ†φ) = 0 (2.6.36) 

using the equations of motion for φ. The current is not conserved unless we use the EoM, or to 
say it more physically, charge conservation is a property of physical states and their time evolution. 
Fields that don’t obey the EoM are just arbitrary, physically meaningless functions. 
The conserved current from a more general symmetry transformation 

φ → φ + αF (φ) (2.6.37) 

will be 

δL 
Jµ = F (φ) (2.6.38)

δ(∂µφ) 

and we can check directly that this will be conserved when the Lagrangian is invariant under the 
symmetry transformation and the fields satisfy their equations of motion. R 
The charge Q that we found before was just d3xJ0. Note that for any conserved current Z Z 

~∂tQ = d3x∂tJ0 = d3 xr ~ · J = 0 (2.6.39) 

and this is how we see global charge conservation. 
There’s a particularly important set of four conserved currents that exist in any Poincaré invariant 

field theory; together they form the energy-momentum tensor 

∂L 
Tµν = ∂ν φ − ηµν L (2.6.40)

∂(∂µφ) 

Note that T00 is just the Hamiltonian of the theory, since 

∂L 
T00 = φ̇ − ηµν L = πφ − L = H (2.6.41)

∂(φ̇) 

As promised, we have seen that the Hamiltonian is just a component of a tensor, so it is neither 
invariant nor covariant under Lorentz transformations. This is why we start by working with 
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Lagrangians. The Tµν are the (four) currents that correspond to the symmetry under spacetime 
translations, where 

φ → φ + �ν ∂ν φ (2.6.42) 

This is why we have 4 currents that transform together as a tensor – because the infinitesimal 
transformation parameter �ν is itself a 4-vector, meaning that Lorentz transformations connect 
translations in different directions. 

2.6.3 Aside: What’s a Current? 

Currents Jµ can be Noether currents associated with symmetries, as we saw above, physical 
background currents whose dynamics we don’t analyze (e.g. the sort of object that emitted or 
absorbed particles in our discussion of anti-particles and special relativity), or formal (mathematical) 
placeholders that we use to streamline discussions. Basically, currents are like extra fields that do 
not have kinetic terms. The terminology is used very frequently, and in all of these ways. 

2.7 Dimensional Analysis, or Which Interactions Are Important? 

Before studying field theory in detail, let’s consider something of direct and far-reaching importance 
– dimensional analysis. By studying dimensional analysis and thinking about the short-distance 
origins of long-distance/low-energy Effective Field Theories, we can begin to explain the simplicity 
and universality of QFT. 
The first question we want to ask is what are the units of the Action and Lagrangian Density? 

Recall we are setting ~ = c = 1, so 

[time] = [length] = [energy]−1 = [momentum]−1 (2.7.1) 

where we use [X] to denote the units of X. Now we have that Z 
S = ddxL (2.7.2) 

where in our case d = 3 + 1 spacetime dimensions. It turns out that the action S is dimensionless 
(in particular, it has units of ~). There are various ways of seeing this, but probably the simplest 
and most universal is to note that the Hamiltonian is Z � � 

δL 
dd−1 ˙H = x φ − L (2.7.3)

δφ̇ 

and of course the Hamiltonian has units of energy. This means that �Z � 
[energy] = dd−1xL = [length]d−1[L] (2.7.4) 
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which implies that the Lagrangian density has units 

[L] = [energy]d = [length]−d (2.7.5) 

Note that the implication follows from the fact that we can only sensibly add quantities with identical 
units. This will be our starting point. 
Next let’s consider the dimensions of our quantum fields. The free action for a scalar field is Z 

1 � � 
2φ2S = dd x (∂µφ)

2 − m (2.7.6)
2 

We saw this already in the continuum limit of our description of phonons. The action must be 
dimensionless, so let’s first look at the derivative term. It is forced to have units 

[(∂µφ)
2] = 

1 
= [energy]d (2.7.7)

[ddx] 

which implies that 

d−2 
2[φ] = [energy] (2.7.8) 

because [∂] = [energy]. We also must have 

[m] = [energy] (2.7.9) 

so that the mass term has the same units as the kinetic term. This is of course correct – since c = 1, 
the mass must have units of energy! 
Now let’s consider what happens if we add an interaction term to the Lagrangian. We already 

know the dimensions that [φ] must have, so we can deduce that since the term in the action Z 
ddxλnφ

n (2.7.10) 

must be dimensionless, we must have 

2[length]d × [λn] × [energy]n d−2 
= 1 (2.7.11) 

so that 

2[λn] = [energy]
d+n(1− d ) (2.7.12) 

Let’s plug in some numbers; for d = 4 we have [λn] = [energy]n−4 , and for d = 6 we have 
[λn] = [energy]

2n−6 . Notice that for d = 4, a λ4φ4 interaction is dimensionless, while for d = 6 the 
λ3φ

3 interaction is dimensionless. All higher powers of φ have a dimension which goes as an inverse 
power of energy. 

34 



Finally, let’s look at interactions that involve derivatives. For example, what about Z 
dd x g(∂φ)4 (2.7.13) 

This gives us 

[g] = [energy]−d (2.7.14) 

immediately, since this term is just the square the kinetic term. So the coupling constants associated 
with derivative interactions like this always have dimensions which are a negative power of energy. 
So why is this exciting and important? 
Let’s imagine that our QFT is the long-distance, low-energy description of some system with a 

short distance cutoff a, and an equivalent high-energy cutoff 

Λ (2.7.15) 

An example, of course, is our phonon or balls and springs system from earlier – there the length 
a was the lattice spacing, and the energy Λ ≈ ~ 

a
c was ~ωmax. The point is that up to some O(1) 

numbers, and barring accidents, miraculous cancellations, or symmetries, all energies appearing in 
the QFT Lagrangian will be Λ, simply by dimensional analysis. 

To be specific, this means that in four dimensions, we will have an action Z � � 
1 1 c5 g3 g4

S = d4 x (∂µφ)
2 − cmΛ

2φ2 − c3Λφ
3 − c4φ

4 − φ5 − · · · − φ(∂µφ) − φ2(∂µφ) − · · · 
2 2 Λ Λ Λ2 

Finally, let us consider conducting an experiment on this system at energies E � Λ, corresponding 
to distance R � a. Experimental results must ultimatelybe phrased in terms of dimensionless 
quantities. Note that all terms beyond the first four are proportional to powers of 1/Λ. This 
means that the energy scale of the experiment must make up for these negative powers of Λ, or in 
other words, all terms beyond the first four contribute to experimental observables in a way that is 
suppressed by a power of � � 

Eexp � 1 (2.7.16)
Λ 

This means that at long distances and low-energies, to a good approximation we can ignore all of 
the terms with negative powers of Λ! Thus when we study a single scalar quantum field in a Lorentz 
invariant universe, there is a universal theory with action Z � � 

Slow−energy ≈ d4 x 
1
(∂µφ)

2 − 
1 
cmΛ

2φ2 − c3Λφ
3 − c4φ

4 

2 2 

There are only four possible terms, a kinetic term, a mass term, and two interactions. Those are 
all of the possibilities! Although the Higgs field interacts with other fields in the Standard Model, 
when we isolate it, this is its full Lagrangian (in fact it’s even simpler, basically because h → −h is 
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a symmetry, so c3 = 0). The hierarchy problem is the fact that if Λ is really big (say at the Planck 
scale, 1019GeV ) then we must have cm n 1 so that the Higgs has a 126 GeV mass. 
We will refine some of these statements when we learn about renormalization and renormalization 

flows, which incorporate effects from quantum mechanics, and you’ll learn to appreciate them more 
when we do a larger variety of (quantum) computations, but the basic ideas here are robustly 
true and extremely useful for understanding why QFTs are so simple and universal when they are 
regarded as Effective Field Theories, or long-distance, low-energy descriptions of physics. 

2.8 Interactions in Classical Field Theory with a View Towards QFT 

2.8.1 Coulomb’s Law in Our Formalism 

We will mostly be discussing scalar fields, but to make it clear where we’ll get eventually, it’s nice to 
see how electrodynamics works as a field theory. We have a Lagrangian density 

1 
L = − Fµν 

2 − AµJ
µ (2.8.1)

4 

where Jµ is the electromagnetic current. For static charges J0(x) = ρ(x) is the charge density, while 
~J = 0. We can write this as 

1 
Aν )

2 1 
Aν )2 − AµJ

µL = − (∂µ + (∂µ (2.8.2)
2 2 

Now we need to vary we respect to Aµ. The book does this formally via the Euler-Lagrange equation, 
more informally note that Z 

0 = δS = d4 x [−(∂µAν )(∂
µδAν ) + (∂µA

µ)(∂ν δA
ν ) − Jν δAν ] (2.8.3) Z 

= d4 x [(∂µ∂µAν )δA
ν − (∂ν ∂µA

µ)δAν − Jν δAν ] (2.8.4) 

so we find the equation of motion 

∂µFµν = ∂µ∂µAν − ∂ν ∂
µAµ = Jν (2.8.5) 

which are Maxwell’s equations in gauge invariant, manifestly relativistic form. This already looks 
like (where � ≡ ∂µ∂µ) 

�Aν − ∂ν ∂
µAµ = Jν (2.8.6) 

so if we choose Lorenz gauge, ∂µAµ = 0, then we get the simple equation 

�Aν = Jν (2.8.7) 

The necessity of choosing a gauge is half of what makes electrodynamics more complicated than 
scalar theories (the other half is the existence of spin and polarization); it’s not a big deal in the 
classical theory, but it becomes more of a problem in QFT. 
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Note that if Jν = 0, this is identical to the equation of motion for a free massless scalar (a 
phonon), �φ = 0, except it has 4 components. This is the Klein-Gordon equation. It has a formal 
solution 

1 
Aν = Jν (2.8.8)

� 

in the presence of a source, which we can define via a Fourier transform. We refer to 1 as a� 
‘Propagator’; we’ll be using propagators extensively throughout QFT. 

Note that for Fourier transforms Z Z 
d4k µ d4k µikµx ikµx�nf(x) = �nf̃(k)e = (−k2)nf̃(k)e (2.8.9)
(2π)4 (2π)4 

and so in general, we identify 

� → (−k2) (2.8.10) 

when we take Fourier transforms. Thus � 
1 ∼ 

k 
1 
2 ; really the only issue is what to do when k2 = 0. 

Now we can use all of this to re-derive the Aµ around a static charge, where 

J0 = eδ3(~x) (2.8.11) 

~and J = 0. In this case we have 
e 

A0 = δ3(~x) (2.8.12)
�Z 

d3k e i~k·~x = e (2.8.13)
(2π)3 ~k2 Z ZZ ∞ 1 2π 

ikr cos θ = 
e

k2dk d cos θ dφ 
1 
e (2.8.14)

(2π)3 0 −1 0 k2 Z ∞ ikr − e−ikr e 1 e 
= dk (2.8.15)

8π2 ir −∞ k 

There’s no divergence at k = 0 because the exponential factors cancel. Thus we can perform the 
integral as Z ∞ ikr − e−ikr e 

dk (2.8.16)
k + i�−∞ 

and use contour integration. For the first term we must close the contour in the upper half plane to 
get zero, while for the second term we get Z 

−e−ikr ikr) = 2πi dk = −(2πi)(−e (2.8.17)
k + i� 

as � → 0. So we find 
e 1 

A0 = (2.8.18)
4π r 

as expected for the Coulomb potential. 
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2.8.2 Green’s Functions 

Let us generalize our analysis above to study more complicated clasical fields. 
A toy model for gravity has the Lagrangian density 

L = 
1
(∂h)2 +

1 
λh3 + Jh (2.8.19)

2 3 
√ 

In reality h is a tensor field, but we are pretending that it’s a scalar. The parameter λ ∼ GN 

plays the role of the Newton constant – note that the gravitational field is self-interacting, unlike 
the electromagnetic field. Of course the kinetic term is just what we had for a free scalar field, or for 
the phonon field we discusssed before. 
The equation of motion is 

�h = J + λh2 (2.8.20) 

The idea is to solve while incorporating the effects of both J and the interaction term λh2 in the 
EoM. We will assume that λ is small (we’ll discuss more what this means later on), so we can 
incorporate its effects in perturbation theory. Thus we assume that 

h = h0 + h1 + h2 + · · · (2.8.21) 

where the nth term includes nth order effects from λ. To zeroth order this means 

�h0 = J (2.8.22) 

while to first order it implies 

�(h0 + h1) = J + λ(h0 + h1)
2 (2.8.23) 

=⇒ �h1 = λh20 (2.8.24) 

Thus h20 serves as a new source or ‘current’ for h1. This has a solution 

1 
h0 = J (2.8.25)

� �� �� �� 
λ λ 1 1 
h2h1 = = J J (2.8.26)

� 0 � � � 

and it can be continued to get a series solution for h. 
It is worth noting that the propagator, and therefore the solution, depends only on the propagator 

�, which comes from the kinetic term. This is, of course, because we are perturbing about a solution 
to the free theory. 
We can be more precise by defining 1/� as 

�xΠ(x, y) = −δ4(x − y) (2.8.27) 
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so that Z 
d4k 1ik(x−y)Π(x, y) = e (2.8.28)
(2π)4 k2 

Note that really Π(x, y) = Π(y, x) = Π(x − y). 
Now Π allows us to write Z 

h0(x) = − d4 yΠ(x, y)J(y) (2.8.29) 

as we can check immediately that this satisfies the equation of motion. Thus our more general 
solution is Z 

h(x) = − d4 yΠ(x, y)J(y) (2.8.30) Z Z Z 
d4 d4 d4+λ w Π(x, w) y Π(w, y)J(y) z Π(w, z)J(z) + · · · 

which is what we meant earlier when we wrote a formal solution in terms of 1/�. 
This can be represented by pictures where the propagator Π(x, y) looks like a line, while the 

currents J look like insertions that come together at points such as x and w. These are our first 
example of Feynman diagrams. The rules for associating mathematical expressions with the pictures 
are called Feynman rules. These diagrams give some physical intuition, and they also allow us to 
generate all the mathematical expressions allowed to any order in λ, via the rules 

1. Draw a point x and a line from x to a new point xi. 

2. Either truncate a line at a source J or let the line branch into two lines, adding a new point a 
factor of λ. 

3. Repeat the previous until all lines truncate at sources. 

4. The final value for h(x) is given by summing up graphs with lines associated with propagators, 
internal points integrated over, and all points external points except x associated with J . 

One can solve the EoM for a classical field by drawing these pictures. When we move to QFT, the 
main difference will be that lines can loop back on themselves. 

2.9 Overview of Scattering and Perturbation Theory 

We learned about symmetries, canonical quantization, and the quantization of a free quantum 
scalar field, which describes a Fock space of free relativistic particles. We saw examples in classical 
field theory where we obtained a Feynman diagram perturbation series that solves the classical 
field equations, and we studied dimensional analysis to see what interactions are important at long 
distances. 
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Now we would like to develop the perturbative description of QFT. What sort of processes should 
we study? 

For a variety of reasons we will study Scattering in this course. If this were primarily a condensed 
matter physics course we might study other questions... because the best motivation for studying 
scattering is that if we are going to do ‘particle physics’ or ‘high-energy physics’, the whole point is 
to pursue reductionism to the extreme. We would like to ‘see what stuff is made of’. To do that we 
need a microscope. But due to the uncertainty principle 

~ 
δx · δp ≥ (2.9.1)

2 

we cannot look at matter at very short distances, or ‘take it apart’, without very large momenta, 
and thus very large energies (hence the name high-energy physics). But if we study matter using 
very high energy probes, we cannot help but destroy it, so to be as precise as possible, it’s easiest to 
just study what happens when scatter a few particles in isolation. 
Obviously this has a precedent, e.g. Rutherford trying to determine the size of an atomic nucleus 

by looking at α particles scattering off of gold nuclei in gold foil... all the way to the LHC, today, at 
14 TeV... we would like to be able to perform the theoretical computations necessary to understand 
these results. 
Thus we will be primarily interested in computing an observable called the S-Matrix. We will 

usually think of QFT in the Heisenberg picture, where states are time-independent, but operators 
depend on time. In this language the S-Matrix is 

hf |S|iiHeis = hf, t = ∞|i, t = −∞iSchr (2.9.2) 

Formally, the S operator evolves states from the infinite past to the infinite future via the Hamiltonian. 
However, it is very useful to think of the interations as being turned off in the distant past and the 
distant future. 
How can we actually perform these computations? 
Conceptually, the easiest way to think about the computation of the S-Matrix is to imagine 

that in the distant past and future, the interactions have been turned off, so that we just have a 
free QFT. The interactions slowly turn on and off in between, perturbing our QFT and allowing 
particles to interact. In fact, this happens automatically when we scatter particles, since they become 
well-separated in the past and future. 
Note that since 

|ψ1−parti = φ(t, x)|0i (2.9.3) 

one might imagine that the S-Matrix could be computed from something very roughly like 

hφ(∞, ~x1)φ(∞, ~x2)φ(−∞, ~x3)φ(−∞, ~x4)i (2.9.4) 

for the example of 2-to-2 scattering, since two of the φs create particles in the past, and two of the 
φs destroy or measure particles in the future. In fact, there is a formula like this, called the LSZ 
Reduction Formula, which relates QFT correlation functions like 

hφ(x1)φ(x2)φ(x3)φ(x4)i (2.9.5) 
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to the S-Matrix. This is one major reason why in QFT, these correlation functions are the observables 
we most often study – for the rest of the course they will be a primary focus. 
The precise statement of LSZ for scalar particles is that the S-Matrix � Z � � Z � 

hpk+1 · · · pn|S|p1 · · · pki = i d4 x1e 
−ip1x1 (� + m1

2) · · · i d4 x1e
ipnxn (� + mn 

2 ) 

×h0|T {φ1(x1)φ2(x2) · · · φn(xn)} |0i (2.9.6) 

where T is a time-ordering symbol, which just says that we act with the fields φi in an order 
determined by their time coordintes ti, as we’ll discuss soon. In words, this formula says that if we 
Fourier transform a correlation function and pick off the coefficient of certain singularities of the 
form 1 

2 , we get the S-Matrix. Note that the signs of the pi flip for initial vs final states. 
p2−m 

So how do we compute these correlation functions? We will work in perturbation theory about a 
free QFT, and there are basically two different methods: 

1. Old-Fashioned Perturbation theory, which we’ll discuss briefly, is the QFT generalization of 
the perturbation theory you learned in QM. In this version of perturbation theory, all states 
are physical, momentum is conserved, but energy is not conserved. Since this methodology 
treats energy and momentum differently, it cannot be manifestly Lorentz invariant. This is 
bad because it makes computations more complicated, so that it’s easy to make mistakes, and 
the physical symmetries of special relativity are obscured. 

2. Feynman Diagrams, or standard QFT perturbation theory, is the method that’s actually been 
in use since the 1950s. In this formalism energy and momentum are always conserved at every 
step, and the associated ‘Feynman rules’ for calculations are manifestly Lorentz invariant. The 
price to be paid is that we use ‘virtual particles’, or ‘off-shell’ states, which do not satisfy 
p2 = m2 , as we will see. We will give two or three different derivations of this method, the 
first of which connects very closely to our discussion of classical perturbation theory in field 
theories (using Green’s functions). 

In what follows we will relate the S-Matrix to experimental observables, derive the LSZ Reduction 
formula, and discuss these two forms of perturbation theory, focusing mostly on Feynman Diagrams. 

2.10 Relating the S-Matrix to Cross Sections and Decay Rates 

Let us see how we can relate the formal S-Matrix to physical observables, namely cross sections, 
decay rates, etc. 
Classically, we can talk about scattering in terms of cross sectional area – when we shoot one 

particle at another, what area is occluded? Quantum mechanically, we can have the same discussion, 
except phrased in terms of probabilities. 
To understand what a cross section will mean, it’s helpful to think of putting our experiment in 

a large box of length L, and in a ‘time box’, where we turn interactions on for a time of length T . 
Then we want to think in terms of a flux of particles, which we define as 

Φ = number density × beam velocity (2.10.1) 
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It helps to draw a picture of a little box with some number of particles, all moving with some velocity. 
Then one can see that the flux measures how many particles are crossing a particular cross sectional 
area per unit time. 
It may be most instructive to think in terms of a cross sectional area σ that occludes the particles. 

Then we obtain a total probability for scattering 

P = T Φσ (2.10.2) 

In other words, if we run the experiment for a length of time T , with a flux Φ, and the scattering 
process occludes a surface area σ, then P will be the total probability that a scattering event occurs. 
We can now invert this equation to define a differential cross section as 

1 1 
dσ = dP (2.10.3)

T Φ 

When we discuss ‘dP ’ this is a differential probability for scattering. It is a function of angles, 
quantum numbers, etc. Let us see how we can compute dP in quantum mechanics and QFT. 

2.10.1 Transitions Between States in Quantum Mechanics 

In quantum mechanics, one of the most important observables is the probability for transitioning 
from one state to another: 

Pfi = |hψf (tf )|ψi(ti)i|2 (2.10.4) 

For example, we might have a hydrogen atom whose electron is in a n = 2 p-orbital at a time ti, 
and we want to know the probability that at a time tf it has emitted a photon and transitioned to 
the n = 1 s-orbital state. 
In QFT this is the S-Matrix, for example 

hp3, p4|S|p1, p2i (2.10.5) 

Note that energy and momentum must be conserved, so this must be proportional to δ4(p3 + p4 − 
p1 − p2). But there’s another issue, which is that if we view the square of this amplitude as a 
probability, then it’s zero! 
Of course it’s zero for a stupid reason, namely that p3 and p4 are continuous variables, so the 

probability of getting exactly these momenta vanishes. Instead, we must view this as a differential 
probability 

dP ∝ |hp3, p4|S|p1, p2i|2 (2.10.6)
dΠ 

where the differential phase space is roughly 

dΠ ∼ d3 p3d
3 p4 (2.10.7) 
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The reason is that if we integrate this object over the phase space, or the space of final states, 
parameterized by p3 and p4, then we get a genuine probability. 
How can we make this more precise? Let’s imagine that the entire universe is in a box with side 

lengths L, which are very, very, very large. (This is always an OK thing to do if you get confused 
about QFT... you can perform computations in a large box and then send L →∞ at the end; you 
should get sensible answers if you’ve asked sensible questions.) Then the momenta will be quantized 
with 

2π 
p~ = ~n (2.10.8)

L 

where ~n = (nx, ny, nz) is a multiplet of integer labels. This is just the standard particle in a box 
with Dirichlet boundary conditions, which you studied in quantum mechanics. 

Now we need a way to sum over particle states in a normalized way. With particles in a box, we 
have a discretum of state with ~n for each particle. But we would like to work in a continuum with 
general momenta p~. This means that we need to convert ZX 

→ N d3 p (2.10.9) 
~n 

This can be done by assigning a continuum momentum ~p to a discrete momentum ‘bin’. We know 
that each ~n sits inside a phase space region with a momentum-space volume � �� �� � 

2π 2π 2π (2π)3 

= (2.10.10)
L L L V 

where V = L3 , so we know that ZX d3p 
= V (2.10.11)

(2π)3 
~n 

and this is the relation we needed. We can use this to define � �� � 
d3 d3p3 p4

dΠ3,4 ∝ V V (2.10.12)
(2π)3 (2π)3 

which is what we will use in what follows. 

2.10.2 General Cross Section Formula 

Now we will derive a general formula for the differential cross section, combining ideas of flux with 
the quantum mechanical probability discussed above. Let’s focus on processes 

p1 + p2 → p3, · · · , pk (2.10.13) 
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We will work in a fixed finite volume V , because that makes it much easier to understand various 
infinities that willl drop out at large V . Since there’s only one particle colliding with another, the 
flux in the center of mass frame is simply 

|~v1 − ~v2|
Φ = (2.10.14)

V 

Using our defining formula for the cross section, we have 

V 1 
dσ = dP (2.10.15)

T |~v1 − ~v2| 

Quantum mechanically, the probabilities are 

|hf |S|ii|2 

dP = dΠ (2.10.16)
hf |fihi|ii 

where we insert the explicit normalizations because (due to the demands of Lorentz invariance) our 
states are not normalized to unity. Recall that 

hp~|~pi = (2π)3(2Ep)δ
3(0) = 2EpV (2.10.17) 

where we define δ3(0) via the inverse Fourier transform from momentum space. Note also that 

δ4(0) = 
TV 

(2.10.18)
(2π)4 

where T was the total time. 
The final state phase space is Y V 

dΠ = d3 pj (2.10.19) 
j 
(2π)3 

for the final state particles. This is defined by taking the continuum limit of particles in a box, 
which have a discretum of momenta with pi = 2 

L
π ni for integers ~n. We can combine this with the 

hf |fihi|ii to obtain 

|hf |S|ii|2 Y d3pj
dP = (2.10.20)

4E1E2V 2 
j 
2Ep(2π)3 

Finally, we can write the S operator as 

S = 1 + iT (2.10.21) 

where !X 
T = (2π)4δ4 pi M (2.10.22) 

i 
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This extracts a 4-momentum conserving delta function, and allows us to bypass considering the 
‘trivial’ part of the S-Matrix, where no scatterings occur, to focus on M. This means that !X 

δ4|hf |S|ii|2 = pi (2π)8δ4(0)|M|2 

i !X 
= (2π)4δ4 pi TV |M|2 (2.10.23) 

i 

so we can finally write 

T 1 
dP = |M|2dΠLIP S (2.10.24)

V 2E12E2 

where !X Y 1 d3pj
dΠLIP S ≡ (2π)4δ4 pi (2.10.25)

2Ej (2π)3 
i final j 

is Lorentz invariant phase space (you’re supposed to verify that it’s Lorentz invariant on the problem 
set). So the differential cross section is 

|M|2 

dσ = dΠLIP S (2.10.26)
(2E1)(2E2)|~v1 − ~v2| 

Note that the two factors of energy in the denominator lead to units of area; the other factors must 
be dimensionless after integration. 

2.10.3 Decay Rate Formula 

The generalization to decay rates is immediate, since we just replace the initial 2 particle state with 
a 1 particle state, leading to 

|M|2 

dΓ = dΠLIP S (2.10.27)
2E1 

In this case |M|2 and dΠLIP S must carry units so that after integration we get a rate. 

2.10.4 Special Case of 2-to-2 Scattering 

By far the most common example of scattering is 2-to-2, which in the center of mass frame has 

~ = −~ ~ = −~ (2.10.28)p1 p2, p3 p4 

and E1 + E2 = E3 + E4 = ECM . The phase space is !X d3 d31 p3 1 p4
dΠLIP S ≡ (2π)4δ4 pi (2.10.29)

2E3 (2π)3 2E4 (2π)3 
i 
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We can immediately integrate over and eliminate ~p4 using the delta function, giving Z 
1 p2 

dΠLIP S ≡ dΩ dpf
f 
δ(E3 + E4 − ECM ) (2.10.30)

16π2 E3E4 q q 
2 2 2 2where E3 = pf + m3 and E4 = pf + m4. Now we can change variables from pf to x = 

E3 + E4 − ECM with Jacobian 

dx pf pf ECM 
= + = pf (2.10.31)

dpf E3 E4 E3E4 

so we obtain 

1 pf
dΠLIP S ≡ dΩ (2.10.32) 

16π2 ECM 

We can now use the relation 

|~p1| |p~ 2| |p~ init||~v1 − ~v2| = + = ECM (2.10.33)
E1 E2 E1E2 

which holds by momentum conservation to derive the final result � � 
dσ 1 |p~ f |

= |M|2 (2.10.34)
dΩ 64π2E2 |~pi|CM CM 

for the center of mass differential cross section with respect to the solid angle of scattering, dΩ. If all 
the masses are equaly the ratio of momenta drops out. The book gives an analysis and comparison 
with the non-relativistic limit. 

2.11 Old Fashioned Perturbation Theory 

We have discussed free quantum field theory, and interacting classical field theory. Now we want to 
move on to study interacting QFTs. We will ‘warm up’ by discussing old fashioned perturbation 
theory, which is essentially the perturbation theory you learned in QM applied to QFT. As we 
will discuss, this is a bad way to organize things, because it’s not Lorentz invariant, but it’s worth 
understanding because at the end of the day, it’s entirely equivalent to the methods we’ll use later 
on, and probably more familiar. There are also some situations where it’s a useful way to think 
about the physics of QFT, and it provides a more precise illustration of our earlier ‘derivation’ of 
the existence of anti-particles. 

2.11.1 OFPT Formalism 

In quantum mechanics you studied situations where we have a Hamiltonian 

H = H0 + V (2.11.1) 
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where V is an ‘interaction’ term that can be treated in perturbation theory, with the idea that it 
makes a small correction to the spectrum of H0, which we can solve for exactly. The only difference 
in QFT will be that the spectrum of H0 is continuous, since particles can have arbitrary momentum 
and energy. 
From our discussion of scattering, it’s clear that we’d like to be able to solve for what happens 

at late times in terms of an initial state at an early time. So say we start off in a state 

H0|ψi = E|ψi (2.11.2) 

Since the spectrum is continuous, we can find a similar state in the full theory satisfying 

H|Ψi = E|Ψi (2.11.3) 

for the full H = H0 + V . This means we can write (formally) 

1 |Ψi = |ψi + V |Ψi (2.11.4)
E − H0 

which can be verified by multiplying by E −H0. This simple formula is called the Lippman-Schwinger 
equation. You can think of 

E− 
1 
H0 
as a Green’s function, or the ‘Lippman-Schwinger kernel’. 

We want to use this equation to describe scattering, where the states |ψi are free at early and 
late times, and V induces transitions (scattering) between these free states. 
For this purpose its useful to define an operator T , the transfer matrix, by 

T |ψi = V |Ψi (2.11.5) 

Plugging this into the Lippman-Schwinger equation gives 

1 |Ψi = |ψi + T |ψi (2.11.6)
E − H0 

which formally defines the full interacting state in terms of the free states. 
To make this equation useful, let’s take the inner product of both sides with hψα|V , where hψα|

is any free state. We find 

1 hψα|V |ψi + hψα|V T |ψi = hψα|V |Ψi 
E − H0 

= hψα|T |ψi (2.11.7) 

If this is true for all ψα and ψ, then we must have the operator equation 

1 
T = V + V T (2.11.8)

E − H0 

This provides a sort of recursion relation for T , which we can solve perturbatively in V by inserting 
it back into itself, giving 

1 1 1 
T = V + V V + V V V + · · · (2.11.9)

E − H0 E − H0 E − H0 
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To make this more concrete, we can insert a complete set of free states, which have definite H0 

eigenvalues (energies), so that we obtain X 1 
Tij = Vij + Vik Vkj + · · · (2.11.10)

E − Ek
k 

Note that in a certain sense, ‘energy is not conserved’ in this perturbation series, since Vik connects 
states with different H0 energies. 

2.11.2 Coulomb’s Law from OFPT 

Let’s study what happens when electrons (or, more accurately, a toy model thereof with a scalar 
electron and a scalar photon) scatter off each other using OFPT. An advantage for us is that we’ll see 
a very concrete manifestation of ‘particle emission’ and ’particle absorption’, realizing the abstract 
framework we discussed when we argued for the existence of anti-particles. 
Our initial and final states both have two scalar electrons 

ψ4|ii = |ψ1ψ2i, hf | = hψ3 | (2.11.11)e e e e 

In QFT, electron interactions are generated by photon exchange. The interaction Hamiltonian is Z 
V =

1 
e d3xψe(x)ψe(x)A(x) (2.11.12)
2 

where we treat both the electrons ψe(x) and the photon A(x) as scalar fields (so this is a simplified 
model... neither are actually scalars). Note that since this is an interaction Hamiltonian it is only 
integrated over space. 
The transfer matrix is X 1 

Tfi = Vfi + Vfn Vni + · · · (2.11.13)
Ei − En n 

However, the first term vanishes, because the interaction simply turns an electron into an electron 
and photon, or vice versa. In other words, we need two interactions, so that we can both absorb and 
emit a photon. So there are two possible terms – one where the photon is emitted by electron 1, 
and one where the photon is emitted by electron 2. This is just as we saw above, except here the 
abstract current J(x) has been replaced by the physical electromagnetic current that can emit or 
absorb photons. (Note that we are ignoring terms where both electrons are destroyed and turn into 
a photon, because that cannot happen by charge conjugation, although that’s not obvious in this 
simplified theory.) 
For the first case, we find that 

ψ2 ψ2Vni = ehψ3 A|V |ψ1 i = ehψ3A|V |ψ1ihψ2|ψ2i = ehψ3A|V |ψ1i (2.11.14)e e e e e e e e e e 

If we invariantly view the first electron as the source, then in this case we use a ‘retarded propagator’, 
since the photon moves from the source to the sink. In the opposite case we use an ‘advanced 
propagator’, because the photon moves from the sink to the source. We must add up both terms. 
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Let’s evaluate the matrix elements. Note that Z 
e 

Vni = ehψ3A|V |ψ1i = d3 xhψ3A|ψe(x)ψe(x)A(x)|ψ1i (2.11.15)e e e e2 

To evaluate this we must use the quantized form of the fields Z 
d3 � �p 1 † i~p·~x −i~p·~xφ(t = 0, ~x) = p ape + ape (2.11.16)
(2π)3 2Ep 

so we find, for example, that 

−i~pA ·~xhA|A(x)|0i = e (2.11.17) 

where we have chosen the time as t0 = 0, and we recall that the one-particle states are defined so 
that �p � 

|p~i = 2Ep a † p|0i (2.11.18) p 
so the factors of 2Ep cancel. Actually, this is a bad thing, since when we sum over a complete set 
of states we should be using states that are unit normalized, or in other words, we should use 

|AihA| 
(2.11.19)

hA|Ai 

But for now we will just use the convention above. At the end of the computation we’ll remember 
to divide by hA|Ai = 2EA. 
Thus we obtain (note there’s a 2 from the 2 electron field contraction possibilities) Z 

d3 i(p~1−p~3−p~A)·~xVni = e xe = e(2π)3δ3 (p~ 1 − p~ 3 − p~ A) (2.11.20) 

The matrix element on the other side is nearly identical, and so we obtain Z 2e 
Tfi = d3 p~ A(2π)

6δ3 (~p1 − p~ 3 − p~ A) δ
3 (p~ 2 − ~p4 + p~ A) (2.11.21)

Ei − En 

The delta functions enforce 

p~ 1 + p~ 2 = p~ 3 + p~ 4 (2.11.22) 

as well as 

p~ A = p~ 1 − ~p3 (2.11.23) 

Thus we see that 

EA(p~ A) = |p~ 1 − p~ 3| (2.11.24) 
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since the photon is massless. 
Now we have two cases to consider, the ‘retarded’ and ‘advanced’. In the retarded case the 2nd 

electron hasn’t changed, but the first has emitted the photon, so it’s in its final state, with energy 
E3. Thus 

ER (2.11.25)n = E2 + E3 + EA 

In contrast, in the advanced case we have 

EA 
n = E1 + E4 + EA (2.11.26) 

This means that we find (stripping off an overall momentum conserving delta function) 

2 2e e 
T R 
fi = = (2.11.27)

(E1 + E2) − (E2 + E3 + EA) E1 − E3 − EA 

and 

2 2e e 
T A 
fi = (E1 + E2) − (E1 + E4 + EA)

= 
E2 − E4 − EA 

(2.11.28) 

Overall energy conservation says E1 + E2 = E3 + E4 so that E1 − E3 = E4 − E2 = ΔE, so we have 

2e2EA
T R 
fi + Tfi 

A = (2.11.29)
(ΔE)2 − (EA)2 

That’s the answer we’ve obtained. However, recall that we were supposed to normalize the photon, 
which means dividing by 2EA, yielding 

2e 
Tfi 
R + Tfi 

A = (2.11.30)
(ΔE)2 − (EA)2 

Soon we will define the sum of the retarded and advanced propagators that have appeared here – 
this is the Feynman propagator. 
Now note that if we define the Lorentz 4-vector 

kµ ≡ pµ − pµ = (ΔE, ~ (2.11.31)3 1 pA) 

then the full answer can be written as 

2e 
(2.11.32)

k2 

Thus we see the momentum space Green’s function of our scalar photon A appearing in the answer! 
If we like we can plug this into the cross section formula to derive the differential cross section for 
Coulomb scattering. 
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As a final note, we can use OFPT to unravel some of the mysteries associated with our argument 
that the existence of anti-particles follows from Lorentz invariance and quantum mechanics. The two 
different terms we found in OFPT correspond precisely with ‘a positively charged particle propagating 
forward in time’ and ‘a negatively charged particle propagating back in time’, respectively. In both 
cases the particle has positive energy E = |~p1 − p~ 3|, but the individual processes in OFPT do not 
themselves conserve energy! Note that the lack of energy conservation at intermediate stages follows 
because we have picked special intermediate times for the calculation, effectively breaking time 
translation invariance. But this time translation breaking is only associated with intermediate steps 
in the calculation, and overall energy is still conserved. 

2.12 LSZ Reduction Formula – S-Matrix from Correlation Functions 

We saw in the section before last how to compute scattering cross sections from the S-Matrix. Now 
let’s see how to compute the S-Matrix from QFT correlation functions. 
The LSZ reduction formula tells us how to derive the S-Matrix from QFT correlation functions � Z � � Z � 

hpk+1 · · · pn|S|p1 · · · pki = i d4 x1e 
−ip1x1 (� + m1

2) · · · i d4 x1e
ipnxn (� + mn 

2 ) 

×h0|T {φ1(x1)φ2(x2) · · · φn(xn)} |0i (2.12.1) 

This says that if we write time-ordered correlators in momentum space, the simultaneous coefficient 
of the poles 1 is the S-Matrix.2 2pi −mi 

2.12.1 Deriving LSZ 

In slightly more detail, we can write the initial and final states as p p
|ii = 2E1 2E2 a † (−∞)a † (−∞)|Ωi (2.12.2)p1 p2 

and 

|fi = 
p
2E3 · · · 

p
2Ek a † (∞) · · · a † (∞)|Ωi (2.12.3)p3 pk 

so we have p 
2 

p1 p2 
hf |S|ii = 2 

k 
E1 · · · EkhΩ|apk (∞) · · · ap3 (∞)a † (−∞)a † (−∞)|Ωi (2.12.4) 

where the important point is that the ap(±∞) operators create and destroy particles in the future 
and past. 
We quantized a free scalar field Z 

d3p 1 � � −ip·x † ip·xφ(t, ~x) = p ape + ape (2.12.5)
(2π)3 2ωp 
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What about the interacting case? Formally, since 

[φ(t, ~x), π(t, ~y)] = iδ3(~x − ~y) (2.12.6) 

with π = ∂L we can always write φ as above, except with a time dependent Heisenberg picture
∂φ̇ 

i(H−Ep)(t−t0) −i(H−Ep)(t−t0)ap(t) = e ap(t0)e (2.12.7) 

so that Z � �d3p 1 −ip·x † ip·xφ(t, ~x) = p (t)e + a (t)e (2.12.8)~(2π)3 2ωp 
ap~ p 

The point is that the ap(t) at any fixed time t satisfy the same commutation relations as before, 
except that they depend non-trivially on time. If the interactions are only turned on for a finite 
time, then ap(−∞) will create particles in the past, and ap(∞) in the future. 
Note that we could take ap(−∞) = ap(free), but then ap(+∞) 6= ap(free) for the same theory – 

the relation between particle creation in the far future and far past will be very non-trivial. For 
instance, since 

�φ = − 
∂V 

(2.12.9)
∂φ 

when V has non-trivial interaction terms we must have a very non-trivial time evolution for ap(t). 
Now that we have defined ap(t) as a formal object, let us prove LSZ.2 A keep point is the relation Z p

d4 ip·x(� + mi xe 2)φ(x) = 2Ep [ap(∞) − ap(−∞)] (2.12.10) 

To see this, first note Z Z 
ip·x(� + m ip·x(∂2 2i d4 xe 2)φ(x) = i d4 xe t −r ~ + m 2)φ(x) Z 

d4 ip·x(∂2 2 = i xe t + p~ + m 2)φ(x) Z 
d4 ip·x(∂2 + E2 = i xe t p )φ(x) (2.12.11) 

We also have that � � � � 
ipx(i∂t + Ep 

ipx(i∂t + Ep 
ipx(i∂2∂t e )φ(x) = iEpe ) + e t + Ep∂t) φ(x) 

ieipx(∂2 = t + Ep 
2)φ(x) (2.12.12) 

2You can see chapter 10 of Weinberg for a very different, and much more sophisticated proof. 

52 



	

Plugging this relation into the equation above gives Z Z � Z � 
d4 ip·x(� + m iEpt d3 −i~p·~ i x e 2)φ(x) = dt ∂t e xe x(i∂t + Ep)φ(x) (2.12.13) 

So obviously we can evaluate the time integral at its boundaries in the far future and past. Since 
the interactions have been turned off at those times, we can use free field expressions to compute 
the spatial part Z 

−i~p·~ d3 xe x(i∂t + Ep)φ(x) (2.12.14) Z Z � �d3k 1−i~p·~ ip·x † −ip·x = d3 xe x(i∂t + Ep) √ ap~(±∞)e + a p~(±∞)e (2π)3 2EkZ Z �� � � � � 
d3k Ep + Ek −i~p·~x−ik·x Ep − Ek † −i~p·~x+ik·x = d3 x √ ak(±∞)e + √ a (±∞)e 
(2π)3 2Ek 2Ek

k 

where (crucially) we used the fact that ap(±∞) are time independent. The ~x integral gives a delta 
function, which allows us to evaluate the ~k integral, giving Z p−i~p·~ −iEptd3 xe x(i∂t + Ep)φ(x) = 2Epap(±∞)e (2.12.15) 

so we have shown that Z p
d4 ip·x(� + mi xe 2)φ(x) = 2Ep [ap(∞) − ap(−∞)] (2.12.16) 

as desired. We can also take the complex conjugate of this result to get creation operators. 
We wanted pk 

2hf |S|ii = 2 E1 · · · EkhΩ|apk (∞) · · · ap3 (∞)ap 
† 
1 
(−∞)ap 

† 
2 
(−∞)|Ωi 

2= 2 
k p

E1 · · · EkhΩ|T 
� 
apk (∞) · · · ap3 (∞)ap 

† 
1 
(−∞)a † p2 

(−∞) |Ωi (2.12.17) 

where T , the time-ordering symbol, just demands that later times are to the left of earlier times. 
Since ∞ > −∞, we can replace e.g. a(∞) with a(∞) − a(−∞), and conclude that we have derived 
the LSZ formula. 

2.12.2 LSZ is Very General 

As you saw above, our proof used very little information about φ(x). So what did we actually use? 

1. The operator φ(x) is a smooth function of spacetime which can be decomposed into Fourier 
modes. 

2. φ(x) can create and destroy one-particle states at early and late times. 
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That’s really it! 
So the one-particle states that φ(x) creates need not be ‘elementary particles’. For example, say 

we have a field ψp that creates protons and a field ψe that creates electrons. Then we might hope 
that O(x) ≡ ψe(x)ψp(x) acts as 

hΩ|O(x)|pµ hydrogen atomi = Ze−ipx (2.12.18) 

so in other words, O(x) creates and destroys hydrogen atoms. We can use the LSZ formula with 
O(x) in order to look at the scattering amplitudes for hydrogen atoms! Note that 

mhydrogen = mp + me − Ebinding (2.12.19) 

and we would need to put this full mhydrogen into the LSZ formula. I mention this just to make it 
clear that the ‘masses’ appearing in the LSZ formula really must be physical masses, not just some 
abstract parameters that appear in the Lagrangian. 
Of course in this formulation we do not have a ‘hydrogen atom’ field in the Lagrangian – the 

hydrogen atom is created as a composite of a proton and an electron. Similarly, in QCD we have 
many different bound states of quarks and gluons. Thus we see that there do not have to be 
elementary fields in the Lagrangian for each type of particle state in order to calculate the S-Matrix. 

2.12.3 Time Ordering and the Feynman Propagator 

We have seen ‘the propagator’ many times already in this course. Now let us define the Feynman 
propagator, which is the time-ordered version. The motivation is that we want to compute scattering 
amplitudes using LSZ, but for this we need time-ordered correlation functions. The simplest such 
correlator is the 2-point function in a free theory, which is the Feynman propagator. It will be a 
fundamental building block for perturbation theory based on the Feynman rules, which we will 
discuss next. 
First let us look at the Wightman propagator Z Z 

d3k1 d3k2 1 † −ik1x1+ik2x2h0|φ(x1)φ(x2)|0i = √ h0|ak1 a |0ie (2.12.20)
(2π)3 (2π)3 2 E1E2 

k2 

The ak1 a † k2 
gives (2π)3δ3(~k1 − ~k2) so we get Z 

d3k 1 ik·(x2−x1)h0|φ(x1)φ(x2)|0i = e (2.12.21)
(2π)3 2Ek 

Now we want to calculate the time-ordered or Feynman propagator 

h0|T {φ(x1)φ(x2)}|0i = θ(t1 − t2)h0|φ(x1)φ(x2)|0i + θ(t2 − t1)h0|φ(x2)φ(x1)|0i (2.12.22)Z 
d3k 1 � � 

ik·(x2−x1) ik·(x1−x2)= θ(t1 − t2)e + θ(t2 − t1)e 
(2π)3 2Ek 
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Now we can take ~k → −~k in the first term and define τ = t1 − t2 to get Z 
h0|T {φ(x1)φ(x2)}|0i = 

d3k 1 
e −i

~k·(~x1−~x2) 
� 
e iEk τ θ(−τ) + e −iEkτ θ(τ ) 

� 
(2.12.23)

(2π)3 2Ek 

The first and second term here are the retarded and advanced propagators that we saw in OFPT. 
Now we want to prove and then utilize the identity Z ∞−2Ek dω iωτ e iEk τ θ(−τ) + e −iEkτ θ(τ ) = lim e (2.12.24)

�→0 2πi −∞ ω
2 − Ek 

2 + i� 

This is based on a simpler identity Z ∞ dω 1 
iθ(τ) = e −iωτ (2.12.25)

2π ω + i�−∞ 

We can prove this by noting that when τ > 0, we must close the contour in the lower half plane, 
while when τ < 0 we must close it in the upper half plane. In the former case we enclose a pole, 
while in the latter we don’t, so we get 1 when τ > 0 and 0 when τ < 0. Note the factor of i we pick 
up from the contour integral. 
The more complicated version is then based on 

1 1 
= 

ω2 − E2 + i� (ω − (Ek − i�))(ω + (Ek − i�))k � � 
1 1 1 

= − (2.12.26)
2Ek ω − Ek + i� ω + Ek + i� 

where we used 2Ek� ∼ � since Ek > 0 and all that matters is the sign of �, since we are taking it to 
zero at the end of the calculation. 
Going over the algebra and putting it together, we have Z 

d4k i µ µikµ(x −x1 2 )DF (x1, x2) = h0|T {φ(x1)φ(x2)}|0i = e (2.12.27)
(2πi)4 k2 − m2 + i� 

which is the Feynman propagator. Note how the time-ordering theta functions, once they are Fourier 
represented as above, make the propagator manifestly Lorentz invariant, with a pole at k2 = m2 , as 
in the LSZ formula. 
Some points that are worth noting: 

• In this form of the propagator, k0 is an integration variable – it is not set to E~k – and so the 
propagator can be off-shell, representing ‘virtual particle’ propagation. 

• There’s a factor of i from the contour integral, even though the φ field is real. 

• The i� is just a reminder of the ‘pole prescription’, that is, where the pole of k2 − m2 sits with 
respect to the contour of integration over purely real kµ. It comes from the time ordering. 
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• Ignoring the i�, the Feynman propagator looks just like the classical propagator for the Klein-
Gordon equation, the object we’ve called � 

1 . That’s correct – the Feynman propagator just 
computes classical propagation in a complicated way. 

Recall that the Feynman propagator was, in effect, what we got in OFPT by summing up retarded 
and advanced contributions, which arise universally. 

2.13 Feynman Rules as a Generalization of Classical Physics 

We have seen that we can compute scattering amplitudes from time-ordered correlation functions, 
and we already computed the simplest example of such a correlator, namely the Feynman propagator. 
Now it’s time to learn how to compute time-ordered correlators in perturbation theory using the 
Feynman rules. 

2.13.1 Derivation from the Lagrangian, as a Generalization of Classical Rules 

We saw above how to derive Feynman rules for classical perturbation theory. This first derivation of 
the quantum Feynman rules will be a direct generalization of those methods. 
In the classical case, we had an action Z � � 

S = d4 x 
1
(∂φ)2 − 

1 
m 2φ2 − V (φ) (2.13.1)

2 2 

and we used perturbative methods to solve the differential equation 

∂V (φ)
(� + m 2)φ = −J − (2.13.2)

∂φ 

by taking advantage of the Green’s function �+
1 
m2 . 

The full quantum mechanical operator φ(x) also satisfies this Euler-Lagrange equation. But it 
also satisfies the canonical commutation relations 

[φ(t, ~x), φ̇(t, ~y)] = i~δ3(~x − ~y) (2.13.3) 

where I put in a factor of ~ to remind you that this commutator vanishes in the classical theory. 
Now let’s derive the Schwinger-Dyson equations, which apply the Euler-Lagrange equation directly 
to time-ordered correlators in QFT. 
The idea is extremely simple. Let’s just compute the derivative as it applies to a time ordered 

correlator, in order to show that 

(�x + m 2)hΩ|T {φ(x)φ(y)}|Ωi = hΩ|T {(�x + m 2)φ(x)φ(y)}|Ωi − i~δ4(x − y) (2.13.4) 

in the full interacting theory. The last term wouldn’t be present in the classical theory, as it comes 
from a commutator. 
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Most of the derivatives just pass through into the correlator. The only issue is that the time 
derivative does not commute with the T (time-ordering) symbol. So we should carefully compute 

∂t1 hΩ|T {φ(x1)φ(x2)}|Ωi = ∂t1 [θ(t1 − t2)h0|φ(x1)φ(x2)|0i + θ(t2 − t1)h0|φ(x2)φ(x1)|0i] 
= hΩ|T {∂t1 φ(x1)φ(x2)}|Ωi + δ(t1 − t2)hΩ|[φ(x1), φ(x2)]|Ωi 
= hΩ|T {∂t1 φ(x1)φ(x2)}|Ωi (2.13.5) 

But now if we take another time derivative, we get 

∂2 hΩ|T {φ(x1)φ(x2)}|Ωi = hΩ|T {∂2 φ(x1)φ(x2)}|Ωi + δ(t1 − t2)hΩ|[∂tφ(x1), φ(x2)]|Ωit1 t1 

= hΩ|T {∂2 φ(x1)φ(x2)}|Ωi − i~δ4(x1 − x2) (2.13.6)t1 

via the canonical commutation relations. Note that in a free theory this 2-point correlator is just 
the Feynman propagator, and so we see that 

(� + m 2)DF (x, y) = −i~δ4(x − y) (2.13.7) 

as expected, since (� + m2)φ = 0 in a free theory (but this doesn’t hold in an interacting theory, 
where there are quantum corrections to the free 2-point correlator!). 

This method generalizes (as you should check) to multipoint correlators; introducing the notation 
h· · ·i = hΩ|T {· · · }|Ωi, we find 

�xhφ(x)φ(x1) · · · φ(xn)i = h�xφ(x)φ(x1) · · · φ(xn)i (2.13.8)X 
−i~ δ4(x − xj )hφ(x1) · · · φ(xj−1)φ(xj+1) · · · φ(xn)i 

j 

We can immediately use the EoM �φ = −∂V to write this as
∂φ � � 

∂V (φ(x))
�xhφ(x)φ(x1) · · · φ(xn)i = − φ(x1) · · · φ(xn) (2.13.9)

∂φ(x)X 
−i~ δ4(x − xj )hφ(x1) · · · φ(xj−1)φ(xj+1) · · · φ(xn)i 

j 

These are the Schwinger-Dyson equations. The delta function terms are called contact interactions, 
they make the difference between the classical and quantum theories. 
Now we can apply the Schwinger-Dyson equations to compute time-ordered correlators in 

perturbation theory. 
For efficiency we define 

δij ≡ δ4(xi − xj ) (2.13.10) 

Dij = Dji ≡ DF (xi, xj ) (2.13.11) 

so for example 

�xDx1 = −iδx1 (2.13.12) 
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demonstrates that the Feynman propagator is a Green’s function. 
Now let us use the Schwinger-Dyson equations to expand a simple correlator in perturbation 

theory. But first, in a free theory, note that Z 4 

hφ1φ2ifree = xDx1δx2 = D12 (2.13.13) 

and for a 4-point correlator we get Z 
hφ1φ2φ3φ4i = i d4xDx1�xhφxφ2φ3φ4i (2.13.14) Z 

= d4xDx1 (δx2hφ3φ4i + δx3hφ2φ4i + δx4hφ2φ3i) 

Evaluating using the Feynman propagator for these 2-pt functions gives 

hφ1φ2φ3φ4i = D12D34 + D13D24 + D14D23 (2.13.15) 

which has a diagrammatic expansion, where Dij are lines and the xi are points. 
Now let’s add interactions. We’ll use a Lagrangian 

1 g
L = (∂µφ)

2 + φ3 (2.13.16)
2 3! 

and we are imagining that g is small, so that we will treat it perturbatively. We can write Z Z Z 
hφ1φ2i = d4xδx1hφxφ2i = i d4 x(�xDx1)hφxφ2i = i d4xDx1�xhφxφ2i (2.13.17) 

and this is useful because now we can apply what we learned above. Applying the S-D equations to 
the 2-pt function in the interacting theory givesZ 

hφ1φ2i = i d4xD1x (h�xφxφ2i − iδx2) Z �� � � 
∂V (φx) 

= i d4xD1x − φ2 − iδx2
∂φxZ � � 

= i d4xD1x 
g hφ2 φ2i − iδx2 (2.13.18)
2 x 

What we have seen is that applying the S-D equations gives us terms that are one higher order in 
perturbation theory in g. After applying the S-D equations k times, we can then stop and evaluate 
using the free field correlators. Note, however, that if we stop with the result above, it will vanish, 
since hφ2 

xφ2i = 0 in a free theory. 
So let’s apply S-D once more. We find Z 

hφ1φ2i = D12 − 
g

d4xd4yDx1Dy2�yhφ2 φyi 
2 
2 Z x Z 

= D12 − 
g

d4xd4yDx1Dy2hφx 
2 φy 
2i + ig d4xD1xD2xhφxi (2.13.19)

4 
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If we are only interested in working to order g2 , then we need only expand the hφxi term once more, 
giving Z Z 

hφxi = i d4yDxy�yhφyi = i
g 

d4yDxyhφy 
2i (2.13.20)

2 

We can evaluate all that remains using the free field correlators, giving Z � � 
1 1 12 D2hφ1φ2i = D12 − g d4xd4 y D1x xyDy2 + D1xDxxDyyDy2 + D1xD2xDxyDyy (2.13.21)
2 4 2 

These can be displayed as Feynman diagrams. 
With this, and quite a bit of inspiration, we can guess the Feynman rules. 

1. Draw a point for each xi in the correlator, and line coming from that point. 

2. A line can either connect to an existing point, giving a Feynman propagator, or it can split 
into 2 lines at a new point x. A split gives a term proportional to −iV 0[φ], and the new point 
x gets integrated over. 

3. At a given order in perturbation theory, we just write down all diagrams with all lines 
contracted, and add them up. 

These are the Feynman rules in position space; soon we’ll derive an equivalent version in momentum 
space, which allow for a more direct computation of scattering amplitudes. 
We write interactions as 

g λ κ 
φ3 φn φ3φ5φ2 , , 1 2 3 (2.13.22)

3! n! 3!5!2! 

because the factorials tend to get canceled. The n of n! is canceled by the derivative of V 0[φ], and 
then the (n − 1)! will be canceled (generically) by different possible permutations of the lines coming 
out of a vertex. Occassionally these factors aren’t fully canceled, due to ‘symmetry factors’ of the 
diagram, which is what actually happened in our example above. Boo hoo. Symmetry factors rarely 
appear in relevant physical theories, but they’re something to be aware of. 

2.14 The Hamiltonian Formalism for Perturbation Theory 

Now let us derive the Feynman rules in what’s probably the most standard, systematic way. There’s 
still one more derivation possible, the Path Integral derivation, but we won’t cover it until much 
later in the semester. 
The first step is to write the Hamiltonian in perturbation theory as 

H = H0 + V (2.14.1) 
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where H0 can be solved exactly, and for us it will always be the Hamiltonian for a free QFT. The 
interaction might be e.g. Z 

g
d3 φ3V (t) = x (2.14.2)

3! 

as we studied before using the Schwinger-Dyson equations. This is all in the Heisenberg Picture. 
Note that in the Heisenberg picture, the operator H is time independent, in that 

i∂tH = [H, H] = 0 (2.14.3) 

so it is the same at all times. 
Ultimately we would like to calculate time-ordered correlation functions of Heisenberg Picture 

fields. However, to facilitate computation in perturbation theory in QFT, we must switch to a 
different scheme, where both the fields and the states evolve, but in different ways. This is called 
the Interaction Picture, where we make the choice that fields φ0 evolve according to H0. We label 
the interaction picture fields as φ0(t, ~x) since they are identical to the free fields. 
Why? Because the best we can do, in perturbation theory, is evaluated various correlators with 

the free fields φ0(t, ~x), so we need to express all computations in terms of their matrix elements. In 
particular 

• Heisenberg picture operators φ(t, ~x) must be expressed in terms of φ0(t, ~x) 

• The exact vacuum state |Ωi must be related to the free vacuum |0i 

• We would like the end result to be manifestly Lorentz invariant 

We can do all of this using the interaction picture fields. 

2.14.1 Interaction Picture Formalism – Heisenberg Fields from Free Fields 

In the Hamiltonian formalism, and in the Heisenberg picture, where the exact vacuum |Ωi is 
time-independent, but operators depend on time... the field satisfies the exact EoM 

−i∂tφ = [H, φ] (2.14.4) 

This can be given a formal solution 

φ(t, ~x) = S†(t, t0)φ(t0, ~x)S(t, t0) (2.14.5) 

where S is the time evolution operator in the Heisenberg picture, or the S-Matrix, satisfying 

i∂tS(t, t0) = H(t)S(t, t0), =⇒ −i∂tS†(t, t0) = S†(t, t0)H(t) (2.14.6) 

We can see directly that this solves the EoM for φ. 
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We can write the full Heisenberg picture fields in terms of the interaction picture fields as 

φ(t, ~x) = S†(t, t0)e 
−iH0(t−t0)φ0(t, ~x)e 

iH0(t−t0)S(t, t0) 

≡ U †(t, t0)φ0(t, ~x)U(t, t0) (2.14.7) 

so that U(t, t0) = eiH0(t−t0)S(t, t0) relates the Heisenberg picture fields to the free fields at the same 
time t. Note that the placeholder t0 is a fixed time where all pictures (Heisenberg, Schrodinger, 
Interaction) coincide. 
It’s simple enough to write U in the Heisenberg picture, this is 

iH0(t2−t0) −iH(t2−t1) −iH0(t1−t0)U(t2, t1) = e e e (2.14.8) 

but we would like an expression in the interaction picture, ie in terms of the φ0 fields. 
To do this, we can derive a differential equation for U , and then solve it. Note that � � 

iH0(t−t0)i∂tU(t, t0) = i ∂te S(t, t0) + e iH0(t−t0)i∂tS(t, t0) 
iH0(t−t0)(H − H0)e 

−iH0(t−t0)= e e iH0(t−t0)S(t, t0) 

= VI (t)U(t, t0) (2.14.9) 

iH0(t−t0)V (t0)ewhere VI (t) = e −iH0(t−t0) is, by definition, the interaction picture potential. Since at 
the time t0 all of the ‘pictures’ are identical, we have that 

VI (t) = V [φ0(t, ~x)] (2.14.10) 

so for example for a φ3 potential, we have �Z � Z 
iH0(t−t0) −iH0(t−t0)VI (t) = e d3 x

g
φ0(t0, ~x)

3 e = d3 x
g
φ0(t, ~x)

3 (2.14.11)
3! 3! 

since H0 is Hermitian and so eiH0(t−t0) is Unitary. 
If everything commuted we would write 

R Rt t−i Hdt0 −i V (t0)dt0 
S ∼ e t0 =⇒ U ∼ e t0 (2.14.12) 

but we cannot assume that these operators commute; specifically we cannot assume that V (t1) and 
V (t2) commute. But the right answer is similar, it is � � Z t �� 

U(t, t0) = T exp −i dt0VI (t
0) (2.14.13) 

t0 

where T is the time ordering symbol. This is defined via the series expansion Z t 1 
Z t Z t 

U(t, t0) = 1 − i dt0VI (t
0) − dt0 dt00T {VI (t0)VI (t00)} + · · · (2.14.14)

2t0 t0 t0 
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and is often called a Dyson series. 
To see that it solves the differential equation, note that we can instead write an integral equation Z t 

U(t, t0) = 1 − i dt0V (t0)U(t0, t0) (2.14.15) 
t0 

which is automatically satisfied if we differentiate. Now we can just iterate to see that " #Z Zt t0 

0) dt00V (t00)U(t00U = 1 − i dt0V (t 1 − i , t0) (2.14.16) 
t0 t0 

The last term is clearly time ordered, so we can re-write Z Z t0 Z Zt t t 

dt0 dt00VI (t
0)VI (t

00) = 
1 

dt0 dt00T {VI (t0)VI (t00)} (2.14.17)
2t0 t0 t0 t0 

Proceeding in this way to higher orders gives the desired solution. 
In general, it’s useful notationally to write 

U21 = U(t2, t1) = U †(t1, t2) = U−1(t1, t2) (2.14.18) 

since U is unitary. We also have that 

U32U21 = U31 (2.14.19) 

where we always have later times on the left. We can use this to write the Heisenberg picture field 
at time t1 as 

φ(t1, ~x1) = U10 
† φ0(t1, ~x1)U10 = U01φ0(x1)U10 (2.14.20) 

in terms of the interaction picture field at t1. 

2.14.2 Exact Vacuum and Heisenberg Correlators in the Interaction Picture 

Now that we have that formalism available, we need to figure out how to write the exact vacuum 
|Ωi in the interaction picture. 
We can get |Ωi from the following argument, based on the fact that it’s the lowest energy state. 

Let’s imagine evolving X 
−iH(T +t0)|0i = e −iE0(T +t0)|ΩihΩ|0i + −iEn(T +t0)|nihn|0ie e (2.14.21) 

n6=0 

Now since |Ωi is the lowest energy state, if we send 

T →∞(1 − i�) (2.14.22) 

62 



then only Ω will survive, so we can write the formal expression 

|Ωi = Ni lim e −iH(t0−(−T ))e −iH0(−T −t0)|0i 
T →∞(1−i�) 

= Ni [U(t0, −T )|0i] (2.14.23) 

where Ni is a normalization related to hΩ|0i which will drop out of all our computations. We obtain 
a similar relation for hΩ|. 
The book gives an alternative argument, based on the idea that since at t0 the Heisenberg and 

interaction picture annihilation operators are the same, the states 

lim e iH0(t−t0)|0i ∝ lim S(t, t0)|Ωi (2.14.24) 
t→−∞ t→−∞ 

and the proportionality constant is just a normalization. 
Now we can compute the Heisenberg picture correlators that we wanted using the interaction 

picture. Let’s assume for a moment that t1 > t2 > · · · > tn, so that 

hΩ|T {φ1(x1) · · · φn(xn)}|Ωi = hΩ|φ1(x1) · · · φn(xn)|Ωi (2.14.25) 

Then we can rewrite this as 

= NiNf h0|U∞0U01φ0(x1)U10U02φ0(x2)U20U03 · · · U0nφ0(xn)Un0Un−∞|0i 
= NiNf h0|U∞1φ0(x1)U12φ0(x2)U23 · · · Un−1,nφ0(xn)Un−∞|0i (2.14.26) 

Finally we can just write this using the time ordering symbol as 

h0|T {φ0(x1) · · · φ0(xn)U∞,−∞} |0i hΩ|T {φ(x1) · · · φ(xn)}|Ωi = (2.14.27)
h0|U∞,−∞|0i 

where in the numerator the time ordering symbol insists that both the φ(xi) and the U factors must 
be time ordered together. 
Let’s note something simple, namely that � � Z ∞ �� 

U∞,−∞ = T exp −i dt0VI (t
0) � � Z ∞−∞ �� 

d4 = T exp i xLInt(x) (2.14.28) 
−∞ 

where 

LInt = L − Lfree (2.14.29) 

because we derived the interaction V from the Lagrangian. So we can write n oR ∞i d4xLInt(x)h0|T φ0(x1) · · · φ0(xn)e −∞ |0i 
hΩ|T {φ(x1) · · · φ(xn)}|Ωi = R ∞ (2.14.30) 

h0|T {e i −∞ d
4xLInt(x)}|0i 

Finally, we have a manifestly Lorentz invariant result! 
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2.15 Feynman Rules from the Hamiltonian Formalism 

Now that we have a beautiful Lorentz invariant formula for the time ordered product, we just expand 
in LInt. So for example in a theory with a φ3 interaction, we have the computation n oR ∞i d4xLInt(x)h0|T φ0(x1)φ0(x2)e −∞ |0i = h0|T {φ0(x1)φ0(x2)} |0i Z 

d4+i
g 

xh0|T 
� 
φ0(x1)φ0(x2)φ

3(x) |0i 
3! 
1 � g �2 

Z � 
+ i d4xd4 yh0|T φ0(x1)φ0(x2)φ

3(x)φ3(y) |0i + · · · (2.15.1)
2 3! 

So how do we evaluate this? 

2.15.1 Evaluating Vacuum Expectation Values with Wick’s Theorem 

It’s helpful to write φ0 = φ+ + φ− where Z Z 
d3p 1 d3p 1† ipx −ipxφ+ = p ape , φ− = p ape (2.15.2)
(2π)3 2Ep (2π)3 2Ep 

because then 

φ−|0i = 0, h0|φ+ = 0 (2.15.3) 

Then when we compute � 
h0|T φ0(x1)φ0(x2)φ

3(x)φ3(y) |0i� 
= h0|T [φ+(x1) + φ−(x1)][φ+(x2) + φ−(x2)][φ+(x) + φ−(x)]

3[φ+(y) + φ−(y)]
3 |0i 

we must have exactly 4 of the φ+ and φ− to get a non-vanishing result. 
Let’s look at the case of a 2-point correlator, where we assume x0 > y0: 

T {φ0(x)φ0(y)} = φ−(x)φ−(y) + φ+(x)φ−(y) + φ−(x)φ+(y) + φ+(x)φ+(y) 

= φ−(x)φ−(y) + φ+(x)φ−(y) + φ+(y)φ−(x) + φ+(x)φ+(y) 

+[φ−(x), φ+(y)] (2.15.4) 

The expectation value of the first line is 0, because it has been normal ordered, meaning that we 
have moved all of the annihilation operators to the right of all the creation operators, introducing a 
bunch of commutators along the way. We conventionally denote the normal ordered version of a 
product of operators as 

: φ(x1)φ(x2) · · · φ(xn) : (2.15.5) 

These have vanishing vacuum expectation values, so it’s the contraction piece that’s interesting. 
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Each pair contraction of φ0 with φ0 in a time ordered correlator produces 

θ(x0 − y0)[φ−(x), φ+(y)] + θ(y0 − x0)[φ−(y), φ+(x)] (2.15.6) 

which is just a Feynman propagator 

DF (x1, x2) = h0|T {φ0(x1)φ0(x2)}|0i (2.15.7) 

which, of course, we already know how to evaluate. 
There is a simple result called Wick’s theorem that says that 

T {φ0(x1)φ0(x2) · · · φ(xn)} = : φ0(x1) · · · φ(xn) + sum of all contractions of pairs : (2.15.8) 

where by all possible contractions we mean terms with 1 contracted pair, terms with 2 contracted 
pairs, etc until as many pairs as possible are contracted. For example this means 

T {φ1φ2φ3φ4} = : φ1φ2φ3φ4 + D12φ3φ4 + D13φ2φ4 + D14φ2φ3 

+D23φ1φ4 + D24φ1φ3 + D34φ1φ2 

+D12D34 + D13D24 + D14D23 : (2.15.9) 

We already proved it for n = 2. To prove it in general, one proceeds by induction. As usual in 
any proof involving the time ordering symbol T , we assume that t1 > t2 > · · · > tn and then simply 
note that the result will be true for any ordering, since WLOG we could have assumed that ordering 
from the beginning. So we have 

T {φ1 · · · φn} = φ1 · · · φn 

= (φ+1 + φ1 
−) : φ2 · · · φn + (n − 1) contractions : (2.15.10) 

Now the φ+1 term is already in normal order, so we don’t have to do anything with it. To normal 
order φ− 

1 we need to move it through past all of the other operators. Thus every term with any φi 
+ 

can be contracted with φ− 
1 as it passes through. But this gives all possible contractions of the n − 1 

φi contracted in all possible ways with φ1. So we’ve demonstrated the statement with n operators, 
and by induction we have Wick’s theorem. 
With Wick’s theorem, we have an extremely systematic way to evaluate our time-ordered 

correlators. When we evaluate n oR ∞i d4xLInt(x)h0|T φ0(x1) · · · φ0(xn)e −∞ |0i (2.15.11) 

we just expand the exponential to some given order, giving some number of powers of the coupling, 
and a proliferation of fields. We then evaluate the vacuum expectation value using Wicks theorem, 
providing a propagator Dxy for each contraction, integrating over interactions points, and labeling 
these points with the coupling. 
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2.15.2 Feynman Diagrams, Systematically 

But to get the Feynman rules right in detail, we need to understand some additional subtleties. For 
example � � � 
h0|T φ0(x1)φ0(x2)φ

3(x)φ3(y) |0i = D12 6D
3 + 32DxxDxyDyy (2.15.12)0 0 xy 

D2+18D1xD2xDxyDyy + 9D1xD2yDxxDyy + 18D1xD2y xy 

+18D1y + 9D1y + 18D1y D2D2yDxyDxx D2xDxxDyy D2x xy 

We need to understand the combinatorial factors multiplying each term, and the special disconnected 
or ‘bubble diagrams’ on the first line. 
We choose interactions as, for example 

λn 
φn (2.15.13) 

n! 

because for each interaction, generically there are n! different permutations among the possible 
contractions. 
The only exceptions come from ‘symmetry factors’, and in fact every term in our example above 

has these factors. These reduce the coefficient of the term because the 1/n! is incompletely canceled. 
First let’s consider a diagram without a symmetry factor, namely � 

h0|T φ0(x1)φ0(x2)φ0(x3)φ0
3(x)φ30(y)φ

3
0(z) |0i ⊃ (3!)3D1xD2yD3zDxyDyzDzx (2.15.14) 

Here we have 3! ways of pairing up each of the x, y, and z triplets of fields. So there is no symmetry 
factor here, because the 1/(3!)3 has been completely canceled. 
Next consider 

9DxxDxyDyy = h0|φ−(x)φ−(x)φ+(x)φ−(y)φ+(y)φ+(y)|0i (2.15.15) 

Here we have 3 choices of the φ0(x) and three choices of the φ0(y) to contract, but once we’ve made 
those choices there are no more possibilities. This means that the symmetry factor is (3!)2/9 = 4. 
We get a factor of 2 from Dxx and from Dxy. 
Finally consider 

6D3 = h0|φ−(x)φ−(x)φ−(x)φ+(y)φ+(y)φ+(y)|0i (2.15.16)xy 

Here we have 3 × 2 × 1 ways of pairing/contracting the φ(x) with the φ(y), where contractions come 
from commutators. Thus the symmetry factor here is 1/(3!). 
There is a general, simple, diagrammatic rule. If, with the points fixed, we can perform an 

operation that exchanges identical propagators with identical endpoints, then there is a symmetry 
factor associated with the number of such exchanges. 
In most physical theories, there are no symmetry factors, and so the n! from the definition of the 

interaction will be completely canceled. 
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Next let us eliminate that pesky factor of R ∞ 

h0|T {e i −∞ d
4xLInt(x)}|0i (2.15.17) 

from the denominator in our formula for the exact time ordered correlator. If we evaluate it in our 
pet theory, we get Z � g �2R ∞ 

h0|T {e i −∞ d
4xLInt(x)}|0i = h0|0i + d4xd4 y i h0|T {φ3(x)φ3(y)}|0i (2.15.18)0 03!Z � �4g

+ d4wd4xd4yd4 z i h0|T {φ3(w)φ3(x)φ3(y)φ3(z)}|0i + · · · 0 0 0 03! 

If we expand this, we get lots and lots of ‘bubble diagrams’. 
Note that every single bubble diagram that we get here also arises from n oR ∞ 

−∞ xLInt(x)h0|T φ0(x1) · · · φ0(xn)e i d4 |0i (2.15.19) 

if we expand the exponential and decide not to contract any of the terms from it with the external 
φ(xi) in the correlator. To be precise, it contains some terms with connected components that do not 
involve any of the external points xi. These terms always factor out from the rest of the graph, and 
cancel with the denominator term. Thus we conclude n oR ∞i −∞ xLInt(x)h0|T φ0(x1) · · · φ0(xn)e d4 |0i 

hΩ|T {φ(x1) · · · φ(xn)}|Ωi = R ∞ (2.15.20) 
h0|T {e i −∞ d

4xLInt(x)}|0i n oR ∞i −∞ d
4xLInt(x)= h0|T φ0(x1) · · · φ0(xn)e |0ino bubbles 

This simplifies our task significantly. 
Now we have provided a systematic derivation of the Feynman rules. One must draw all diagrams, 

associate points with interactions and lines with propagators, and divide by the symmetry factor, 
and then take the sum. This gives the time ordered correlation function. 

2.15.3 Momentum Space Rules and the S-Matrix 

As a final task, let us transform the rules we have derived to momentum space. We will see that 
this makes it trivial to write down rules for the S-Matrix itself, using the LSZ formula, and not just 
for the time-ordered correlation functions. 
Let’s consider a simple example like n oR ∞i −∞ d

4xLInt(x)h0|T φ0(x1)φ0(x2)φ0(x3)e |0i = 0 + igD1xD2xD3x + · · · (2.15.21) 

It’s natural to write each propagator directly in momentum space as Z 
d4k i ik·(x−y)Dxy = e (2.15.22)
(2π)4 k2 − m2 + i� 
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Thus to transform the correlation function to momentum space we must computeZ Z 
−i(p1x1+p2x2+p3x3) ik1(x−x1)+ik2(x−x2)+ik3(x−x3)ig d4 x1d

4 x2d
4 x3e d4 xe Z 

d4k1 

(2π)4 

d4k2 

(2π)4 

d4k3 

(2π)4 k2 
1 

i 
− m2 + i� k2 

2 

i 
− m2 + i� k2 

3 

i 
− m2 + i� 

(2.15.23) 

The integral over x yields a factor of 

(2π)4δ4(k1 + k2 + k3) (2.15.24) 

while the integral over xi for i = 1, 2, 3 yields 

(2π)4δ4(pi − ki) (2.15.25) 

This enables us to immediately do the ki integrals, giving 

hφ0(p1)φ0(p2)φ0(p3)i = (2π)4δ4(p1 + p2 + p3)(ig) 2p1 

i 
2− m 2p2 

i 
2− m 2p3 

i 
2− m

(2.15.26) 

What happened? Each propagator gave us a factor of 

i 
2p2 − m

(2.15.27) 

and the (each) internal vertex gave us a 4-momentum conserving delta function. Also, we obtained 
an overall factor of !X 

(2π)4δ4 pi (2.15.28) 
i 

which explains why we defined !X 
S = 1 + i(2π)4δ4 pi M(pi) (2.15.29) 

i 

when we studied decay rates and cross sections. These are general features, and so if we are interested 
in scattering we can simply work with M. 
Furthermore, note that each external propagator contributes exactly 

i(p 2 − m 2)−1 = i(� + m 2)−1 (2.15.30) 

so the external propagators are exactly cancelled by the LSZ prescription, which instructs us to 
multiply by 

−i(p 2 − m 2) = −i(� + m 2) (2.15.31) 

This means that all of those funny factors in LSZ simply cancel the external propagators when we 
use the Feynman rules to compute scattering amplitudes! 
So the rules are 
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• Momentum must be assigned to each line, and it must be conserved at each vertex. 

• Propagators get factors of 

i 
Dp = (2.15.32) 

p2 − m2 + i� 

External propagators are canceled in the S-Matrix by the LSZ formula, although they remain 
in time-ordered correlators. 

• Vertices get their usual factors of i times the coupling, e.g. ig in our example. 

• All internal momenta must be integrated over. For tree diagrams they will all be determined 
by external momenta, so the integrals will be evaluated on delta functions, rendering them 
trivial. But for any diagrams with internal loops there will be momentum integrals left over, 
from which quantum effects arise. 

2.15.4 Connected vs Disconnected Graphs 

It’s worth noting that some diagrams for a given scattering amplitude are connected, while others 
break up into multiple disconnected pieces. The latter have physical effects, but they are always 
simply given as the product of some connected graphs (obviously), and moreover, they cannot 
interfere with the connected graphs because they have extra delta function singularities. So for most 
of the course we will tend to focus explicitly on the connected graphs. 

2.15.5 Some Examples 

Let us illustrate all this formalism with some examples. 
First we can consider the classic example of 

1 m2 λnL = (∂φ)2 − φ2 − φn (2.15.33)
2 2 n! 

Here we just have vertices 

−iλn (2.15.34) 

and the usual propagators. In particular, with λ3 = −g, we can compute the 2-to-2 scattering 
amplitude 

i i i M = ig ig + ig ig + ig ig
2 2 2(p1 + p2)2 − m (p1 − p3)2 − m (p1 − p4)2 − m 

−ig2 −ig2 −ig2 

= + + (2.15.35) 
s − m2 2 2t − m u − m 
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where s = (p1 + p2)2 etc. We can use this to compute an actual scattering cross section from 

dσ 
dΩ 

= 
1 

64π2E2 
CM 

|M|2 

= 
4g

64π2E2 
CM 

1 
2s − m
+ 

1 
2t − m
+ 

1 
2u − m

2 

(2.15.36) 

This is a true non-trivial differential cross section. 
Now let us consider a theory such as 

L = 
1 
(∂φ)2 − 
2

1 1 
(∂φ)4 

(4!) Λ4 
(2.15.37) 

What about the derivatives? In position space we will get derivatives of propagators from 
computations like 

hφ(x1)φ(x2)φ(x3)φ(x4)(∂φ(x))4i = ∂µD1x∂
µD2x∂ν D3x∂

ν D4x + perms (2.15.38) 

When we transform to momentum space, these simply become factors if ipµ, or more specifically 

(ip1 · ip2)(ip3 · ip4) + (ip1 · ip3)(ip2 · ip4) + (ip1 · ip4)(ip2 · ip3) (2.15.39) 

where here I have taken all momenta incoming, so p1 + p2 + p3 + p4 = 0. This means that derivative 
interactions lead to Feynman rules where ∂ → ipµ applied to the relevant field. Note that there is 
an important sign issue here, because Z 

d4k i ik·(x−y)Dxy = e (2.15.40)
(2π)4 k2 − m2 + i� 

so that 

∂xDxy = −∂xDyx (2.15.41) 

This is a consequence of the physical fact that 

−ipx † ipxφ(p) ∝ ape + ape (2.15.42) 

and so the sign of the momentum flips depending on whether we create or destroy a particle. 
If we take the simple example of a massless theory, so (p1 + p2)2 = 2p1 · p2 = s, then we can write 

the result as 

1 � � 
2 2 2M = s + t + u (2.15.43)

4Λ4 

for the scattering amplitude in such a theory. This means the cross section is 

dσ 1 
= |M|2 

dΩ 64π2E2 
CM 

1 22 2 2 = s + t + u (2.15.44)
1024π2E2 Λ4 

CM 
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Now let’s compare this interaction to the one above. 
Note that in the gφ3 example, we had explicit propagators with poles. Those poles are physical 

resonances, which can be experimentally observed, and are necessary for long range forces. In 
contrast, the derivative interaction above vanishes at small s, t, u, and does not give rise to long 
range forces. Instead it is a ‘contact interaction’, or a very short range force. 
But we see that at large energies the cross section from the derivative interaction grows rapidly, 

as expected from the dimension of the operator 

1 
(∂φ)4 

Λ4 
(2.15.45) 

which is unimportant at low energies, but large at high energies. 
Finally, it’s worth taking this further – what if we had a series of interactions like 

1 1 
(∂φ)4 + [(∂µ∂ν φ)(∂

µ∂ν φ)]2 + · · · 
Λ4 Λ8 

(2.15.46) 

with more and more derivatives? In this case the amplitude would be of order � �4 � �8
E E 

+ + · · · (2.15.47)
Λ Λ 

0 

So in the limit that E � Λ the higher order terms are negligible, but when E & Λ the expansion 
breaks down! In other words, at the short-distance, high-energy cutoff scale Λ our effective field 
theory description fails. Note that in a theory with only the interaction 

gφ3 (2.15.48) 

it appears (and is true in d ≤ 6 dimensions) that the theory makes sense up to arbitrarily high 
energies. So maybe it does. 
As a final and more complicated example, we can use an 

Lint = λφ1∂µφ2∂
µφ3 (2.15.49) 

Since all fields are different we don’t include any combinatorial factors. 
0If we have 12 → 3 → 12 with k3 then we get= p1 + p2 = p1 + p2 

i 
(iλ)2(−ipµ 

2 )(ik3µ 

(p1 · p2 + (p2)
2)(p0 

(ipν 
2 

1 

iM −)( ik )3ν 

00 
2 + (p2)

2) 

)= 
k2 
3 

· p 
(p1 + p2)2 

−iλ2 (2.15.50)= 

One can check that integrating by parts does not alter this result, due to momentum conservation 
at each vertex. 
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2.16 Particles with Spin 1 

Particles are defined as states that transform under irreducible, unitary representations of the 
Poincaré group. 
Irreducibility means that no subset of the states transforms only amongst themselves, in any 

basis. Unitarity means that 

|ψi → P|ψi with hψ1|ψ2i = hψ1|P†P|ψ2i (2.16.1) 

where P is some symmetry (Lorentz, in this case) transformation. This is important for the 
probabilitic interpretation of quantum mechanics. 
We know some obvious representations of the Poincaré group, such as scalars, vectors, tensors, etc, 

but all but scalars are not unitary. In fact, there are no finite dimensional unitary representations of 
the Poincaré group. Let us see this in some simple examples, where unitarity and Lorentz invariance 
clash. 

2.16.1 Unitarity vs Lorentz Invariance 

Let’s try to use a 4-vector as a quantum mechanical state. This means we have 

|ψi = c0|V0i + c1|V1i + c2|V2i + c3|V3i (2.16.2) 

and the norm of the state is 

hψ|ψi = |c0|2 + |c1|2 + |c2|2 + |c3|2 > 0 (2.16.3) 

The problem here is that this isn’t just cµcµ, which has both + and − signs, since the norm has to 
be positive definite. But this means that it isn’t Lorentz invariant, so for example if we start with 

|ψi = |V0i (2.16.4) 

then under a boost, we get 

|ψβ i = cosh β|V0i + sinh β|V1i (2.16.5) 

with a norm 

hψβ|ψβ i = cosh2 β + sinh2 β 6= 1 (2.16.6) 

This is because the boost matrix is not unitary. 
If we modify the norm to be Lorentz invariant, so that 

µhψ|ψi = cµc = |c0|2 − |c1|2 − |c2|2 − |c3|2 (2.16.7) 

then we inevitably have both positive and negative norm states, and we lose a sensible probabilistic 
interpretation. 
There are two things we can fix 
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• It turns out that a four vector Vµ containts both a spin 0 and a spin 1 part, with 1 and 3 
degrees of freedom, respectively, so that can help with the norm. 

• We can also improve this example by choosing a basis of states that is not independent of 
spacetime, but instead has polarization vectors �µ(p), so that the basis of states depends on 
the momentum of the particles. 

This will give the infinite dimensional representations we need. But one of the easiest ways to 
discover what we need is to just study free fields with spin. 

2.16.2 Massive Spin 1 Particles 

Even at the classical level, we can demand both Poincaré invariance and positivity of energy. So we 
can start by studying field theories on these terms. 
We already know that our free scalar field theory gives us positive energies, and describes scalar 

(spinless) particles, which are bosons. Let’s move on to vectors Aµ, which are the simplest we can 
study. The simplest thing one might guess is 

L = − 
1 
∂ν Aµ∂

ν Aµ +
1 
m 2AµA

µ (2.16.8)
2 2 

The equations of motion are 

(� + m 2)Aµ = 0 (2.16.9) 

In fact this is just 4 copies of the original scalar equation of motion! We have just found 4 decoupled 
scalars, or the representation 1 ⊕ 1 ⊕ 1 ⊕ 1. 
Note that the energy density of this theory is actually sick, because it is h i h i 

~E = − 
1
(∂tA0)

2 + (r ~ A0)
2 + m 2A20 +

1 
(∂tAi)

2 + (rAi)2 + m 2A2 
i (2.16.10)

2 2 

Thus this theory is not physically sensible, because the energy density is not positive definite. 
So are these really 4 scalars or one 4-vector? It’s worth pausing to note that we don’t get to 

decide what symmetries the theory has. The theory knows (ie the symmetries are determined by the 
structure of the Lagrangian, not by what we were thinking when we wrote that Lagrangian down), 
and its EoM and matrix elements will have any and all symmetries that are present. We don’t have 
to know the symmetries ahead of time – for example, the development of special relativity was all 
about realizing that Electrodynamics had the Lorentz symmetries. 
Fortunately this isn’t the end of the story; as you know, there’s another term that we can 

consider, giving us the general lagrangian 

a b 1 L = Aµ�A
µ + Aµ∂

µ∂ν Aν + m 2AµA
µ (2.16.11)

2 2 2 

Note that we have ∂µ contracted with Aµ. Since we know that ∂µ must transform as a 4-vector, this 
should force Aµ to transform that way too. This means we should have the degrees of freedom in a 
3 ⊕ 1 representation of spin. 
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The equations of motion are 

a�Aµ + b∂µ∂ν A
ν + m 2Aµ = 0 (2.16.12) 

Note that if we take ∂µ of this we get � � 
(a + b)� + m 2 (∂µA

µ) = 0 (2.16.13) 

Now we see that something special happens when a = −b, because then we have 

∂µA
µ = 0 (2.16.14) 

as long as m2 =6 0. This is a Lorentz-invariant condition that removes the scalar degree of freedom. 
Thus the Lagrangian is 

L = − 
1 
Fµν F µν +

1 
m 2AµA

µ (2.16.15)
4 2 

The EoM imply 

(� + m 2)Aµ = 0 and ∂µAµ = 0 (2.16.16) 

and we have only a single massive spin 1 particle (although we haven’t made that obvious yet). 
Now let’s look at positivity of energy. The energy momentum tensor is 

∂L 
Tµν = ∂ν Aα − gµν L 

∂(∂µAα) � � 
F 2 2A2 = −Fµα∂ν A

α + gµν 
1 

αβ − 
1 
m α (2.16.17)

4 2 

To simplify this we can use the fact that 

1 1 � � 
F 2 E2 − B2− αβ = (2.16.18)
4 2 

Then the energy is 

1 � � 1 2A2T00 = − (∂0Aα − ∂αA0) ∂0Aα − E2 − B2 − m α2 2 
1 � � 1 12A2 2A2 = E2 + B2 + ∂iA0(∂0Ai − ∂iA0) − m 0 + m i (2.16.19)
2 2 2 

which can be written as 

1 � � 1 � � 
E2 + B2 2 A2T00 = + m 0 + Ai 

2 

2 2 
+A0∂0(∂µA

µ) − A0(� + m 2)A0 + ∂iA0F0 
i (2.16.20) 
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The first line is positive. The first two terms on the second line vanish on the EoM, and the last 
term is a total derivative, so in fact we see that the energy is positive. Thus the ‘Proca Lagrangian’ 
provides a classical field theory with positive energy. 
Now we can find some explicit solutions to the classical EoM. As usual, we work in Fourier space 

with ZX d3p
p)�i ipxAµ(x) = ãi(~ (p)e (2.16.21)

(2π)3 µ 
i p

where p0 = Ep = m2 + p~2 . We want to choose �iµ(p) so that Aµ automatically satisfies its EoM, 
which means 

∂µAµ = pµ�iµ = 0 (2.16.22) 

which means there are three polarization vectors labeled by i = 1, 2, 3. We can choose a canonical 
basis where 

pµ = (E, 0, 0, pz) (2.16.23) 

and so there are obvious transverse polarization vectors 

�1 
µ = (0, 1, 0, 0), �2 

µ = (0, 0, 1, 0) (2.16.24) 

along with the longitudinal polarization � � 
pz E 

�L 
µ = , 0, 0, (2.16.25) 

m m 

All of the polarizations are normalized so that 

�µ�
µ = −1 (2.16.26) 

Together these three polarizations form an irreducible representation of the Poincaré group. Note 
that the polarizations depend non-trivially on pµ, and there are an infinite number of possible 
momenta, so this is an infnite dimensional representation. 
The structure we have found really does provide the description of massive spin 1 particles such 

as the W and Z bosons and the ρ meson. It’s worth noting that at high energies, the longitudinal 
polarization looks like 

�L 
µ ∼ 

E 
(1, 0, 0, 1) 

m 
(2.16.27) 

so if we have a cross section that goes as 

E2 
2dσ ∼ g 2(�L)

2 ∼ g 
m2 

= 
E2 � �2 
m 

(2.16.28) 

g 
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then the scattering cross section will blow up at high energies. This is bad and means that 
perturbation theory is breaking down, much as we have seen with interactions like 

1 
Λ4 
(∂φ)4 (2.16.29) 

in a scalar theory. Here we see that the role of Λ ∼ m
g . This is an extremely rough version of the 

argument for why the electroweak theory needed a Higgs boson, or some other UV completion, in 
order to make sense at high energies. 

Massless Spin 1 Particles 

It’s natural to obtain a theory for massless spin 1 particles by just taking m → 0, giving the very 
familiar free Lagrangian 

L = − 
1 
F 2 (2.16.30)µν4 

But the question is, what happened to the longitudinal polarization � � 
pz E 

�L 
µ = , 0, 0, (2.16.31) 

m m 

which seems to diverge when m → 0? Or, if we factor out an m, we at least find that �Lµ = pµ exactly 
in the massless limit. Relatedly, note that we had 

m 2∂µA
µ = 0 (2.16.32) 

so that for m 6= 0 we had a constraint, but this also seems to disappear when m = 0. 
To understand what happened, we notice that unlike when m 6= 0, the Lagrangian now has a 

gauge redundancy under 

Aµ(x) → Aµ(x) + ∂µα(x) (2.16.33) 

Two different choices of Aµ that differ in this way are physically equivalent. This is often called a 
‘gauge symmetry’, although ‘redundancy’ is a better word in many respects. 

The equations of motion are the usual 

�Aµ − ∂µ(∂ν A
ν ) = 0 (2.16.34) 

which can be written out more explicitly as 

−∂j 2A0 + ∂t∂j Aj = 0 (2.16.35) 

�Ai − ∂i(∂tA0 − ∂j Aj ) = 0 (2.16.36) 

To count the number of physical degrees of freedom we must eliminate the redundancy, a procedure 
more commonly known as gauge-fixing. We can choose ∂j Aj = 0, which is Coulomb gauge. Then 
the A0 EoM is 

∂2 = 0 (2.16.37) j A0 

76 



Coulomb gauge is preserved by gauge transformations with ∂j 
2α = 0. Since A0 satisfies ∂j 

2A0 = 0, 
we can choose α with ∂tα = −A0 so that in this gauge 

A0 = 0 (2.16.38) 

So we’ve eliminated one DoF. 
Now let’s eliminate another. The remaining DoF satisfy 

�Ai = 0 (2.16.39) 

which seems to have three modes, but ∂iAi = 0, which means in Fourier space that Z 
d3p ipxAµ(x) = �µ(p)e (2.16.40)
(2π)3 

with p2 = 0, and pi�i = 0 and �0 = 0 from the gauge choice. The only possibilities in a frame with 

pµ = (E, 0, 0, E) (2.16.41) 

are obvious transverse polarization vectors 

�1 �2 
µ = (0, 1, 0, 0), µ = (0, 0, 1, 0) (2.16.42) 

which represent linearly polarized light. One can also use the linear combinations 

�µ
R = (0, 1, i, 0), �µ

L = (0, 1, −i, 0) (2.16.43) 

which represent circular polarization. These are eigenstates of something called helicity, which is the 
spin projected onto the direction that the particle’s moving. 
Note that if instead we’d chosen Lorenz gauge with ∂µAµ = pµ�µ = 0 then we’d have 

�1 �2 �f = (0, 1, 0, 0), = (0, 0, 1, 0), = (1, 0, 0, 1) (2.16.44)µ µ µ 

but the last forward polarization is unphysical, as it’s pure gauge – it’s pµφ for some scalar φ – and 
it’s also non-normalizable, since �µ�µ = 0. 
For both massive and massless cases, we found a basis of polarization vectors �µ(p), making 

them both infinite dimensional representations. The method we used is called that of induced 
representations because the full representation is induced by the representation of the subgroup that 
keeps pµ fixed. That subgroup is called the little group, and it has finite dimensional representations. 
In the massive case the little group is SO(3), while in the massless case it’s ISO(2), the isometry 
group of the 2d Euclidean plane. 
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2.17 Covariant Derivatives and Scalar QED 

If we want to continue to study massless spin 1 particles, and we want to write down local interactions 
for them, then we need to preserve the gauge redundancy when we write down Lagrangians. 
First we can consider theories involving only photons. We cannot use Aµ by itself, except in the 

gauge invariant combination Fµν . Thus we can write down an interaction (in 4d) 

1 � �2 
F 2 (2.17.1)µνΛ4 

You might have tried to write FabF bcF adηcd but it vanishes. This interaction is irrelevant and 
becomes very weak at long distances; this isn’t QED, although this is how γγ → γγ at low energies. 
We use γ to denote photons. 
What about coupling the photon to other kinds of particles? To do it in a gauge invariant way, 

it seems that we cannot use Aµ. We could try to write 

1 
F ab∂aφ∂bφ (2.17.2)

Λ2 

but this also vanishes. 
What we would really like is to couple directly to Aµ. The trick is to imagine that when 

Aµ → Aµ + ∂µα we also transform our other field φ. It turns out that we need more than one scalar, 
which is easiest to write as a complex scalar with 

−iα(x)φ(x)φ(x) → e (2.17.3) 

Note that we cannot do this with a single real scalar, because this transformation rotates the two 
real components of φ into each other. With this transformation rule, modified to Aµ + 1 ∂µα,→ Aµ e 
the gauge covariant derivative 

Dµφ = (∂µ + ieAµ)φ (2.17.4) 

transforms to 

−iα(x)φ(x) = e −iα(x)(∂µ(∂µ + ieAµ + iα(x))e + ieAµ)φ (2.17.5) 

because the derivative of the exponential cancels with the shift of Aµ. The whole point of a covariant 
derivative is that it transforms in the same way as the original field. This means that the lagrangian 

1 
F 2 2φ†φL = − µν + (Dµφ

†)(Dµφ) − m (2.17.6)
4 

is gauge covariant, and all of the interactions are classically dimensionless. This is the lagrangian for 
scalar QED. For example, this is how charged pions interact with the photon. 
In general, a field with charge qn transforms under gauge transformations as 

iqnα(x)φnφn → e (2.17.7) 
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and so they couple with a covariant derivative 

Dµφn = (∂µ + iqneAµ)φn (2.17.8) 

The overall interaction strength is eqn; above we chose a charge of 1 for our scalar field. For our 
electromagnetic force, the famous parameter 

2e 
α ≡ (2.17.9)

4π 

which is approximately 1 , although as you know, this depends on the distance scale at which we 
137 

measure it. 
A final point that’s worth mentioning – you might have guessed that a good way to get a gauge 

invariant Lagrangian is simply to write 

Lint = eAµJ
µ (2.17.10) 

This is a good idea because under a gauge transformation we have 

eAµJ
µ → eAµJ

µ + e∂µαJ
µ = eAµJ

µ − eα∂µJ
µ (2.17.11) 

and so if the current Jµ is conserved then the interaction is gauge invariant. This is a good idea, 
but note that adding this term to the Lagrangian changes the current, and so (in the case of scalar 
QED) we have to include higher order terms, namely a φ†φAµAµ type term. In spinor QED (the 
usual QED) the AµJµ coupling is all we need. 

2.17.1 Quantum Massive Spin 1 

Now let’s quantize our theories of massive and massless particles (well, at least we’ll write down the 
answer). The quantum field is Z 3 h id3p 1 X 

−ip·x † ip·xAµ(x) = p �j (p)a~ + �j†(p)a e (2.17.12)µ p,j e ~µ p,j(2π)3 2Ep j=1 

where the sum is over the 3 types of polarization vector, and the 3 corresponding creation and 
annihilation operators for the 3 degrees of freedom (polarization vectors). In other words, to specify 
the asymptotic particle states we write 

1 
a † p,j |0i = p

2Ep 
|p, �ji (2.17.13) 

or in other words 

−ip·xh0|Aµ(x)|p, �j i = �j e (2.17.14)µ 

so that Aµ creates a particle with an appropriate linear combination of polarization vectors. 
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This quantization of Aµ(x) is correct because it obeys the correct EoM and has the correct 
canonical commutation relations. 
Note that the fourth polarization, orthogonal to �1 , �2 , and �L would be 

pµ 

�S = ∝ ∂µα(x) (2.17.15) 
m 

where the last was written in position space, for some scalar function α. But this hasn’t been 
included because we do not want to include a scalar degree of freedom in our vector particle. Note 
that this polarization never mixes with the others under Lorentz transformations because in any 
Lorentz frame it is just the derivative of a scalar. 
We can see that the three polarizations we have included do in fact mix with each other by 

choosing say pµ = (m, 0, 0, 0), and looking at the little group, namely Lorentz transformations that 
leave pµ invariant. These are just the SO(3) rotations. One can also try this in a more confusing 
frame, where the particle isn’t at rest, but it still works. 
In QFT we will be computing correlation functions and scattering amplitudes (or quantum 

mechanical matrix elements) with the field Aµ; these will depend on the polarization by 

M = �µ(p)M
µ (2.17.16) 

where �µ(p) is any linear combination of polarization vectors. Mµ must therefore transform as a 
Lorentz 4-vector, so that M is Lorentz invariant. In general, M must be Lorentz invariant on the 
restricted space of polarization vectors. 

2.17.2 Quantum Massless Spin 1 

In the massless case we only have the two transverse polarizations Z 2
d3 Xh i p 1 

�j −ip·x + �j† † ip·xAµ(x) = µ p,j e (p)a ~ ep (p)a~ (2.17.17)µ p,j(2π)3 2Ep j=1 

It’s worth writing out the momentum, polarizations, and orthogonal vectors 

pµ = (E, 0, 0, E) (2.17.18) 

and 

�1 �2 
µ = (0, 1, 0, 0), µ = (0, 0, 1, 0) (2.17.19) 

and the orthogonal vectors 

�µ �µ 
f = (1, 0, 0, 1), b = (1, 0, 0, −1) (2.17.20) 

where these are ‘forward and backward’ vectors. 
The reason we wrote these out is that there’s a problem with Lorentz transformations. In the 

massive case we had mixing between the two transverse polarization states and the longitudinal 
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polarization �f . But nothing very discontinuous happens when we take m → 0, so in the massless 
case the transverse polarizations mix with �f ∝ p under Lorentz transformations. In general 

�1 
µ(p) → c11(Λ)�µ 

1 (p) + c12(Λ)�µ 
2 (p) + c13(Λ)pµ (2.17.21) 

and similarly for �2 
µ(p) under the transformation Λ, where cij (Λ) are numbers associated with the 

representation. 
This is very imporant, so it’s worthwhile to be explicit, so for example 

Λµ 
ν = 

⎛ ⎜⎜⎝ 
3 
2 1 0 −

1 
2 

1 1 0 −1 
0 0 1 0 
1 
2 1 0 

1 
2 

⎞ ⎟⎟⎠ (2.17.22) 

is a Lorentz transformation with Λµν p
ν = pµ, so it is in the little group which preserves pµ = (E, 0, 0, E). 

Note that under this transformation 

1 µΛµν �
ν 
1 = (1, 1, 0, 1) = �µ 

1 + p (2.17.23)
E 

and so we see that a polarization vector for a transverse polarization shifts by a term proportional 
to pµ. Nothing like this happens for massive spin 1. This fact leads to many constraints on the 
interactions of massless particles with spin. 
Now consider a matrix element for a massless spin 1 particle. It transforms under Lorentz 

transformations as 

M = �µM
µ → �0 µM

0µ + c(Λ)pµM
0µ (2.17.24) 

for some c(Λ), where M 0µ = Λµν M
ν and �0 is a combination of transverse polarizations. So we have a 

problem unless 

pµM
µ = 0 (2.17.25) 

which is required to guarantee that we don’t produce unphysical particle states while preserving 
Lorentz invariance. This is known as a Ward Identity, and it’s a very important constraint on 
physical amplitudes. 
Note that the transformation of polarization states is closely related to gauge invariance, since 

under a Lorentz transformation 

�µ → �µ 
0 + cpµ ∼ Aµ(p) → Aµ(p) + pµα(p) (2.17.26) 

The arguments that one gives in gauge theories (such as QED) for the Ward identity are based on 
gauge invariance. 
On a more general level, the Ward identity is a constraint that arises due to the tension between 

Quantum Mechanical Unitarity, Lorentz Invariance, and Locality. These are all physical principles 
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that actually mean something; we introduce the unphysical gauge redundancy to make it easier to 
satisfy the requirements of all three at once. 
Note that we could completely get rid of the gauge redundancy by just using the electric and 

magnetic fields directly as observables, so that Fµν was the ‘elementary quantum field’. But then we 
would have to write the interactions in terms of 

1 
Aµ ∼ ∂ν Fµ

ν (2.17.27)
� 

because the interactions that give rise to long-range (electromagnetic) forces involve this object. 
Then the theory would appearnon-local, because 1/� ∼ 1/p2 is dominated at long distances (e.g. 
on a lattice it’s not a nearest neighbor type interaction), and it would be very difficult to analyze 
our theory. So we use a gauge redundant description so that we can simultaneously have locality 
along with Unitarity and Lorentz invariance. Some contemporary research involves only studying 
scattering processes directly, in which case locality isn’t as manifest, and one can avoid using gauge 
redundancy. 

2.17.3 (Guessing) The Photon Propagator 

To compute Feynman diagrams involving the photon, e.g. in QED and scalar QED, we will need to 
know the photon propagator, defined as Z 

d4 

h0|T {Aµ(x)Aν (y)}|0i = i 
p
eip·(x−y)Πµν (p) (2.17.28)

(2π)4 

and evaluated in the free theory. 
This is made complicated by the Lorentz structure, and conceptually non-trivial due to the fact 

that the photon only has 2 polarization states, while Πµν is a 4-by-4 Lorentz tensor. Note that the 
momentum space EoM are 

(−p 2 gµν + pµpν )A
µ = Jν (2.17.29) 

and so we would like to write 
1 

Π ∼ (2.17.30)
−p2gµν + pµpν 

but in fact that tensor is not invertible! 
This problem is solved (in a way that can be proven to be correct using path integrals) by 

eliminating the gauge invariance. One could just choose a gauge, but then one has to keep track of 
the gauge constraint, so an easier way is to add to the Lagrangian a gauge fixing term 

L = − 
1 
Fµν 
2 − 

1
(∂µA

µ)2 − JµA
µ (2.17.31)

4 2ξ 

where ξ is just some parameter, which, if we wanted, we could view as a lagrange multiplier to be 
integrated over. With this term, the EoM are � � � � 

12 Aµ−p gµν + 1 − pµpν = Jν (2.17.32)
ξ 
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This can be inverted to give a propagator 

gµν − (1 − ξ)pµ 
2 
pν 

iΠµν p
= −i (2.17.33) 

p2 + i� 

which we can verify simply by multiplication. This is the momentum space Feynman propagator in 
‘covariant’ or ‘Rξ-gauge’. The signs have been chosen so that there is a 

i 
(2.17.34) 

p2 + i� 

for the spatial components Ai of the field, which are the physical polarization states. 
There are various convenient choices of the parameter ξ we have introduced, called gauge choices, 

such as ξ = 1 (Feynman - ’t Hooft), ξ = 0 (Lorenz), and ξ →∞ (Unitarity). But the final answer 
must be gauge invariant, which means it must be independent of ξ when we add up all the various 
Feynman diagrams for a physical process (as we’ll do soon). 

2.18 Scattering and Ward Identities in Scalar QED 

We already wrote down the lagrangian density for scalar QED, namely 

1 L = − Fµν 
2 + (Dµφ

†)(Dµφ) − m 2φ†φ (2.18.1)
4 

with Dµφ ≡ ∂µφ + ieAµφ. 
We already studied the theory of a complex scalar field with a global symmetry 

−iαφφ → e (2.18.2) 

with constant α. This is a U(1) global symmetry charge with a conserved current Jµ. Since at first 
order in the coupling e we have an interaction eAµJµ, the global symmetry charge is the electric 
charge. 
Of course we could write φ = φ1 + iφ2 and quantize φ1 and φ2 separately, but it makes infinitely 

more sense to study charge eigenstates, that is Z 
d3p 1 � �−ip·x ip·xφ = p ape + b† pe (2.18.3)
(2π)3 2Ep 

and Z 
d3p 1 � �† ip·x −ip·xφ† = p a e + bpe (2.18.4)
(2π)3 2Ep

p 

These fields transform nicely under the global symmetry, which is proportional to the gauge 
redundancy 

1 −iα(x)φ(x)Aµ(x) → Aµ(x) + ∂µα(x), φ(x) → e (2.18.5) 
e 
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The point here is that a† p and b† p create two different species of particles with idential mass and 
opposite charge, aka particles and anti-particles. 
Just as we derived Feynman rules for our various scalar theories, we obtain analogous rules for 

scalar QED. Let’s study the rules for the S-Matrix. As usual, we have the scalar propagator 

hφ†(p)φ(−p)i = 
i 

(2.18.6) 
p2 − m2 + i� 

and as we guessed/derived above, we have the photon propagator � � 
−i pµpν 

(2.18.7)gµν − (1 − ξ) 
2p2 + i� p 

where ξ parameterizes the set of covariant gauges. 
The simplest interaction to understand is 

Lint ⊃ e 2AµA
µφ†φ (2.18.8) 

and this contributes a Feynman rule 

2ie2 gµν (2.18.9) 

where the factor of 2 comes from AµAµ. 
The slightly subtler interaction is the one with the electromagnetic current � � 

Lint ⊃ −ieAµ φ
†(∂µφ) − (∂µφ†)φ (2.18.10) 

The subtlety comes from the signs associated with the ∂µ → ipµ on φ versus φ† when they create 
or destroy particles, respectively. The point is that the sign is associated with the charge of the 
electromagnetic current and its direction of propagation. Obviously all vertices must conserve charge. 
This means that: 

• Annihilate a π− and create a π− gives 

ie(−p 1 
µ − pµ 

2 ) (2.18.11) 

We draw particle flow arrows and momentum flow arrows for this, where particle flow indicates 
how charge goes around the diagram. 

• Annihilate a π+ and create a π+ 

ie(pµ 
1 + pµ 

2 ) (2.18.12) 

As expected, this better have the opposite sign as the case above, since the charge has flipped 
sign. 
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• Annihilate π− and π+ gives 

ie(−p 1 
µ + pµ 

2 ) (2.18.13) 

• Create π+ and π− 

ie(p 1 
µ − p 2 

µ) (2.18.14) 

If we write the momentum as it flows with respect to the charge flow arrows then it’s always 

−ie(p 1 
µ + p 2 

µ) (2.18.15) 

because we view the negatively charged particles as ‘particles’, since we view electrons as ‘particles’ 
and not ‘anti-particles’. There’s an overall sign here that’s purely conventional. 
We also have to deal with the external states. For the scalars the external states just get a factor 

of 1, as usual. For external photons we have the field Z 2
d3 Xh i p 1 

�j −ip·x + �j† † ip·xAµ(x) = µ p,j e (p)a ~ ep (p)a~ (2.18.16)µ p,j(2π)3 2Ep j=1 

This is the same thing as a scalar field, except with some polarization vectors 

�i µ(p) (2.18.17) 

included in the field, so the LSZ prescription just gets modified by including a factor of this 
polarization vector for incoming photons, and 

�i† µ (p) (2.18.18) 

for the outgoing photons. 
As an example one can write down a diagrm contributing to the π−γ → π−γ scattering amplitude 

i 
iM = (−ie)�µ 

1 (p2 
µ + kµ)

k2 − m 
(−ie)(p3 

ν + kν )�ν 
†4 (2.18.19)

2 + i� 

where p2 and p3 are the scalar incoming and outgoing momenta and k = p1 + p2. 

2.18.1 Example: ‘Moller Scattering’ of π−π− → π−π− 

Here there are two diagrams, a t-channel and a u-channel contribution. There’s no s-channel 
contribution because two negatively charged particles cannot annihilate into a photon, due to charge 
conservation. 
The t-channel diagram is h i 

−i gµν − (1 − ξ)kµkν 

k2 
µ µ µ µiMt = (−ie)(p1 + p3 ) (−ie)(p2 + p4 ) (2.18.20)

k2 
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where k = p3 − p1. Note that 

k · (p1 + p3) = p3
2 − p1

2 = 0 (2.18.21) 

and so this can be simplified to give 

2 (p1 + p3) · (p2 + p4)
iMt = e (2.18.22)

t 

Note that the ξ dependence has already vanished in this one diagram. That only had to happen 
after we summed up both diagrams, but since they have quite different kinematics the ξ dependence 
had to cancel independently in each. 
The other diagram gives 

2 (p1 + p4) · (p2 + p3)Mu = e (2.18.23) 
u 

The cross section can also be easily computed as 

4dσ e 
= |Mt + Mu|2 

dΩ 64π2E2 � CM �2
α2 s − u s − t 

= + (2.18.24)
4s t u 

2.18.2 More Comments on Gauge Invariance and the Ward Identity 

A crucial aspect of scattering amplitudes and other physical observables in QED is that they are 
gauge invariant. This has at least two guises; one is the Ward identity and another is the fact that 
even the photon propagator is h i 

−i gµν − (1 − ξ)kµ 

k2 
kν 

iΠµν = (2.18.25)
k2 

actually all amplitudes are independent of ξ. This means that if we have some internal photon 
propagator then we could write the amplitude as 

Πµν Mµν (2.18.26) 

and so gauge invariance requires that 

µp p ν Mµν = 0 (2.18.27) 

We can give a general proof of gauge invariance and the Ward identity using the path integral, but for 
now let’s see how it (the Ward identity) arises for a particular example where we have π+π− → γγ. 
One diagram is 

µ µ µ µi(2p − p )(p − 2p )1 3 4 2iMt = (−ie)2 

(p1 − p3)2 − m2 
�† 3µ�

† 
4ν (2.18.28) 
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which can be simplifed (using only that the pions are on-shell, but not the photons, and also not 
using any gauge condition) to 

2 (p3 · �3 
† − 2p1 · �3 

† )(p4 · �† 4 − 2p2 · �4 
† )Mt = e 

2 (2.18.29) 
p3 − 2p3 · p1 

Similarily there is a u-channel diagram 
† † † † · � · �3)(p4 · � · �2 (p3 3 − 2p2 4 − 2p1 4)Mu = e 

2 (2.18.30) 
p3 − 2p3 · p2 

Something nice happens when we check the Ward identity, which means replacing �3 → p3. In this 
limit 

Mt → e 2(p4 · �4 
† − 2p2 · �4 

† ) (2.18.31) 

and similarly for the u-channel, so we get 

· �† · �† · �† · �† 2�†Mt + Mu = e 2(p4 4 − 2p2 4 + p4 4 − 2p1 4) = 2e 4 · (p4 − p2 − p1) (2.18.32) 

This isn’t zero, but we’ve left out the 4-pt vertex, which gives 

iM4 = 2ie
2�† 3 · �

† 
4 (2.18.33) 

Thus adding it in with �3 → p3 we find the total 
2�†Mt + Mu + M4 = 2e 4 · (p4 + p3 − p2 − p1) = 0 (2.18.34) 

due to momentum conservation. 
We did not use that photons are on-shell or massless! Thus the identity we just derived would 

work even if the external photons weren’t physical particle states. So we can put this identity into 
any larger set of Feynman diagrams and prove ξ-independence. One can use such arguments to 
prove gauge invariance diagrammatically, but it’s tedious. 

2.19 Spinors and QED 

We’ve mentioned the fact that the Lorentz transformations form a group, and in fact this is a Lie 
Group. The book has some nice discussion of the background for this in chapter 10. We’ve mostly 
discussed Lorentz transformations as 4 × 4 matrices that act on 4-vectors like pµ, xµ, Aµ, ∂µ etc. 
However, we can view the group in an abstract form, as � � 

g(θ, β) = exp iθiJ
i + iβiK

i (2.19.1) 

This is an abstract Lie group element – a general finite dimensional Lorentz transformation – but 
the infinitesimal generators J i and Ki in the exponent are elements of the Lie algebra. In order to 
generate the group, they must obey the Lie algebra 

[Ji, Jj ] = i�ijkJk (2.19.2) 

[Ji, Kj ] = i�ijkKk (2.19.3) 

[Ki, Kj ] = −i�ijkJk (2.19.4) 
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In any representation of the abstract Lorentz group, these are just the commutation relations of 
the matrices associated with the representation. The usual 4 × 4 matrix representation is the 
fundamental representation, but there are many others. Note that 

V µν = 

⎛ ⎜⎜⎝ 
0 K1 K2 K3 

−K1 0 J3 −J2 

−K2 −J3 1 J1 

−K3 J2 −J1 0 

⎞ ⎟⎟⎠ (2.19.5) 

and we can write the commutation relations directly in these terms as 

νρV µσ µσV νρ − g νσV µρ − gµρV νσ)[V µν , V ρσ] = i (g + g (2.19.6) 

although this isn’t especially useful. As an example of a very different representation, note that 

Lµν = i(xµ∂ν − x ν ∂µ) (2.19.7) 

generate Lorentz transformations on the infinite dimensional vector space of functions. So these are 
infinite dimensional matrices. 
The most useful way to write the Lorentz algebra is using 

J+ 
i 

1 ≡ (Ji + iKi),
2

J− 
i 

1 ≡ (Ji − iKi)
2

(2.19.8) 

In this basis the algebra is just � � 
Ji 
±, Jj 

± = i�ijkJk 
± (2.19.9)� � 

Ji 
+, Jj 

− = 0 (2.19.10) 

So we just have two copies of so(3) = sl(2, R) = su(2). This can be written as 

so(1, 3) = su(2) ⊕ su(2) (2.19.11) 

Finding general representations of the Lorentz group is easy, because we already know the represen-
tations of su(2) from quantum mechanics. Note that the fundamental representation of su(2) just 
involves the 2 × 2 pauli matrices ������ 

0 1 0 i 1 0 
σ1 σ2 σ3 = , = , = (2.19.12)

1 0 −i 0 0 −1 

which is how we end up with spinor representations of the Lorentz group. 
As you know, representations of su(2) are just labeled by a half-integral spin s; this representation 

has dimension 2s + 1. Since the Lorentz group involves two copies of su(2), its representations are 
labeled by two half-integers (A, B), and have dimension (2A + 1)(2B + 1), so this is also the number 
of degrees of freedom included. Note, however, that neither the J+ nor the J− are the rotation 
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~ J−generators. The rotation generators are J~ = J+ + ~ . So you should not confuse A or B with the 
spin of the particle! 
Every representation (A, B) of the Lorentz group provides (usually reducible) representations of 

~the rotations J . For example � � � � 
1 1 
, 0 = (2.19.13)
2 2� � J~ 

1 1 
, = (1 ⊕ 0)J~ (2.19.14)
2 2 
(1, 1) = (2 ⊕ 1 ⊕ 0)J~ (2.19.15) 

In fact any (A, B) involves spins j = A + B, A + B − 1, · · · , |A − B|. 
The relevance of this for QFT is that we construct our lagrangians out of fields such as Aµ(x) 

and ψ(x) that have definite transformations under the Lorentz group. However, particles transform 
under irreducible representations of the Poincaré group (Lorentz plus translations), which have spins 
associated with the little group of transformations that are left over after we fix the momentum. For 
massive particles, the little group always has algebra so(3) = su(2). So the decomposition of (A, B) 

~under the rotations J tells us the possible spins of particles in a quantum field with a Lorentz group 
irreducible representation (A, B). 
It’s worth noting that exponentiating the Lie Algebra gives the universal cover of the group, e.g. 

SU(2) and not SO(3). The universal cover of the Lorentz group is SL(2, C). 

2.19.1 Spinor Representations 

There are two complex representations of the Lorentz group, namely (1
2 , 0) and (0, 

2
1 ). They both 

transform as spin 1/2 under rotations, which act using the Pauli matrices, since these satisfy the 
correct algebra 

[σi, σj ] = 2i�ijkσk (2.19.16) 

Another useful and important fact is that 

{σi, σj} = σiσj + σj σi = 2δij (2.19.17) 

where this is an anti-commutator. 
Thus we have the representations � � 

1 1 1 ~ ~ , 0 : J = ~σ, K = i ~σ (2.19.18)
2 2 2 

and � � 
1 1 1 ~ ~0, : J = ~σ, K = −i ~σ (2.19.19)
2 2 2 
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K~ † ~Thus the rotations are Hermitian and the boosts are anti-Hermitian, ie = −K. Since the 
generators are complex conjugates of each other in these two representations, we say that they are 
complex-conjugate representations. 
These two representations are called spinors, and the (1/2, 0) case are called left-handed spinors, 

while the (0, 1/2) case ared called right-handed spinors. The right handed spinors (which are complex 
2-vectors) transform as 

while 

ψR → e 

ψL → e 

1 
2

1 
2 

(iθiσi+βj σj )ψR (2.19.20) 

(iθiσi−βj σj )ψL (2.19.21) 

where the θi and βj are real numbers. Note that ψ
† transforms with the opposite sign for θi, butL/R 

the same sign for βj , and with the representation matrices on the other side of the vector (adjointed), 
as we get simply by daggering these equations. 

2.19.2 Unitary Representations and Lorentz Invariant Lagrangians 

~ ~As we just saw, these spinor representations aren’t unitary, since K† = −K. This will always happen 
~ 1 J~ ± i ~if we have unitary representations of su(2) ⊕ su(2), since J± = 

2 ( K). Thus we see (as claimed 
before) that there are no finite dimensional unitary representations of the Lorentz group. 
We can avoid this problem by studying infinite dimensional unitary representations, where we 

account for the fact that particles have momenta pµ which transform under the Lorentz group. We 
used this technique for spin 1, now let’s apply it for spin 1

2 . 
We had fun last time with guess work, so let’s try that again. We can start by guessing a 

Lagrangian like 

ψR 
† �ψR + m 2ψR 

† ψR (2.19.22) 

But actually this isn’t even Lorentz invariant! The problem is that ψR 
† and ψR both transform by 

βiσie and so there’s no cancellation. 
If we include two spinors, an L and an R, then we can write down terms like 

ψ† (2.19.23)LψR 

iθiσi βiσiWith this term we have a cancellation of both the e terms and also the e terms, since the L 
and R spinors transform oppositely. So we can write down a term called ‘Dirac mass’ as � � 

m ψL 
† ψR + ψR 

† ψL (2.19.24) 

However, if we try to write down a kinetic term like 

L = ψL 
† �ψR + ψR 

† �ψL (2.19.25) 
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it’s both Lorentz invariant and real, but actually if we write ψR = (ψ1, ψ2) we would just find that 
this is the Lagrangian for a bunch of scalar degrees of freedom! Again, we don’t tell the theory what 
the particle content is (and how it transforms), it tells us, and this is the wrong theory. What we 
need is some way to force ψ to transform as a spinor. 
To proceed, let’s try looking at the fermion bilinear 

ψ† (2.19.26)RσiψR 

How does this transform? Well, infinitessimally 

1 
δψR = (iθiσi + βj σj )ψR (2.19.27)

2 

and so we have � 
ψ† 

� 1 
ψ†δ RσiψR = R [σiσj (iθj + βj ) + (−iθj + βj )σj σi] ψR
2 
1 1 

= βjψR 
† [σiσj + σj σi] ψR + iθj ψR 

† [σiσj − σj σi] ψR
2 2 

= βiψR 
† ψR + θj �ijkψR 

† σkψR (2.19.28) 

Note that the object ψR 
† ψR transforms as � � 

δ ψR 
† ψR = βiψR 

† σiψR (2.19.29) 

This means that if we look at � � 
ψR 
† 1ψR, ψR 

† ~σψR (2.19.30) 

then it transforms in exactly the same way as a 4-vector! We write this by defining 

σµ = (1, ~σ), σ̄µ = (1, −~σ) (2.19.31) 

so that 

ψR 
† σµψR, ψL 

† σ̄µψL (2.19.32) 

transform as 4-vectors. This means that we can write a Lorentz invariant Lagrangian � � 
† † † †L = iψ σµ∂µψR + iψ σ̄µ∂µψR − m ψ ψR + ψ ψL (2.19.33)R R L R 

We added an i because � �† 
iψR 
† σµ∂µψR = −i(∂µψR 

† )σµψR = iψR 
† σµ∂µψR (2.19.34) 

where in the last step we had to integrate by parts to get the derivative to act on the ψR again. 
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2.19.3 Weyl Fermions and ‘Majorana Masses’ 

We saw above that there are two kinds of spinors, ψL and ψR, and we were able to write down a 
Lorentz invariant and otherwise reasonable-seeming Lagrangian for them, although to give them a 
mass we had to have both ψL and ψR. 
Actually, one can get a mass for a spinor without needing to have separate fields ψL and ψR. 

And in fact we don’t even need both kinds of spinors, as we can get something that transforms like 
ψL directly from the complex conjugate of ψR. By convention, therefore, most advanced treatments 
of QFT only explicitly use ψL spinors. 
The term 

ψT 
Rσ2ψR = −iψRα �αβ ψR

β (2.19.35) 

turns out to be Lorentz invariant. But the most natural way to understand this is to realize that 

ψT (2.19.36)Rσ2 

actually transforms as 

1 
δ(ψR

T σ2) = (iθj + βj )ψR
T σj

T σ2
2 

= 
1
(−iθj − βj )ψR

T σ2σj (2.19.37)
2 

because 

σj
T σ2 = −σ2σj (2.19.38) 

Thus we see that ψR
T σ2 transforms in the same way as ψL 

† , or in other words 

(ψR
T σ2)

† = −σ2ψR 
∗ (2.19.39) 

transforms as a left-handed spinor. 
Anyway, the most important point is that we can just use ψL or ψR spinors by themselves if we 

like, but it’s also worth noting that 

mψR
α �αβ ψR

β (2.19.40) 

is a perfectly good mass term. This isn’t allowed, though, if the spinor ψR has charge, because this 
type of mass makes ψR its own anti-particle. So this kind of mass isn’t what we use in QED, when 
we study particles like the electron. But this is a perfectly good candidate for neutrino masses. 

2.19.4 Dirac Spinors, Dirac Matrices, and QED 

Although the 2-component or Weyl fermions are used to discuss the standard model, supersymmetry, 
and many other contemporary research topics, QED is usually discussed (and QCD can be discussed) 
using what are known as 4-component or Dirac spinors. 
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The idea is to combine ψR and ψL so that the Lagrangian � � 
L = iψR 

† σµ∂µψR + iψL 
† σ̄µ∂µψL − m ψL 

† ψR + ψR 
† ψL (2.19.41) 

can be written more simply, because it is invariant under L ↔ R. In particular, we can write a 
Dirac spinor � � 

ψLψ = (2.19.42)
ψR 

and we can also define � � 
¯ ψ† ψ†ψ = R L (2.19.43) 

Then we define the 4 × 4 Dirac matrices � � � � � � 
0 σµ 0 1 0 σi 

γµ = , i.e. γ0 = , γi = (2.19.44)
σ̄µ 0 1 0 −σi 0 

In these terms the lagrangian can be written � �
¯L = ψ̄ (iγµ∂µ − m) ψ = ψ i∂/ − m ψ (2.19.45) 

which is the conventional ‘Dirac Lagrangian’ with EoM 

(iγµ∂µ − m) ψ (2.19.46) 

which is the Dirac equation. 
The Dirac matrices satisfy anti-commutation relations 

{γµ, γν } = 2gµν (2.19.47) 

These anti-commutation relations define a Clifford Algebra, and they are more fundamental than 
the explicit form of the Dirac matrices. The particular form of the matrices we are using is called 
the Weyl representation. 
It’s useful to define the shorthand 

σµν ≡ 
i 
[γµ, γν ] (2.19.48)
2 

When acting on Dirac spinors, the Lorentz generators can be written as 

1 
Sµν σµν= (2.19.49)

2 

This action of Lorentz transformations will be correct for any representation of the γµ matrices that 
satisfies the Clifford algebra. One can derive that the commutation relation 

νρV µσ µσV νρ − g νσV µρ − gµρV νσ)[V µν , V ρσ] = i (g + g (2.19.50) 
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→ Sµνis satisfied by V µν . Note, however that S 6= V , and in particular S are complex. The 
V or vector representation is irreducible, while the Dirac representation is reducible, since it is 
(1
2 , 0) ⊕ (0, 1

2 ), the sum of the two kinds of spinor representations. 
As the conjugation procedure we are using 

ψ̄ = ψ†γ0 (2.19.51) 

to construct the Dirac Lagrangian, and all invariants such as 

ψ̄γµψ, ¯ γν ψ, ¯ ψ (2.19.52)ψγµ ψ∂µ 

which transform as tensors under the Lorentz group. The reason we need this is because the 
representation of the Lorentz group that just acts on these spinors (as opposed to acting on particles 
in spacetime) is not Unitary. 

2.19.5 QED Lagrangian 

We would like to write a Lagrangian coupling ψ to the photon. As with scalar QED, we need to 
preserve the gauge redundancy. But that just means we take 

−iα(x)ψ(x)ψ(x) → e (2.19.53) 

where Aµ → Aµ + 
e
i ∂µα. Note that the gauge transformation is just a Lorentz scalar (just a spacetime 

dependent complex number, in fact), so it doesn’t care about γ matrices, including the γ0 in the 
definition of ψ̄. 
Thus we have the same sort of covariant derivative 

Dµψ = (∂µ + ieAµ)ψ (2.19.54) 

The QED Lagrangian is just 

1 LQED = ψ̄(iD/ − m)ψ − Fµν 
2 (2.19.55)

4 

We get something interesting if we try to compare the EoM for QED to that for a scalar field. 
The EoM for QED is just 

(i∂/ − eA/ − m)ψ = 0 (2.19.56) 

If we multiply by this operator again with a sign flip for m we still have a valid equation, and it is 

0 = (i∂/ − eA/ + m)(i∂/ − eA/ − m)ψ� � 
= (i∂µ − eAµ)(i∂ν − eAν )γ

µγν − m 2 ψ (2.19.57)� � 
1 1 

= {i∂µ − eAµ, i∂ν − eAν }{γµ, γν } + [i∂µ − eAµ, i∂ν − eAν ][γ
µ, γν ] − m 2 ψ 

4 4 
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Note that 

[i∂µ − eAµ, i∂ν − eAν ] = −ieFµν (2.19.58) 

and so we can write this as h i e 
(i∂µ − eAµ)

2 − Fµν σ
µν − m 2 ψ = 0 (2.19.59)

2 

We have an extra term compared to what we find for a scalar field. We can write this finding as 

e 
D/
2 
= Dµ 

2 + Fµν σ
µν (2.19.60)

2 

1 σµνWhat does this mean? Recall that the Lorentz generators act as 
2 on Dirac spinors, and they 

have the form (in the Weyl representation) � � � � 
1 

Sij = �ijk 
2 

σk 

0 
0 
σk , 

i 
S0i = − 

2 
σi 

0 
0 
−σi (2.19.61) 

These relations are relevant because 

F0i = Ei, Fij = −�ijkBk (2.19.62) 

This means that we get � � �� 
~ ~(B + iE) · ~σ 0 

Dµ 
2 + m 2 − e ψ = 0 (2.19.63)~ ~0 (B − iE) · ~σ 

This corresponds to a magnetic dipole moment. We have obtained the prediction that 

e 
µB = (2.19.64)

2me 

for an electron! We will calculate quantum corrections to this later. 

2.20 Quantization and Feynman Rules for QED 

Just as we found polarization vectors in QED, we need to find spinor solutions to the Dirac equation 
in order to quantize the field ψ(x) for the electron (or whatever we call the charged fermion). 

2.20.1 Solutions to the Dirac Equation 

We know that in the free limit, like the other fields we have studied, ψ obeys the Klein gordon 
equation, so we can write it as Z 

d3p ip·xψs(x) = us(p)e (2.20.1)
(2π)3 
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where we take p0 > 0. We could just obtain anti-particle solutions by taking p0 < 0. But instead, 
we will write the anti-particle solutions using a different spinor Z 

d3p ip·xχs(x) = vs(p)e (2.20.2)
(2π)3 

with p0 > 0, so that the spinors for particles and anti-particles are us(p) and v̄ s(p). As with the 
vector case, we need only find the solutions for fixed pµ, using the little group that keeps pµ invariant. 
We also know that 

p 2 = m 2 (2.20.3) 

because the free spinors satisfy the Klein-Gordon equation (after squaring the Dirac equation). 
The Dirac equation in the Weyl basis is 

(iγµ∂µ − m)ψ = 0 (2.20.4) 

which becomes � � � � 
−m 
p · σ̄ 

p · σ 
−m 

us(p) = 
−m 
−p · σ̄ 

−p · σ 
−m 

vs(p) = 0 (2.20.5) 

In the rest frame 

pµ = (m, 0, 0, 0) (2.20.6) 

and so the equations of motion are � � � � 
−1 1 −1 −1 

us(p) = vs(p) = 0 (2.20.7)
1 −1 −1 −1 

Thus the solutions are � � � � 
ξs ηs us = , vs = (2.20.8)
ξs −ηs 

for general 2-component (Weyl) spinors ξs and ηs. We can list four linearly independent solutions 
(‘polarizations’) if we like. Naively the Dirac spinor has 4 complex components, or 8 real degrees of 
freedom, but the EoM reduce that to 4 real degrees of freedom, corresponding to spin up or down 
for particles and antiparticles. 
One can show that in a general frame, we can write the solutions as � √ � � √ � 

p · σξs p · σηs us(p) = √ , vs(p) = √ (2.20.9)
p · ¯ − σηsσξs p · ¯ 

√ 
If pµ is purely in the z direction, these square roots of matrices just have components E ± pz. 
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To figure out the normalization, we can compute the Lorentz invariant inner product � √ �† � �� √ � 
p · σξs 0 1 p · σξs0 ū s(p)us0 (p) = u † s(p)γ0us0 (p) = √ √ 

0p · σξ¯ s 1 p · ¯0 σξs� �† � p �� � 
ξs (p · σ)(p · σ̄) ξs0 = p
ξs 0 (p · σ)(p · σ̄) ξs0 

= 2mδs,s (2.20.10)0 

Clearly in the rest frame this result holds; you can easily check that it also works with a momentum √ √ 
in the z-direction, since then the inner products are E − pz E + pz. So by rotation invariance 
this normalization works in any frame; the normalization is in fact Lorentz invariant. Similarly 

v̄ s(p)vs0 (p) = −2mδs,s (2.20.11)0 

and 

v̄ sus0 = ū svs0 = 0 (2.20.12) 

as one would want for orthonormal solutions. 

2.20.2 Quantizing the Spinor Field 

In analogy with the scalar and vector field, we write ZX d3 � �p 1 s s −ipx s ipxψ(x) = p a u e + bs† v e (2.20.13)p p p p(2π)3 2Eps 

and XZ 
d3p 1 � �

¯ s† s ipx s −ipxψ(x) = p a ū e + bs v̄ e (2.20.14)p p p p(2π)3 2Eps 

¯In this language ψ(x) annihilates incoming electrons and ψ(x) annihilates incoming positrons. 
Given that the Lagrangian for our theory was 

L = iψ̄ / ψψ (2.20.15)∂ψ − m ̄  

we have that the canonical conjugate to ψ is 

∂L 
= iψ̄ (2.20.16)

∂ψ̇ 

and so one might think that we should impose canonical commutation relations 

[ψa(t, ~x), ψb 
†(t, ~y)] = δ3(~x − ~y)δab (2.20.17) 
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but in fact this is not correct, and we need impose the anti-commutation relations 

{ψa(t, ~x), ψb 
†(t, ~y)} = δ3(~x − ~y)δab (2.20.18) 

We will study the reason in more detail soon (well, next semester), but for now let us consider the 
issue of stability, which we also discussed in the case of spin 1 particles. 
The energy momentum tensor for our fermion field is � � 

Tµν = iψγ¯ µ∂ν ψ − gµν i ̄ ∂ψ − mψψ¯ψ/ (2.20.19) 

and so the energy density (or Hamiltonian density) is 

¯T00 = ψ(iγi∂i + m)ψ 

i ̄  = ψγ0∂tψ (2.20.20) 

Now we can write that using our quantized version of the Diract field, and see what happens if we 
choose commutation vs anticommutation relations, ie 

s s0† s s0† 
0 0[ap, aq ] = δ3(~p − ~q)δs,s OR {ap, aq } = δ3(p~ − ~q)δs,s (2.20.21) 

This means that the energy is Z 
E = d3xT00 Z Z X� 

0 
�d3pd3q 1 0 0ipx s0† s −ipxbs s = i d3 x p e a ū + e v̄ p p p p(2π)6 2 EqEk s,s0 � � −iqx s s iqxbs† s×γ0∂t e aquq + e q v̄ q (2.20.22) 

As usual, the integral over x forces ~q = ±p~ in the various terms. Note that since 

ū s(p)γ
0 us0 (p) = u † s(p)us0 (p) = 2Epδss0 (2.20.23) 

and 

u † s(p)vs0 (−p) = vs 
†(p)us0 (−p) = 0 (2.20.24) 

Using these relations, we find Z 
E = 

X d3p
Ep 

� 
a sp 
† a sp − bspb

s
p 
†� (2.20.25)

(2π)3 
s 

Now we see what happens with commutators versus anticommutators. With the latter we get XZ 
d3p � � 

s† s bsE = E0 + Ep ap ap + bp
s† 

p (2.20.26)
(2π)3 

s 
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but if we had used commutators instead, we would have had negative energy from the antiparticles ! 
To avoid having an energy that is unbounded from below, we must use anticommutation relations. 
At an operational level, what happened? Why was this different from the scalar case (or the 

vector boson case)? Basically, we got a different result because the kinetic term for ψ involves only 
one time derivative, and the extra factor of energy was hidden in ¯ We’ll discuss this in various uu. 
other ways next semester. 
There are several other problems with violating this spin and statistics relation; in particular 

theories with the wrong choice of commutators vs anticommutators violate causality and cannot 
have a Lorentz invariant S-Matrix. We will revisit these issues next semester. 

2.20.3 Feynman Rules for QED 

To finish up our limited discussion of QED, to be resumed next semester, we would like to determine 
the Feynman rules. 
We have quantized the free Dirac field with ZX d3 � �p 1 s s −ipx s ipxψ(x) = p a u e + bs† v e (2.20.27)p p p p(2π)3 2Eps 

and XZ 
d3p 1 � �

¯ s† s ipx s −ipxψ(x) = p ap ū pe + bspv̄ pe (2.20.28)
(2π)3 2Eps 

where we have creation and annihilation operators that anticommute. The non-vanishing anti-
commutators are n o n o 

s s0† 0† ap, aq = bp
s, bq

s = δss0 (2π)
3δ3(p~ − ~q) (2.20.29) 

and we have a basis for spinors � √ � � √ � 
p · σξs p · σηs us(p) = √ , vs(p) = √ (2.20.30)
p · ¯ − σηsσξs p · ¯ � � � � 

1 0 
with ξ1 = η1 = and ξ2 = η2 = . The spinors satisfy outer-product sum rules 

0 1 

2X 
us(p)ūs(p) = /p + m (2.20.31) 

s=1 

2X 
vs(p)v̄s(p) = p/ − m (2.20.32) 

s=1 

The Feynman propagator for our (free) spinors is 

i(/p + m)
hψ̄(p)ψ(−p)i = (2.20.33) 

p2 − m2 + i� 
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The easiest way to understand this is based on the fact that it must satisfy the Dirac equation. 
The QED Lagrangian is 

1 
F 2 ¯L = − µν + iψ̄ / ψψ Dψ − m (2.20.34)
4 

We already know the propagators, and the external line factors for photons. Just as photons get 
factors of �µ(p), for our Dirac fermions the LSZ formula gives 

u s(p), ūs(p), v̄s(p), v s(p) (2.20.35) 

We conventionally write arrows pointing into the diagram to represent initial particles and out of 
the diagram to represent final state particles, and the reverse for anti-particles. 
Note that external spinors represent on-shell particles, which means that they obey the EoM 

(Dirac equation) 

(/p − m)u s(p) = ūs(p/ − m) = 0 (2.20.36) 

(/p + m)v s(p) = v̄s(/p + m) = 0 (2.20.37) 

This can be useful for simplifying calculations. 
QED is simpler than scalar QED in that there is only a single interaction 

¯Lint = −eψγµψAµ (2.20.38) 

This leads to a single vertex 

−ieγµ (2.20.39) 

that connects to either the photon polarization or to a photon propagator. 
As an example, we can consider e−γ → e−γ. One diagram that contributes gives 

i(p/1 + p/2 + m)
(−ie)2 ū(p3)γ

µ γν u(p1)�µ 
2 (p2)�ν 

4 (p4) (2.20.40)
(p1 + p2)2 − m2 

Note that the gamma matrices from the vertices and propagator get multiplied together in a series 
along the electron line. 

2.21 Overview of ‘Renormalization’ 

We would now like to move on to study genuinely quantum mechanical effects in QFT. In perturbation 
theory, that means studying ‘loop diagrams’ and their effects on various observables, particularly 
scattering amplitudes, decay rates, etc. 
Computing loop diagrams means that we will be integrating over intermediate particle momenta, 

for example Z 
d4k i i 

(2.21.1)
(2π)4 k2 − m2 (p − k)2 − m2 
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Note that this is equivalent to a position space integral Z 
d4xd4yDF (x1, x)[DF (x, y)]

2DF (y, x2) (2.21.2) 

Roughly speaking, the region where k →∞ comes from y → x in position space, whereas k → 0 is 
associated with x − y →∞. 
If we are doing some experiment at a length scale Lexp, then it’s important to consider how the 

momentum k in the loop compares to Lexp. In particular 

• When kLexp � 1 these are UV (ultraviolet), high-energy, or short distance effects. These can 
usually be incorporated in small changes in the description of the theory at scales of order 
Lexp. Sometimes, taking k →∞ gives unphysical infinities that arise because we have naively 
assumed that the theory does not change at all at arbitrarily short distances, but these always 
cancel out of physical observables. 

• In the case kLexp ∼ 1 the effect comes from distance scales of order the experimental scale, 
and will generically be important and worth keeping track of in physical observables. 

• When kLexp � 1 we are talking about IR (infrared), low-energy, or long distance effects. 
Usually these are small, but sometimes these give naive infinities if we make the mistake of 
assuming that our experiment has arbitrarily precise resolution in energy. The IR is where long-
distance forces act, so a careful consideration of IR divergences tells us a tremendous amount 
about basic features of reality, such as which particles can possibly give rise to long-range 
potentials. 

One should always think carefully about the length/energy scales of relevance in a given calculation. 
In fact, these comments are all related to ways in which, by computing without thinking, one can 
obtain non-sense answers: 

• One can insist that a particular QFT makes sense down to arbitrarily short distances. 
Sometimes this is a possibility, for example in gφ3 theory in d ≤ 6 dimensions or in λφ4 

theory in d < 4 dimensions. But many other times it is not. We already saw an example where 
it’s a disaster, namely when one has an interaction like 

(∂φ)4 

(2.21.3)
Λ4 

in any number of dimensions. This sort of theory can’t possibly make sense (in perturbation 
theory) at distances shorter than 1/Λ. 

• We can (accidentally) setup experiments that cannot be performed. How many photons of 
wavelength 1020 meters do we produce when we wave our hands around? If you cannot measure 
it, then you probably shouldn’t calculate a scattering cross section that presumes that the 
answer is definite... for example, you might have naively presumed that the answer is zero, 
but QFT knows better. 
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So one must be careful in translating from formal calculations to physics – if the latter doesn’t make 
sense, the former won’t either. 
Why the name ‘renormalization’? Consider the example of some scalar theory with 

L = 
1
(∂φ)2 − 

1 
m 20φ

2 − 
λ0 
φ4 (2.21.4)

2 2 4! 

When we studied this theory, we noted that when λ = 0, the states look like a Fock space of particles 
with mass 

mphys = m0 (2.21.5) 

where m0 is just a parameter in the Lagrangian. But there is no reason why this must be maintained 
when we include quantum effects – such effects can change the physical mass! They can also change 
the normalization of the 1-particle states; that is, when we compute quantum effects we might find 

hψp|φ(x)|Ωi = Zeip·x (2.21.6) 

where Z 6= 1 is some constant. We need to take account of this by ‘renormalizing’ the field φ. 
Similarly, one might wonder how to think about the coupling constant λ0, but a natural 

interpretation is via 

dσ 1 
λ2 = 0 (2.21.7)

dΩ 64π2E2 
CM 

the differential cross section for φ particle scattering at tree level. But this will receive quantum 
mechanical corrections with a detailed dependence on the kinematics and energy scale ECM , in 
which case it becomes unclear what λ0 really means. Again, the parameter in the Lagrangian will 
not connect so directly to the physics, and its worth asking how we fix it using experiments. 
Thus we need to Renormalize the various parameters in the Lagrangian to connect them to 

physical observables. Hence the name. 
Finally, we would like to take the idea of effective field theory very seriously, and consider the 

sensitivity of our theory to the short-distance, UV parameters defined at the very high energy scale 

Λ (2.21.8) 

which is the energy cutoff. In particular, we would like to ask how the long-distance parameters 
and observables change with Λ and the short-distance parameters that define the theory. This leads 
to the ‘renormalization group’, or more aptly, the ‘renormalization flow’, which tells us how the 
parameters change with Λ. This flow is intimately connected with the phenomenology of quantum 
mechanical effects, which can cause forces to change (logarithmically) with distance. 

2.22 Casimir Effect 

The Casimir effect is a fun example of something other than scattering that we can compute in 
QFT. It also has some of the features that we’ll find in other QFT situations – naive infinities from 
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unphysical short-distance extrapolations, and the necessity to ask physical questions in order to get 
physical answers. 
We already saw that the naive vacuum energy is Z Z 

d3k Ek 1 Λ Λ4 

E = h0|H0|0i = = k3dk ∼ (2.22.1)
(2π)3 2 4π2 4π2 

if we employ a ‘hard cutoff’ on the momenta. If we take the hard cutoff to infinity we get an infinite 
answer. Recall that in our balls and springs model there was something more complicated than a 
hard cutoff, because we had Ek ∼ Λ sin(k/Λ), but roughly speaking we would have obtained the 
same scaling behavior. 
Let’s set up our 1-d Casimir box, beginning at x = 0 and extending to x = a. We will employ an 

IR cutoff at L � a so that we can sum the energy of modes between x = 0 and x = a and those 
between x = a and x = L. 
Modes in a box of size r are discretized with 

π 
En = n (2.22.2) 

r 

which turns the integral (which gave the zero point energy) into a sum. But we still get an energy, 
even in 1d, which is � � ∞X1 1 π 

Etot(a) = Ebox + Eoutside = + n (2.22.3) 
a L − a 2 

n=1 

and this is still infinite. We can differentiate it to obtain a force � � ∞XdEtot 1 1 π 
F (a) = − = 

2 
− n (2.22.4)

da a (L − a)2 2 
n=1 

but it’s still infinite. The problem is that the walls are way too powerful – they can stop modes with 
arbitrarily large momentum and energy! So we need to account for the fact that the walls won’t 
stop modes with such high momentum and energy (for example, you might be aware that gamma 
rays can penetrate walls that stop visible light). 
Going back to our hard cutoff, we note that 

πn 
Emax = πΛ = (2.22.5) 

r 

implies that we must have 

rΛ 
nmax = (2.22.6)

π 

Thus we find that Xπ 
nmax π nm(nm + 1) π π 

E(r) = n = = (Λr)(Λr + 1) = (Λ2 r + Λ) (2.22.7)
2r 2r 2 4r 4 

n=1 
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This means that 

Etot(a) = 
π 
(Λ2L + 2Λ) (2.22.8)
4 

This has no dependence on a, so it seems that the Casimir energy and force are zero! This is the 
right answer to leading order in large Λ, but our coarse approximation has missed a finite piece. 
The problem is that nmax is a discontinuous function of a and L, since modes are either included 

or not. Instead we can cutoff our sum with a weighting 

nmaxn → ne − n 

(2.22.9) 

which shuts off continuously for n > nmax = Λr. If we compute E(r) now, we find Xπ − n 
rΛE(r) = ne 

2 
n 

π π ≈ Λ2 r − + · · · (2.22.10)
2 24r 

This gives 

π π π 
Etot(a) = Λ2L − − (2.22.11)

2 24a 24(L − a) 

But now we want to take the limit that L � a, so the last term drops out, and we find a force 

dEtot(a) π 
F (a) = − = − 

2 
(2.22.12)

da 24a 

This is an attractive Casimir force. 

Regulator (In)Dependence 

But our exponential regulator was totally ad hoc! How do we know that the result wasn’t due 
entirely to the choice of e−n/nmax ? Well let’s just try a general regulator, by defining 

π X � n � 
E(r) = nf (2.22.13)

2 rΛ 
n 

where f(x) is just some regulator function. In this case we find � �Xπ n n 
E(L − a) = (L − a)Λ2 f (2.22.14)

2 (L − a)2Λ2 (L − a)Λ
n 

In the limit that L →∞ we can really just take the continuum (integral) limit of the sum, which 
gives 

π 
Z ∞ π 

Z ∞ 

E(L − a) = LΛ2 dx xf(x) − aΛ2 dx xf(x) (2.22.15)
2 20 0 
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where x = n .
(L−a)Λ 

For fixed a we must be more careful, so if we define the energy density as Z ∞π 
Λ2ρ = dx xf(x) (2.22.16)
2 0 

then the first term above is just ρL. The second term can be re-written as Z Z∞ � �π π n 
aΛ2 dx xf(x) = dn nf (2.22.17)
2 2a aΛ0 

to make it look very similar to the E(a) term. Thus we can combine E(a) and E(L − a) to write " #ZX � � � �π n n 
Etot = ρL + nf − dn nf (2.22.18)

2a aΛ aΛ 
n 

The term in brackets is the difference between an infinite sum and an infinite integral. In complete 
generality, this is an Euler-Maclaurin series 

XN Z N F (0) + F (N) F 0(N) − F 0(0) F (j−1)(N) − F (j−1)(0)
F (n) − F (n)dn = + + · · · + Bj + · · · 

0 2 12 j! 
n=1 

where Bj are the Bernoulli nubers, which vanish for odd j > 1, and note we have used B2 = 1/6. 
In our computation we have � � n 

F (n) = nf (2.22.19) 
aΛ 

so assuming that 

lim xf (j−1)(x) = 0 (2.22.20) 
x→∞ 

we have 

πf(0) B4 3π 
Etot = ρL − − 

3Λ2 
f 00(0) + · · · (2.22.21)

24a 4! 2a 

Note that as Λ →∞ only the first two terms survive, and as long as 

f(0) = 1 (2.22.22) 

we always get the same, consistent result for the Casimir force. The two requirements on f(x) insure 
that 

• The ultra high energy, short distance modes are irrelevant for the physics. 

• The short distance regulator function f(x) does not change the modes at very long distances, 
where the Casimir effect actually arises. 
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Sub-Leading Terms and Counterterms 

The sub-leading terms at large Λ aren’t exactly zero, and they do depend on f(x). If you want to 
measure the Casimir effect very, very accurately, you really do need to know what happens at short 
distances, and the regulator function f(x) would be observable – you would need to compute it by 
modeling the interaction of the modes with the walls of the box. But it’s also worth noting that to 
obtain the first few terms in a power series in 

1 � 1 (2.22.23)
Λa 

we only need to know the first few derivatives of f(x), which is a finite amount of information about 
the short-distance corrections to the long distance physics. That’s all that survives when we do 
experiments with finite accuracy. 
You might also wonder why we needed to include the IR regulator L. Physically it’s clear that 

we need to account for forces on both sides of the wall, but there’s a more formal point to be made. 
If instead of the free field Lagrangian we had used 

L → L + ρc (2.22.24) 

then the energy density would have been 

ρ0 ∼ Λ2 → ρ0 − ρc (2.22.25) 

In other words, by adding a constant (a cosmological constant, it turns out) to the Lagrangian, we 
can shift the zero point energy density. 
This is our first example where ‘bare’ terms in the Lagrangian combine with calculable effects to 

produce the ‘physical’ or ‘renormalized’ quantity. In more old-fashioned terms, we would say that ρc 
is a term that can be added to cancel infinities in intermediate steps of a calculation, although in 
any case, the physical effects we calculate will always be finite. 

2.23 The Exact 2-pt Correlator – Kallen-Lehmann Representation 

Lately, we have mostly been performing computations in perturbation theory. But there are some 
exact results that we can obtain in QFT. One example, which will be useful to keep in mind when 
we study renormalization, is the exact or non-perturbative time ordered correlator of two fields, 
namely 

D(x − y) = hΩ|T {φ(x)φ(y)}|Ωi (2.23.1) 

where these are genuine Heisenberg picture fields. In the free case this is the Feynman propagator, 
but in general it could be much more complicated. 
In this section we’ll compute exactly what form it must take, obtaining the Kallen-Lehmann 

representation for it. We’ll see that in a completely generally theory, the propagator gets ‘smeared 
out in mass’, corresponding to the fact that it can create and destroy a continuum of possible states. 
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The idea of the argument is simple – we just want to insert a complete set of states between 
φ(x) and φ(y), and then use general principle to constrain the result. 
We may as well choose intermediate states that have definite momentum k. We can do this (as 

always) because the momentum operator Pµ always commutes with the Hamiltonian H = P0. Thus 
for any state with momentum k we can write 

hΩ|φ(x)|ψki = e ik·xhΩ|φ(0)|ψki (2.23.2) 

This follows because the momentum Pµ is the generator of translations, so we can move x to 0 at 
the cost of a phase factor. Similarly 

hψk|φ(y)|Ωi = e −ik·yhψk|φ(0)|Ωi (2.23.3) 

where I have assumed that φ = φ† . Let’s assume WLOG that x0 > y0, as usual, so we don’t have to 
worry about time ordering. Then 

D(x − y) = hΩ|T {φ(x)φ(y)}|ΩiX 
= e ik·(x−y)|hΩ|φ(0)|ψki|2 (2.23.4) 

ψk 

where the sum is over all states in the QFT with momentum k. This includes one particle states, 
million particle states, and everything else in the Hilbert space. 
We’ve already used translation symmetry. Now let’s use Lorentz invariance. The object 

|hΩ|φ(0)|ψki|2 (2.23.5) 

is a Lorentz scalar that only depends on a single momentum kµ, so it can only depend on k2 and, if 
kµ is time-like, the sign of k0. In fact k must be time-like, since it must have positive energy if |Ωi is 
the zero-energy vacuum, so we must have X 1 

δ4(k − p)|hΩ|φ(0)|ψki|2 = θ(p0)ρ(p 2) (2.23.6)
(2π)3 

ψk 

for the spectral function ρ(x), where ρ(x) = 0 for x < 0. More importantly, we have that 

ρ(µ 2) ≥ 0 (2.23.7) 

so the spectral function is non-negative. Thus we can write Z 
d4p ip·(x−y)D(x − y) = ρ(p 2)θ(p0)e 
(2π)3 Z Z ∞d4p ip·(x−y)= θ(p0)e dµ2ρ(µ 2)δ(p 2 − µ 2) (2.23.8)
(2π)3 0 
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Now we can interchange the order of integration and incorporate the time ordering symbol to write 
this as Z ∞ 

D(x − y) = dµ2ρ(µ 2)DF (x − y, µ 2) (2.23.9) 
0 

or in momentum space Z ∞ 

D(p) = dµ2ρ(µ 2) 
i 

(2.23.10) 
0 p2 − µ2 + i� 

Thus we see that the exact propagator is just an integral over the Feynman (free theory) propagator 
with a positive spectral function depending on the mass µ2 . Note that this provides a strong 
constraint on its high energy behavior – it can never vanish faster than 1/p2 as p →∞. 
We can use one more ingredient to derive a sum rule for ρ(µ2). Note that even in the exact 

theory we have the commutation relation 

[φ̇(t, ~x), φ(t, ~y)] = −iδ3(~x − ~y) (2.23.11) 

Furthermore, at equal times x0 = y0 we have 

h0|[φ̇ 
0(x), φ0(y)]|0i = −iδ3(~x − ~y) (2.23.12) 

This leads us to conclude that in any theory, no matter how strongly interacting, we must have Z ∞ 

ρ(µ 2)dµ2 = 1 (2.23.13) 
0 

since the exact commutator is just an integral of ρ(µ2) times the free theory commutator. However, 
as we will see, this requires that the fields are correctly normalized. Note that the free theory is just 
the case where 

ρ(µ 2) = δ(µ 2 − m 2) (2.23.14) 

So we see that the integrated spectral weight is always the same, but interactions can spread it out 
over a range of µ2 values. This is a strong constraint, since ρ(µ2) must always be positive. 
Finally, let’s stop and think about what we should expect to find in a perturbative QFT. In the 

free theory, we have a particle of mass m, and then starting at energy 

E ≥ 2m (2.23.15) 

we have a continuum of 2 particle states, then at E ≥ 3m we have a continuum of 3 particle states, 
and so on. Once we include perturbative loop corrections, there will (generically) be mixing between 
all of these states. But in perturbation theory, this is small, so in particular the 2-particle states will 
only be present with 

E2 − ~p 2 > 4m 2 + O(g) (2.23.16) 
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where g is the coupling. This means that we should expect 

ρ(µ 2) ≈ Zδ(m 2 − µ 2) + ρ&4m2 (µ 2) (2.23.17) 

where the latter term accounts of 2, 3, · · · particle states, and the former is an isolated delta function 
with coefficient Z < 1. In other words, D(p) still has an isolated pole at the physical mass m2 , with 
residue Z ≤ 1. It’s worth emphasizing that this statement about the magnitude of Z only follows if 
we insist that φ is a canonical Heisenberg picture operator; in general we can use any operator O to 
create our particles, in which case Z might take any positive value. In fact, if we like we can define 
the normalization of our operators so that Z = 1. We will be computing these effective Z and m2 

values in terms of ‘bare’ Lagrangian parameters when we compute loop effects in QFT. 

2.24 Basic Loop Effects – the 2-pt Correlator 

Now let’s look at the one-loop correction to the propagator in our favorite theory, which has an 
action Z � � 

1 1 g2φ2S = dd x (∂φ)2 − m + φ3 (2.24.1)
2 2 6 

in d spacetime dimensions. For various reasons (such as the fact that the dimensions of g depend on 
d) it’s useful to view d as a parameter. 
We already saw that we can exclude bubble diagrams from consideration. We will also exclude 

disconnected diagrams, as they cannot tell us anything about propagation. There are disconnected 
diagrams that contribute to hΩ|φ(x)|Ωi but these can always be cancelled. So let’s look at connected 
diagrams contributing to 

hΩ|T {φ(x)φ(y)}|Ωi (2.24.2) 

In fact, it turns out that we need only compute the 1-Particle Irreducible or ‘1PI’ diagrams. These 
are defined as diagrams that are still connected after any one internal line is cut. 
The reason we only need 1PI diagrams is because 

D(k) = DF (k) + DF (k)(iΠ(k))DF (k) + DF (k)(iΠ(k))DF (k)(iΠ(k))DF (k) + · · · Xi 
∞ � −Π(k) 

�n 

= 
k2 − m2 + i� k2 − m2 + i� 

n=0 

i 
= (2.24.3)

k2 − m2 + i� + Π(k) 

So all non-1PI contributions are just part of the geometric series, and do not need to be computed 
independently. 
So now we need to compute iΠ(k). It is Z 

1 ddk i i 
iΠ(p) = (ig)2 (2.24.4)

2 (2π)d k2 − m2 + i� (p − k)2 − m2 + i� 
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Note that there is a symmetry factor of 1/2, as we found a while ago when we discussed these 
factors. If this were part of a scattering amplitude we would have p2 = m2 , but we will allow p to be 
‘off-shell’, meaning that p2 6= m2 , since this diagram could in general occur as some sub-diagram in 
a more complicated process. For example, it could appear as a propagator correction in a 2-to-2 
scattering amplitude. 
The next part is ‘just’ a computation, but there are many points to be made (1) the spacetime 

dimension dependence, (2) about regularization of the short-distance divergences (infinities), and (3) 
the general techniques for computing such integrals. 
Let’s think for a bit about dimensional analysis. The object Π(p) has dimension [Energy]2 , in 

accord with the dimension p2 and m2 in the propagator. Part of this comes from the dimensions of 
g; the integral itself has dimension 

[Energy]d 

(2.24.5)
[Energy]4 

Thus there are no short-distance (large k) divergences at all when d < 4, but such divergences may 
appear for d ≥ 4, suggesting that the theory needs to be more carefully defined at short distances. 
Furthermore, note that when d = 6 we see again the special case where g is dimensionless, so all 
units apparently come from the integral. 
There are a variety of roughly equivalent techniques for evaluating these kinds of integrals. The 

most standard is the ‘Feynman parameterization’, where we use the fact that Z 11 (n − 1)! 
= dx1dx2 · · · dxnδ(x1 + · · · xn − 1) (2.24.6)

A1A2 · · · An [x1A1 + x2A2 + · · · xnAn0 ]n 

The version of this that we need is simply Z 11 1 
= dx (2.24.7)

AB 0 (A + (B − A)x)2 

which you can check instead of paying attention to the next three minutes of lecture. 
Now we can apply this with A = (p − k)2 − m2 + i� and B = k2 − m2 + i� to write 

A + [B − A]x = (p − k)2 − m 2 + i� + [k2 − (k − p)2]x 

= [k − (1 − x)p]2 + p 2 x(1 − x) − m 2 + i� (2.24.8) 

where we completed the square in the second line. This leads to an integral Z2 Z 1 g ddk 1 
iΠ(p) = dx 2 (2.24.9)

2 (2π)d 
0 [(k − (1 − x)p)2 + p2x(1 − x) − m2 + i�] 

We can shift the integration variable to 

` = k + p(1 − x) (2.24.10) 
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so that we have Z 1 Z 
g2 dd` 1 

iΠ(p) = dx 2 (2.24.11)
2 0 (2π)d [`2 − Δ+ i�] 

with 

Δ ≡ m 2 − p 2 x(1 − x) (2.24.12) 

Recall that `2 = `2 − ~̀2; let’s consider the integral as a complex contour integral. Assuming0 ` 0 

Δ > 0, there are poles at �q � 
~` 0 = ± `2 +Δ − i� (2.24.13) 

The contour in ` 0 ran from −∞ to ∞, but the placement of the poles means that we can rotate the 
contour of integration counter-clockwise, so that it runs from −i∞ to i∞. This is often called ‘Wick 
rotation’ in the context of Feynman integrals, and you can check that it still works when Δ < 0. 
This means that (in effect) we now have ` 0 = i`E – in other words, we are now in Euclidean, as 

opposed to Lorentzian, space. The integral becomes 

2 Z 1 Z 
g dd` E 1 

iΠ(p) = i dx 2 (2.24.14)
2 (2π)d [`2 + Δ] 0 E 

and we have no more need for �, as it’s now clear that the denominator never vanishes for Δ > 0. 
Now we have many choices of what to do, but the basic issue we face is that for d ≥ 4, this 

integral diverges if we trust it to arbitrarily short distances, aka arbitrarily large ` E . Here are some 
options 

• There’s something called the Pauli-Villars regulator you can read about in the book. The idea 
is to subtract the opposite of a particle at high energy. 

• We can evaluate this as a function of d, imagining that d < 4, and then analytically continue 
in the dimension d. That may sound crazy, but it’s by far the most popular way of regulating 
integrals in QFT, because it preserves Lorentz invariance and something called ‘gauge invariance’ 
that we’ll talk about when we study gauge theories. 

• We can differentiate the integral once or twice with respect to Δ, then do the integral with 
d < 8, and then note that all we’re missing are some divergent integration constants. 

• We can just impose a hard cutoff |` E| < Λ and evaluate, corresponding to a physical situation 
where there are no more modes above the energy/momentum cutoff. 

Let’s start with the last and work our way up. 
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Evaluating with a hard cutoff we have 

2 Z 1 Z Λ g d4` E 1 
iΠ(p) = i dx 

2 Z0 Z0 (2π)
4 [`2 + Δ]2 

E 
2 1 Λ g d`E (2π2)`3 

E = i dx 
2 0 (2π)

4 [`2 + Δ]2 Z 01 Z Λ2 
E 

2 π2g dx x 
= i dx 

2 (2π)4 [x + Δ]2 
0 Z 0 � � � � 

g2 1 Λ2 Λ2 

= i dx log 1 + − (2.24.15)
32π2 0 Δ Λ2 +Δ 

From this we see explicitly that there’s a logarithmic divergence at large energies. This is very 
important and we’ll discuss it more in a moment. 
We can also do the x integral and then expand in large Λ, giving ⎛ � � ⎞p 

p� � 2 p2 − 4m2 tanh−1 √ 
g2 ⎜ Λ2 p2−4m2 ⎟ 

iΠ(p) ≈ i ⎝⎜log − + 1⎟ (2.24.16)
2 ⎠32π2 m p 

We obtain a simpler result in the m = 0 limit, namely � � � � 
g2 Λ2 

iΠ(p) ≈ i log + 1 (2.24.17)
32π2 −p2 

√ 
You can see that the +1 can be removed by changing the cutoff by Λ → Λ/ e. 

But the log(−p2) cannot be removed by any change of Λ, and so it is a true physical effect. This 
is a very important point – the short distance scale Λ2 can never depend on the long-distance scale 
at which we do the experiment, namely p2 . We fix Λ once, when we set the theory. 

Ode to Logarithms 

Why are logarithms interesting? 

• They come from � � Z 
p2 Λ dk 

log ∼ (2.24.18)
Λ2 kp 

This means that they are not dominated by any particular scale, but get non-trivial contributions 
at every energy/distance scale. So the logarithmic effects are those that are always important, 
for any experiment, at any scale. 
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• They incorporate a hidden dependence on the short-distance scale which alters dimensional 
analysis – naively we would have expected that the result when m = 0 could only depend on 
p2 , and so it would be totally fixed by scaling. But this ‘dimensional transmutation’ effect 
means that much more interesting results are possible. 

• We must fix our masses and interaction strengths by experiments at some particular scale µ, 
and then we make predictions at other scales. In this process, the scale µ can appear, and so 
there will be dependence on µ2/p2 when we do an experiment at the scale set by p2 . 

Renormalization of a Force 

We can immediately use our result within a t-channel Feynman diagram. We could evaluate it as a 
one-loop correction, or we can just write it with a resummed propagator 

−ig2 

iM(p) = 2 Λ2 (2.24.19) 
p2 + g log 232π2 −p 

If we just view this as a t-channel exchange, and thus a long-range force, then the momentum pµ is 
spacelike, so that p2 < 0. This means it’s natural to write Q2 = −p2 and 

ig2 

iM(Q) = (2.24.20) 
Q2 − g2 

log Λ
2 

32π2 Q2 

It’s also natural to define a dimensionless coupling by 

2 

g̃2(Q) = 
Q

g 
2 

(2.24.21) 

Now how do we eliminate the dependence on the cutoff Λ? We want to actually measure this effect 
at some fixed scale Q2 = µ2 , writing a renormalization condition 

ig̃2 

iM(µ) ≡ ig̃2 (µ) = 
g̃0 

0 (2.24.22)R 
1 − 

2 

log Λ
2 

232π2 µ 

in terms of the physical observable M(µ), where g̃0 is the original or ‘bare’ coupling divided by Q2 . 
This gives 

g̃R 
2 (Q)

iM(Q) = 
2 

� � (2.24.23) 
g̃ (Q) µ2 

1 − R log
32π2 Q2 

Now the scattering amplitude (from these specific diagrams) for any momentum Q has been written 
directly in terms of the renormalized coupling gR defined at the scale µ. Thus physical observables 
have been written in terms of other observables, and the short-distance cutoff Λ has been completely 
eliminated! 
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UV Sensitivity of Relevant Parameters and the d = 6 Case 

The results that we have obtained are a bit special in d = 4, due to the fact that the only interaction 
was gφ3 , and that g has units of energy. This means that perturbation theory is strongly contrained 
by dimensional analysis alone. 
We can fix this by working in d = 6 spacetime dimensions instead. In that case, we must compute Z Z 

g2 1 d6` E 1 
iΠ(p) = i dx (2.24.24)

2 (2π)6 [`2 + Δ]2 
0 E 

Here we see that g is dimensionless, and the [energy]2 dimensions of Π(p) come from the d6` E . 
We already did a computation with a hard cutoff, so as a change of pace let’s differentiate the 

integral with respect to Δ. This gives Z 
d6` E 6 

F 00(Δ) = 4 (2.24.25)
(2π)6 [`2 + Δ] E 

where 

g2 Z 1 

iΠ(p) = i dxF (Δ) (2.24.26)
2 0 

The second derivative of F can be computed directly, as it is finite. It’s useful to use the fact that 
the surface area of a d − 1 sphere is 

2 

Ad−1 = 
Γ

2�π 
d 

d � (2.24.27) 
2 

to write dd` E = Ad−1 ̀
d
E 
−1d`E , and so we find 

F 00(Δ) = 
1 1 

(2.24.28)
64π3 Δ 

This means that 

1 
Λ2F (Δ) = + CΔ + Δ log Δ (2.24.29)

64π3 

1 Δ 
Λ2 = 1 + Δ log (2.24.30)

64π3 Λ2
2 

where Λ1 and Λ2 are integration constants (with units of energy) that were not determined by this 
method. These constants are directly sensitive to the short-distance physics, and would have been 
fixed if we had chosen a specific cutoff procedure, such as the hard cutoff we used above. 
If we integrate over x, taking the m = 0 limit again for algebraic simplicity, we find � � ��

2 2 2g p −p
Λ2iΠ(p) = i − log (2.24.31)1 Λ22 384π3 2 

where I shifted Λ2 by a constant factor to simplify the result. 
What does this result mean? 
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• It’s natural to interpret this as a correction to the propagator, so 

1� � �� 
g p −p222
0 

(2.24.32) 
p2 − m2 

0 + 
2 Λ2 

1 − 
384π3 log Λ22 

2 

• Here in d = 6, the coupling g is dimensionless, but Π(p) has units of [energy]2 , which are made 
up either by the cutoff Λ or by p2 . Thus we have a correction to the mass 

2 

δm2 = 
g2 

Λ21 (2.24.33)
2 

which is of order the high-energy cutoff! This is our second signal of ‘fine tuning’ – in order to 
get a small physical mass for our φ boson, we must carefully tune the bare mass m0 to cancel 

2
0 

the Λ21 piece. 

This completes our picture of fine-tuning for the Higgs boson mass – not only does dimensional 
analysis tell us that the Higgs boson mass might as well be huge, but quantum corrections set 
the Higgs mass near the cutoff Λ unless we fine tune them away. 

• We also see that there’s a renormalization of the p2 dependence, although this is weaker – it’s 
only logarithmic – which means that it comes equally from all scales, and does not depend 
with great sensitivity on the short-distance physics. 

To really define what we’re doing, we need to fix the parameters of the theory by doing some 
particular experiment at some scale (some choice of pµ). Then we can extrapolate to any other value 
of the momentum pµ flowing through the 2-pt correlator. 
As a simplified version of this real experiment, we can do a thought experiment where we just 

fix the parameters at a renormalization scale p2 = −µ2 , and then extrapolate from there. We 
can again define a renormalized, physical mass mR and a renormalized field φR = √1 φ, all at the 

Z 

renormalization scale p2 = −µ2 , via 

1 1 1 hΩ|T {φRφR}|Ωi = = � � �� (2.24.34) 
g µ µ 

0 + 1 +
−µ2 − mR 

2 Z 2 Λ22 − m logµ 2
2384π32 Λ 

2
2

22
0 

which means that 

1 
Z = � � 

g µ 
(2.24.35) 

1 + log
384π3 Λ�� 

2g02 2 Λ2 
1−Z (2.24.36)m = mR 0 2 

in terms of the UV cutoff parameteres Λ1, Λ2 and the bare parameters g0 and m0. 
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Now the 2-pt function of the renormalized field at a general scale is � � 
g µ22
01 + 

g20 

log
384π3 � Λ22 � �� 

−p2 
hΩ|T {φRφR}|Ωi = 

p2 − m2 
0 + 

2 Λ2 
1 

p 
384π3 

2 − log 2
2Λ 

1 
= � � 

−p2 

2 

2
0g1+ log

384π3 2
2Λ 2 

R 
2 � � − mp 2

0g µ 
Λ 

1+ log
384π3 2

2 

1 ≈ � � �� 
g20 

(2.24.37)
2−p 2 

R 
2 − m1 + logp 

384π3 2µ 

where in the last line we only kept the terms of order g0
2 . Thus we see that the physical renormalized 

2-pt function only depends on the renormalization scale µ and the renormalized mass mR. 
Is the mass mR the physical mass? Only if we choose µ2 = −mR 

2 as our renormalization scale. 
The physical mass is the place where the 2-pt function has a pole, so for general µ it gets shifted from 
mR. There’s nothing wrong with this – no one forces us to use the physical mass as the renormalized 
mass! 
Note that we haven’t actually renormalized g0 yet. This is because we haven’t considered general 

one-loop corrections to the interaction. Let’s move on to do that. 

2.25 General Loop Effects, Renormalization, and Interpretation 

Let’s go back and systematically compute all of the UV sensitive one-loop diagrams in our φ3 

theory, in order to complete the program of renormalization. We want to show that all of the hidden 
dependence on very short distance physics can be encapsulated in a renormalization of φ, the mass 
of φ, and the interaction strength g. 
Another important point, which won’t be illustrated with this example, is that if the action 

we start with has certain symmetries, we (almost) never need to introduce any counterterms for 
interactions that would break those symmetries. 

This means writing the action in terms of a renormalized field φR as Z �� � � 
S = dd x 

1 
Z (∂φR)

2 − 
2

1 2φ2 m0 R2 
− 
g0 
φ3 
R6 

(2.25.1) 

We’ll mostly focus on d = 6 dimensions, where the coupling is marginal ≡ classically dimensionless. 
It’s conventional, and convenient, to view these parameters as 

Z = 1 + δZ, m0
2 = mR 

2 + δm2 , g0 = gR + δg (2.25.2) 

where δZ, δm2 , and δg are called counterterms. The counterterms get there name because they 
are supposed to absorb the UV sensitivity (divergences aka infinities) when we do computations. 
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Also, the counterterms are always higher order in perturbation theory, where perturbation theory is 
defined as a formal expansion 

g0 or gR (2.25.3) 

Note that since (as we will see) 

δg ∼ g0
3 ∼ gR 

3 (2.25.4) 

doing perturbation theory in gR and in g0 is equivalent. They are both (formally) infinitessimal 
parameters. We already saw above that 

δZ ∼ g 2 , δm2 ∼ g 2 (2.25.5) 

where g could be viewed as either g0 or gR, since it doesn’t matter at this order. 
We computed the 2-pt function above, with various choices of regulator. What about other loop 

diagrams? A natural next step is to compute Z 
ddk i i i hφ(p1)φ(p2)φ(p3)i1−loop,1PI = (−ig)3 (2.25.6)

2 2 2(2π)d k2 − m (k − p1)2 − m (k + p3)2 − m 

If we look at this diagram at very large k, its of order Z 
ddk ∼ (2.25.7)
k6 

and so it has a logarithmic divergence in d = 6, and is UV finite in d < 6. This also means that 
the 4-pt diagram with 4 propagators is finite in d < 8, where we will always stay. Thus this 3-pt 
diagram is the last divergence we will encounter at one-loop in d = 6 dimensions. 
That isn’t to say that higher point diagrams aren’t interesting and physical! For example there’s 

a diagram Z 
ddk i i i i hφφφφi1−loop ⊃ (−ig)4 

k2 − m2 2 2 (k + p4)2 − m2(2π)d (k − p1)2 − m (k − p1 − p2)2 − m 

This ‘box diagram’ is UV finite in d < 8 dimensions, but that just means that it’s completely 
unambiguous and calculable. It definitely affects e.g. the 2-to-2 scattering of φ particles at order g4 . 
In other words, it’s dominated by energies and momenta of order the energies and momenta of the 
process (e.g. scattering) being studied. 
What we will now see (or argue for) is that all of the short-distance dependence can be 

absorbed into shifts of δZ, δm2, δg. In other words, once we do an experiment that fixes the 
physical normalization of φ, the physical mass of the φ particles, and the physical interaction strength, 
we can predict the result of any other experiment. We’ll prove this at one-loop, but at higher loops it 
won’t be entirely obvious... the Wilsonian procedure we will discuss in a lecture or two will make it 
more or less ‘obvious’ at all loops. 
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To perform our general renormalization analysis, we will use dimensional regularization as our 
regulator, as it’s nice and general and you may as well become familiar with it. For the 2-pt function 
renormalization, we needed to compute the integral Z Z2 1 ∞ dd` Eg 1 

iΠ(p) = i dx 2 (2.25.8)
2 (2π)d [`2 + Δ] 0 0 E 

There are a few different d dependence pieces. The area Ωd of a unit sphere in d dimensions is � � 
2πd/2 1 (2n)!√ 

Ωd = � � , where Γ n + = π (2.25.9)
Γ d 2 n!4n 

2 

It’s also important to note that the gamma function has poles at " #X(−1)n 1 
n 
1 

Γ(−n + x) = − γ + + O(x) (2.25.10) 
n! x k 

k=1 

The coupling constant g will have units that depend on d, so it’s most convenient to take 

6−d 
2g → gµ̃ (2.25.11) 

so that g is always dimensionless, and the parameter µ with dimensions of energy soaks up the units. 
The integral we need is (somewhat generalized, for reference) Z dddq (q2)a Γ(b − a − d )Γ(a + ) d2 2 Δa+ −b

2= (2.25.12)
(2π)d (q2 + Δ)b (4π)d/2Γ(b)Γ(

2 
d ) 

2 
In our specific case, for the evaluation of the 2-pt function, with α = g and � = 6 − d we have 

(4π)3 Z Z2 1 ∞ g dd` E 1 
Π(p) = dx 22 0 (2π)d [`2 + Δ] 0 � �Z 1 

E 

2 2 
� � � 

α � 4πµ̃ 
= Γ − 1 dx Δ (2.25.13)

2 2 Δ0 

Using the expansion for � = 6 − d small, we find Z 1 

Π(p) =
1 
α dxΔ log(Δ/µ2)
2 0� � 
1 1 1 − α + p 2 

6 � 2� � 
1 1 −α + m 2 (2.25.14)
� 2 
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where we wrote 
√ 
4πe−γ/2 ˜µ = µ (2.25.15) 

for convenience. The short distance divergences have shown up as poles in �. That’s how they 
always appear in dimensional regularization. Furthermore, note that the scale µ we introduced to 
fix the dimensions of g appears to make up dimensions for logarithms. A feature of dimensional 
regularization is that it only produces poles in � and logarithms; it never produces explicit ‘power 
divergences’ such as the Λ2 we found with a hard cutoff. This is often a useful technical advantage, 
although it doesn’t have physical meaning (in particular, the fine tunings associated with the masses 
of scalar fields do not go away simply because we use dim reg). 
It is conventional to view the counter terms as a part of Lint, making a compensating perturbative 

contribution to Π of the form � � 
−i δZp2 + δm2 (2.25.16) 

Clearly we must take 

δZ ≈ − 
α
, δm2 ≈ − 

α 
(2.25.17)

6� � 

in the limit that � → 0, so that we cancel off the short-distance divergence. Aside from this, we can 
choose δZ and δm2 in whatever self-consistent manner is most convenient; this is called the choice 
of a renormalization scheme. The choice above (with an exact = sign) is called ‘modified minimal 
subtraction’. This is just a common convention; it is not particularly important physically. Note, 
however, that shifts of µ are exactly compensated by shifts of δZ and δm2 . 
There is a physically sensible choice (although in more complicated theories and situations 

modified minimal subtraction is standard) where we demand that the full propagator has a pole at 

p 2 = mR 
2 (2.25.18) 

with residue 1. In that case the exact propagator in this scheme takes the form � � 
1 1 
2 2 (2.25.19) 

p2 − mR + i� 1 − Π(p)/(p2 − mR) 

This is the dimensional regularization version of what we discussed above with differentiation or a 
hard cutoff. 
Now let’s consider Z 

ddk i i i hφ(p1)φ(p2)φ(p3)i1−loop,1PI = (−ig)3 (2.25.20)
(2π)d k2 − m2 (k − p1)2 − m2 (k + p3)2 − m2 

We can use Feynman parameterization, defining Z Z 1 

dF3 = 2 dx1dx2dx3δ(x1 + x2 + x3 − 1) (2.25.21) 
0 
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to write this as Z Z 
dd` 1 

g 3 dF3 (2.25.22)
(2π)d [`2 + Δ]3 

where 

2 2 2 2Δ = x1x3p1 + x2x3p2 + x1x2p3 − m (2.25.23) 

We can again use dimensional regularization to evaluate the result, which diverges logarithmically in 
d = 6. We find � �Z � 

2 ��/21 � 4πµ̃ 
i gαΓ dF3
2 2 Δ� Z � �� 

1 1 Δ 
= igα − dF3 log (2.25.24)

� 2 µ2 

We can now use this result of fix the counter-term for δg, noting that it contributes as 

−iδg (2.25.25) 

to the 3-pt correlator. This means that 

gα 
δg = (2.25.26)

� 

in modified minimal subtraction, which is conventional. But we could, alternatively, use some other 
condition that’s found to be convenient. 
We argued that only one-loop diagrams with 2 or 3 propagators can have divergences in d ≤ 6 

dimensions. Thus by cancelling these divergences with δZ, δm2 , and δg we have eliminated all 
short-distance divergences at one-loop. It turns out that with these three parameters we can do that 
to all loop orders, although this is non-trivial to prove directly (due to overlapping divergences). 

Another Example – φ4 Theory in d = 4 

As another example, let’s consider the theory Z �� � � 
1 1 λ0

dd 2S = x Z (∂φR)
2 − m0φ

2 
R − φ4 

R (2.25.27)
2 2 24 

in d = 4 dimensions, where λ0 is classically marginal. We didn’t use this theory before because it’s 
not a general example, since, as we will see, Z = 1 at one-loop. 
We can first study the 2-pt function at one-loop, but it’s just Z 

ddk 1 hΩ|T {φφ}|Ωi1−loop = iλ 
(2π)d k2 − m2 

iλ 
Λ2 = (2.25.28)

(2π)4 
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in four dimensions. This has no non-trivial momentum dependence, and it simply requires us to 
adjust the counterterm for the mass δm2 to remove the dependence on the high-energy cutoff Λ. So 
that fixes Z = 1, and it determines δm2 . 
The other diagram to compute is Z 

1 ddk i i hΩ|T {φφφφ}|Ωi1−loop = (iλ)2 (2.25.29)
2 (2π)d k2 − m2 + i� (P − k)2 − m2 + i� 

This is just one of three contributions – we get an s, t, and u-channel contribution. But the integral 
is identical to the 2-pt function renormalization integral that we computed in φ3 theory, except here 
we have the momentum P = p1 + p2 running in the loop (for the s-channel, or other permutations 
for the other channels). We define δλ = λ0 − λR in order to cancel the divergence. 
Note that, conspicuously missing from the set of counterterms, is one for a gφ3 type interaction. 

Why didn’t we need such a counterterm? The reason is that there is a φ → −φ symmetry that 
forbids such an interaction! 

2.26 Large Logarithms and Renormalization Flows 

We have performed a renormalization analysis of the gφ3 theory, and also quickly considered the 
λφ4 theory. Let’s look at some physical observables, and then systematize our findings. 
A basic point will be that the renormalized field φR, the renormalized mass mR, and the 

renormalized coupling gR must depend on the renormalization scale µ, for two reasons, one 
mundane/technical and one deep/conceptual 

• Physical observables cannot depend on µ. Clearly the bare parameters do not. So the 
renormalized parameters must have a µ dependence that cancels the explicit µ dependence 
from quantum corrections due to loop diagrams. 

• As we’ve emphasized, logarithms encode a contribution from every distance scale, and these 
accumulate over large hierarchies in scale µ2/p2 . Thus the effective coupling constant is not g, 
because perturbation theory looks like (parametrically) � � � � 

2 4 6 g + g log(µ 2/p2) + 1 + g log2(µ 2/p2) + log(µ 2/p2) + 1 + · · · (2.26.1) 

and thus perturbation theory breaks down if we don’t resum the logarithms. This happens 
naturally if we define a running g(µ) and then set µ ≈ p2 for our experiment. 

Analyzing a Physical Experiment at Loop Level and Resumming Logs 

We will study a few physical observables at loop level. A key theme will be the explicit presence of 
the renormalization scale ‘µ’, which is a completely arbitrary parameter that must drop out of all 
physical observables. 
Recall that we found Z 11 α � � 

ΠM̄ S̄(p) = α dx Δ log(Δ/µ2) − p 2 + 6m 2 (2.26.2)
2 120 
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There is an alternative ‘on-shell’ scheme with a different choice of δm2 and δZ with Z 1 �1 α � 
ΠOS (p) = α dx Δ log(Δ/Δ0) − p 2 + m 2 (2.26.3)

2 120 

where 

Δ0 = m 2[1 − x(1 − x)] (2.26.4) 

in this alternative scheme the propagator has a pole in p2 at m2 with residue one. 
This means that � Z 1 � 

m 2 = m 2 − 
1 
α − 

5 
m 2 + dx D0 log(D0/µ

2)phys 2 6" 0 #√ 
5 34 − 3π 3 

= m 2 1 + α log(µ 2/m2) + (2.26.5)
12 15 

Clearly the physical mass mphys cannot depend on µ. There’s nothing to worry about though, all 
this means is that the renormalized mass m in the modified minimal subtraction scheme does depend 
on µ, in exactly the right way so that the µ dependence cancels. 

We also see that on a formal level, if µ � m, then we have a large logarithm appearing, which 
can be resummed by choosing µ ≈ m, deriving a differential equation, and integrating it. The 
equation is 

dmphys 
= 0 (2.26.6)

d log µ 

which gives 

dm 5 
= − αm (2.26.7)

d log µ 12 

This is called an anomalous dimension for the mass parameter; it tells us how we have to change 
the mass parameter when we change the renormalization scale. 
We can do some hard work and compute the high-energy limit of the scattering cross section for 

φφ → φφ, so s � m2, µ2 . The squared amplitude in this scheme is � � 
3 1 |M|2 ≈ |M0|2 1 − α log(s/µ2) + α log(δ2) (2.26.8)obs 2 3 

where M0 is the tree-level scattering amplitude. The δ term is an IR regulator. The point is, again, 
that µ is a fake parameter, so we must have 

d 
0 = log |M|2 

d log µ obs 

2 dα 
= + 3α (2.26.9)

α d log µ 
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so we find that we must have 

β(α) ≡ 
dα 

= − 
3 
α2 (2.26.10)

d log µ 2 

for the renormalized coupling. You will check in the homework that, in the simpler φ4 theory, there 
are log2 s terms at higher order in perturbation theory. In this theory, the effective coupling is of 
order 

α log s (2.26.11) 

and not just α. Thus we must resum these large logarithms at large energy by setting µ2 ∼ s, using 
this β function differential equation. 
This β function means that the strength of the coupling, and of the associated force, changes 

logarithmically with the energy or distance scale. In this case, in φ3 theory in d = 6 dimensions, we 
have found that 

α → 0 as µ →∞ (2.26.12) 

so in fact, the theory becomes more and more weakly coupled at large energies, or short distances. 
Such theories are referred to as asymptotically free, and QCD and the BCS theory of superconductivity 
are both examples of such theories. These theories have the possibility of being well defined down to 
arbitrarily short distances. 

Systematics of Schemes and β Functions 

We do not need to study a true physical observable to compute the β function. Using the action Z � � 
S = Z 

1 1 g + δg 2dd φ3 x Z (∂φR)
2 − (m + δm2)φ2 −R R2 2 6�� � � (2.26.13) 

= dd x 
1 1 2φ2(∂φ0)

2 − m0 02 2 
g0 
φ3− 06 

(2.26.14) 

we have the relations between the bare and renormalized fields 
√ 

φ0 = Z φ (2.26.15) 

2 m2 + δm2 

m0 = (2.26.16)
Z 

g + δg 
g0 = (2.26.17)

Z3/2 
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When we use dimensional regularization and the ‘modified minimal subtraction’ scheme, we can 
write the counterterms as X an(α)

Z = 1 + (2.26.18)
�n 

n=1 Xδm2 bn(α) 
2 

= (2.26.19)
�n 

n=1 
m Xδg cn(α) 

= (2.26.20) 
g �n 

n=1 

For example we found above that 

1 
a1(α) = − α + · · · (2.26.21)

6 
b1(α) = −α + · · · (2.26.22) 

c1(α) = −α + · · · (2.26.23) 

As we have stated several times before, all physical observables and bare parameters must be 
independent of µ. 
In the case of bare parameters, the reason is that they are what define or specify the theory at very 

short distances, so in a sense, they are physical. If we could compute exactly, physical observables 
could be expressed purely in terms of these bare parameters. So they must be independent of µ. 

Gn(α) 

To start with, consider g0. We can define � �2 

α0 = 
2g0 

(4π)3 
= α 

1 + δg 
g 

Z3 
µ̃6−d (2.26.24) 

and its logarithm is 

log α0 = log α + � log µ̃ + G(α, �) (2.26.25) 

where 

G(α, �) = log 

� 
1 + 

�2
δg 
g 

! 
1 
Z3 

(2.26.26) 

Note that this means that G(α, �) has an expansion in 1/�n starting at n = 1 with 

∞X
G(α, �) = (2.26.27)

�n 
n=1 

Now we can differentiate with respect to log µ to get 

1 dα ∂G dα 
0 = + � + (2.26.28)

α d log µ ∂α d log µ 
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regrouping gives � � 
αG0 1 αG0 2 dα 

0 = 1 + + + · · · + �α (2.26.29)
� �2 d log µ 

Thus to have a physically sensible result in the limit � → 0, we must be able to expand the rate of 
change of α in � and have a finite limit as � → 0, which means 

dα 
= −�α + β(α) (2.26.30)

d log µ 

with 

β(α) = α2G0 1(α) (2.26.31) 

and higher order terms in � must cancel, a result that can be checked in perturbation theory. Those 
cancellations should accord with the resummation of logarithms. 
From our previous calculations, this tells us that in our theory 

3 
β(α) = − α2 (2.26.32)

2 
which agrees with what we found by directly studying a physical observable, such as the 2-to-2 
scattering amplitude. Note, again, that the coupling goes to zero at large µ, or short distances, so 
our theory is asymptotically free. 
But this analysis was much simpler, and only required us to renormalize the logarithmically 

divergent corrections to the action for our φ3 theory. It’s crucial that these effects come from 
logarithms, which, as we have emphasized, accrue contributions to physical observables at every 
energy or distance scale. 
We can repeat this analysis for the other parameters in the theory. For example, defining ! 

∞
1 + δm 

m 
XMn(α)

M(α, �) = log √ = (2.26.33)
�nZ n=1 

we find that 
1 dm 5 

γm(α) ≡ = αM1 
0 (α) ≈ − α (2.26.34) 

md log µ 12 

as we found above. 
Let’s perform the same analysis for the propagator. The bare propagator is 

D0(p) = ZD(p) (2.26.35) 

so if we take the logarithm and differentiate, we have 

d 
0 = log D0(p)

d log µ 
dZ d 

= + log D(p)
d log µ d log µ� � 
dZ 1 ∂ dα ∂ dm ∂ 

= + + + D(p) (2.26.36)
d log µ D(p) ∂ log µ d log µ ∂α d log µ ∂m 
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We can define an anomalous dimension for the field as 

1 d log Z α 
γφ ≡ ≈ (2.26.37)

2 d log µ 12 

This means that we can write an equation � � 
∂ ∂ ∂ 

+ β(α) + γm(α)m + 2γφ(α) D(p) = 0 (2.26.38)
∂ log µ ∂α ∂m 

which is called the Callan-Symanzik equation for the propagator. 

Another Example – φ4 Theory 

Our other example theory is λφ4 theory, which has a dimensionless coupling in d = 4 dimensions. In 
that case the only non-trivial diagrams are the 2-to-2 diagrams we discussed above, and there are 3, 
one for each channel, and so we have a divergent part Z � �2

ddk hφφφφidiv = 
3
(−iλ)2 i 
2 (2π)d k2 − m2 + i� � �� ̃2 � 2 

� 

3λ2 � µ 
= i Γ (2.26.39)

32π2 2 m2 

The counterterm contributes as 

−iδλ (2.26.40) 

and we must choose it so that it cancels the pole in �, giving 

3λ2 

δλ = (2.26.41)
16π2� 

Now we have that 

log λ0 = log λ + � log µ + G(λ, �) (2.26.42) 

where � � 
δλ 

G(λ, �) = log 1 + (2.26.43)
λ 

The coupling λ0 must be independent of the RG scale µ. This tells us that � � 
λG0 λG0 dλ 

0 = 1 + 1 + 2 + · · · + �λ (2.26.44)
� �2 d log µ 

Working through the algebra order by order in �, this says that 

β(λ) = λ2G0 1(λ) (2.26.45) 
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where Gn(λ) are the expansions of G in �−n . So we find a beta function 

dλ 
= −(4 − d)λ +

3 
λ2 (2.26.46)

d log µ 16π2 

Note that here we have a + sign in front, so the coupling gets stronger and stronger at high energies. 
This theory is infrared free, because the coupling will get arbitrarily weak at long distances. But 
such a theory cannot be complete by itself. 

Fixed Points 

We have seen that for our φ3 theory, the beta function is a non-trivial, non-vanishing function of the 
coupling α. What if it were to vanish? 
That would mean that the coupling had no scale dependence, so the theory is at a scale-invariant 

fixed point. In fact, interacting, unitarity, Poincaré invariant theories with scale invariance are 
believed to be fully conformal invariant. So if we find vanishing β functions, we most likely have a 
Conformal Field Theory. 

To be clear, we would only have such a theory if we also set all other dimensionful parameters, 
such as particle masses m = 0. These parameters are not scale invariant unless they vanish. 
We can find an example of this if we view d as a parameter, for example in our φ4 example above, 

if we take 

dλ 3 
= 0 = −(4 − d)λ + λ2 (2.26.47)

d log µ 16π2 

then we find a fixed point at λ = λ∗ 

16π2 

λ∗ = (4 − d) (2.26.48)
3 

This is the fixed point in the � expansion that analytically continues in d to the 3d Ising model. 
In such a case, note that the Callan-Symanzik equation for the propagator (with vanishing 

∂ log µ 

masses) becomes � � 
∂ 

+ 2γφ(λ∗) D(p) = 0 (2.26.49) 

This is such a simple differential equation that we can solve it immediately. We find � �−γφ(λ∗)C µ2 

D(p) = (2.26.50) 
p2 p2 

where we used the engineering dimensions of D to get the 1/p2 in front. We see that although the 
engineering dimensions must be unchanged, the scaling dimension of φ has been altered by the 
anomalous dimension γφ, explaining its designation. At an interacting fixed point (a CFT), all 
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operators (generically) get anomalous dimensions. Note that this provides a very general way of 
obtaining logarithms... since typically 

γφ = aλ∗ + bλ∗ 
2 + · · · (2.26.51) 

when we expand in γφ we have � 
2 �−γφ(λ∗) � 

2 � µ 
2 

= 1 − γφ log 
µ 
2 
+ · · · (2.26.52) 

p p 

and so logarithms emerge from the perturbative expansion of the anomalous scaling dimension. 
Further discussion of CFTs and fixed points is beyond the scope of these notes, this semester, 

but we may return to this topic at some point. 

2.27 QM Example of Wilsonian Renormalization 

Now we will discuss another elementary example from quantum mechanics, analogous to the 
Wilsonian framework for renormalization. 

The starting point is the ‘Rayleigh-Ritz’ method for studying the effects of a perturbation to the 
Hamiltonian. Let us consider the QM Hamiltonian 

H = H0 + λV (2.27.1) 

where we have already diagonalized the H0 term with eigenstates |ii. Then we can compute the 
matrix 

Vij = hi|V |ji (2.27.2) 

and then just diagonalize the full Hamiltonian Eiδij + λVij . The eigenstates and eigenvectors will 
solve the full Schrodinger equation. 
As an example, let’s study an anharmonic oscillator, with V = x4 and H0 the Hamiltonian of 

a simple oscillator. This can be solved very simply in Mathematica, I recommend watching these 
lectures to see how (http://pirsa.org/displayFlash.php?id=15080045). The original eigenstates just 
have oscillator number |ni, with 

(a + a†)4 

V = x 4 = (2.27.3)
4 

It’s straightforward to evaluate Vnm = hn|V |mi using oscillators, especially in Mathematica. 
Numerically diagonalizing the resulting matrix Hmn = nδmn + Vmn gives a high precision estimate of 
the energies, and one can also compute the wavefunctions very precisely as linear combinations of 
the harmonic oscillator wavefunctions. 
But we aren’t especially interested in anharmonic oscillators. The reason we have introduced 

this system is to discuss renormalization. We would like to consider the question how precise are the 
energies when we truncate the Hamiltonian to a Λ × Λ matrix, and can we systematically improve 

128 



����

the results by somehow including the contributions of the energy levels with n > Λ? For this purpose, 
we want to break up the Hilbert space into 

HL ⊕HH (2.27.4) 

corresponding to the ‘low energy’ and ‘high energy states, where the dividing line is set by Λ. We 
will only focus on the properties of the low energy states in HL. We want to systematically study 
this approximation as a function of Λ. The analogy in QFT will be to a cutoff energy or distance 
scale Λ. The dependence of couplings on Λ is the Wilsonian renormalization flow. 
Thus we have two approximations; we write H = H0 + gV and we want to (intelligently) truncate 

the spectrum at Λ. The original Schrodinger equation is 

(H0 + gV ) |ψi = �|ψi (2.27.5) 

However, we will only be interested in ψ ∈ HL. Although H0 has already been diagonalized, so that 
it takes HL → HL, there will be terms in V that take HL → HH , and we want to account for these. 
We can write a block matrix equation for the exact eigenstates � � � 

HLL − � gVLH ψL = 0 (2.27.6)
gVHL HHH − � ψH 

This says that 

g|ψH i = VLH |ψLi (2.27.7)
HHH − � 

Plugging this relation into the equation for |ψLi, we find an equation for the light modes � � 
1 

HLL + VLH VHL |ψLi = �|ψLi (2.27.8)
HHH − � 

where we absorbed g into V . So far this is an exact relation, which shows how we can ‘integrate out’ 
the high energy modes and write down an effective Hamiltonian for the low-energy modes. 
However, since the high energy modes have large expectation value for HHH , we should expect 

that we can consider successive approximations: 

HLL|ψLi ≈ �|ψLi� � 
1 

HLL + VLH VHL |ψLi ≈ �|ψLi (2.27.9)
HHH 

and so on. To compute the inverse, we can just use HHH,0, ie HHH without V . Now we can compute 
the VLH 

1 VHL term in perturbation theory and see how big it is. Specifically, it’s nice to write
HHH � � Z 

1 ∞ M(E)ij
VLH VHL = dE (2.27.10)

� − HHH ij Λ � − E 
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We can analyze M by writing 

C(τ)ij = hi|V (τ/2)V (−τ/2)|jiZ ∞ � �
Ei+Ej− E− τ 

= M(E)ij e 2 (2.27.11) 
0 

so that the large E behavior is the small τ behavior. Now we can analyze the small τ behavior 
via the V (x)V (0) OPE. So the high-energy behavior, and thus the error in truncation, can be 
understood using the OPE of the interaction. 
We would like to study what happens when we change the cutoff that divides H and L modes. 

Can we incorporate the effects of the heavy modes that we are ‘integrating out’? The philosophy of 
Wilsonian renormalization is to see how the parameters of the theory must change as we change the 
cutoff. Note that to leading order in perturbation theory, we can just neglect the states above the 
cutoff, since they first appear at order V 2 . What happens if we include these terms? 
In the case of the anharmonic oscillator, we have that 

H = ωa† a + λ(a † + a)4 (2.27.12) 

In the harmonic oscillator basis |ni, the perturbation has elements that are only up to 4 units off 
of the diagonal. This means that VHL can only connect states that are very close to the cutoff 
dimension Λ. We can study the size of the M(E) above explicitly by computing the V (τ)V (−τ) 
correlator that defines C(τ) above. This would be an interesting exercise... 

2.28 Wilsonian Renormalization Flows 

We have discussed the ‘renormalization group equations’, namely the β function equations for the 
change of couplings with scale. So far we have motivated it in two ways 

• Quantum corrections inevitably refer to some specific scale at which observables/parameters 
are defined, either the high energy cutoff scale Λ or the renormalization scale µ, and have a 
logarithmic dependence on that scale (in perturbation theory). We need to re-absorb those 
logarithms in case they become large. 

• The renormalization scale µ is unphysical, and cannot appear in any observables, so we obtain 
an equation for the dependence of renormalized couplings on µ by demanding that the bare 
parameters (related directly to physical observables) cannot depend on µ. 

Now we will discuss another idea for renormalization, based on the ‘Wilsonian’ philosophy. 
Probably the best reference to read about these ideas is Polchinski’s paper ‘Renormalization and 
Effective Lagrangians’. The idea of the Wilsonian philosophy is to take the cutoff seriously, and 
consider what happens if we lower it. This is closely related to the Kadanoff block spin RG you 
derived in the homework. In a continuum QFT, one imagines integrating out all momenta in the 
range 

(Λ − δΛ)2 < p 2 < Λ2 (2.28.1) 
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This is usually evaluated in Euclidean space, where p2 is positive definite, so that it makes much 
more sense. One obtains a new theory, ie the action changes as 

SΛ[φ] → SΛ−δΛ[φ] (2.28.2) 

and we change the couplings in a way that leaves the long-distance physics invariant. 
Let’s see how this works very explicitly. We have some lagrangian with a cutoff Λ written as 

1 λ4 λ6 λ8
L = (∂φ)2 − m 2φ2 − φ4 − φ6 − φ8 − · · · 

2 4! 6!Λ2 8!Λ4 

= 
1
(∂φ)2 + Lint(φ) (2.28.3) 
2 

We have chosen a ‘toy’ Lagrangian without derivative interactions for simplicity, and we work in 
d = 4. Note that purely by dimensional analysis, ignoring all interactions, we must have 

∂λn
βexact ≡ ⊃ (n − 4)λn (2.28.4)n ∂ log Λ 

simply because we have scaled out factors of Λn−4 from the definition of the couplings. Note that 
this is in part because we are in d = 4 dimensions. These β functions will not be the same as those 
that we found for the dependence of couplings on the renormalization scale µ. 
Now we want to integrate out modes with energy-momentum in the range (Λ − δΛ)2 < p2 < Λ2 . 

What do such modes contribute to? 
They contribute in tree diagrams and loop diagrams. So for example if 

p1 + p2 + p3 = p4 + p5 + p6 (2.28.5) 

then we can have a correction to λ6 where 

λ2 

δλ6 ∼ 4 (2.28.6)
Λ2 

Similarly, there is a tree-level correction 

λ4λ6
δλ8 ∼ (2.28.7)

Λ4 

In general, these tree level diagrams lead to a change in the action of the form Z 
δStree 1 δLint δLint 

= d4 p(2π)4 δ(p 2 − Λ2) (2.28.8)
δΛ p2 + m2 δφ(p) δφ(−p) 

One can in fact use other softer methods for cutting of the high momentum modes (the book makes 
a different choice, for example, and Polchinski’s paper considers a general function); the physical 
results don’t change. 

131 



There are also one-loop (and only one-loop) renormalization corrections. For example 

λ6
δλ4 ∼ (2.28.9)

16π2 

In general we get Z 
δS1−loop 1 δ2Lint 

= − d4 p(2π)4 δ(p 2 − Λ2) (2.28.10)
2 + m2δΛ p δφ(p)δφ(−p) 

from loop diagrams where we take an interaction and wrap it back around. 
Thus we have the Wilson-Polchinski RG equationZ � � 

δS (2π)4 δLint δLint δ2Lint 
= d4 p 

2 
δ(p 2 − Λ2) − (2.28.11)

δΛ p2 + m δφ(p) δφ(−p) δφ(p)δφ(−p) 
This is called an exact RG equation because we have not used any sort of approximations in deriving 
it. This sounds way too good to be true, but it is true! 
The caveat is that even if we start out with many of the λn = 0, as soon as we change the cutoff 

Λ, all of the λn are immediately generated with non-zero values. So we have a simple RG equation, 
but we need to keep track of an infinite number of couplings to use it. This means, again, that the 
‘β functions’ from this exact RG equation are not the same as those that we derived above using the 
renormalization scale µ. 
As a toy example, we can study just the φ4 and φ6 interactions. It turns out that the exact RG 

β functions take the form (with coefficients that I’m not putting in yet) 

λ6
βexact 4 ≈ − (2.28.12)

16π2 

βexact 6 ≈ 2λ6 + λ4
2 (2.28.13) 

An important point here is that the 2 dominates over the perturbative coupling dependence. This 
means that as Λ decreases, λ6 is driven very quickly to a point where 

2λ6 + λ4
2 ≈ 0 =⇒ λ6 ≈ − 

1 
λ4
2 (2.28.14)

2 
This means that when we lower the cutoff Λ, it isn’t exactly the case that λ6 = 0, but what is 
true is that λ6, and all of the other irrelevant couplings, like λ8, are very quickly driven to a value 
that is determined by the marginal and relevant couplings, such as λ4. It isn’t that the irrelevant 
couplings vanish at low energies (in this way of looking at the exact RG), but that they are entirely 
fixed in terms of the relevant and marginal couplings. The book shows this explicitly with some 
complicated-looking differential equation solving. 
This also means that if we imagine that we fix a lower cutoff ΛL and define the theory at a larger 

cutoff ΛH , the boundary condition on the irrelevant couplings at ΛH do not matter, so we can freely 
take ΛH →∞, and only worry about specifying the relevant and marginal couplings as a boundary 
condition. The boundary condition for e.g. λ6 is ‘irrelevant’. The only case where that’s not true 
is when the irrelevant coupling breaks a symmetry of the low-energy Lagrangian, so that it would 
never be generated – in that case it’s UV value can be important in setting the rate for symmetry 
breaking processes, e.g. proton decay. 
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Connecting Renormalization Scale and the Wilsonian RG3 

But how does the Wilsonian exact RG equation connect with the β functions that we saw when 
studying the renormalized coupling, and its dependence on the renormalization scale µ? 
The physical point is that when we change the cutoff, it’s possible to make a choice (which is an 

approximation) so that we always set λ6 = 0 while keeping the low-energy physics invariant. This is 
sometimes called ‘the sawtooth’ for reasons that are clear from a graphic depiction of the coupling 
constant evolution. 
Let us now use this idea to derive the usual φ4 theory β-function or Callan-Symanzik or Gellman-

Low (these are equivalent monikers) equation 

∂λ4 3λ4
2 

= (2.28.15)
∂ log µ 16π2 

from the exact RG equation, which looks nothing like this. 
If we work it out with explicit coefficients, the exact RG takes the form 

λ6
βexact = − (2.28.16)4 16π2 

βexact 
λ4
2 λ8 

6 = 2λ6 + 6! Λδ(|p1 + p2 + p3| − Λ) − (2.28.17)
72 16π2 

Note that the combinatorial factors come from � �2
1 δLint δLint 1 4 1 ∝ = (2.28.18)
2 δφ(p) δφ(−p) 2 4! 72 

I kept a λ8 dependence for illustrative purposes. Note that λ8 will approach λ34 � λ24 in perturbation 
theory, so we can drop it if we only want to compute the running of λ4 to leading order. We would 
need to keep it if we wanted the 2-loop Callan-Symanzik equation. 
The idea of the sawtooth is to 

1. Start out with some value of λ4, but with λ6 = 0. 

2. Flow infinitesimally from Λ → Λ − dΛ, changing both couplings. 

3. Redefine λ4 so that λ6 = 0, choosing a new renormalization flow trajectory with the same 
low-energy physics. 

Following the first two steps, we integrate the exact RG equation to get 

λ6(Λ) = 10λ24 (θ(Λ − dΛ − |p1 + p2 + p3|) − θ(Λ − |p1 + p2 + p3|)) (2.28.19) 

So when Λ → Λ − dΛ, we have λ6 turning on infinitesimally, and it’s negative. Note that the λ4 

coupling doesn’t change, because λ6 = 0 at Λ0. 

3The following analysis borrows from a little note written by Matt Baumgart, as well as from Polchinski’s paper. 
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Now we want to compute the 4-pt function 

G(4) 
(4) (4) (4)

(λ0 = G4 (λ4, λ6) + G6 (λ4, λ6) = G4 4, 0) (2.28.20) 

The point of this equation is that we want to compute the contribution to the 4-pt correlator from 
both λ4 and λ6, and find a new value λ0 4 so that the contribution purely from the 4-pt function is 
equal to this sum. 
Being careful about the contractions, we can compute Z Λ 

(4) λ4
2 d4p 1 

G = i 108 
26 72Λ2 Λ−dΛ (2π)

4 p2 − m 

3λ24 ΛdΛ 
= i (2.28.21)

2Λ2 8π2 

The 108 comes from noting that when we close the loop, since p1 + p2 + p3 = p4 + p5 + p6 ≈ Λ, 
we must contract two of the external momenta with 1, 2, 3 and two with 4, 5, 6. This leads to a 

1combinatorial factor of 3 × 3 × 4! × . The 3 × 3 comes from three choices for each end of the 
2 

loop, the 4! comes from the usual factor we get from 4-pt correlators, and the 1/2 comes from the 
‘symmetry factor’ or the redundancy in contracting with either side of the 6-pt coupling. 

Thus to absorb this into a change in λ, we must choose 

3λ24(Λ)dΛ 
λ4(Λ − dΛ) = λ4 − (2.28.22)

16π2Λ 

which implies the Callan-Symanzik equation we have above. This is how one can relate the 
Wilsonian RG to the Callan-Symanzik equations for the renormalized couplings as a function of the 
renormalization scale. 

2.29 Path Integrals 

Some comments on path integrals: 

• PIs are an equivalent, independent way of thinking about quantum mechanics, which are 
intuitively based on a gedanken-experiment limit of the double slit experiment. 

• PIs make Lorentz invariance and the classical limit very obvious, but make Unitarity, ‘quanti-
zation’, and the Hamiltonian much less obvious. 

• From the PI perspective of QFT, it’s also not at all obvious that the relevant asymptotic states 
are particles, perhaps because in many cases, such as in general CFT, they are not! 

• In particular, one can define ‘time’ and ‘forward in time’ however one wishes. Euclidean, as 
opposed to Minkowski time can be used to study statistical mechanics. The partition function 
is just a path integral on periodically identified Euclidean time. 

• The flexibility in defining ‘time’ also means that one can easily talk about CFTs in ‘radial 
quantization’, something we may discuss eventually. 
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• PIs make it clear that perturbation theory generates asymptotic series. 

• One can identify non-perturbative effects directly and beautifully in the PI, as alternate 
classical solutions to the field equations. 

• Gauge theories tend to be easier to discuss using the path integral, because they can be 
quantized in a more manifestly Lorentz-invariant way. We can use the PI to derive the photon 
propagator, and then to generalize to Non-abelian gauge theories. 

• Srednicki’s QFT book (available for free as a draft pdf on his website) entirely develops QFT 
using path integrals, so it might be a useful reference and alternative guide. 

2.29.1 Gaussian Integrals 

As we will see very soon, all path integral computations in perturbation theory involve computing 
Gaussian integrals. A general 1-dimensional Gaussian integral is Z 

I(J) = dp e−
1 
2
ap2+Jp (2.29.1) 

Note that by differentiating with respect to J , we can get arbitrary ‘correlation functions’ � �k Z 
d 

I(J) = dp pk e −
1 
2
ap2 

(2.29.2)
dJ 

J=0 

Thus I(J) is a generating function for these correlation functions. We will use the same trick in QM 
and QFT. You saw some of this on an early problem set. 
To evaluate this I(J), we complete the square Z 

J22 

I(J) = dp e−
1 
2
a(p− J )a + 

2a (2.29.3) 

Since the integral converges, we can now just shift and rescale the integration variable to give Z 
2a 

1 
e 

J2 

dp e−
1 2pI(J) = √ (2.29.4)2 

a 

Now the last integral can be evaluated by squaring it, so that we find 

2π J2 

2aI(J) = √ e (2.29.5) 
a 

~We can immediately generalize this to matrix valued A and vector valued J , giving Z 
J~† (2π)n 
·p~ √ 

1 1J~†·A· ~J− ~ p+p·A·~ d~pe (2.29.6)2 2= e 
det A 

where n is the dimension of the vectors and matrices. When n = ∞ we have a path integral. 
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2.29.2 Path Integrals in QM 

In any quantum mechanical system with ‘coordinates’ and ‘momenta’ Qa and Pa satisfying the 
canonical commutation relations 

[Qa, Pb] = iδab (2.29.7) 

with other commutators vanishing, we can obtain a PI description. These could be the x̂ and p̂  of 
ordinary 1-d NR QM. 
We can either diagonalize the Pa or Qa, using states 

Qa|qi = qa|qi (2.29.8) 

or 

Pa|pi = pa|pi (2.29.9) 

Note that since both are a complete set, we can write Z Z 
1 = dq|qihq| = dp|pihp| (2.29.10) 

Simply by virtue of the canonical commutation relations, we have that 

hq|pi = eiqap
a 

(2.29.11) 

up to a normalization. This follows by noting that −i∂/∂qa has to act on these wavefunctions as pa. 
These states should be generalized to Eigenstates of Heisenberg picture operators by choosing 

Qa(t)|q; ti = qa|q; ti (2.29.12) 

Pa(t)|p; ti = pa|p; ti (2.29.13) 

Note that these are eigenstates of the Heisenberg picture Qa(t), not the result of allowing |q; t0i to 
evolve with time. The eigenstates evolve with time according to eiHt instead of e−iHt . 
We can evaluate a matrix element at a final time and an initial time by inserting many complete 

sets of states Z 
hf |ii = dqn · · · dq1hqf |e −iH(tf )δt|qnihqn| · · · |q2ihq2|e −iH(t2)δt|q1ihq1|e −iH(t1)δt|qii (2.29.14) 

and integrating over them. We suppressed the a index labeling the different qa in favor of different 
time steps. These can be evaluated by using the momentum eigenstates to write Z 

0 dpa 0hq ; t + δt|q; ti = hq ; t + δt|pa; tihpa; t|q; ti 
2πZ 
dpa 

= hq 0; t + δt|e −iHδt|pa; t + δtihpa; t|q; ti 
2πZ 
dpa −iH(q0,p)δt+i(q0 −qa)pa 

a= e (2.29.15)
2π 
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aNote that −iqapa in the exponent comes from one inner product, while iqa 
0 p comes from the other. 

If the Hamiltonian is general then this is the best we can do. When we take the limit that 
n →∞ and δt → 0, we can label the qa and pa at different times by the paths 

qa(t), pa(t) (2.29.16) 

Then we find that Z R 
0 i t0 dtq̇a(t)p

a(t)−H(q(t),p(t))hq ; t0|q; ti = Dqa(t)Dpa(t)e 
t 

(2.29.17) 

This is the path integral, although as is, it may look unfamiliar. The exponent is the action written 
in terms of pa and qa, whereas you are used to seeing it written in terms of qa and q̇a. 
This expression can be greatly simplified when the Hamiltonian takes the form 

2p
H(q, p) = a + V (qa, t) (2.29.18)

2ma 

so that all momentum dependence is explicit and quadratic, we can do the dpa integral immediately, 
since it’s simply a Gaussian integral for each pa(t). This gives (with discrete qj and discrete time) 

(qj+1−qj )
2 

2 δt2hqj+1|e −iHδt|qj i = Ne−iV (qj ,tj )δt+i 
ma 

NeiL(q(t),q̇(t))δt = (2.29.19) 

and the Lagrangian is 

L =
1 
maq̇a 

2 − V (qa, t) (2.29.20)
2 

Thus we have a Lagrangian version of the path integral Z q(tf )=qf 
iS[q(t)]hf |ii = N Dq(t)e (2.29.21) 

q(ti)=qi 

where the action Z tf 

S = L(q(t), q̇(t), t)dt (2.29.22) 
ti 

In essentially all cases we will use this Lagrangian formulation as our starting point. 

2.29.3 And in QFT 

Since we indexed the qa and pa so that we can accommodate an arbitrary number of them, generalizing 
to QFT is formally trivial. As we recall from canonical quantization, the qa are just the fields φ(x). 
We need only note that 

qa(t) → φ(x, t), q̇a(t) → φ̇(x, t) (2.29.23) 
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where x is equivalent to the a index label, when we talk about the Lagrangian. In the case of the 
Hamiltonian, we have 

pa(t) → π(x, t) (2.29.24) 

since the canonical momentum is an independent variable in the Hamiltonian formalism. 
Note that this means that we are working in the |φ(x)i basis of definite values of 

φ̂(y)|φc(x)i = φc(y)|φc(x)i (2.29.25) 

labeled by classical configurations φc(x) for the field, where φ̂(y) is the Heisenberg picture operator. 
This is just one basis among many. 
It’s worth emphasizing, though, that the result Z φ(x,tf )=φf (x) 

iS[φ(x,t)]hφf (x), tf |φi(x), tii = Dφ(x, t)e (2.29.26) 
φ(x,ti)=φi(x) 

isn’t very closely connected to the QM version with, say, multi-particle QM configurations. Here we 
are integrating over all classical field configurations φ(x, t) at all times subject to some boundary 
conditions on the classical fields at initial and final times. The states of our QFT are being defined 
by classical φ(x, t) configurations, not by some number of creation operators acting on the vacuum. 
This is a basis for QFT that is very different from the basis formed by n-particle states. 
Note that if we take φ(x) = 0 at the initial and final times, and take tf →∞ and ti → −∞, it 

looks like we have Z 
iS[φ(x,t)]h0; ∞|0; −∞i = Dφ(x, t)e (2.29.27) 

where we integrate over all times, in a manifestly Lorentz-invariant way. 

2.29.4 Classical Limit 

The classical limit obtains from (putting ~ back in) Z q(tf )=qf 
i S[q(t)]hf |ii = N Dq(t)e ~ (2.29.28) 

q(ti)=qi 

which follows by dimensional analysis, since S and ~ both have units of action. When we take ~ → 0, 
this is dominated by those field configurations where 

δS 
= 0 (2.29.29)

δqa(t) 

which gives the classical equations of motion or Euler-Lagrange equations. This is because we are 
using the method of stationary phase approximation for the path integral (it’s a very important 
kind of approximation; look it up if you don’t know about it). 
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It’s worth pausing and thinking about this some more. What are we going to do when we 
evaluate path integrals in interacting theories? We will start with a classical solution to the field 
equations, and write 

φ(x) = φc(x) + δφ(x) (2.29.30) 

Then we will compute small quantum fluctuations about the classical solution, which is a stationary 
point of the path integral. The simplest stationary point in the theories that we have studied is 

φc(x) = 0 (2.29.31) 

but there may be other, non-trivial stationary points, and one could expand about those as well. 
This is how one observes non-perturbative phenomenon in the PI formalism, including ‘instanton’ 
effects and tunneling between different vacua in QFT. 
This also makes it easy to see why perturbation theory in QM and QFT is an expansion in ~. 

Let’s write out the path integral for one of our favorite theories Z Rφ(x,tf )=φf (x) 
1i d4 (∂φ)2− λ φ4 

4!hφf (x), tf |φi(x), tii = Dφ(x, t)e ~ x 
2 (2.29.32) 

φ(x,ti)=φi(x) 

√ 
Now φ is nothing but a dummy integration variable (!), so we can rescale it by φ → φ/ λ. Now up 
to an overall normalization constant, we have Z Rφ(x,tf )=φf (x) 

1i d4 (∂φ)2− 1 φ4 
4!hφf (x), tf |φi(x), tii = Dφ(x, t)eλ~ x 

2 (2.29.33) 
φ(x,ti)=φi(x) 

So we see that expanding in small λ is exactly the same thing as expanding in small ~. This is true 
for all perturbative couplings involving polynomial interactions. 

2.29.5 Time Ordered Correlators 

Now let us see what happens if we insert fields into the path integral. If we evaluate Z 
Dφ(x, t)e iS[φ(x,t)]φ(y, ty) (2.29.34) 

then we can interpret this by using the definition of the PI as a limit of many insertions of a sum 
over all states. We summed over states in the |φ(x)i basis of definite values for the field φ(x). Thus 
we get 

h0; ∞|φ̂(y, ty)|0; −∞i (2.29.35) 

because at the time ty, this operator acts to give us the value of φ(y, ty). 
If we insert two fields we get Z 

Dφ(x, t)e iS[φ(x,t)]φ(y1, t1)φ(y2, t2) = hT {φ(y1, t1)φ(y2, t2)}i (2.29.36) 
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The reason for the time ordering is that no matter which order we use in the path integral, ie 

φ(y1, t1)φ(y2, t2), φ(y2, t2)φ(y1, t1) (2.29.37) 

we get the later time on the left, since the time ordering follows from the ordering of states |φ, tihφ, t|
inserted to define the path integral. Thus we get time ordering for free in the PI formalism! 
To get normalized interacting time ordered correlators, eliminating vacuum bubbles, we need 

only compute R 
iS[φ(x,t)]φ(y1)Dφ(x, t)e · · · φ(yn)hΩ|T {φ(y1) · · · φ(yn)}|Ωi = R (2.29.38)

iS[φ(x,t)]Dφ(x, t)e 

This formula makes it possible to use the path integral and LSZ to obtain S-Matrix elements for the 
scattering of particles. Generally speaking, we do not include particles via boundary conditions on 
the path integral (which might have been an intuitive thing to try to do), instead we just compute 
time ordered correlators and apply LSZ to get scattering amplitudes. 

2.30 Generating Function(al)s and Feynman Rules 

2.30.1 Generating Functions 

We already saw that in the case of Gaussian integrals, by defining Z 
ap2+Jp 
2Z0(J) = dp e− 1 

(2.30.1) 

and differentiating with respect to J , we can get an arbitrary ‘correlation function’ � �k Z 
d − 1 ap

2Z0(J) = dp pk e 
2 

(2.30.2)
dJ 

J=0 

This will generalize immediately to PIs in QFT. 
Note that we could have defined a generating function in a theory with a more complicated 

‘action’, such as Z 
ap λp4 Jp 
2 4!Z(J) = dp e− 1 2− 1 

e (2.30.3) 

Even though we cannot evaluate this integral in closed form, we can still obtain the ‘correlator’ � �k Z 
d − 1 2− 1 ap λp4 

2 4!Z(J) = dp pk e (2.30.4)
dJ 

J=0 

by taking derivatives of Z(J). 
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But we can go further. As you saw in an early problem set, we can evaluate such an integral in 
perturbation theory, assuming λ � 1, by expanding the exponential " #Z � �nX 1 11 2 

Z(J) = dp e− Jp λp4 (2.30.5)ap −2 e 
n! 4! 

n 

To work to a given order in λ we need only expand to that order. 
But now we are just evaluating gaussian integrals multiplied by p4n . We can therefore re-write 

this in a clever way as !� �4 n ZX 1 1 ∂ 1 2 
dp e− Jp apZ(J) = − λ 2 e 

n! 4! ∂J 
n " #� �4

1 ∂ 
= exp − λ Z0[J ] (2.30.6) 

4! ∂J 

This shows how correlators in the ‘interacting’ theory can be written as a sum over correlators in 
the free theory. Of course we know the answer that 

J2 

2aZ0[J ] = e (2.30.7) 

and so we can write out the expansion for Z[J ] using ‘Feynman diagrams’, where each vertex gets a 
λ and the vertices are connected by propagators associated with factors of 

a 
1 . 

There are connected and disconnected diagrams, as usual. However, something nice happens 
when we think about them in terms of generating functions. Let us imagine that 

W [J ] (2.30.8) 

is the generating function purely made up of a sum of connected diagrams. Then we can get Z[J ] as 

W [J ]2 W [J ]3 

Z[J ] = 1 + W [J ] + + + · · · (2.30.9)
2 6 

because this includes any number of disconnected diagrams from products of connected diagrams. 
But this just means that 

W [J ] = log Z[J ] (2.30.10) 

so connected diagrams are generated by log Z. Thus we can get only connected Feynman diagrams 
by using W [J ] instead of Z[J ]. 

2.30.2 Generating Functionals and the Feynman Propagator 

A functional is a function of a function. So for example, the wavefunction in a QFT in the φ-basis is 
a functional 

Ψ[φ(x)] (2.30.11) 
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that gives the quantum mechanical amplitude for some given classical configuration φ(x). This 
generalizes the wavefunction insofar as there are an infinite number of independent variables in φ(x). 
The best way to think about this is by imagining that we have discretized spacetime and put it into 
a finite box, so that there are only a finite number of spacetime lattice points xi. We evaluate the 
field φ(xi) at each of these points, and so our wavefunction depends on all of the φ(xi) at all the 
lattice points. Taking the continuum limit of the lattice gives the wave functional. 
So there is a very general and natural way to compute time ordered correlators, by using a 

generating functional Z R 
iS[φ(x,t)]+i d4xJ(x)φ(x)Z[J(x)] = Dφ(x, t)e (2.30.12) 

We define functional derivatives via 

δ 
φ(y) ≡ δ4(x − y)

δφ(x) 
(2.30.13) 

so that, for example 

R R 
Z 

i d4yJ(y)φ(y) i d4yJ(y)φ(y)δ
e = e d4yφ(y)δ4(x − y)

δJ(x) R 
i d4yJ(y)φ(y)= iφ(x)e (2.30.14) 

This is just the limit of what would happen if we discretized x and viewed φ(x) at different values of 
x as a large but finite number of different (independent) variables. 
We can therefore write 

δ δ hT {φ(x1)φ(x2)}i = (−i) (−i) Z[J(y)] (2.30.15)
δJ(x1) δJ(x2) J=0 

in order to compute the time ordered 2-point correlator in a QFT. Usually I will just write Z[J ] for 
the generating functional. 
This gives us a major hint as to what the generating functional Z[J(y)] must be for a free QFT. 

Now let us compute it. 
We begin with Z R 

1i d4x (∂φ)2− 1 m2φ2−Jφ 
2 2Z[J(y)] = Dφ(x)e (2.30.16) 

This is just an infinite number of Gaussian integrals, with a ‘vector’ φ(x) and a ‘matrix’ 

A = ∂2 2+ m (2.30.17) 

So it’s easy. The answer is, roughly speaking 

1 
2 JA

−1JZ[J(y)] ∝ e (2.30.18) 
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from our formula above. We just need to invert the matrix ∂2 + m2 . How? 
As usual, this becomes trivial in momentum space. We write Z R

i d4k φ̃(k)(k2+m2)φ̃(−k)−J̃(k)φ̃(−k)+J̃(−k)φ̃(k)
Z[J̃(p)] = Dφ̃(k)e 2 (2π)4 (2.30.19) 

Now we change variables to 

J̃(k)˜χ̃(k) = φ(k) − (2.30.20)
k2 + m2 

in order to complete the square. The result is that " #Z 
i d4k J̃(k)J̃(−k)

Z0[J̃(p)] = exp (2.30.21)
2 (2π)4 k2 + m2 + i� 

or � Z � 
Z0[J(y)] = exp 

i
d4xd4 x 0J(x)DF (x − x 0)J(x 0) (2.30.22)

2 

where DF (x, x0) is the usual Feynman propagator. Note that this reproduces the result above for 
the second functional derivative with respect to J(x), as claimed. 

2.30.3 What about the i�? 

The i� prescription actually did not appear in our computation, so where does it come from? 

• One can essentially view it as a term that guarantees the convergence of the path integral, by 
inserting R R 

−� d4xφ2(x) i d4x i�φ2(x)e = e (2.30.23) 

so that the PI is well defined. Alternatively, we can view this as selecting out the vacuum 
state. 

• One can also obtain it by starting out in Euclidean space (as we’ll discuss in the context of 
thermodynamics) and then analytically continuing back to Lorentzian signature. 

2.30.4 Feynman Rules With Interactions 

We can apply our trick from generating functions to generating functionals in order to derive the 
Feynman rules for interacting theories. We saw above that R 

iS[φ(x,t)]φ(y1)Dφ(x, t)e · · · φ(yn)hΩ|T {φ(y1) · · · φ(yn)}|Ωi = R 
iS[φ(x,t)]Dφ(x, t)e 

1 δ δ 
= (−i) · · · (−i) Z[J(y)] (2.30.24)

Z[0] δJ(y1) )δJ(yn J=0 
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But we would like to compute Z[J(x)]. 
Just as we saw for generating functions, in perturbation theory we can write Z � Z � 

1 1 λ 
Z[J ] = Dφ(x, t) exp i d4 x (∂φ)2 − m 2φ2 − Jφ − φ4 

2 2 4! Z � Z � ∞ � Z �nX1 1 1 λ 
= Dφ(x, t) exp i d4 x (∂φ)2 − m 2φ2 − Jφ −i d4 y φ4(y)

2 2 n! 4! ! n=0 

∞ Z � �4 n Z � Z �X 1 λ δ 1 1 
= −i d4 y −i Dφ(x, t) exp i d4 x (∂φ)2 − m 2φ2 − Jφ 

n! 4! δJ(y) 2 2 
n=0 " #Z � �4 � Z � 

λ δ i 
= exp −i d4 y −i exp d4xd4 x 0J(x)DF (x − x 0)J(x 0)

4! δJ(y) 2 " #Z � �4 

= exp −i d4 y
λ −i δ 

Z0[J(x)] (2.30.25)
4! δJ(y) 

This expression gives us the full Z[J ], at least in a perturbative expansion. 
For example, to compute the 2-pt function, we want " #Z � �4

δ δ λ δ hΩ|T {φ(x1)φ(x2)}|Ωi = − exp −i d4 y −i Z0[J(x)] (2.30.26)
δJ(x1) δJ(x2) 4! δJ(y) 

J=0 

If we work to zeroth order in λ, we just get the Feynman propagator itself. If we work to first order 
in λ, we get the one connected bubble diagram that we are used to, plus several other disconnected 
Feynman diagrams. Obviously if we have a scalar field theory with other types of vertices, then we 
can derive the Feynman rules in the same way. 

2.30.5 Fermionic Path Integrals 

As the book says, path integrals for fermions would like to be essentially equivalent to those for 
bosons, but fermions are anti-commuting ‘numbers’, which gets confusing. At the end of the day 
they basically are the same, except for the anti-commutation, but here’s how to justify that. 
A Grassman algebra is a set of objects generated by a basis {θi}, where the θi are called Grassman 

numbers. They anticommute, so 

θiθj = −θj θi (2.30.27) 

but they add commutatively, and can be multiplied by complex numbers (as though they are basis 
vectors in a vector space). Note that 

θ2 
i = 0 (2.30.28) 

a crucial property that means series expansions in θ truncate. So if there’s only one θ then 

g = a + bθ (2.30.29) 
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is the most general object in the algebra. With two thetas it’s 

g = A + Bθ1 + Cθ2 + Fθ1θ2 (2.30.30) 

Objects with an even-grade commute with other objects, whereas objects with an odd grade 
anti-commute. 
To define a path integral, we need to know how to integrate Z 

Dψ (2.30.31) 

where ψ is Grassman. How do we integrate anti-commuting numbers!? 
Integrating over functions is hard because there are a lot of possible functions, but since the 

number of objects in a Grassman algebra is rather small, we can just work directly. The most general 
integral in one variable is Z Z Z 

dθ(a + bθ) = a dθ + b dθ θ (2.30.32) 

If we want to map non-trivial elements of the Grassman algebra to C, then we choose the first term 
to vanish, and the second integral to give 1, meaning Z 

dθ(a + bθ) ≡ b (2.30.33) 

Note that this is exactly the same thing as the naive definition of a derivative 

d 
(a + bθ) = b (2.30.34)

dθ 

so integrals and derivatives are identical! With more variables, we need to be careful and set Z 
dθ1dθ2 · · · dθnθnθn−1 · · · θ1 = 1 (2.30.35) 

but these variables anti-commute, so there’s a sign to keep track of, and we evaluate these from the 
inside out. 
Why do we call this ‘an integral’? One reason is that it has the property Z Z 

dθf(θ) = dθf(θ + X) (2.30.36) 

as one can compute directly, for any X that doesn’t depend on θ. This is equivalent to the usual 
shift symmetry of integrals from −∞ to ∞. 
When we study path integrals, we have Gaussian integrals like Z Z 

d¯ θAθ d¯ 
� 
1 − ¯ 

� 
θdθe−

¯ 
= θdθ θAθ = A (2.30.37) 
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That’s the full Taylor expansion of the integrand,√because θi 
2 = 0. We should compare that to the 

usual 2-variable Gaussian integral, which gives 1/ A. We see that in general Z X1θiAij θjdθ̄  
1 · · · dθ̄  

ndθ1 · · · dθne −
¯ 

= ±Ai1i2 · · · Ain−1in n! 
perms 

= det(A) (2.30.38) 

This is crucial for QFT, since most of what we compute will be built from Gaussian integrals, and we 
see that bosonic vs fermionic integrals just differ as to whether the determinant is in the numerator 
or denominator. In the presence of external currents we get Z 

−θ̄  
iAij θj +η̄iθi+θ̄  

iηi ~̄ηA−1η~ dθ̄  
1 · · · dθ̄  

ndθ1 · · · dθne = det(A)e (2.30.39) 

which is what we need to evaluate correlators. 
Now let’s take the continuum limit and compute the Dirac propagator. The path integral is Z R 

i d4x[ψ̄(i∂/−m)ψ+ψη¯ +η̄ψ]Z[η̄, η] = Dψ̄(x)Dψ(x)e (2.30.40) 

We can immediately evaluate this as a Gaussian integral R R 
i d4x d4y η̄(y)(i∂/−m+i�)−1η(x)Z[η̄, η] = N e (2.30.41) 

where N is an infinite constant from the determinant of the Dirac operator. We get the 2-pt function 
of this free theory from 

1 δ2 

hT {ψ(x)ψ̄(y)i = Z[η̄, η]
Z[0] δη̄(x)δη(y) η,η=0Z ¯ 

d4p i −ip(x−y)= e 
(2π)4 /p − m + i� Z 
d4p i(/p + m) −ip(x−y)= e (2.30.42)
(2π)4 p2 − m2 + i� 

which is the Dirac propagator. 

2.31 Path Integrals and Statistical Physics 

We have been using the notation Z[J ] for generating functionals, as though they are the same thing 
as the Partition Function of a statistical system. In fact, they almost are! 
This surprising connection is deep and very important; it will not be a primary topic for us but it 

would be silly not to mention it briefly. It implies an intimate connection between thermodynamics 
and quantum mechanics, and the methods it suggests are used to study the statistical mechanics of 
relativistic (and non-relativistic) systems. 
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Let us derive a shocking statement: the canonical partition function at temperature T is given 
by a Euclidean path integral, where we impose periodic boundary conditions on the Euclidean time 
t → −iτ , with a period β = 1/T . 
First of all, note that if we have any QM theory with a conventional kinetic term, then Z � � 

iS = i dt 
1 
ẋ2 − V (x) (2.31.1)
2 

When we move to Euclidean space, we take t → −iτ , and find Z � � 
iS → i (−i)dτ − 

1 
ẋ 2 − V (x)
2Z 

= − dτH(x, ∂τ x) (2.31.2) 

This also works in QFT of course, with kinetic term (∂tφ)2 − (∂iφ)2 . This means that under t → −iτ , 
we have Z R 

Z R 
i d4xL[φ] → − dτd3xH[φ]Dφ(x)e Dφ(x)e (2.31.3) 

So we see that the Lagrangian has turned into the Hamiltonian, and the phase has turned into an 
exponential suppression. 
But what should be the measure of integration over τ , and what does it mean? For that, consider 

the thermal expectation value 

hψf |e −βH |ψii (2.31.4) 

Here the ‘initial’ and ‘final states are different. But when we compute the partition function we take 
the expectation value of e−βH in a single state, setting ψf = ψi. 
So the partition function is just X 

Z[β] = hψ|e −βH |ψi (2.31.5) 
ψ 

as long as the states of the theory |ψi are normalized. Just as we broke up the conventional time 
evolution into tiny slices, we can also imagine breaking up the Euclidean time evolution. The 
fact that the initial and final states are the same tells us that we must impose periodic boundary 
conditions in Euclidean time. Since Z β Z 

βH = dτ d3 x H(τ, ~x) (2.31.6) 
0 

we see that Z R β R 
0 dτ d3x H(τ,~x)Z[β] = Dφe− (2.31.7) 

φ(0,~x)=φ(β,~x) 
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is the partition function for our QFT at temperature β = 1/T ! 
One can take this further to get all sorts of thermodynamic information. Specifically, to get the 

density matrix at finite temperature we just compute 

ρΨ1,Ψ2 = hΨ1|e −Hβ |Ψ2i Z Ψ2[φ(β,x)] R β R 
0 dτ x H(τ,~x)= Dφe− d3 

(2.31.8) 
Ψ1[φ(0,x)] 

The partition function is the trace of this object. 
And we can use other boundary conditions to compute more exotic properties of theory. For 

example, what if we want to study the reduced density matrix after integrating out all the degrees of 
freedom in some region B, leaving only a density matrix ρA for what’s left over? All we need to do 
is integrate over the fields in B, with boundary conditions imposed in the region A. Entanglement 
entropy has become a popular computable (it isn’t observable) in condensed matter theory, in order 
to study exotic topological phases of matter, and also in high-energy physics, as a probe of spacetime. 

2.32 Soft Limits and Weinberg’s Theorem 

Using Lorentz invariance we can prove that 

• Massless spin 1 particles can only produce long-range forces by coupling to a conserved charge. 

• Massless spin 2 particles can only produce long-range forces by coupling to energy-momentum. 

• Massless higher spin particles can never produce long-range forces. 

The key element is the Lorentz transformation of polarization vectors, as we emphasized earlier. 
Consider some scattering amplitude, and let us add to it a soft photon with momentum q. In 

the soft limit, the amplitude will be dominated by soft photons that are attached to external legs. 
On the ith leg, this gives 

i(pi
µ + (pi

µ − q))
Mi(pi, q) = (−ieQi) 2 

�µM0(pi − q) (2.32.1)
(pi − q)2 − m 

2 2 2where Qi is the charge of the ith particle. Note that since pi = m and q = 0, this is 

pi · � 
Mi(pi, q) ≈ eQi M0(pi) (2.32.2) 

pi · q 

to leading order at small q. 
Now we see the reason that external lines dominate – it’s because only there can we get poles in 

q as q → 0. Another way of saying the same thing is that soft photons have very large wavelenth, 
and so they do not care about short-distance processes. They act like a classical background against 
which the rest of the scattering process unfolds. 
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In fact, one can obtain the soft amplitude factor by viewing the external particles as classical 
sources for the photon field Aµ(x). The source, or classical current for the ith particle, is 

Ji(x) = Qiδ
3(~x − q̂it) (2.32.3) 

and so we can obtain the soft amplitude factor from Z ∞ pi · � ni·A(x(τ ))= dτeiˆ 

pi · q Z0 
∞ 

in̂·qτ ≈ dτi(n̂i · �)e (2.32.4) 
0 

where we note that for a mode with fixed momentum q we have 

Aµ(x) = �µe
iq·x (2.32.5) 

We have obtained the soft factor from integrating the electromagnetic field A(x(τ)) along the classical 
worldline of each charged particle in the scattering process. 
So we have the soft factor for emission from one external leg. This means that the total soft 

photon emission amplitude will be " #X Xpi · � pi · � 
M ≈ eM0(pj ) Qi − Qi (2.32.6) 

pi · q pi · qincoming outgoing 

where the approximation means that we are only considering the leading term when q is small. Now 
we ask the crucial question: is this Lorentz invariant? 
Because of the Lorentz transformation properties of �, we have 

�µ → (Λ�)µ + c(Λ)qµ (2.32.7) 

as we saw before. So in order for the emission amplitude to be Lorentz invariant, we must have that 
when we replace � → q, the result vanishes. This means that X Xpi · q pj · q

Qi − Qj = 0 (2.32.8) 
pi · q pj · qincoming outgoing 

or X X 
Qi = Qj (2.32.9) 

incoming outgoing 

Thus we have derived charge conservation for every scattering process! In other words, a massless 
spin 1 particle that creates a long-range force must couple to a conserved charge. The book has a 
nice discussion of form factors following up on this result. 
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Now let us consider massless spin 2 particles. Lorentz transformations act on the polarization 
tensor to produce 

�µν → �µν + vµqν + qµvν + cqµqν (2.32.10) 

Thus theories involving massless spin 2 particles must satisfy a Ward identity to maintain Lorentz 
invariance without propagating unphysical polarization states. 
In the spin 2 case the soft factor for the ith line in the limit of small q is 

µ νpi pi �µνκi (2.32.11) 
pi · q 

where we included a spin 2 coupling κi for the ith particle. Thus we find a soft amplitude " #X µ ν X µ νpi pi �µν pi pi �µνM ≈ M0(pj) κi − κi (2.32.12) 
pi · q pi · qincoming outgoing 

Now Lorentz invariance demands that X X 
κipi = κj pj (2.32.13) 

incoming outgoing 

so that κipi is conserved. But this equation would place an extra algebraic constraint on the allowed 
momenta unless 

κi = κ (2.32.14) 

is universal for all particles. Note that since every particle carries a momentum, this means that 
every species of particles, elemenatary or composite, must couple in the same universal way to 
massless spin 2 particles. 

In the case of higher spin particles, one finds the constraint X X 
µ ν µ νκip = κj p (2.32.15)i pi j pj 

incoming outgoing 

which can never be satisfied by any choice of κi for generic momenta. So higher spin particles cannot 
couple in a way that produces long-range forces, and in fact we have never encountered any massless 
higher spin particles. 

These arguments go a long way towards explaining the spectrum of particles that we have observed 
in our universe, and the way that forces act. 
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3 Spring Semester 

3.1 Effective Actions, Renormalization, and Symmetry 

3.1.1 Connected Generating Functional 

We can get connected diagrams immediately, from a generating functional that knows only about 
them. The connected diagrams are computed from the functional 

W [J ] = −i log Z[J ] (3.1.1) 

as we saw in the case of generating functions for simple integrals. Let’s see how this works at first 
order in λ for our 2-pt function: 

δ δ − W [J ]
δJ(x1) δJ(x2) J=0 " # !Z � �4
δ δ λ δ 

d4 = − log exp −i y −i Z0[J(x)]
δJ(x1) δJ(x2) 4! δJ(y) 

J!=0Z � �4
δ δ λ δ ≈ − log Z0[J(x)] − i d4 y −i Z0[J(x)]

δJ(x1) δJ(x2) 4! δJ(y) Z � �4 
J=0 

δ δ −i λ δ 
d4≈ − y −i Z0[J(x)] (3.1.2)

δJ(x1) δJ(x2) Z0[J(x)] 4! δJ(y) 
J=0 

Now the derivatives that produce the external fields at x1 and x2 can act on either the Z0[J ] in the 
numerator, which has a vertex, or on the 1/Z0[J(x)] factor. Acting only on the first produces all 
possible diagrams, connected and disconnected, while acting on the latter produces a disconnected 
diagram, canceling them out. 

3.1.2 1-PI Effective (or Quantum Effective) Action 

We just saw that we can write down a generating functional for only the connected Feynman 
diagrams. In fact, we can go further and write down a generating function purely for 1-Particle 
Irreducible (1-PI) vertices. 
This is sometimes called the quantum effective action because formally, its propagator is the 

exact 2-pt function, and its vertices are the exact k-pt functions of the theory. The exact correlation 
functions would be made exclusively from tree diagrams with vertices drawn from the 1-PI effective 
action 

Γ[Φ(x)] (3.1.3) 

How do we define it? Well, what if we could turn on the current JΦ(x) (by turn on I mean give it 
some finite value, not just an infinitessimal value around 0) so that 

δ 
Φ(x) = hφ(x)i = −i W [J ] (3.1.4)

δJ(x) J=JΦ 
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Now we define the quantum effective action as the Legendre transform Z 
Γ[Φ(x)] = W [JΦ] − d4xJΦ(x)Φ(x) (3.1.5) 

Note that taking some functional derivatives and using the definition of Φ, we see that 

δΓ 
= −JΦ(x) (3.1.6)

δΦ(x) 

so this means that when JΦ = 0, the possible values of the classical field (expectation value) Φ(x) 
are given by stationary points of Γ. This is the sense in which Γ is really the ‘effective action’. It is 
the improvement of the classical action, taking quantum corrections into account. 
Because Γ is the effective action, it also must sum up all 1-PI contributions to any given vertex. 

That is, if we look at 

δ δ · · · Γ[Φ(y)] (3.1.7)
δΦ(x1) δΦ(xk) 

then this is the exact 1-PI contribution to a k-point function. The reason is that if we path integrated 
over Φ using Γ[Φ] as the action, and we only looked at the classical limit, we would get exactly 
W [JΦ], now viewing JΦ → J as a variable. For more details see Weinberg, chapter 16. 

3.1.3 Symmetries of the Effective Action 

Imagine we have a theory with some symmetry. For example, the simplest possible case would be 

L = 
1
(∂φ)2 − 

m2 

φ2 − 
λ
φ4 − · · · (3.1.8)

2 2 4! 

where there is a symmetry under 

φ → −φ (3.1.9) 

Will this symmetry be preserved by quantum corrections? If not, we have a major problem with 
renormalization, since once we break the symmetry with quantum corrections, we will probably 
find that these corrections have short-distance sensitivity, and so we will need new counter-terms in 
the Lagrangian to absorb that sensitivity. But now we have a Lagrangian that doens’t have the 
symmetry at all! 
The solution, of course, is that quantum corrections do respect symmetries4 , so the question is 

how to see that this is the case. A natural formalism we can use is that of the effective action. 
So let us consider some transformation of the fields generated by an infinitessimal tranformation 

φi → φi + �Fi[φ] (3.1.10) 

4Except in very special cases, where there are so-called anomalies. 
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which leaves both the measure of the path integral and the action invariant. This means that if we 
act with this transformation on Z[J ], we simply get Z Z R 

iS[φi]+ d4zφi(z)Ji(z)Z[J ] → Z[J ] + i� Dφi d4yFi[φi(y)]J
i(y)e (3.1.11) 

which means that 

Fi[φi(y)]J
i(y) 

Jj 
= 0 (3.1.12) 

where this denotes the expectation value with the currents Ji turned on. But since by definition 

δΓ[φ]
Ji(y) = − 

δφi 
(3.1.13) 

we can write this as � � 
δΓ[φ]

Fi[φi(y)] 
δφi Jj 

= 0 (3.1.14) 

But this is precisely the statement that the quantum effective action Γ[φ] is invariant under 

φi → φi + �hFi[φ]iJ (3.1.15) 

Is the quantum expectation value of Fi the same thing as Fi itself? It is in the case where Z 
Fi[φ(x)] = si(x) + d4yTi

j (x, y)φj (y) (3.1.16) 

so that Fi is linear, because we can take expectation values of both sides. We only have problems 
because the expectation value of e.g. the square of a field isn’t the same thing as the square of the 
expectation value. 

3.2 Schwinger-Dyson from the PI and Ward Identities 

3.2.1 Contact Terms and S-D from PI 

Let us see how we can obtain the Schwinger-Dyson equations from the PI. The usual classical 
equations come from a variation 

φ(x) → φ(x) + �(x) (3.2.1) 

so let us see what happens with that in the PI. If we study the 1-pt function in a free theory, we see Z R1 hφ(x)i = Dφe−i d4y 
2
1 φ�y φφ(x) (3.2.2)

Z[0] 
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Now what happens when we perform the field re-definition inside the path integral? The measure is 
invariant under such a shift, so we get Z R1 1 

2

1 
2 

Dφe−i d4 (φ+�)�y (φ+�)(φ(x) + �(x))yhφ(x)i = 
Z[0] Z � Z �R1 Dφe−i d4 φ�y φ d4 z �(z)�zφ(z) (3.2.3)y≈ φ(x) + �(x) − iφ(x)
Z[0] 

The variation terms must vanish, so we find that Z � �R 
d4y 1 

2
φ�y φDφe−i φ(x)�zφ(z) + iδ4(x − z) = 0 (3.2.4) 

since �(z) can be any function. This is just the Green’s function equation for the Feynman propagator. 
Repeating the derivation for an interacting theory produces the full Schwinger-Dyson equation for 
the correlators. 
One can proceed and write the S-D equations in terms of the generating function, yielding � � � � 

δZ[J ] δ −i�x = Lint 0 −i + J(x) Z[J ] (3.2.5)
δJ(x) δJ(x) 

which the book calls the S-D differential equation. Note that this is formally true for any J(x), 
not just for J near zero, so it gives a lot of non-perturbative information. One immediate way to 
identify the PI with the ordinary Canonical approach to QFT is to note that both versions yield 
this same equation. 

3.2.2 Gauge Invariance 

We can prove that when we evaluate gauge invariant correlation functions, the result will always be 
independent of the parameter ξ in the photon propagator. This is just a first step though, and is 
not enough to prove ξ independence of the S-Matrix. 
Consider the function Z R 

d4 1 (�π)2 

Dπe−i xf(ξ) = (3.2.6)2ξ 

The idea is that by multiplying and dividing by f(ξ)/f(ξ) = 1, we can obtain the Lagrangian 

1 1 L = − Fµν 
2 − (∂µA

µ)2 (3.2.7)
4 2ξ 

All we have to do is perform some field redefinitions. 
First, let us take f(ξ) and send 

1 
π → π − ∂µA

µ (3.2.8)
� 
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where by 1/� we mean the usual thing. This is just a shift of π so it doesn’t change the measure, 
and so f doesn’t change. We have Z R 

x (�π−∂µAµ)2 
2ξf(ξ) = Dπe−i d4 1 

(3.2.9) 

which is actually independent of Aµ. 
Now let us multiply and divide by f in the path integral for some gauge invariant correlator Z 

hO1 · · · = 
f(

1 
ξ) 

DφiDφ ∗Oki DπDAµ i R 
i d4x(L[Aµ,φi]− 1 (�π−∂µAµ)2)O1 ·×e 2ξ · · Ok (3.2.10) 

Now let us perform a gauge transformation 

iπφiAµ → Aµ + ∂µπ, φi → e (3.2.11) 

Since this is a gauge transformation it leaves L invariant, and because we insisted on computing 
gauge invariant correlators, it does not affect the Oi. Thus we obtain Z 

1 DφiDφ ∗hO1 · · · Oki = DπDAµ iZ[0]f(ξ)R 
i d4x(L[Aµ,φi]− 1 (∂µAµ)2)O1 ·2ξ×e · · Ok (3.2.12) 

So we get the gauge fixed Lagrangian. Clearly the normalization drops out when we divide by Z[0], 
so we obtain R 

i 
R 
d4x(L[Aµ,φi]− 1 (∂µAµ)2)O1 ·2ξDπDAµDφiDφi ∗ e · · OkhO1 · · · Oki = R (3.2.13)R 

i d4x(L[Aµ,φi]− 1 (∂µAµ)2)2ξDπDAµDφiDφi ∗ e 

Thus we can take ξ to have any value we like. This provides a partial proof of the photon propagator 
formula. 
Unfortunately, this does not apply to correlators of fields that are gauge covariant, but not gauge 

invariant, because then the Oi in the path integral would shift under the gauge transformation we 
used. But we will prove ξ independence in general in the next section. 

3.2.3 Noether’s Theorem and Ward Identities 

Let us begin by considering what happens to global symmetries and Noether’s Theorem in the PI 
formalism. We saw how linear symmetries remain symmetries of the effective action, let us see what 
happens to current conservation. 
If we have some lagrangian invariant under a global symmetry, we can try performing a field 

redefinition 

−iα(x)φ(x), iα(x)φ†(x)φ(x) → e φ†(x) → e (3.2.14) 
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The measure of the path integral will be invariant, but since α(x) depends on x the Lagrangian will 
not be invariant. The Lagrangian will shift by 

Jµ(x)∂
µα(x) (3.2.15) 

by definition of the current Jµ(x). If we are studying a correlator 

hφ(x1)φ†(x2)i (3.2.16) 

then the fields in the correlator will also transform. 
Finally, since φ and φ† are just dummy integration variables in the PI, the whole path integral 

must be invariant. Thus Z � Z � 
0 = DφDφ† e iS i d4xJµ(x)∂

µα(x)φ(x1)φ
†(x2) + iα(x2)φ(x1)φ

†(x2) − iα(x1)φ(x1)φ
†(x2) 

But since this must hold for any α(x), it implies � � 
∂µhJµ(x)φ(x1)φ†(x2)i = δ4(x − x2) − δ4(x − x1) hφ(x1)φ†(x2)i (3.2.17) 

This is much like the Schwinger-Dyson equation – it says that in correlation functions, current conser-
vation holds up to contact terms. The contact terms generate the global symmetry transformations 
on the fields. Here the signs on the right hand side are just the charge of the fields φ and φ† . 
To understand this relation in a different way, we can perform a Fourier transform, defining Z 

ipx+iq1x1−iq2x2 hJµ(x)φ(x1)φ†(x2)iMµ(p, q1, q2) = d4xd4 x1d
4 x2e (3.2.18) 

and similarly for the other terms. Then the identity becomes 

ipµM
µ(p, q1, q2) = M0(q1 + p, q2) − M0(q1, q2 + p) (3.2.19) 

This is often called the Ward-Takahashi identity. It is an exact, non-perturbative statement that 
implies that charge conservation survives renormalization. 
This identity can be written diagrammatically, representing off-shell correlation functions, which 

can appear inside other Feynman diagrams. It can be generalized easily to correlators with many 
currents and many charged fields. 

3.2.4 Conventional Ward Identities 

Now we can use the S-D equations to relate the W-T identities to the standard Ward identities. 
We can write an S-Matrix element as 

h�, · · · , �k, · · · |S| · · ·i� Z Z � 
ipx�x ipkxk �k�k in d4 d4 = �µ α xe µν · · · xke αβ · · · hAν (x) · · · Aβ(xk) · · ·i (3.2.20) 
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The term �µν is shorthand for the photon kinetic term, ie � � 
�µν = gµν � − 1 − 

1 
∂µ∂ν (3.2.21)

ξ 

in the gauges we are using. Now we apply the Schwinger-Dyson equations to the S-Matrix, giving � � 
�x �k hAν (x) · · · Aβ (xk) · · ·i = �k hJµ(x) · · · Aβ(xk) · · ·i − iδ4(x − xk)gµβ h· · ·iµν αβ αβ 

= (x) · · · · · ·i − �k �DF (x − xk)h· · ·i (3.2.22)hJµ Jα(xk) µα 

where we wrote the delta function as �DF (x − xk) to connect with perturbation theory. 
Thus we have related the S-Matrix element to a correlator of currents Jµ plus a disconnected 

piece, which drops out of the non-trivial S-Matrix. In other words, S-Matrix elements involving 
photons are equal to time-ordered products involving currents. This is also true even if we do not 
force the external momenta to be on-shell. 
We also have a proof of the usual Ward identity, that for an S-Matrix element 

�µM
µ(p, qi) (3.2.23) 

we must have 

pµM
µ(p, qi) = 0 (3.2.24) 

This follows because we can apply the above reasoning to write the photon matrix element in terms of 
current correlators, but those satisfy the Ward-Takahashi identity. When we compute the S-Matrix, 
the contact terms from W-T must vanish because they are not on-shell for the external states, due 
to the addition of p to the various qi. Thus the conventional Ward identity is proven. 
Finally, note that by writing a scattering amplitude as Z mY 

M = �α 
1 
1 · · · �αn 

n d4k1 · · · d4kiΠµiνi (ki)Mµ1ν1···µmνmα1···αn (ki, qi) (3.2.25) 
i=1 

By the Ward identity, which does not require propagators to be on-shell, we have that under 

Πµν (k) → Πµν (k) + αkµkν (3.2.26) 

the correction must vanish. So the scattering amplitudes must be independent of ξ, as desired. This 
requires all external charged particles to be on-shell, though, because otherwise there would be 
contact terms. Technically, the external photons do not need to be on-shell. 

3.3 Discrete Symmetries and Spinors 

Recall that the most useful way to write the Lorentz algebra is using 

1 1 
Ji 
+ ≡ (Ji + iKi), Ji 

− ≡ (Ji − iKi) (3.3.1)
2 2 
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where Ji generate rotations and Ki generate boosts. In this basis the algebra is just � � 
Ji 
±, Jj 

± = i�ijkJk 
± (3.3.2)� � 

Ji 
+, Jj 

− = 0 (3.3.3) 

So we just have two copies of so(3) = sl(2, R) = su(2). This can be written as 

so(1, 3) = su(2) ⊕ su(2) (3.3.4) 

The Pauli matrices are � � � � � � 
0 1 0 i 1 0 

σ1 σ2 σ3 = , = , = (3.3.5)
1 0 −i 0 0 −1 

We have σµ = (1, ~σ), and σ̄µ = (1, −~σ). In the Weyl basis, the gamma matrices are � � � � � � 
0 σµ 0 1 0 σi 

γµ γ0 γi = , i.e. = , = (3.3.6)
σ̄µ 0 1 0 −σi 0 

This means that the gamma matrices are all real, except for γ2 , which is pure imaginary. 

3.3.1 Chirality, Helicity, and Spin 

We have studied both Weyl and Dirac spinors. Recall that the Dirac spinor is simply a 4-component 
object that can be written in terms of two Weyl spinors, a ψL and a ψR, via � � 

ψLψ = (3.3.7)
ψR 

The handedness of a spinor is also called its chirality, and corresponds to whether it is a (1
2 , 0) vs 

(0, 1
2 ), or left-handed vs right-handed, in terms of its transformation properties under the Lorentz 

group. In general, we refer to a theory as chiral if it chooses a handedness by including an (A, B) 
representation of the Lorentz group without a (B, A) representation. QED is not chiral, but the full 
standard model is chiral (the weak interactions are chiral). 
If we’re living in an even dimension, we can add one more dimension by considering 

γ2n+1 γa1 γa2n= i�a1···a2n · · · (3.3.8) 

For example, we see that 

σ3 = iσ1σ2 (3.3.9) 

allows us to go from 2 dimension to 3 dimensions. This automatically works – one can check that σ3 

is forced to satisfy the relations of the Clifford algebra. Similarly, note that 

γ5 ≡ iγ0γ1γ2γ3 (3.3.10) 
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is the 4-by-4 matrix � � 
γ5 = 

−1 
0 

0 
1 

(3.3.11) 

in the Weyl representation (recall that the γ matrices can be more formally defined in terms of their 
Clifford algebra, and that the Weyl representation is one explicit matrix representation of that more 
general algebra). 
The reason we call it γ5 is because it satisfies 

(γ5)2 = 1, {γ5, γµ} = 0 (3.3.12) 

and so it extends the Clifford algebra of the γµ to a 5th dimension. If we wanted to discuss spinors 
in 4 + 1 spacetime dimensions we would literally use γµ and γ5 , and there would be no Weyl 2-spinor 
representation, but only the 4-spinor representation with γ. 
Now we can define left-handed and right-handed projectors 

1 + γ5 1 − γ5 

PR = , PL = , (3.3.13)
2 2 

that project onto Dirac spinors of definite chirality. It’s no accident that we used the anti-symmetri 
� tensor (or Levi-Civita tensor) when we defined γ2n+1 , or in this case, γ5 . The � tensor chances 
sign under parity transformations, where space → −space, and this is also why γ5 picks out states 
of definite chirality, as we will see. 
Recall that the Dirac equation in Fourier space is 

σµpµψR = mψL (3.3.14) 

σµ¯ pµψL = mψR (3.3.15) 

We discussed the possibility of Majorana spinors last semester, where we use the fact that 

σ2ψR 
∗ (3.3.16) 

transforms as a left-handed spinor in order to write a mass term with only ψR. But if we don’t do 
that, then the mass term mixes left and right handed spinors. 
When we study massless spinors, the left and right handedness never changes. In other words, 

the helicity operator 

~σ · ~p
ĥ = (3.3.17)

|p~| 

commutes with the Hamiltonian, and can be diagonalized. The helicity is the spin projected on the 
direction of motion. Another way of understanding why it cannot be preserved in the massive case 
is that massive spinors can be brought to rest, in which case the helicity clearly cannot be defined, 
since p~ = 0! But for massless spinors, or spinor particles that are ultra-relativistic, helicity makes is 
a good quantum number. 
We should contrast chirality and helicity with good old spin, which is just the representation under 

spatial rotations, and is identical with the notion of spin familiar from non-relativistic mechanics. 
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3.3.2 Charge Conjugation 

The operation that acts on Dirac spinors as 

C : ψ → ψc ≡ −iγ2ψ ∗ (3.3.18) 

is called charge conjugation. We can immediately see that C2 = 1 because 

C2 : ψ → −iγ2ψ ∗ → −iγ2(−iγ2ψ ∗ ) ∗ = ψ (3.3.19) 

since γ2 
∗ = −γ2 and γ2

2 = −1. This is why we call it ‘conjugation’. 
Note that when we write Majorana fermions using Dirac spinors (and not just a single Weyl 

spinor ψL) we have � � 
ψLψ = (3.3.20)

iσ2ψL 
∗ 

When we apply charge conjugation to the Majorana fermion, we find � �� �∗ 
0 σ2 ψL−iγ2ψ ∗ = = ψ (3.3.21)−σ2 0 iσ2ψL 

∗ 

and so Majorana fermions are their own charge conjugate. This is as we have claimed in the past – 
iαψMajorana fermions cannot carry a conserved U(1) charge, ie they cannot transform as ψ → e 

because it would violate ψ = ψc (although they can carry charges under a real representation of a 
non-abelian group). 
For a better understanding of why we call this operation charge conjugation, take the complex 

conjugate of the Dirac equation 

(iγµ∂
µ − eγµA

µ − m)ψ = 0 (3.3.22) 

to give 

(−iγµ 
∗ ∂µ − eγµ 

∗ Aµ − m)ψ ∗ = 0 (3.3.23) 

This implies that 

γ2(−iγµ 
∗ ∂µ − eγµ 

∗ Aµ − m)γ2ψc = 0 (3.3.24) 

Now note that by our choice of basis for the γ matrices (Weyl basis), γ2 is imaginary while the 
others are real, so if we define new γ matrices via 

γµ 
0 = γ2γµ 

∗ γ2 (3.3.25) 

then these new γ0 satisfy the Dirac algebra. This means that 

(iγµ 
0 ∂µ + eγµ 

0 Aµ − m)ψc = 0 (3.3.26) 
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so that ψc satisfies the Dirac equation using the new basis of γ0 matrices. But all bases are equivalent, 
so by comparing with the Dirac equation 

(iγµ∂
µ − eγµA

µ − m)ψ = 0 (3.3.27) 

we see that ψc has opposite charge, ie e → −e. 
It is also worthwhile to see how C acts on solutions to the Dirac equation. We can write the four 

spinor solutions as 

u+ = 

⎛ ⎜⎜⎝ 
1 
0 
1 

⎞ ⎟⎟⎠ , u− = 

⎛ ⎜⎜⎝ 
0 
1 
0 

⎞ ⎟⎟⎠ , v+ = 

⎛ ⎜⎜⎝ 
1 
0 
−1 

⎞ ⎟⎟⎠ , v− = 

⎛ ⎜⎜⎝
0 
1 
0 

⎞ ⎟⎟⎠ (3.3.28) 

0 1 0 −1 

in which case we find that 

(u+)
c = v−, (u−)

c = v+ (3.3.29) 

with the other possibilities determined by C2 = 1. This means that charge conjugation flips the 
spin and takes particles to antiparticles. So in the case of massless uncharged particles, the charge 
conjugate has its helicity flipped. 
A given theory, or a given set of interactions, may or may not respect charge conjugation. It 

does not have to be a symmetry. Let us see how it acts on various Lagrangian terms. 
For example 

¯ ¯C : ψψ → (−iγ2ψ)T γ0(−iγ2ψ ∗ ) = −ψT γ0ψ ∗ = ψψ (3.3.30) 

where in the last step we assumed that the spinors anticommute. Similarly 

C : ψ/ ψ/ (3.3.31)¯∂ψ → ¯∂ψ 

so the free massive Lagrangian for a Dirac spinor is C invariant, as one might expect. However 

¯C : ψγµψ → − ̄  (3.3.32)ψγµψ 

as one would expect for an electric current (it better flip sign under charge conjugation). Note that 
it differs from the ∂/ case due to the necessity of an integration by parts. This means that the QED 
Lagrangian can only be C invariant if 

C : Aµ → −Aµ (3.3.33) 

Note that we could have ignored this sign, in which case we would have obtained a ‘C’ transformation 
that isn’t a symmetry. The lesson is that we should always try to figure out if a C transformation 
can be defined such that the Lagrangian is invariant. The existence of ‘bad’ choices of C that are 
not symmetries is not good enough to show that C isn’t a discrete symmetry of our theory. 
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3.3.3 Parity 

In addition to the continuous rotations and boosts in the Lorentz group, we can also consider the 
operations 

P : (t, ~x) → (t, −~x) (3.3.34) 

T : (t, ~x) → (−t, ~x) (3.3.35) 

corresponding to parity, or mirror reflection, and time reversal. There is no guarantee that these 
are good symmetries of some given theory. For example, QED is P and T symmetric, but the 
weak interactions are not. We always want to define the action of these generators on fields so that 
P 2 = T 2 = 1. 
How can parity act? Presumably a real scalar field will have an invariant action, which means 

that 

P : φ(t, ~x) → ±φ(t, ±~x) (3.3.36) 

The sign is known as the intrinsic parity of φ. There are particles with even intrinsic parity, such as 
the Higgs boson, and particles with odd intrinsic parity (so-called pseudo-scalars) such as the π0 

meson. Again, the point is that we identify parity by trying to make it a good symmetry. 
For complex scalars parity can act to preserve the free Lagrangian as long as 

P : φ(t, ~x) → ηφ(t, ±~x) (3.3.37) 

where η can be any complex phase. If φ has a global symmetry under φ → eiαφ then we can combine 
P with this global symmetry, meaning that η is not well-defined. But if many complex scalars have 
the same charge then once we fix η for one of them, the η for the others becomes meaningful. 
In fact we can guarantee that η = ±1 for all particles, assuming we have some continuous U(1) 

symmetry. If we have η2 = eiαQ for some α for a particle of charge Q, we can define a new 

P 0 αQ
2= Pe− i 

(3.3.38) 

so that (P 0)2 : ψ → ψ. We may as well call this operation parity, so that for all fields P : ψ → ±ψ. 
In the Standard Model it is conventional to use lepton number, baryon number, and electromagnetic 
charge to set the parity of the proton, neutron, and electron to +1. 
For vector fields P should act much as it does on 4-vectors. For the free vector theory to be 

invariant, we only need 

P : V0(t, ~x) → ±V0(t, −~x), Vi(t, ~x) →  Vi(t, −~x) (3.3.39) 

By convention when P : Vi → −Vi we say that Vµ is a vector with parity −1, but when Vi → Vi we 
say that it is a pseudovector with parity +1. The electric field is a vector while the magnetic field is 
a pseudovector. 
The photon has parity −1, because it must transform in the same way as ∂µ in order to have 

parity preserving couplings to electromagnetic currents. So it’s a vector. 
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Now let us discuss spinors. Since P commutes with rotations, it should not change the spin of a 
state. Massless spinors can be taken to be eigenstates of the helicity operator 

~σ · p~ ~σ · p~ 
ψR = ψR, ψL = −ψL (3.3.40)

|p~| |p~| 

Since parity commutes with the spin but flips the momentum, it must exchange left and right-handed 
spinors, mapping (A, B) representations of the Lorentz group to (B, A) representations. For Dirac 
spinors in the Weyl basis, this swapping of left and right can be written 

P : ψ → γ0ψ (3.3.41) 

In principle there could be a phase ambiguity, but we can eliminate it using a U(1) charge rotation, 
if such a U(1) exists. 
We see that 

¯ ¯ ¯P : ψγ0ψ(t, x) → x), ψγiψ(t, ~ ψγiψ(t, −~ (3.3.42)~ ψγ0ψ(t, −~ x) → − ̄  x) 

¯ so these bilinears transform as vectors, not pseudovectors. In contrast, the bilinear ψγµγ5ψ transforms 
as a pseudovector. The corresponding currents are called vector currents and axial vector currents 
for this reason. This also shows the relation between γ5 and parity, as claimed above. 

3.3.4 Time Reversal 

Time reversal appears confusing at first sight. The problem is that we need to make iψ̄ /∂ψ invariant, 
¯but this means that T since T : ∂t → −∂t, we must take ψγ0ψ = ψ†ψ to −ψ†ψ, or in other words, it 

must negate a positive definite quantity. But this is impossible for a linear transformation. One 
workable solution effectively defines T ∼ (CP )−1 , but this is somewhat trivial. 
A better resolution is to make T a so-called anti-linear transformation, so that 

T : i → −i (3.3.43) 

This means that T (a + ib) = T (a) − iT (b) for real a and b. This fixes our problem above because of 
the i in the fermion kinetic terms. Note that this also means that T acts on the γ matrices; in the 
Weyl basis 

T : γ0,1,3 → γ0,1,3, γ2 → −γ2 (3.3.44) 

since only γ2 is imaginary. By defining 

T : ψ(t, ~x) → Γ̃ψ(−t, ~x) (3.3.45) 

demanding invariance of the kinetic term, and following our nose, we find that Γ̃ = γ1γ3 up to 
a constant phase. This means that T flips the spin of particles, but does not turn particles into 
antiparticles. T does not have a well-defined action on Weyl spinors, because they have only one 
spin state. 
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~Note that T reverses the momentum, because ~p = ir, and T flips the sign of i. So T makes it 
look like things are going forward in time, but with their momenta and spins flipped. 
Similarly, for the QED Lagrangian to be invariant, we must have 

T : A0(t, ~x) → A0(−t, ~x), Ai(t, ~x) → −Ai(−t, ~x) (3.3.46) 

so that Aµ transforms like i∂µ, which may not be what one would guess. 
Note that CP T acts as 

CP T : ψ(x) → −γ5ψ ∗ (−x) (3.3.47) 

sending particles into antiparticles moving in reverse, in a mirror. One can check that all terms you 
can write down are CPT symmetric, which is a version of the CPT theorem. 
You can find all sorts of examples of the use of C,P, and T in particle physics in Weinberg’s 

book, chapter 3.3. 

3.4 More on Spin and Statistics 

We already saw, albeit briefly, that one can obtain the spin statistics relation that integer spin 
particles are bosons, while half-integer spin particles are fermions, by demanding stability – that the 
energy is bounded from below. Let us now see how Spin-Statistics follows from Lorentz invariance 
of the S-Matrix, or causality. First we will lay the groundwork and discuss some more intuitive 
arguments. 
Particles can be classified as belonging to species, and within a given species they are indistin-

guishable. This is true of both fundamental and composite particles. If particles were distinguishable, 
physics would be very different. For example, we would have the Gibbs paradox, and entropy 
would not be an extensive quantity. The ‘statistics’ of the spin-statistics relation tells us how the 
wavefunction changes when we exchange particles. It’s very easy to get confused about this subject 
because the notation we use has built in assumptions. 
We have been using creation and annihilation operators to create multi-particle states. So for 

example we have 

|p1, n1; p2, n2i = a † a † |0i (3.4.1)p1,n1 p2,n1 

If the particles are identical, then acting in the opposite order produces the same physical state, so 

|p1, n; p2, ni = e iφ|p2, n; p1, ni (3.4.2) 

for some phase φ. If we swap the particles back then we get the same state (or do we? what does it 
mean to ‘swap them back’?) and so we find 

|p1, n; p2, ni = e 2iφ|p1, n; p2, ni (3.4.3) 

and so the phase must have been ±1. This implies that either 
[ap,n, aq,n] = 0 or {ap,n, aq,n} = 0 (3.4.4) 

for bosons or fermions, respectively. The latter relation implies the Pauli exclusion principle, since 
the wavefunction vanishes if we create two identical fermions. We already saw from stability that 
half-integer spin particles must be fermions, and integer spin particles must be bosons. 
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3.4.1 A More Careful Look at Configuration Space 

You have probably heard that this isn’t the whole story, and that in 2 + 1 spacetime dimensions we 
can have ‘anyons’, or particles where the phase φ can take any real value. But the argument above 
seems like it was independent of spacetime dimension, so what’s going on? These issues were first 
carefully examined (as far as I know) by Leinaas and Myrheim, who discovered the idea of anyons in 
1972. As often happens, the solution was to think very physically, in this case about what it means 
to ‘swap’ identical particles. As we discussed it above, ‘swapping’ particles has no physical meaning. 
If particles are identical, then the wavefunction 

ψ(t, x1, x2, · · · , xn) (3.4.5) 

for an n-particle state is not a function of each of the xi separately. More formally, it is not simply 
a function on the space (R3)n 

in 3 spatial dimensions. Rather it is a function on � 
Rd−1 

�n 
/Sn (3.4.6) 

where d − 1 is the spatial dimension, and the symmetric group Sn acts by permuting the n different 
xi in an arbitrary way. 
In fact, since wavefunctions are only defined up to a phase, the wavefunction can be a function 

that lives on the covering space of the configuration space, as long as it only differs by a phase at 
equivalent points in configuration space. 

Let us specialize to the case of 2 particles. This means that we identify 

(x1, x2) ∼ (x2, x1) (3.4.7) 

Locally the configuration space is what we would expect, but in terms of global configurations, it is 
quite different. The center of mass coordinate is Sn invariant, so we can simply discuss the relative 
coordinate y = x1 − x2, in which case the identification is just 

y ∼ −y (3.4.8) 

This means that (x, x) or y = 0 is a singular point in the configuration space, where the geometry 
degenerates. Either the wavefunction can have support there or not. If it can have support there, 
then the configuration space is simply connected, and our particles must be bosons (as we will see 
below). If not, then we can eliminate the point from configuration space and proceed. 
If we eliminate this singular point from configuration space then it has the topology 

(0, ∞) × P d−2 (3.4.9) 

where the first factor is |y|, and the second is the real projective space of dimension d − 2. Basically 
this is just a circle for d = 3, and a sphere modulo the Z2 identification y ∼ −y for d = 4. 
The wavefunction must always be a continuous function on the configuration space, but when 

we go around a circle, it need only return to itself up to a phase. Thus we see that d ≥ 4 is very 
different from d = 3, because the latter is not simply connected. In 2 + 1 spacetime dimensions 
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the wavefunction need not be single-valued, and instead it can pick up an invariant phase when y 
encircles the singular point. If the phase isn’t ±1 then we have a pair of anyons. States with more 
than two particles can have an even more complicated behavior, called ‘nonabelian anyons’. 
But now let’s just go back to d ≥ 4. In that case traversing configuration space twice gives us a 

path that is topologically equivalent to no winding at all. This is what tells us that particles must 
be either bosons or fermions – the phase must be ±1 to have a continuous wavefunction. 
We can use this setup to give a rough derivation of spin-statistics. Taking account of the spin 

of the particles, we note that when we parallel transport in configuration space using the rotation 
operator of the theory, Jz, we act with ! 

2 θz 

θz 
(3.4.10) 

e 
i 

0 
− i 
20 e 

on e.g. Weyl spinors. This means that when we rotate by θz = π, we pick up a minus sign for 
the 2-particle state. This strongly suggests that spin 1/2 particles (and the same derivation works 
for any half-integer spin) must be fermions, while integer spin particles should be bosons. Pairs of 
particles with any spin s pick up a phase eisθz . 
One might not be entirely convinced by this derivation. Do we really need to use the rotation 

generator Jz to move in configuration space (or more precisely, to study the properties of the 
wavefunction as a function on that space)? We see that this is connected with Lorentz invariance 
– if we were willing to break Lorentz symmetry, we might just move the particles around without 
acting with Jz. 

3.4.2 Weinbergian Philosophy, Lorentz Invariance, and Causality 

Quantum Field Theory sure is a bore. Remind me why we bother with all these quantum fields in 
the first place? 
Something that we saw a long time ago is that the S-Matrix can be written in terms of the S 

operator, which itself is 

∞ ZX (i)n 

S = 1 + d4 x1 · · · d4 xnT {LI (x1) · · · LI (xn)} (3.4.11) 
n! 

n=1 

where LI is the interaction part of the Lagrangian, or minus the interaction Hamiltonian density. 
This is almost, but not quite, Lorentz invariant. The problem is the time ordering. When xi − xj 

is time-like, the time ordering is, in fact, Lorentz invariant. But when xi − xj is spacelike time 
ordering is most definitely not Lorentz invariant, and instead is frame dependent. We made use 
of this ‘problem’ at the beginning of the first semester in order to argue that antiparticles have to 
exist, that classical particle sources must also absorb particles (and vice versa), and that objects 
that scatter particles must also produce pairs of them. 
Now let us make a more formal comment. Pretty much the only way to make S Lorentz invariant 
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is to insist that5 

[LI (x), LI (y)] = 0, (x − y)2 ≤ 0 (3.4.12) 

or when x − y are spacelike or light-like separated. One can give a formal proof of the Lorentz 
invariance of the S-Matrix (and not just the S operator) using this statement; see section 3.3 and 
3.5 of Weinberg’s QTF book. 
So now we ask how we can construct an interaction satisfying equation (3.4.12). The answer is... 

we introduce quantum fields. They are nothing new, but the point that we are now emphasizing 
is that the reason we use them (instead of, say, the creation and annihilation operators all by 
themselves) is that it makes it very easy to construct LI as a polynomial in the fields. This is, 
of course, what the Lagrangian formalism does for us, when it is expressed in terms of quantum 
fields. But this method only works if the quantum fields themselves satisfy simple commutation or 
anti-commutation relations at spacelike separations. Thus the Lorentz invariance of the S-Matrix 
can be used to prove the spin statistics theorem. 

The relation of equation (3.4.12) also has a more basic interpretation when we replace LI → O, 
some operator observable. As you know from linear algebra, two matrices can only be simultaneously 
diagonalized if they commute. And spacelike separated observables can always be viewed as occurring 
‘at the same time’. Thus if we want it to be possible to simultaneously diagonalize observables at 
the same time, but in different spatial positions, then they must commute. 

3.4.3 Lorentz Invariance of the S-Matrix 

We can definitively establish the spin-statistics relation by demanding a Lorentz invariant S-Matrix. 
We will do a very simple calculation and study time-ordered correlators. 
But first, note that to even make sense of time ordering for fermionic fields, we must take 

T {ψ(x)χ(y)} ≡ ψ(x)χ(y)θ(x0 − y0) − χ(y)ψ(x)θ(y0 − x0) (3.4.13) 

This follows because 

T {ψ(x)χ(y)} = −T {χ(y)ψ(x)} (3.4.14) 

by fermi statistics, and so this relation would vanish if we did not include the sign in its definition. 
Recall that we obtained a sensible, Lorentz invariant Feynman propagator for scalar fields using 

commutation relations, and therefore time ordering without a minus sign. If instead we had used 
anti-commutation relations, we would have found Z 

hT {φ(x)φ(0)}i = 
d3p 1 

e −i~p·~x 
� 
−e iEptθ(−t) + e −iEptθ(t) 

� 
(2π)3 2EpZ � � 

d4p i 1 1−ip·x = − e − 
(2π)4 2Ep E − (Ep − i�) E − (−Ep + i�)Z 
d4p E −i 

= p eip·x (3.4.15)
(2π)4 p~2 + m2 p2 − m2 + i� 

5It’s worth pointing out that this relation isn’t very analytic, since any analytic function that vanishes in a region 
vanishes everywhere. 
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which is not Lorentz invariant. Thus the S-Matrix for spin 0 particles will only be Lorentz invariant 
if we assume that they are bosons. Now let us move on to spin 1/2 particles. 
Recall that we quantized a Dirac spinor field as ZX d3 � �p 1 s s −ipx s ipxψ(x) = p a u e + bs† v e (3.4.16)p p p p(2π)3 2Eps 

and XZ 
d3p 1 � �

¯ s† s ipx s −ipxψ(x) = p a ū e + bs v̄ e (3.4.17)p p p p(2π)3 2Eps 

¯In this language ψ(x) annihilates incoming electrons and ψ(x) annihilates incoming positrons. Now 
let us compute Z Z 

d3p d3q 1 1 hψ(0)ψ̄(x)i = p p
(2π)3 (2π)3 2Ep 2EqX 0 0 0 × h0|(a s u s + bs† v s)(a s

0† ūs eiq·x + bs v̄s e −iq·x)|0ip p p p q q q q 
0 Z s,s Z 

d3 Xd3p q 1 1 0s s s s0† iqx = p p u ū h0|a a |0iep q p q(2π)3 (2π)3 2Ep 2Eq 0 Z 
d3p 1 X s,s 

s s ipx= u ū e (3.4.18)
(2π)3 2Ep 

p p 
s 

Note that this is a matrix in spinor space. To sum over the polarizations we use 

2 2X X 
us(p)ūs(p) = p/ + m, vs(p)v̄s(p) = /p − m (3.4.19) 

s=1 s=1 

which gives the final result Z 
d3 ipx 

hψ(0)ψ̄(x)i = (−i∂/ + m) 
p e 

(3.4.20)
(2π)3 2Ep 

Similarly we find that Z 
d3p e−ipx 

hψ̄(x)ψ(0)i = −(−i∂/ + m) (3.4.21)
(2π)3 2Ep 

These equations are independent of whether we choose commutators or anti-commutators, since we 
didn’t move any of the creation or annihilation operators around in their derivation. 
Now, to play Devil’s advocate, let us first assume that we have commutation relations, so we 

define the time ordered product via a sum. Then we get 

¯T {ψ(0)ψ̄(x)}comm = ψ(0)ψ̄(x)θ(−t) + ψ(x)ψ(0)θ(t) (3.4.22) 
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and so Z 
d3 � � 

hT {ψ(0)ψ̄(x)}icomm = −(−i∂/ − m) 
p 1 

eipxθ(t) − e −ipxθ(−t)
(2π)3 2EpZ 
d4p p0 i 

= (−i∂/ + m) p eipx (3.4.23)
(2π)4 ~p2 + m2 p2 − m2 + i� 

which is not Lorentz invariant! If instead we assume anti-commutation, so that 

¯T {ψ(0)ψ̄(x)}anti−comm = ψ(0)ψ̄(x)θ(−t) − ψ(x)ψ(0)θ(t) (3.4.24) 

then we get the correct result Z 
d4p i ipxT {ψ(0)ψ̄(x)}anti−comm = (−i∂/ + m) e (3.4.25)
(2π)4 p2 − m2 + i� 

which is Lorentz invariant. This is, of course, the correct Dirac propagator. So we need to assume 
that spin 1/2 particles are fermions. 
Let’s go back and see why this happened. In essence, for scalars we have that Z 

d3p e−ipx 

hφ†(x)φ(0)i = 
(2π)3 2EpZ 
d3p eipx 

hφ(0)φ†(x)i = (3.4.26)
(2π)3 2Ep 

while for massless fermions, we have Z 
d3p /phψ(0)ψ̄(x)i = eipx 

(2π)3 2EpZ 
d3p /p −ipxhψ̄(x)ψ(0)i = e (3.4.27)
(2π)3 2Ep 

Thus the difference is that /p is odd under the rotation that takes p → −p, and so we generate an 
extra −1 when we combine the fermions to make a time-ordered sum. This always happens for 
half-integer spins, because we always have a /p, perhaps accompanied by various powers of p2 or pµpν . 

3.5 QED Vacuum Polarization and Anomalous Magnetic Moment 

Let’s start to consider loop effects in QED. This isn’t very different at all from what we did last 
semester, but some differences are 

• You’ve heard of QED, so the effects we’ll discover have more meaning to you. In particular, 
we’ll quickly uncover the change of the electromagnetic force with distance at very short 
distances. 
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• Gauge invariance (masslessness of the photon and Lorentz invariance) puts major restrictions 
on the loop effects. In particular, you might naively think that the photon propagator and 
the vertex for photons to interact with currents can get renormalized separately, but they are 
linked by gauge invariance. Also, the photon cannot get a mass, because that badly violates 
gauge invariance! 

• The electron is not a scalar, and in particular, it has a spin, and thus a magnetic moment. We 
can compute quantum corrections to that magnetic moment, and obtain a famous effect. 

Let us first consider what corrections we can have to the photon 2-pt function. By Lorentz 
invariance, it must take the form 

Πµν 2 µ ν = Δ1(p 2)p gµν +Δ2(p 2)p p (3.5.1) 

We can therefore write a corrected 2-pt function as 

(1 + Δ1)gµν +Δ2 
pµpν 

2 

iGµν p
= −i (3.5.2) 

p2 + i� 

where we have set ξ = 1, and defined Z 
hΩ|T {Aµ(x)Aν (0)}|Ωi = 

d4p
eipxiGµν (p) (3.5.3)

(2π)4 

µ νas the dressed propagator. Note that since Δ2 is just proportional to p p , by gauge invariance it 
will drop out of our physical predictions, so we can just ignore it. 
In the spinor theory, there is a single diagram renormalizing the photon propagator. It is Z 

iΠµν d4k i i � � 
= −(−ie)2 × Tr γµ(k/ − /p + m)γν (k/ + m) (3.5.4)2 k2 − m2 2(2π)4 (p − k)2 − m 

where the overall minus sign comes from the fact that this is a fermion loop. This follows because 
we need to compute a contraction 

T {Aµ(x1)Aν (x2)ψ̄(x)A
α(x)ψ(x)ψ̄(y)Aβ (y)ψ(y)} (3.5.5) 

and there is a sign flip when passing spinors through other spinors to get canonical T {ψψ̄} Feynman 
propagators. We have a trace because the fermions go back to themselves. 
Using trace formulas (you can read about them in the book), we find that � � 

µν (−k2Tr γµ(k/ − /p + m)γν (k/ + m) = 4[−pµkν − kµp ν + 2kµkν + g + p · k + m 2)] (3.5.6) 

The terms with a pµ will make irrelevant contributions, so we can simplify our task by dropping 
them. We get Z 

d4k 2kµkν + gµν (−k2 + p · k + m2)
iΠµν 2 = −4e (3.5.7)2 (2π)4 [k2 − m2][(p − k)2 − m2] 
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Now we employ the standard trick of Feynman parameterization to combine denominators, and we 
redefine the integration variable to 

k → k + p(1 − x) (3.5.8) 

This gives Z 
d4k 

Z 1 2kµkν − gµν (k2 − x(1 − x)p2 − m2)µνΠ2 = 4ie
2 dx (3.5.9)

[k2 + p2 2]2(2π)4 0 x(1 − x) − m 

Using dimensional regularization, we find Z � � ��
2 1 2e 2 µ̃ 

Πµν 2 µν= − p g x(1 − x) + log (3.5.10)2 2π2 2 − p2 
0 � m x(1 − x) 

In particular, in the limit of large Q2 = −p2 � m2 

2 � � 
2 � � 

e 2 µ̃ 5µν 2 µνΠ = − p g + log + (3.5.11)2 12π2 � Q2 3 

3.5.1 Vacuum Polarization and Coulomb Potential Renormalization 

µ νOne can also obtain the p p pieces and see that they automatically satisfy the Ward identity. We 
can write the full result as 

Πµν µ 2 µν )Π2(p 2)2 = e 2(p p ν − p g (3.5.12) 

where Z 1 � � 
2 �� 

1 2 µ̃2) = x(1 − x) + log (3.5.13)Π2(p 
22π2 0 � m2 − p x(1 − x) 

The dressed photon propagator at 1-loop in Feynman gauge (ξ = 1) is 

(1 − e2Π2(p2))gµν 

iGµν = −i 
2 

(3.5.14) 
p 

µ νwhere I have ignored p p terms. This gives the corrected Coulomb potential in Fourier space 

˜ 1 − e2Π2(p2)
V (p) = e 2 (3.5.15) 

p2 

Since Π2 has a logarithmic dependence on momenta at large momentum, or at very short distances, 
we see that the electromagnetic force has this additional scale dependence. In fact, it grows stronger 
at short distances, as we can easily see by noting that Π2 ∝ − log Q2 . 
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To see this more clearly and precisely, we need to renormalize. In this case, we literally need to 
re-normalize the strength of the Coulomb force. It would be most physical to do this by fixing 

2e 
V (r0) = − R (3.5.16)

4πr0 

for some position space scale r0, but it’s easier to just keep working in momentum space. Thus we 
can define a renormalized charge at the scale p0 by defining 

2e
Ṽ (p0

2) = R 
2 (3.5.17) 
p0 

In perturbation theory, this means that 

2 2 2 eR = p0Ṽ (p0) ≈ e 2 − e 4Π2(p0) + · · · (3.5.18) 

or alternatively we can solve for the bare parameter e that appears in the Lagrangian in terms of eR 

2 4 2 e 2 ≈ eR + eRΠ(p0) + · · · (3.5.19) 

Note that since Π(p2) depends on � = 4 − d, this means that e must depend on � as well. However, 
eR does not depend on �, as it is a measurable quantity associated with the strength of the Coulomb 
potential at the scale p0! 
The potential at another scale p (which is measurable) will be 

˜ e2 − e4Π2(p2)
V (p) = + · · · 

p2 

2 4 2eR − eR (Π2(p
2) − Π2(p0)) = + · · · (3.5.20) 

p2 

This makes it very clear that the potential changes with distance. We can view the numerator as an 
effective charge � � 

e2 Q2 
2 2 R e (Q) ≈ e 1 + log (3.5.21)eff R 12π2 m2 

Near any fixed value of p, we can view the potential as Coulomb with effective coupling constant 
eeff . Numerically, note that � � 

1 Q2 

αeff (Q
2) ≈ 1 + 0.00077 log (3.5.22)

137 m2 

so since the coefficient of the logarithm is small, this isn’t a large effect. 
Note that we can immediately sum up all of the 1-loop vacuum polarization contributions from 

1-PI diagrams, giving a trivial geometric series that we saw last semester. We have the running 
coupling 

2e 
e 2 R (3.5.23)eff (Q) = 2eR1 − 

12π2 log m
Q2
2 
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which satisfies the RG equation 

deeff eeff 
3 

= (3.5.24)
d log µ 12π2 

The right-hand side is the β function. 

3.5.2 Lamb Shift 

What does our 1-loop correction do to the Coulomb potential at large distances? 
In the case where |p2| � m2 we have Z Z1 1 2� 

2 
� 1 

dxx(1 − x) log m 2 − p x(1 − x) ≈ log m 2 − dxx2(1 − x)2 p 
26 m0 0 

1 p2 
2 −= log m 

2 
(3.5.25)

6 30m 

If we choose p0 = m then we find 

2 4e e
Ṽ (p) = R − R (3.5.26) 

p2 60π2m2 

Since the Fourier transform of 1 is a delta function, this just gives 

2 4e e 
V (r) = − R − R δ(r) (3.5.27)

4πr 60π2m2 

This is a very short ranged potential called the Uehling term. 
Inserting this extra interaction into the Hamiltonian for the Hydrogen atom gives an effect called 

the Lamb shift (first measured by Wallis Lamb in 1947), which can be easily computed in first order 
perturbation theory. It is only non-zero for s-waves, which have support at the origin. Apparently 
Bethe got the answer right first using a rough method, then Feynman, Schwinger, and Tomonoga all 
provided a complete calculation, but only Tomonoga got the right answer. 

3.5.3 Anomalous Magnetic Moment and Form Factors 

Now let us compute the 1-loop contribution to the magnetic moments of charged particles. First, we 
need to understand how this appears. 
Recall that we showed that 

e 
D/
2 
= DµD

µ + Fµν σ
µν (3.5.28)

2 

where 

σµν = 
i 
[γµ, γν ] (3.5.29)
2 
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encodes the difference between scalar and spinor equations of motion. We wrote this as � � �� 
~ ~(B + iE) · ~σ 0 

D2 + m 2 − e ψ = 0 (3.5.30)µ ~ ~0 (B − iE) · ~σ 

~Note that the iE · σ terms turn particles into anti-particles and vice versa, so if we work in the 
non-relativistic limit with only particles or only anti-particles then this term does not act. 
If we go to momentum space this implies ! 

(H − eA0)2 m (~p − eA~)2 e e ~ ~ψ = + − 2 B · S~ ± i E · S~ ψ (3.5.31)
2m 2 2m 2m m 

This can be compared to read off the strength of the dipole interaction 

~ geB · S~ (3.5.32) 

to see that g = 2 for the semi-classical theory, since S~ = ~σ 
2 for spin 1/2 particles. 

This corresponds to a magnetic dipole moment, and we had obtained the prediction that 

e 
µB = (3.5.33)

2me 

So a clear way to obtain quantum corrections is to look for loops that generate 

e 
Fµν σ

µν (3.5.34)
2 

terms. 
A general way to think about this is to consider matrix elements with on-shell fermions, but 

off-shell photons. We take the latter to be off-shell because we want to view it as a background 
electromagnetic field (alternatively we can think of it as a virtual photon from some other charged 
particles). Thus we can write 

iΓµ µ µ µ= ū(q2) (f1γ
µ + f2p + f3q1 + f4q2 ) u(q1) (3.5.35) 

We could also have included γ5 in a theory that breaks parity... but in QED parity is preserved. 
Of course the fi are not independent, as they are constrained by momentum conservation and 

the Ward identity. The former is trivial, while the latter says that 

Γµ µ µ0 = pµ = pµū(f1γ
µ + f3q1 + f4q2 )u 

= [(p · q1)f3 + (p · q2)f4]ūu (3.5.36) 

because ū/ Also, since p·q1 2 −q1 ·q2 =pu vanishes on the equations of motion, with p = −q1 −q2. = −m 
−p · q2, we can conclude that f3 = f4. Now we can use the Gordon identity 

µ µ ν ν ū(q2)(q1 + q2 )u(q1) = (2m)ū(q2)γ
µu(q1) + iū(q2)σ

µ
ν (q1 − q2 )u(q1) (3.5.37) 
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to write the result as � � � � ��
2 iσµν 2p p

iΓµ = (−ie)ū(q2) F1 2 
γµ + pν F2 2 

u(q1) (3.5.38) 
m 2m m 

The leading order contribution (tree level) gives 

F1 = 1, F2 = 0 (3.5.39) 

but loops can correct both functions. Corrections to F1 are just the running of the electromagnetic 
force, so only F2 will correct the magnetic moment. One can write the g factor 

g = 2 + 2F2(0) (3.5.40) 

so we need only compute F2(0). 

3.5.4 Diagrammatics of Magnetic Moment 

There are four possible graphs that could contribute to the electron-electron-photon amplitude with 
an off-shell photon, which we are calling Γµ. But only one graph can produce a shift of F2, because 
the propagator renormalizations only shift the vertex by γµ, and therefore only contribute to F1. 
Thus we need only compute one graph, which is Z 

d4k −igνα i(p/ + k/ + m) i(k/ + m)
iΓ2 

µ = (−ie)3 ū(q2)γ
ν 

2 
γµ 

2 
γα u(q1) (3.5.41) 

(2π)4 (k − q1)2 (p + k)2 − m k2 − m 

To evaluate this, one employs the usual tricks of combining denominator factors using Feynman 
parameterization, shifting the integration variable, and then simplifying using some algebra. You 
can see more of the algebraic details in the book. 
One obtains three terms, because the Ward identity follows as a consequence of the computation, 

and isn’t obvious from intermediate steps. Simplifying using the Ward identity and Gordon identity 
and then only keeping the σµν term of interest, we find that Z ZZ 1 x2m d4k z(1 − z)

F2(p 2) = (4ie3 m) dx dz (3.5.42) 
e 0 0 (2π)4 (k2 − Δ+ i�)3 

where Δ = −x(1 − x − z)p2 + (1 − z)2m2 . 
The integral Z 

d4k 1 −i 
= (3.5.43)

(2π)4 (k2 − Δ+ i�)3 32π2Δ 

is finite and so we find ZZ 1 xα z(1 − z)
F2(p 2) = dx dz (3.5.44)

π 0 0 (1 − z)2m2 − x(1 − x − z)p2 
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We can evaluate this explicitly at p2 = 0, which is what we need for the magnetic moment. We find 

α 
F2(0) = (3.5.45)

2π 

and so the magnetic moment is 

α 
g = 2 + = 2.00232 (3.5.46)

π 

with the next correction of order α2 . 
To summarize, we first connected the relativistic QED theory to the non-relativistic Hamiltonian, 

in order to show how QFT gives rise to the magnetic moment. Then we studied the relevant coupling 
of physical electrons to a general background electromagnetic field to understand what form factors 
can appear, namely F1 and F2 in our parameterizations, and we noted that only F2 affects the 
magnetic moment. Finally, we identified a unique diagram that contributes to F2, and computed it 
using the Feynman rules, finding that it’s finite (not short-distance sensitive) and that it gives a 
contribution to g − 2. 

3.6 Renormalization and QED 

We had an extensive discussion last semester about renormalization. To recap 

• One can categorize quantum corrections as those sensitive to short-distances, those that are 
associated with the scale of a measurement or physical setup (e.g. the center of mass energy 
of a scattering process), and those associated with very long distances. The short-distance 
sensitivity must be absorbed into the definition of the theory, but once it’s defined, long-distance 
predictions are unambiguous. 

• Logarithmic corrections are of great importance, because they are sensitive to physics at all 
scales, and slowly alter the strength of forces. 

• In any give QFT, there are a finite number of parameters that define the long-distance limit of 
the theory. These are the relevant and marginal parameters. In QED we can write 

¯L = − 
1 
Z3F 2 ψ/ ¯ ¯Aψ + ρ0µν + iZ2 dψ − Z2ZmmRψψ − eRZ1ψ / (3.6.1)
4 

Where Z1, Z2, Z3, Zm are renormalizations of the various field strengths, interactions, and 
masses, and ρ0 is a renormalization of the vacuum energy that we will ignore. We only need 
these 5 parameters to absorb all short-distance sensitity in the theory, and in fact we will find 
that we must have 

Z1 = Z2 (3.6.2) 

due to gauge invariance. 
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• It’s often conventional to write 

Z1 = 1 + δ1, Z2 = 1 + δ2, Z3 = 1 + δ3, Zm = 1 + δm (3.6.3) 

in recognition of the fact that these are 1 plus a ‘counterterm’, a short-distance correction 
used to re-normalize and re-define the theory, calibrating it with experiment. Note that the δi 
and Zi are just numbers, they do not depend on fields or on space and time. We can view the 
δi as perturbative corrections, to adjust when we renormalize the theory... the book calls this 
procedure ‘renormalized perturbation theory’. 

You should also note that we do not have a counterterm for the photon mass, because it would 
break gauge invariance – thus it’s important that there not be any UV divergences that would 
require such a counterterm. 

• In renormalized perturbation theory, we are performing a formal series expansion in eR, and 
we legitimately have 

|eR| � 1 (3.6.4) 

since it is a renormalized quantity, insensitive to the cutoff or, in our case, the 1/� of dimensional 
regulation. 

• Much of the point of organizing things systmetically in this way is to understand that one 
could proceed in the same way and compute effects at 2, 3, 4, · · · loops. We would not need 
any new counterterms, but could absorb all UV sensititivty into the ones we have, and then 
make very precise predictions. 

• There are also irrelevant operators like 

F αβ ( ¯Fµν 1 ψψ)2 
¯ ¯ F 4�αβµν ψσµν ψ, ψσµν ψ, µν , , · · · (3.6.5)

Λ Λ Λ4 Λ2 

that we could add to the Lagrangian, but these do not renormalize the relevant and marginal 
operators, and they are irrelevant at long distances, so we can and will ignore them. 

But they could be lurking in the background as a signal of new physics, especially the first 
term, which gives an electric dipole moment. 

We have already discussed two of the three possible divergent 1-PI 1-loop diagrams in QED, the 
correction to the photon propagator and the vertex correction. So let us first use those effects. 

3.6.1 Photon Self Energy and Renormalization 

The photon self-energy was encapsulated in Z 1 � � 
2 �� 

1 2 µ̃ 
Π2(p 2) = x(1 − x) + log (3.6.6)

2π2 0 � m2 − p2x(1 − x) 
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where 

iΠµν µ ν − p 2 µν )Π2(p 2)2 = ie2 
R(p p g (3.6.7) 

In renormalized perturbation theory, the counterterms contribute to this quantity as 

µ 2 µν )iδ3(p p ν − p g (3.6.8) 

These are the only two contributions. 
If we work in Lorenz gauge where ξ = 0, things are quite simple, and we find that the photon 

propagator gets renormalized to (summing the geometric series) � � 
µ νp p 1µν −iGµν = −i g (3.6.9) 
p2 p2 (1 + e2 

RΠ2(p) + δ3) + i� 

Note that, as promised, the photon mass is still zero after renormalization. 
We need only one renormalization condition to fix δ3. This is up to us, as long as we do it 

consistently, and eliminate UV sensitivity. One possibility is to use modified minimal subtraction, 
so-called MS-bar, so that 

2e 
δ3 = − R (3.6.10)

6π2� 

Another choice, which the book suggests, is to impose that the residue of the photon propagator pole 
remains 1. The point is to keep the normalization of the physical photon state the same, and this 
normalization corresponds to the residue of the pole. This requires 

2 2 2e e µ̃2 R Rδ3 = −eRΠ2(0) = − − log 
2 (3.6.11)

6π2� 12π2 mR 

These are two different choices of renormalization scheme. 

3.6.2 3-pt Vertex Renormalization 

We also already studied the 1-PI contribution to the 3-pt vertex when we computed the magnetic 
moment. We parameterized it as � � � � ��

2 iσµν 2p p
iΓµ = (−ie)ū(q2) F1 γµ + pν F2 u(q1) (3.6.12) 

m2 2m m2 

We saw that F2 is entirely responsible for the anomalous magnetic moment, g − 2, and that it was 
finite, so it doesn’t require a counter-term. That’s good, because we do not have a counterterm that 
could separately absorb a divergence; to include one we’d need the operator 

Fµν 
ψ̄σµν ψ (3.6.13)

Λ 
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but we have not (and should not need to) explicitly included such an operator in the Lagrangian. A 
divergent contribution to F2 would have been a disaster. 
However, we also computed (or could have) F1, which is Z Z 2d4k k2 − 2(1 − x)(1 − y)p2 − 2(1 − 4z + z2)mRF1(p) = 1 − 2ie2 

R dxdydzδ(x + y + z − 1)
(2π)4 [k2 − (MR 

2 (1 − z)2 − xyp2)]3 

There is a very natural renormalization scheme for F1, which is to choose 

Γµ(0) = γµ or F1(0) = 1 (3.6.14) 

This implies that eR is the physical electric charge measured by Coulomb’s law at large distances 
(which correspond to zero momentum, of course). This condition sets 

δ1 = 1 − F1(0) (3.6.15) 
2 � 2 2 � eR 1 1 µ̃ 5 mγ 

= − − log 
2 − − log 

28π2 � 2 mR 2 mR 

where mγ is an IR regulator (we’ll discuss IR divergences soon). We could, of course, also use the 
MS-bar scheme instead, and then we would just define δ1 to cancel the 1/� pole. 

3.6.3 Electron Propagator Corrections 

Finally, we need to compute corrections to the electron propagator. There is a unique diagram, and 
it is Z 

d4k i(k/ + m) −i 
iΣ2(/p) = (−ie)2 γµ γµ (3.6.16)

(2π)4 k2 − m2 (k − p)2 

Combining denominators and shifting gives Z Z1 d4k (x/p − 2m) −i2 γµiΣ2(/p) = 2e dx γµ (3.6.17) 
0 (2π)4 [k2 − Δ]2 (k − p)2 

where Δ = (1 − x)(m2 − p2x). Notice that this entire integral is merely logarithmically divergent, 
and in particular there is no linear or quadratic divergence associated with a renormalization of 
the fermion mass. This is a crucial property – fermion masses can be naturally small, unlike scalar 
boson masses. 
This is due to chiral symmetry. Note that the mass term is 

m(ψLψR + ψR 
† ψL 

† ) (3.6.18) 

and so it breaks the symmetry transformation 

iαψRψL, ψR → e iαψL, e (3.6.19) 
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����

/ 
that m → 0, chiral symmetry is a good symmetry, and fermion masses cannot be generated by 
short-distance physics. Any corrections to m must be proportional to m itself, so m can at most 
receive logarithmic corrections. 
In dimensional regularization this is 

This chiral symmetry is preserved by the kinetic term, which involves ψL 
† DψL etc. Thus in the limit 

Z � �1 � 2α � 2 µ̃ 
Σ2(p) = − dx p + log (3.6.20)2m − x/ 22π 0 � (1 − x)(m2 − p x) 

where µ̃2 = 4πe−γE µ2 as usual. We also have a contribution from the counterterms 

i(δ2 /p − (δm + δ2)mR) (3.6.21) 

We can resum the geometric series of 1-PI graphs connected with free propagators, giving 

iG(p) = � i � (3.6.22) 
p/ − m + Σ2(/p) + δ2p/ − (δm + δ2)mR 

If we demand that the propagator has a pole at the physical mass mR and that the residue of that 
pole is 1 then we must have 

d 1 
δ2 = − Σ2(p/) , δm = Σ(mR) (3.6.23)

d/p mR p=mR/

This is a sensible physical scheme, that makes mR the physical electron mass, with the same 
propagator normalization as in the free theory. In particular, we find � � 

α 1 1 µ̃2 5 m2 

δ2 = − − log 
2 − − log 

2 
γ 

(3.6.24)
2π � 2 m 2 m� 

2 
R � R 

α 3 3 µ̃ 5 
δm = − − log 

2 − (3.6.25)
2π � 2 m 2R 

in this scheme. In this scheme, the renormalized propagator has no dependence on either µ or �. In 
minimal subtraction one would only have the � pole term. 
Crucially, we see that 

δ1 = δ2 (3.6.26) 

This was important because these appear in 

¯ ¯iZ2ψ/ ψ / (3.6.27)∂ψ − eRZ1 Aψ 

and so the gauge invariance 

ψ → e −ieRα(x)ψ, Aµ → Aµ + ∂µα (3.6.28) 

has been preserved by renormalization. Another way of saying this is that the charge current 

¯Jµ = ψγµψ (3.6.29) 

cannot be renormalized. One can prove this formally using the Ward-Takahashi identities. These 
features are special to gauge theories; there was no relation between different counterterms in φ3 

and φ4 theory. 
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3.6.4 Summary of QED Renormalization and RG Flow 

We have imposed renormalization conditions so that the renormalized mass mR is equal to the 
physical electron mass, the renormalized photon and electron propagators have pole residues of 1, 
and the renormalized charge eR is the charge seen at long-distances. This resulted in counterterms � �

2 2 2 e 1 1 µ̃ 5 mγ
δ1 = δ2 = R − − log − − log (3.6.30)

8π2 � 2 m2 
R 2 m2 

R 
2 2 2eR eR µ̃ 

δ3 = − − log (3.6.31)
6π2� 12π2 m2 � R � 
α 3 3 µ̃2 5 

δm = − − log 
2 − (3.6.32)

2π � 2 m 2R 

In the MS-bar scheme, only the � dependent terms would be present. 
We already saw in QED that the effective charge changes with distance/energy scale as 

deeff eeff 
3 

= (3.6.33)
d log µ 12π2 

as a direction consequence of summing 1-PI diagrams to get an effective Coulomb potential 

2e2 R (3.6.34)eff (Q) =e 2 
R 

2Qlog 212π2 m 1 − e 

We can also view this as the solution to the RG equation. 
But another way to get the same result is to note that, as we discussed last semester, the bare 

parameters in the Lagrangian must be µ-independent, since they define the theory at very short 
distances. The bare fields and parameters are p1 1 1 Z2 −AR = √ A0, ψR = √ ψ0, mR = m0, eR = Z3µ 

� 
2 e0 (3.6.35)

Zm Z1Z3 Z2 

We have to absorb µ�/2 into the coupling so that it remains dimensionless in d = 4 − � dimensions. 
Also, Z1 = Z2. This means that we can use � � 

d d 1 
0 = µ e0 = µ √ µ�/2 eR

dµ dµ Z3� � 
1 � d log eR 1 d log Z3� 

2√ − (3.6.36)+= eR µ 
2 d log µ 2 d log µZ3 

This is the same sort of differential equation that we saw last semester. To first order in eR, we have 
Z3 = 1 identically, and so 

d log eR 

d log µ 
� 

= − eR
2 

(3.6.37) 
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That just tells us the scale dependence of the classical coupling in 4 − � dimensions. At next order 
we have 

d log Z3 eR deR e2 eR deR µ2 

≈ − − R − log
d log µ 3π2� d log µ 6π2 6π2 d log µ m2 

R 
2e ≈ R + O(�, e4 

R) (3.6.38) 
6π2 

And so at next order we find 

d log eR � eR 
2 

= − eR + (3.6.39)
d log µ 2 12π2 

So we have derived the same (renormalization) scale dependence for eR using this more formal 
method! In more general theories, as discussed before, we can use the RG to resum logarithms, and 
to understand the strength of forces and interactions as a function of energy or distance scale. 

3.7 IR Divergences and Long Wavelength Physics 

A point that was made last semester, but upon which we never followed up, is that in order to 
obtain sensible results from QFT, we have to be careful to ask physically sensible questions. In 
particular, asking that electrons scatter without emitting any photons at all, even photons of 
enormous wavelength and tiny energy... is unphysical. We need to carefully define what experiment 
we are really doing, with finite energy resolutions, and then add up all contributions. Even the 
S-Matrix (as we’ve defined it up to this point) isn’t a sufficiently good ‘observable’, but carefully 
defined cross sections still make sense. 
We will see now that the emission of soft photons produces effects that are so large that they 

must be summed to all orders in perturbation theory, but so simple that this process is possible. 
This generalizes to other theories involving massless particles (there are no IR divergences in theories 
where all particles have significant mass), although there are complications we won’t address when 
several types of massless particles interact with each other. Our discussion will closely follow that of 
Weinberg, chapter 13. 
Consider some scattering amplitude, and let us add to it a soft photon with momentum q. In 

the soft limit, the amplitude will be dominated by soft photons that are attached to external legs. 
On the ith leg, if we assume that particle is a scalar, this gives 

+ (p − q))i(pi
µ 

i
µ 

Mi(pi, q) = (−ieQi) 2 
�µM0(pi − q) (3.7.1)

(pi − q)2 − m 
2 2 2where Qi is the charge of the ith particle. Note that since pi = m and q = 0, this is 

pi · � 
Mi(pi, q) ≈ eQi M0(pi) (3.7.2) 

pi · q 
to leading order at small q. If the charged particle is a fermion of spin 1/2, then must replace 

i(/p + /q + m) 
ū(pi) → ū(pi)eγ

µ i (3.7.3)
(p + q)2 − m2 
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But in the limit q → 0 we can write the numerator as X 
/ us us(p) (3.7.4)p + m = (p)¯ 

s 

and use the fact that 

ū s(p)γ
µus0 (p) = 2δs,s0 p

µ (3.7.5) 

to simplify our result to P 
i(/p + /q + m) i us(p)¯ i s us(p) 

ū(pi)eγ
µ 

2 
= eū(pi)γ

µ 

(p + q)2 − m 2p · q 
pµ 

= eū(pi) (3.7.6) 
p · q 

Thus we see that the soft factor for fermions is identical to that for scalars. 
More generally, for a particle with any spin, as q → 0 the external line approaches the mass shell, 

and we can re-write the numerator structure so that it turns into 2pµ times a delta function on all 
spin indices. In a physical renormalization scheme, none of these properties are affected, and so this 
result will hold to all orders in perturbation theory. 

External lines dominate because they produce poles in q as q → 0. Another way of saying 
the same thing is that soft photons have very large wavelenth, and so they do not care about 
short-distance processes. They act like a classical background against which the rest of the scattering 
process unfolds. 
In fact, one can obtain the soft amplitude factor by viewing the external particles as classical 

sources for the photon field Aµ(x). The source, or classical current for the ith particle, is 

Ji(x) = Qiδ
3(~x − q̂it) (3.7.7) 

and so we can obtain the soft amplitude factor from the first-quantized action of the hard particle, 
viewed as a source. The action will contain a term Z 

S1−part = dτ (m + n̂µA
µ(x(τ))) (3.7.8) 

where n̂µ is the four vector of the particles trajectory. This gives ZR ∞ 
∞ 

ie 0 dτn̂i·A(x(τ )) in̂·qτ e ≈ 1 + ie dτ(n̂i · �)e + · · · 
0 

pi · � ≈ e (3.7.9) 
pi · q 

where we note that for a mode with fixed momentum q we have 

Aµ(x) = �µe
iq·x (3.7.10) 
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We have obtained the soft factor from integrating the electromagnetic field A(x(τ)) along the classical 
worldline of each charged particle in the scattering process. 
So we have the soft factor for emission from one external leg. We can sum to get the same 

contribution from each leg, which means that the total soft photon emission amplitude will be " #X Xpi · � pi · � 
M ≈ eM0(pj ) Qi − Qi (3.7.11) 

pi · q pi · qincoming outgoing 

where the approximation means that we are only considering the leading term when q is small. 

3.7.1 Multiple Soft Emissions 

Now consider the emission of two soft photons. Clearly if they are emitted from different external 
legs then we just get a product of soft factors � �� � 

pi · �1 pj · �2 
(3.7.12) 

pi · q2 pj · q2 

What may be more surprising is that we get the same result if they are emitted from the same leg. 
This gives the sum, depending on the two possible orderings, which is � �� � � �� � 

p · �1 p · �2 p · �2 p · �1 
+ 

p · q2 p · (q1 + q2) p · q1 p · (q1 + q2)� �� � 
p · �1 p · �2 

= (3.7.13) 
p · q2 p · q2 

so actually we again obtain exactly the product of the soft factors, ignoring the fact that the soft 
photons have been emitted by the same line. 
One can prove by induction that this occurs for any number of soft emissions. Thus the amplitude 

for emitting N soft photons is just " # 
N 

pi · �r pi · �r Y X X 
M ≈ e N M0(pj ) Qi − Qi (3.7.14) 

pi · qr pi · qr r incoming outgoing 

exactly in the soft limit. So now we know how to emit any number of very long wavelength photons 
(or other massless particles, by equivalent reasoning). 

3.7.2 Virtual Soft Photons 

Now we know how soft photons would be emitted in an amplitude, let us study virtual corrections 
from soft photon loops. We will introduce two infrared scales with 

E � Λ � λ (3.7.15) 
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Here the scale Λ just defines what we mean by ‘soft’ photons, and all Λ dependence from soft photons 
is automatically canceled by the Λ dependence of the ‘hard’ photons. However, the scale λ is some 
lower limit introduced to absorb divergences, it is an infrared regulator. The λ dependence will only 
cancel when we figure out how to ask a physically sensible question. This involves including real soft 
photon emission. 
For each virtual photon we must multiply by a propagator factor 

−igµν 

(3.7.16) 
q2 + i� 

in Feynman gauge. We must multiply our multiple soft emission formula by this factor for each pair 
of photons, and sum over all possible ways of connecting up the propagators. We also have to divide 
by 2N N ! because summing over the places where we can attach the photons contributes spurious 
combinatorial factors from photon lines and reversing photon lines. 
Thus the effect of including N soft photons involves multiplying the original matrix element by " #NX1 

QnQmJnm (3.7.17)
N !2N 

n,m 

where we have Z 
d4q

Jnm = −ipn · pm (3.7.18) 
λ<|~q|<Λ (q

2 + i�)(pn · q + i�)(−pm · q + i�) 

There’s a sign in the denominator since incoming q must be matched by outgoing q. There are also 
other signs that we should have been more careful about, but they can be accounted for most simply 
by assuming that all pn are taken to be incoming, with negative energy and reversed momenta if 
they are actually outgoing. 
Summing over all N , we can write our result so far as the statement that 

Mλ 

" 
1 

= MΛ exp 
2 

#X 
QnQmJnm (3.7.19) 

n,m 

which means that the amplitude for virtual soft photons down to a scale λ � Λ is given by the 
amplitude for hard processes times a universal exponential factor. 
Now we need to evaluate the integral Jnm, which can be done by contour integration in q0. It 

turns out that the result is purely real if the photon comes from incoming and outgoing lines, but it 
also has an extra imaginary piece when both lines are incoming or both are outgoing. This phase 
is the relativistic equivalent of an infinite phase factor that also appears in the Schrodinger wave 
function when scattering off the Coulomb potential. 
Aside from that phase, which drops out of all expectation values, we find 

2π2 1 + βmn Λ ReJmn = log log (3.7.20)
βmn 1 − βmn λ 
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where we define βmn by s 
2 2m m 

βmn = 1 − n m (3.7.21)
(pn · pm)2 

This means that the overall rate from |M |2 will be � �A(pi)λ |Mλ|2 = |MΛ|2 (3.7.22)
Λ 

with X1 QnQmηnηm 1 + βmn
A(pi) = − log (3.7.23)

8π2 βnm 1 − βmn nm 

where it’s important to note that the Qn must be accompanied by a sign ηn associated with whether 
the particles are incoming or outgoing. 
The exponent A(pi) is always positive for any combination of external states. This means that 

including virtual corrections has the effect of making the amplitude vanish as we take λ → 0 to try 
to remove the infrared regulator. 
Note that if we had not resummed all virtual soft photons, we would have encountered them 

as a logarithmic divergence in fixed order Feynman diagrams. We only obtained a power-law by 
exponentiating, ie summing all possible Feynman diagrams. 

3.7.3 Real Soft Photons and Cancellation of Divergences 

With only the contributions from virtual soft photons, we would seem to predict that all scattering 
amplitudes vanish. To see that this is not the case, we need to include real emission. 
The resolution, which we have hinted at several times before, is that one cannot (in general) 

measure the cross section for a definite number of particles in theories with massless particles. 
Photons with very low energy can always escape undetected. What can be measured is the total 
rate Γ(E, ET ) for a reaction to take place with no unobserved photon with energy greater than E, 
and no total amount of ‘missing’ energy ET (one can use energy conservation of the hard particles 
to fix ET , and for simplicity then set E = ET ). 
The S-Matrix for emitting N soft photons can be obtained by contracting our soft factors withQ
(qi) for each soft particle. The differential rate for emitting N soft photons into a volume d3 of�µ r qr 

momentum space is given by squaring the matrix element, summing over helicities, and multiplying Q
by r d

3qr. Note that X 
�µ(q, h)�ν∗ (q, h) = ηµν + qµcν + qν cµ (3.7.24) 

h 

but the qµ terms drop out due to charge conservation. Thus we get a differential rate 

NY d3 X~qr enempn · pm
dΓ(q1, · · · qN ) = Γ (3.7.25)

(2π)32ωqr (pn · qr)(pm · qr)r n,m 
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It’s worth noting that for N = 1 this corresponds to the distribution of energy emitted by a classical 
discontinuous current four vector 

nJµ(x) = 
X 

δ3(~x − ~vnt) 
enp

µ 

(3.7.26)
En n 

This interpretation accords with our world-line derivation of the soft amplitude itself, where we 
viewed the world-line of each hard particle as a classical source. 
To actually calculate the differential rate for the emission of N soft photons, where we only fix 

their energies Er = |q~ r|, we need to integrate over the ~qr. These are the same as those we encountered 
for virtual photons, and give Z � � 

d2q̂ 2π2 1 + βmn−π(pn · pm) = log (3.7.27)
(En − q̂  · ~pn)(Em − q̂  · ~pm) βmn 1 − βmn 

Thus we obtain the differential rate 

[A(pi)]
N dω1 dωN

dΓ(ω1, · · · , ωn) = Γ0 · · · (3.7.28)
N ! ω1 ωN 

with 

2 Xe QnQmηnηm 1 + βmn
A(pi) = − log (3.7.29)

8π2 βnm 1 − βmn nm 

where we defined s 
2 2m m 

βmn = 1 − n m (3.7.30)
(pn · pm)2 

An unrestricted integral over the ωr would give a divergence, but of course we must use the same 
IR regulators from our discussion of virtual soft photons (because of unitarity of the S-Matrix, or 
intuitive obviousness). 
Now we need to sum over all N , while integrating over the ωr. One can be very careful (see 

Weinberg) and implement separate limits on the total soft photon energy and on the energy of each 
soft photon, but if we set these equal to ET , we find that � �A(pi)ET

Γreal(pi; ET ) → Γ0(pi) (3.7.31)
λ 

This was reasonable because the dependence on total energy vs each soft photon energy is weak, 
as can be explicitly checked. Including the exact formula only changes the result to higher order 
in perturbation theory. The intuition is that adding more photons costs factors of the coupling 
constant, so if we just cap the energy of each photon we do OK, because at weak coupling the theory 
does not want to emit an infinite number of finite energy photons. 
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Because A(pi) > 0 this becomes infinite in the limit that λ → 0 and we remove the IR cutoff. 
However, we found an opposite dependence from virtual photons, so account for both we see that � �A(pi)ET

Γfull(pi; ET ) → Γ0(pi) (3.7.32) 
Λ 

and now we can send λ → 0, recovering a finite answer. Recall that Λ was just a convenient factor 
that we introduced to divide ‘hard’ photons from ‘soft’ photons. 
We can use our analysis to ask a question that can be easily phrased and answered – what is the 

probability to produce n soft photons with energies between E− and E+? 
In this case we can just take E+ = Λ, our division between soft and hard photons. But we want 

to demand that there are exactly n soft photons emitted in the (E−, E+) energy range, so we need 
to make sure that no more than n photons are produced. And we are basically indifferent to what 
happens below E−. 
Including the n photons means that we need to do n of the dω/ω integrals in the required range, 

yielding � �n � � 
1 E+ E+
A(pi)

n log exp −A(pi)n log (3.7.33) 
n! E− E− 

This is a Poisson distribution 

1 
λn −λP (n) = e (3.7.34) 

n! 

with λ = A(pi) log 
E
E− 

+ . You should look at chapter 6 of Peskin’s book for a purely classical guesstimate 
that matches this result. 

3.7.4 General IR Divergences and Jets 

QED is special – one can obtain even more general IR divergences. In fact, if you look at our analysis 
for QED, in the limit that mn → 0, so for instance if we take the electron mass to zero, then we get 
new logarithmic divergences, because βmn → 1. 
In general, in any theory where multiple massless particles interact we get more divergences. 

It’s worth noting two different kinds of kinematical configuration that can exist, soft and collinear 
divergences. ‘Soft’ means that the momentum |~q| → 0, but collinear divergences can occur even 
when |~q| is finite, whenever it is parallel to the initial momentum. Note that if the initial particle 
has a mass, then even if it emits a massless particle, there can never be a true collinear divergence, 
because we can always go to a frame where the initial particle is at rest. However, a massless initial 
particle can ‘split’ via 

q → xq + (1 − x)q (3.7.35) 

for any 0 < x < 1. This is the collinear limit, and it can contribute new IR divergences in theories 
with vertices where 3 or more massless particles interact with each other. 
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These combined soft and collinear divergences cannot be eliminated by summing over final states. 
However, they can be eliminated if we sum over both initial and final states. The idea is that the 
interactions that lead to soft and collinear divergences are exactly those that turn ‘free particles’ 
into ‘in’ and ‘out’ states. These interactions are just some unitary transformation on the hard states 
plus soft radiation and collinear splittings/radiation. So if we sum over all the (nearly identical) 
states in these subspaces, all the soft divergences cancel. See Weinberg chapter 13.4 for a detailed 
formal argument. 
There’s a physical point to this reasoning – namely that in theories with massless particles, we 

should always only talk about the scattering of “jets”, or collimated beams of particles. Because 
non-abelian gauge theories (e.g. QCD) have interacting massless particles, this means that we must 
talk in terms of jets when we study hadron colliders. 
But why didn’t we have to sum over soft photon initial states? Weinberg gives a formal argument 

(which doesn’t seem very helpful to me), but I think the physical point is that collinear divergences 
differ from soft divergences in that, if I have a massive particle with 4-momentum p which is on-shell, 

2 2 2it cannot absorb an on-shell photon and transition to a new on-shell state. If p = m and q = 0, 
then the new state must satisfy pq̇ = 0, and in the rest frame of the massive particle, this means 
q0 = 0, so the soft particle has exactly zero energy. 
This means that (roughly speaking) if we take the initial state to consist of only hard particles 

and soft photons, the soft photons cannot interact with the hard particles before the scattering 
process. In constrast, a massless particle with momentum q can transition to two particles via 
q → xq + (1 − x)q while all particles stay exactly on-shell. This forces us to sum over these 
combinations of initial states, since these processes can occur into the infinite past. In summary, 
collinear vs soft phase spaces are fundamentally different. 

3.7.5 The External Field Approximation 

You might wonder what approximation we need to do to replace a heavy charged particle by its 
classical electromagnetic field. The purpose of this section is to derive that approximation. 
The physical idea is that if we emit a relatively soft (virtual or real) photon with momentum q 

2 = (p + q)2 2from a heavy particle, then since p = m we must have p · q = 0. In more familiar terms, 
if we boost to the rest frame of the heavy particle, then the shift in energy q0 = ~q2/M ∼ 0 which 
must be very small – a soft photon cannot change the energy of a heavy particle. 
Consider some Feynman diagram where a heavy charged particle exists in the initial and final 

state, and it emits and absorbs some number N of soft off-shell (virtual) photons. Then the part of 
the Feynman diagram that connects to this heavy particle is 

Mµ1···µN (q1, · · · , qN ; p) (3.7.36)σ,σ0 

where qr are the 4-momenta of the soft photons. This amplitude will obviously be dominated by 

δ4(p0 − p + q1 + · · · qN )G
µ1 Gµ2 · · · GµN 

Mµ1···µN σ0,σ1 σ1,σ2 σN−1,σ(q1, · · · , qN ; p) = + perms σ,σ0 (2p · q1 − i�)(2p · (q1 + q2) − i�) · · · (2p · (q1 + · · · + qN−1) − i�) 
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where we sum over permtations of the order of the photons, and the vertex 

Gµ 
σ,σ0 

p, σ0|Jµ(0)|~ (3.7.37)= h~ p, σi 
2p0 

and the σi just label spin states of the heavy particle. Actually these labels are completely irrelevant, 
because in the soft limit 

Gµ (3.7.38)σ,σ0 = 2Zep
µδσ,σ0 

as we have already discussed. So actually the spin of the heavy particle drops out. 
Now two nice things happen. First of all, to leading order in qr we can write 

δ4(p 0 − p + q1 + · · · qN ) = p 0δ3(~p 0 − ~p + ~q1 + · · · q~ N )δ(p · (q1 + · · · + qN )) (3.7.39) 

Second of all, on the support of the last delta function, we can write 

δ(p · (q1 + · · · + qN )) 
+ perms (3.7.40)

(2p · q1 − i�)(2p · (q1 + q2) − i�) · · · (2p · (q1 + · · · + qN−1) − i�) 

= (2πi)N−1δ(p · q1)δ(p · q2) · · · δ(p · qN−1) (3.7.41) 

This can be most easily understood as the Fourier transform of 

θ(t1 − t2)θ(t2 − t3) · · · θ(tN−1 − tN ) + perms = 1 (3.7.42) 

although for N = 2 one can also see it immediately by writing 
x+
1 
i� in terms of a principal part and 

delta function piece. 
Thus we find that 

Mµ1···µN µ1 
σ,σ0 = (2πZe)N δσ,σ0 p · · · pµN δ3(p~ 0 − p~ + q~ 1 + · · · ~qN )δ(p · q1)δ(p · q2) · · · δ(p · qN−1) 

This applies to both relativistic and non-relativistic heavy particles (as it’s a nice Lorentz covariant 
answer). In the NR limit we just get δ(qr 

0) factors, which tell us that the virtual photons carry 
momentum but no energy, as suggested by our rough argument above. 
This derivation shows that the presence of this heavy particle (taken at rest for simplicity) is 

equivalent to inserting any number N of virtual photons sourced by Z NY 
0 −i~qr ·Xd3X|ψ(X)|2 (2πZe)nµr δ(q )e (3.7.43)R 

r=1 

where ψ is the heavy particle wavefunction and nµ ∝ pµ of the heavy particle. But this is exactly 
what we’d get from a background Aµ field with Z 

d4 µr δ(q0 −i~qr ·Xq (2πZe)n )e Aµ(x) = 
(2π)4 

R

q2 − i� 
Zeδ0,µ 

= 
~4π|~x − X| 

(3.7.44) 
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which just couples like a classical source Aµ(x)J
µ(x) to the electric current operator of the light 

charged particles. 
Here we have summed all photon exchanges between the heavy source and the other light particles. 

If both the heavy and light particles are non-relativistic then a further simplification occurs, and one 
only needs ‘uncrossed ladder diagrams’. 

3.8 Implications of Unitarity 

By studying long distance physics and IR divergences, we saw that there is an intimate connection 
between loops corrections and multiple real emissions. This is no accident – it is a consequence of 
unitarity, or (roughly speaking) the statement that probabilities must add up to 1. 
At a formal level, the unitarity of the S-Matrix simply says that the S operator satisfies 

S†S = 1 (3.8.1) 

However, we usually write S by extracting a trivial part involving no scattering, so that 

S = 1 + iT (3.8.2) 

where we write 

hf |T |ii = (2π)4δ4(pf − pi)M(i → f) (3.8.3) 

in schematic form. Then unitarity implies that � � 
i T † − T = T †T (3.8.4) 

directly about the non-trivial part of the S-Matrix. 
Now on the LHS we can sandwich this between hf | and |ii, giving � � � � 

i hf |T †|ii − hf |T |ii = i hi|T †|fi ∗ − hf |T |ii 
= i(2π)4δ4(pf − pi) (M∗ (f → i) −M(i → f)) (3.8.5) 

Similarly, on the right side we do the same thing, but we also insert a sum over all states in the form Z 
1 = dX|XihX| (3.8.6) 

which gives Z 
hf |T †T |ii = (2π)4δ4(pf − pX )(2π)

4δ4(pi − pX ) dXM(i → X)M ∗ (f → X) (3.8.7) 

whwere we are summing and integrating over all possible intermediate states X, composed of any 
number of particles with arbitrary spins and momenta. This general statement shows how unitarity 
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constrains the scattering amplitudes. Note that this must hold to each order in perturbation theory, 
so it relates various tree and loop diagrams to other loop diagrams. 
An important special case is when |fi = |ii = |Ai, in which case we see that Z 

2 Im M(A → A) = dX(2π)4δ4(pA − pX )|M(A → X)|2 (3.8.8) 

where dX must be lorentz invariant, so Y d3qr
dX = (3.8.9)

(2π)32Er r 

for each of the particles in the X state. This tells us that for one particle states, the decay rate 
satisfies (recall that decay rates have a factor of 1/mA) X 

Im M(A → A) = mA Γ(A → X) = mAΓtot (3.8.10) 
X 

which means that the imaginary part of the exact propagator is directly related to the decay rate of 
the particle. 
The case with a two particle state is what’s often called the optical theorem. It says that in the 

center of mass frame Z 
Im M(A → A) = 2ECoM |~pi| dXσ(A → X) (3.8.11) 

so the imaginary part of the forward scattering amplitude is given in terms of the total scattering 
cross section. 
All these statements of unitarity should make intuitive sense in the following respect: if the 

total transition probability is 1, then the square of the off-diagonal elements of the matrix must be 
compensated by depletions on the diagonal. What we have derived is simply the fancy QFT version 
of that statement about unitary matrices. 

3.8.1 Decay Rate Example 

Let’s consider a theory with an interaction 

λ
φπ2 (3.8.12)
2 

Clearly if mφ > 2mπ then we can have a decay, so we should have 

Im M(φ → φ) = mφΓ(φ → ππ) (3.8.13) 

but only when the mφ is large enough. 
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The one-loop correction to the propoagator is Z 1 � 
2 � 

λ2 m2 − p x(1 − x) − i� M1−loop(p) = − dx log (3.8.14)
32π2 0 Λ2 

where Λ is the UV cutoff. We put φ on-shell by setting p2 = M2 giving Z � 2 2 � 
λ2 1 m − mφx(1 − x) − i� 

M1−loop(M) = − dx log π 
(3.8.15)

32π2 0 Λ2 

Note that x(1 − x) ≤ 1/4, so for mφ < 2mπ the result is purely real. However for larger masses we 
note 

log(−A − i�) = log A − iπ (3.8.16) 

so that we have Z 1λ2 � � 
Im M1−loop(M) = dxΘ mφ 

2 x(1 − x) − mπ 
2 

32π 0r 
λ2 m2 

= 1 − 4 Θ(mφ − 2mπ) (3.8.17)
32π M2 

The decay rate is Z 
1 1 |p~ f | dΩ 

Γ = |λ|2 (3.8.18)
2 2mφ mφ 16π 

where p~ f is the momentum of one of the final state π particles. Thus we get r 
λ2 m2 

Γ = 1 − 4 Θ(mφ − 2mπ) (3.8.19)
32πmφ M2 

verifying the optical theorem. 

3.8.2 Cutting Rules 

Now let’s see how the unitarity relation is manifested directly in the Feynman diagrams. 
At a computational level, the main point is that the Feynman propagator � � 

1 
= PP 

1 − iπδ(p 2 − m 2) (3.8.20)
2 − m 2 − m2p 2 + i� p 

where the PP means ‘principal part’, it is defined to be 1/(p2 − m2) for p =6 m and is zero otherwise. 
The way to see this is really to just write 

2 − m21 p i� 
= − (3.8.21) 

p2 − m2 + i� (p2 − m2)2 + �2 (p2 − m2)2 + �2 
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By looking at integrals over p2 one can extract the claimed result. 
This immediately shows that for tree level diagrams, the imaginary part comes from (the isolated 

point where) an intermediate particle goes on-shell. It turns out that this generalizes to loops, and 
is equivalent to the statement of the optical theorem. 
The physical point is that imaginary parts of loop amplitudes arise when intermediate particles go 

on-shell. There is a more complex-analysis friendly way of seeing this, by looking at a loop integral 
(or any integral) and asking when it can have a discontinuity as we move the kinematic invariants 
around. This can only happen when we force the contour of integration to wind around a pole. 
Why care about discontinuities? Let us consider our amplitude M(s). If s is real and below the 

threshold for any states in the theory, then M(s) will be real, giving the trivial identity 

M(s) = M ∗ (s ∗ ) (3.8.22) 

Now both of these are analytic functions of s, so we can continue both of them to s > the masses of 
various multi-particle states. Near the real axis we have 

ReM(s + i�) = ReM(s − i�) 

ImM(s + i�) = −ImM(s − i�) (3.8.23) 

Above the multi-particle threshold, we will have a branch cut on the real s-axis, and so we see that 
the discontinuity across the branch cut is 

Disc M(s) = 2iImM(s + i�) (3.8.24) 

Thus we can compute the imaginary parts by computing a discontinuity across the real axis. That 
discontinuity can only arise when we pick up little contour integrals around the poles of the integrand 
by analytically continuing in e.g. s. 
So we can find the imaginary part by analytically continuing s. For example with s = 4p2 in an 

integral like Z 
d4k 1 

(3.8.25)
(2π)4 [(p + k)2 − m2 + i�][(p − k)2 − m2 + i�] 

we can fix p = eiθ(E, 0, 0, 0) and continue θ → θ + 2π. Then we can write the integral as Z 
dk0d

3~k 1 
(3.8.26)

~ ~(2π)4 [(k0 + E)2 − k2 − m2][(k0 − E)2 − k2 − m2] 

So the poles are at q 
~ 2E = ±k0 ±0 k2 + m (3.8.27) 

As we analytically continue in E, we need to keep track of how we move the contour in k0 and ~k to 
avoid the pole. We can always move ~k so that k0 does not meet one of the poles, or vice versa. 
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But if E > m then we can get caught in such a way that we must move both contours. As E 
moves in the complex plane, we pick up a discontinuity from the region where both propagators 
vanish, so we have a pole from both. But this just gives a phase space integral over a product of two 
tree-level diagrams, confirming the relation Z 

i [M ∗ (f → i) −M(i → f)] = (2π)4δ4(pi − pX ) dXM(i → X)M ∗ (f → X) (3.8.28) 

In general, there are a set of ‘cutting rules’ (written out in the book) that tell how to compute 
a general discontinuity, by replacing all combinations of propoagators with delta functions and 
summing. 
But this simply amounts to the statement of the unitarity relation, namely that we get an 

imaginary part (or a discontinuity) by taking the product of all possible M(i → X)M∗(f → X) 
and summing/integrating over the intermediate states. 

3.8.3 Comment on Spin Sums and Propagators 

Loop amplitudes have propagator factors with non-trivial numerators in the case of particles with 
spin. This occurs on the LHS of Z 

i [M∗ (f → i) −M(i → f)] = (2π)4δ4(pi − pX ) dXM(i → X)M∗ (f → X) (3.8.29) 

However, on the RHS we have products of amplitudes with external particles in the state X. Thus 
we have spinors and/or polarization vectors. So the optical theorem implies that sums over spins 
have to be the same thing as propagator numerators. 
This provides the bazillionth way of seeing that massless particles with spin 1 or greater must have 

a notion of gauge invariance. Because, in fact, their spin sums are ambiguous, but the ambiguities 
cancel due to the Ward identity. The end result is that we can always write P 

j �j �
∗ 
j

Πs(p) = (3.8.30) 
p2 − m2 + i� 

where �j are a basis of physical polarizations for the particle of spin s. 

3.8.4 Bounds on the Cross Section 

Unitarity gives various bounds on the total cross section. For example if we work in an angular 
momentum basis and we have massless scalar particles, then X 

M(E, θ) = aj (E)Pj (cos θ) (3.8.31) 
j 

where E is the CoM energy. But the optical theorem immediately says that 

1 Im(aj (E)) ≥ |aj (E)|2 (3.8.32)
2 
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for these massless particles. Here the optical theorem is extremely simple because the S-Matrix 
really just is a discrete matrix (1 + iaj ), because we diagonalized angular momentum. 
Another bound is Froissart, although it only holds when all particles have a mass. The intuition 

behind it is that interaction ranges fall of exponentially when all particles have a mass, so the cross 
section is ∼ R2 , where R ∼ 

m 
1 log E. 

The main use of these bounds is to say that when they are violated in perturbation theory, we 
know for certain that perturbation theory has broken down. No theory actually violates unitarity, 
it’s just that we learn from extrapolated violations of unitarity that the theory must change, or 
perturbation theory must be abandoned, before reaching some (high energy) scale. 

3.8.5 Unitarity and the Second Law of Thermodynamics 

The unitarity relations we have derived can be used for a strikingly different purpose – to derive 
the 2nd law of thermodynamics. In textbooks usually the Born approximation or time reversal 
invariance are used, but neither is exactly true. In fact, the 2nd law follows from an analysis based 
on the unitarity of scattering. 
Let us consider a large collection of particles in a box with volume taken (for convenience) to be 

(2π)3V . We will study reaction rates between the particles in the box by using scattering amplitudes 
and rates satisfying the unitarity relation. 
Note that since both S†S = 1 and SS† = 1, we can use the result Z 

ImM(A → A) = −π dBδ4(pA − AB)|M(A → B)|2 (3.8.33) 

to write the reciprocity relation Z Z 
dBδ4(pA − pB )|M(A → B)|2 = dBδ4(pA − pB)|M(B → A)|2 (3.8.34) 

Writing differential rates in a very formal way, we can say therefore that Z Z 
V NA 

dΓ(A → B)
dB = V NB 

dB 
dΓ(B → A)

dB 
dA 

(3.8.35) 

as a relation between rates. 
Let us also define P (A)dA as the probability of finding the system in a volume dA of the 

multi-particle state phase space. So P (A) has units of V NA where NA is the number of particles in 
the state A. This follows because each particle has a differential phase space d3~q. 
Then the rate of change of P (A) is Z Z 

dP (A) dΓ(B → A) dΓ(A → B) 
= dB P (B) − P (A) dB (3.8.36)

dt dA dB 

This just says that the change in P (A) is given by the rate at which its increased by scatteringR 
minus the rate at which it’s depleted. We can see immediately that P (A)dA, the total phase space 
volume, will be time independent. 
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Now let us consider the rate of change of the entropy Z � � 
P (A)

S = − dA P (A) log (3.8.37)
V NA 

It is Z Z � � � �� � 
dS 
dt 
= − dA dB log 

P (A) 
V NA 

+ 1 
dΓ(B → A) dΓ(A → B)

P (B) − P (A)
dA dB 

(3.8.38) 

The +1 simply vanishes. Interchanging integration labels in the second term we find Z Z � � 
dS P (B)V NA dΓ(B → A) 

= dA dB P (B) log (3.8.39)
dt P (A)V NB dA 

Now for any positive quantities, the function y log(y/x) is convex, so it satisfies 

y 
y log ≥ y − x (3.8.40) 

x 

So we can bound the rate of change of the entropy by Z � � 
dS P (B) P (A) dΓ(B → A)

V NB≥ dAdB − 
dt V NB V NA dAZ � �� � 

P (B) dΓ(B → A) dΓ(A → B) 
= dAdB V NB − V NA (3.8.41)

V NB dA dB 

But now the unitarity relation tells us that once we integate this vanishes, so we conclude 

dS ≥ 0 (3.8.42)
dt 

We have derived the 2nd law of thermodynamics from unitarity and kinetic theory. 

3.9 Interlude on Lie Groups and Lie Algebras 

We have seen a few examples of Lie Groups, such as the SO(1, 3) Lorentz group, and the SU(2) ∼ 
SO(3) group of rotations. I also just mentioned SO(N) global symmetries. Now let us discuss 
Lie Groups and Lie Algebras a bit more systematically, so that we can use them in discussions of 
symmetry and dynamics. 

3.9.1 Definitions 

Lie Groups are both groups and differentiable manifolds. Any group element continuously connected 
to the identity can be written 

U = exp [iθaT a] (3.9.1) 
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where the θa parameterize the group and the T a are the group generators, which live in the Lie 
Algebra. We conventionally view θa as real parameters. If you have an explicit form for U , say as 
matrices, then you can figure out T a by series expansion. 
The generators of T a , which generate infinitessimal group transformations, form the Lie Algebra 

(distinct from the group). The Lie algebra is defined by its commutation relations 

[T a, T b] = ifabcTc (3.9.2) 

−f bacwhere fabc are known as the structure constants. By definition fabc = . Note that this 
‘commutator’ (also just called a ‘Lie Bracket’) is really an abstract bracket at this point, ie it does 
not necessarily correspond to the operation AB − BA on matrices. It only becomes AB − BA once 
we have a representation for the Lie Algebra, ie a set of matrices satisfying the algebra. 
This explains why we demand that the Lie bracket satisfies the Jacobi identity 

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 (3.9.3) 

This identity is trivial once we use [A, B] = AB − BA, as you can check, but it’s a non-trivial 
demand to impose on the abstract Lie bracket. The Jacobi identity can be written as 

fabdfdce + f bcdfdae + f cadfdbe = 0 (3.9.4) 

using the structure constants. 
Lie algebras that we will study are either simple or semi-simple, meaning that they are direct 

sums of simple algebras. Simple algebras are those that do not contain sub-algebras that commute 
with all the elements in the algebra (no non-trivial ideals); the example important for physics are 
mostly su(N) and so(N), which are based on groups that preserve either a complex inner product or 
a real inner product. The reason we care is that the finite dimensional representations of semi-simple 
Lie algebras are always Hermitian, so one can find Unitary QM theories based on such algebras. 
The complex inner product is 

U †U = 1 (3.9.5) 

defined on N dimensional complex vector spaces, for U(N). Note that in all cases we can write 
U(N) = SU(N) × U(1) where the U(1) represents an overall phase. There are N2 − 1 generators 
for SU(N). To see this, let us write the identity infinitessimally as 

−iθa(T †)a + iθaT a = 0 =⇒ T = T † (3.9.6) 

so we can count the generators by counting N ×N Hermitian matrices. Such matrices have 1
2 N(N −1) 

imaginary components and 1
2 N(N + 1) real components, but then we subtract the identity matrix, 

which just generates U(1). In contrast, the real inner product is 

OT O = 1 (3.9.7) 

and there are 1 N(N − 1) generators, because they must satisfy
2 

T = −T T (3.9.8) 
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and thus be anti-symmetric N × N matrices. Another group, which we use less often, is the 
symplectic group Sp(2N), which preserves a quaternionic inner product, or equivalently 

ΩS = −ST Ω (3.9.9) 

where Ω = i�ab is a 2 × 2 matrix. There are also some exceptional groups, G2, F4, E6, E7, E8. 

3.9.2 Representations 

The groups and algebras discussed above are abstract mathematical objects. We want to have these 
groups act on quantum states and fields, which are vectors, so we need to represent the groups as 
matrices. There are an infinite number of different representations for a given simple group, as you 
know from the case of SU(2), which gives the spin and rotation representations. 
However, there are two obvious and most important representations, which occur most often in 

physics settings. They are the fundemantal and adjoint representations. The fundamental is the 
‘obvious’ representation defining SU(N) and SO(N) as N × N matrices acting on N dimensional 
vectors. It is basically the smallest representation of the algebra, except for cases like su(2) ∼ so(3) 
and su(4) ∼ so(6). To write the fundamental formally, we say that N fields transform under it as 

φi → φi + iαa(Tf
a)ji φj (3.9.10) 

where i = 1, · · · , N and the αa are real numbers. The complex conjugate fields transform in the 
anti-fundamental, which is just the conjugate of this 

φ ∗ → φ ∗ − iαa(T a∗)j φ ∗ (3.9.11)i i f i j 

Note that since Tf
a are Hermitian, we have Tanti−f = Tf 

∗ , and other trivial relations. In the context 
of physics the i labels are often called ‘color’ or ‘flavor’ indices, due to the standard model context. 
It’s easy to work out the algebras by just looking at the commutators of Hermitian matrices, or 

= �abcorthogonal matrices in the case of so(N). You can check that fabc for su(2), as should be 
familiar. There’s a standard basis used by physicists for su(3), called the Gell-Mann matrices. 
The normalization of generators is arbitrary and is usually chosen so that 

facdf bcd = Nδab (3.9.12) 

but once we choose that, the normalization in all representations is fixed. This implies that in the 
fundamental representation � � 1 

δabTr Tf
aTf

b = (3.9.13)
2 

but this relation certainly depends on the representation! It doesn’t even make sense in the abstract, 
since multiplying generators is not well-defined without a representation. 
The other ‘obvious’ representation is the adjoint. The point is to think of the generators 

themselves as the vectors. So for example in su(N), with have N2 − 1 generators labeled by 
a = 1, · · · , N2 − 1. They are acted on by the Lie bracket, or commutator, so 

)bc = −ifabcT b · T a ≡ [T b, T a] = if bacTc =⇒ (T a (3.9.14)adj adj 
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How can we see that the Tadj actually satisfy the Lie algebra, and thus are really a representation? 
This is given immediately by the Jacobi identity re-written as 

f cbdfade − fabdf cde = −f cadfdbe =⇒ [T c adj ] = if cadT d (3.9.15)adj , T a 
adj 

Gauge bosons in gauge theories are always in the adjoint representation of the Lie algebra, hence 
its importance. It’s also one of the simplest representations after the fundamental. Clearly it has 
dimension N2 − 1 for su(N). 

~There is a generalization of the notion of J2 in su(2) (thought of in terms of rotations), it is the 
Casimir operator or in this case, the quadratic Casimir X 

T aT a 
R R = C2(R)1 (3.9.16) 

a 

where I wrote in the sum just to be clear. This must be proportional to the identity (when acting 
on a single given irreducible representation) because it commutes with all generators of the group, 
which follows because 

R] = (if
abcT c R(if

abcT c[TR
aTR

a, T b R)TR
a + T a R) = 0 (3.9.17) 

because of anti-symmetry of fabc in ab. This is just as in the angular momentum case. 
To compute the C2(R), its useful to define an inner product on the generators via 

] = T (R)δabTr [TR
aTR

b (3.9.18) 

The quantity T (R) is the index of the representation. We have that 

1 
T (fund) = (3.9.19)

2 

and 

T (adjoint) = N (3.9.20) 

for su(N), given our normalizations. The index relates to the quadratic Casimir by 

d(R)C2(R) = T (R)d(G) (3.9.21) 

where d(R) is the dimension of the representation, and d(G) of the algebra, namely N2 − 1 for 
su(N). Thus 

N2 − 1 
C2(fund) = 

2N 
(3.9.22) 

C2(adj) = N (3.9.23) 

These quantities appear in calculations in Yang-Mills theories, just as the total angular momentum 
appears in computations involving angular momentum. 
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3.10 Overview of Lie Algebra Classification and Representations 

To classify the representations of angular momentum, namely su(2), you may recall that we 

J~2• First notice that the quadratic Casimir commutes with all the Ji, so any given irreducible 
representation must have the same eigenvalue for it; this is s(s + 1). 

• We then note that J± = J1 ± iJ2 act as raising and lowering operators for the generator J3, in 
that 

[J3, J±] = ±J± (3.10.1) 

[J+, J−] = J3 (3.10.2) 

So we can classify representations in terms of their maximum or minimum J3 eigenvalue, a 
highest or lowest weight state. Then all vectors in the representation can be obtained by acting 
on this highest weight vector with J−. 

To understand general Lie algebras, one proceeds in a similar fashion. First we find as many 
commuting generators as possible (just as in QM!), classifying representations according to their 
eigenvalues. This means that there are many different kinds of raising and lowering operators, and 
so they must all fit together in a consistent way. Their self-consistency leads to the classification of 
possible Lie algebras. 

3.10.1 Weights 

A maximal subset of commuting Lie algebra generators is called a Cartan subalgebra. We can write 
these Cartan generators in any representation R as 

[Hi, Hj ] = 0, Hi = Hi 
† (3.10.3) 

where they must be Hermitian in a unitary representation. We let i = 1, · · · ,m where m is called 
the rank of the algebra. Note that 

Tr [HiHj] = T (R)δij (3.10.4) 

in our notation above, where T (R) is the index of the representation. 
Now we can write any vector (this would be a specific state in a QM theory) in the representation 

as a linear combination of the eigenvectors 

Hi|µ, x, Ri = µi|µ, x, Ri (3.10.5) 

where x might include other labels that we need besides the cartan eigenvalues. These Cartan 
eigenvalues are called the weights and µi is the weight vector. I will often refer to the vectors |µ, x, Ri 
as states, since the analogy with quantum mechanics is essential and immediate. 
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3.10.2 Adjoint Representation and Roots 

In any Lie algebra, we know that the adjoint representation exists. A basis for the vectors or ‘states’ 
in the adjoint correspond to the generators of the Lie algebra itself. Labeling such a state as 

|Xai (3.10.6) 

we see that the generator Xb acts on this as 

Xb|Xai = ifbac|Xci = |[Xb, Xa]i (3.10.7) 

which is just the statement that in the adjoint representation, the Lie algebra acts by commutators. 
The roots of a Lie algebra are the weights of the adjoint representation. It will turn out that by 

understanding the possible patterns for the roots we can understand all possible Lie algebras. Note 
that the states corresponding to the Cartan generators have zero weight vectors, because 

Hi|Hj i = |[Hi, Hj ]i = 0 (3.10.8) 

Futhermore, all states in the adjoint with zero weight must be in the Cartan subalgebra. 
The other states in the adjoint have non-zero weight vectors αi, where i = 1, · · · ,m, and they 

satisfy (by definition) 

[Hi, Eα] = αiEα (3.10.9) 

where we have diagonalized the Cartan subalgebra. It turns out that in the adjoint representation, 
the non-zero weights uniquely specify the corresponding generator, so there is no need for any other 
specification to tell us which generator we are talking about. 
The Eα generators cannot be Hermitian, because 

[Hi, Eα 
† ] = −αiEα 

† (3.10.10) 

Note that this relation means that 

E† α = E−α (3.10.11) 

which is reminiscent of J± in su(2). States with different weights must be orthogonal, because they 
have different Cartan eigenvalues. 

3.10.3 E±α as Raising and Lowering Operators Forming Many su(2)s 

In fact, the generators E±α act as raising or lowering operators (in any representation), in that 

HiE±α|µ, Ri = ([Hi, E±α] + E±αHi) |µ, Ri = (µ ± α)iE±α|µ, Ri (3.10.12) 

simply by using the commutation relations. If we specifically consider the adjoint representation, 
then Eα|E−αi must be in the Cartan subalgebra, so that 

[Eα, E−α] = βj Hj (3.10.13) 
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is a linear combination of Cartan generators. In fact we can compute the components of the vector 
βi directly via 

βi = hHi|[Eα, E−α]i 
Tr (Hi[Eα, E−α]) 

= 
T (adj) 

Tr (E−α[Hi, Eα]) 
= 

T (adj) 

= αi 
Tr (E−αEα) 
T (adj) 

= αi (3.10.14) 

which means that 

[Eα, E−α] = αj Hj (3.10.15) 

which is just like the su(2) commutation relation [J+, J−] = J3. 
For each E±α there is an su(2) sub-algebra within our general Lie algebra, where we call ‘E3 ’ 

the generator α
α 
·H 
2 and we define E± = E±α/|α|. In fact, we could decompose any irreducible 

representation R of the Lie algebra into irreducible representations of each of these little su(2)s. 
Since we already know everything there is to know about irreps of su(2), this puts strong 

constraints on the larger Lie algebra. For example, we can show that the root vectors Eα are unique. 
If not, then we can choose Eα and Eα 

0 to be orthogonal under the Tr [TaTb] metric. But this means 
that 

E−|E 0 i = 0 (3.10.16)α 

from the computation above. But we also must have 

E3|E 0 i = |E 0 i (3.10.17)α α 

but this is inconsistent withe the commutation relations for the su(2) subalgebra, since the first says 
that |E 0 i is a lowest weight state, while the second implies it has E3 = 1 eigenvalue, so that it’sα 

‘spin 1’. Via a similar argument we can show that if α is a root, then there is no root with Ekα 

except for k = ±1. 

3.10.4 Structure of the Root Lattice 

In general, for any weight µ of any representation R, the E3 eigenvalue is 

α · µ
E3|µ, x, Ri = |µ, x, Ri (3.10.18)

α2 

by definition of E3 as α · H/α2 . But this means that in any Lie algebra and any representation, the 
quantity 

2α · µ 
(3.10.19)

α2 
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must be an integer. This gives a very strong constraint on the structure of the root vectors α. 
Decompose the general state |µ, xRi according to our little su(2), with a highest spin state 

appearing with spin `. Then there is some maximal non-negative integer p so that 

(E+)
p|µ, xRi =6 0, (E+)

p+1|µ, xRi = 0 (3.10.20) 

This means that the E3 eigenvalue of the state is 

α · (µ + pα) α · µ 
= + p = j (3.10.21)

α2 α2 

Similarly, there is some q associated with lowering, so that 

2α · µ 
= q − p (3.10.22)

α2 

The power of these relations can be seen by applying them to two different roots (weights in the 
adjoint representation). Then we have that 

α · β 
α2 

1 
= (p − q),
2

α · β 
β2 

1 0)= (p 0 − q
2

(3.10.23) 

Thus we can multiply the two relations to find 

(α · β)2 (p − q)(p0 − q0) 
cos 2 θαβ = = (3.10.24)

α2β2 4 

where the numerator must obviously be an integer. Thus there are only four possibilities: 

θαβ = 90, 60 (120), 45 (135), 30 (150) (3.10.25) 

for the angle between any pair of roots. It turns out that the roots of su(3) form a hexagon, with 
the two Cartan generators in the center. 
Note that for any of the su(2)s in the algebra, we can flip spin → −spin, exchanging highest and 

lowest weight states. This reflects the root lattice in a mirror. The set of all such (combined) mirror 
reflections for all the various su(2)s forms the Weyl group, a symmetry group of the root lattice. 

3.10.5 Simple Roots and Dynkin Diagrams 

To complete the analogy with su(2), we need a notion of ‘positive and negative spin’ so we can 
differentiate the highest from the lowest weights. It’s sufficient to just define a weight vector µi as 
positive if its first component is positive, and negative otherwise. Now we have a notion of highest 
and lowest weight states. 
We do not need to talk about all of the roots of a Lie algebra, since some can be written as sums 

of others. This we define the simple roots as the positive roots that cannot be written as a sum of 
other positive roots. If a given state is annihilated by all the simple roots, then it is annihilated by 
all the positive roots, so it is the highest weigt state of an irreducible representation. 
Some simple and fun to prove statements about simple roots: 
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• If α and β are different simple roots, then α − β is not a root. 

−p −p0α·β α·β 0• It follows that = and = so knowing p and p tells us the angle between the
α2 2 β2 2 

roots and their relative lengths. 

• The angle between pairs of simple roots is in [π 
2 , π). 

• The simple roots are linearly independent. 

• The simple roots are complete, so the number of simple roots is equal to m, the rank of the 
algebra, or the number of Cartan generators. 

• One can construct the entire algebra from the simple roots. 

You may have heard of or seen Dynkin diagrams – they are just a short-hand notation for writing 
down the simple roots. Each simple root is an open circle, and the roots are connected by 1 line if 
the relative angle between them is 120, 2 lines for 135, 3 lines for 150, and no lines at all if they 
are orthogonal. So the Dynkin diagram determines all angles between pairs of simple roots. For 
example, the algebra G2 consists of two roots at an angle of 150 degrees, while su(3) just has two 
roots at an angle of 120 degrees. Of course su(2) is just one circle. 
We have reduced the classification of Lie algebras to geometry. Note that if the Dynkin diagram 

splits up into two disconnected pieces then all the roots in each piece are orthogonal to all the roots 
in the other. It follows that the elements of the corresponding Lie algebras commute with each 
other, giving a pair of simple Lie groups. What remains is to classify consistent connected Dynkin 
diagrams. You can see Georgi’s book on Lie Algebras in Particle Physics, or Fulton and Harris’s 
book on Representation Theory for the details. 

3.10.6 More on Representations 

Representations can be labeled by their unique highest weight state (vector) |µi. All other states in 
the representation are given by some number of negative simple roots acting on this first state, ie 

(E−α1 )
n1 · · · (E−αm )

nm |µi (3.10.26) 

In fact we can act with the negative simple roots (or just general combinations of any roots, aka 
any elements of the Lie algebra, since roots are just states in the adjoint which are just Lie algebra 
generators with definite Cartan subalgebra eigenvalues) in whatever order we want, and sort out the 
computation using the Lie algebra commutation relations. 

All properties of the representation with highest weight |µi can be worked out algorithmically 
in this way. For instance, if we want an inner product of two vectors in the irrep we can write 
each in terms of lowering operators acting on |µi, then take the inner product, then simplify with 
commutation relations. This way of working things out is tedious, but deterministic. 
This means that irreducible representations are uniquely defined by their highest weight state, 

and that the highest weight state will be unique within an irrep. If it wasn’t, then we could build 
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two separate sets of states from the two states that each could not be raised, and these separate sets 
would be independent, and thus would be irreps. 
However, as a matter of practice, it’s easiest to understand general irreps using tensor products 

of the fundamental representation. Let’s consider su(N). It has m = N − 1 simple roots, so we can 
label its irreducible representations with m numbers which describe the weight of the highest weight 
state. 
In the most familiar case where N = 2, there is just one number, the spin, characterizing 

each representation. Or alternatively, we can study a spinor ui with i = 1, 2 in the fundamental 
representation (corresponding resptively to spin up, down), and look at tensor products 

i1 iku ⊗ u i2 ⊗ · · · ⊗ u (3.10.27) 

How can this be decomposed into irreducible representations? Well when iα = 1, we have a state 
that cannot be raised, and so it will belong to an irreducible representation with su(2) spin k/2. 
However, the tensor product itself is not an irreducible representation, because it contains k different 
states with one iα = 2 and all others = 1. Whereas the spin k/2 irrep has only has one state with 
spin-z of k/2 − 1. In fact, the irrep is what we get if we completely symmetrize over the iα. This 

1 ⊗ · 1follows because u · · ⊗ u is totally symmetric, and acting with J− on it will always produce 
totally symmetric results. In fact, we get all possible su(2) irreps from symmetric tensors of this 
form. 
Naively you might have expected that there is an ‘anti-fundamental’ representation acted on by 

vi → (U †)ji vj . This has the property that 

viu i (3.10.28) 

is invariant when vi is anti-fundamental, and ui is a fundamental. 
In fact the su(2) anti-fundamental is just another spin 1/2 state, and is therefore just a 

fundamental. The reason is that the anti-symmetric tensor product of two (anti-)fundamentals 

xi ∧ yj ∝ �ij (3.10.29) 

is invariant under su(2), and so �ij uj transforms in the anti-fundamental whenever uj is in the 
fundamental. (Note I wrote it in this way to make it clear that both the i and j indices transform 
as though they are anti-fundamental rep indices.) Thus it’s often said that su(2) is real, because its 
fundamental and the complex conjugate of the fundamental are the same irrep. 
What if we study su(3)? Then we have a fundamental representation (1, 0) and an anti-

fundamental representation (0, 1), often written by physicists as 3 and 3̄. But actually, these can be 
related by noting that the anti-symmetric product of three (anti-)fundamentals 

xi ∧ yj ∧ zk ∝ �ijk (3.10.30) 

is invariant under su(3). In the context of the strong force, this is a baryon, and it is a color singlet 
(meaning it doesn’t transform, or is neutral) state. The reason the proton and neutron are color 
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neutral is because they are made of three su(3) fundamental quarks arranged in this way. This 
means that 

vi = �ijkx
j y k (3.10.31) 

i i iis in the 3̄ whenever x and y are in the 3. This follows because dotting u vi gives an invariant. 
So the fundamental and anti-fundamental are not the same, but we can build the anti-fundamental 

from the fundamental. In fact, in general for su(N) the anti-fundamental rep is 

i2 iNvi1 = �i1···iN x2 · · · xN (3.10.32) 

in terms of N − 1 fundemantals. So we can try to build all irreps from symmetric and anti-symmetric 
products of fundamentals. 
It turns out that this is possible, and the theory for it is based on Young Tableaux. These are 

simply symbols that tell us which indices are to be symmetrized and which are to be anti-symmetrized. 
For example, in su(3) we already saw that all tensor products of fundamentals and anti-fundamentals 
can be written purely in terms of symmetrized and anti-symmetrized fundamentals. All possibilities 
for mixtures of symmetrization and anti-symmetrization give all irreps for su(N). The basic reason 
why this works is that given a symmetry structure for the highest weight state, the lowering operators 
will all preserve that symmetry. See e.g. Georgi’s book for details. 

3.11 Spontaneously Broken Global Symmetries and Goldstone Bosons 

As a word of philosophy – the most interesting degrees of freedom are those that are massless, since 
they can be seen even at very long distances, and those that are universal, in the sense that their 
existence follows from some general underlying principle. Here we will see that the spontaneous 
breaking of symmetries leads, universally, to the existence of Goldstone Bosons, sometimes called 
Nambu-Goldstone bosons, which are massless scalar particles. 
Spontaneous symmetry breaking occurs when the equations of motion (or action) have symmetries 

that are broken by the vacuum state breaks. Spontaneously broken symmetries are everywhere. 
Tables break rotational symmetry. They also break translational symmetry, down to the ‘diagonal’, 
simultaneous translations in space and translations of the material. This spontaneous breaking leads 
to goldstone bosons, phonons, or sound waves. In fact, that’s why sound waves are such a universal 
phenomenon, because they arise whenever translation symmetry is spontaneously broken, and this 
happens whenever we have a material object as our local minimum of the energy (vacuum state). 
Spontaneous symmetry breaking in field theory is always associated with a degeneracy of vacuum 

states. As we saw before, linear symmetries 

φi → Lji φj (3.11.1) 

that are respected by the action are also respected by the quantum effective action, ie the exact 
potential of the theory, so � � 

LjΓ[φi] = Γ i φj (3.11.2) 
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and in particular, the vacuum state with lowest energy for φi must be degenerate. 
Just because there are multiple minima doesn’t mean that the symmetry will be spontaneously 

broken, because the wavefunction could still just be symmetric. In fact, this happens in many QM 
examples, and in a small number of spacetime dimensions. But in 3 + 1 dimensions and in infinite 
volume, the states that are stable against small perturbations, and the states that satisfy the cluster 
decomposition principle, are both those that break the degeneracy, spontaneously breaking the 
symmetry. 

3.11.1 Goldstone Bosons 

Now let us specialize to continuous symmetries. The canonical example is 

λ � �2 
φ†φ − µ 2L = ∂φ†∂φ + − (3.11.3)

4 

where µ2 is positive. This is the ‘Mexican hat potential’, and we can write 

µφ = (µ + h(x)) e i 
π(x) 

(3.11.4) 

The field π(x) will be massless, representing a Goldstone boson. 
Now let us consider the general case. With a position independent VEV for the fields 

φi(x) = vi (3.11.5) 

the fact that there is a symmetry under 

φi → Lji φj = φi + �Ti
j φj (3.11.6) 

means that the potential (the interaction part of the Lagrangian, or the derivative-less part of the 
effective action) doesn’t change under this transformation, so we must have 

δV 
T j i φj = 0 (3.11.7) 

δφi 

If we differentiate this condition a second time with respect to φk, we get 

δV δ2V 
Ti
k + Ti

j φj = 0 (3.11.8)
δφi δφiδφk 

Now let us assume that the φi = vi are at the minimum of the potential. Then the first derivative of 
V must vanish, so we find that 

δ2V 
T j i vj = 0 (3.11.9)

δφiδφk 

But this is just the statement that the directions in field space Ti
j vj are massless, since the second 

derivative of the potential in those directions vanishes. 
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For example, in the simple case above, we have φ = v + i0, and T = i, so that T · v rotates purely 
in the imaginary direction, corresponding to π → π + �. Or to put it another way, we can write 
φ = φ1 + iφ2, in which case Tij = �ij acting on (φ1, φ2). So the potential is 

λ � �2 
φ2 2V (φi) = 1 + φ2

2 − µ (3.11.10)
4 

giving 

∂2V ∂2V (µ, 0)
�ij hφj i = µ = 0 (3.11.11)

∂φi∂φk ∂φk∂φ2 

for either k = 1, 2. Thus we see that our simple U(1) aka SO(2) example works. 
In general, there are massless degrees of freedom corresponding to each of the broken symmetry 

directions. As we see from equation (3.11.9), the number of Goldstone bosons (scalar degrees of 
freedom) is the dimensionality of the space 

T j i vj (3.11.12) 

For example, say we instead had a theory with SO(N) symmetry 

N 
!2Xλ 

φ2 2V (φi) = i − µ (3.11.13)
4 

i=1 

Then we could choose hφii = (µ, 0, 0, · · · , 0). The Ti
j would be the N × N matrices of SO(N), so 

we would have exactly N − 1 Goldstone bosons. 

3.11.2 Another Proof That Goldstone Bosons Exist 

Now let us give a more formal, bare-bones proof that Goldstone bosons exist. By ‘bare-bones’ I 
mean that we only rely on the fundamentals, without using a Lagrangian description. In particular, 
we will not assume that any scalar fields exist, but we will see that Goldstone bosons must exist 
anyway. 
What are the fundamentals? Well, we had a continuous symmetry... we could define the existence 

of such a symmetry to be equivalent to the existence of a conserved current 

Jµ∂µ = 0 (3.11.14) 

in the theory, with a charge Z 
Q = d3xJ0(x) (3.11.15) 

that generates the symmetry transformation on all operators, so that 

[Q, Oi(x)] = −Ti
j Oj (x) (3.11.16) 
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for any charged operators. These operator relations are exact, and are unaffected by spontaneous 
symmetry breaking! In other words, these operator relations are true no matter what state the system 
is in, or in other other words, these statements will be true inside any expectation values we wish to 
compute. 
Now we will give an argument that there are Goldstone boson states |π(p~)i such that Z 

d3 −i~ xe p·xhΩ|Jµ(x)|π(p~)i = iF √p
µ 

(3.11.17)
2EB 

where F is called the Goldstone boson decay constant (up to some normalizations). In other words, 
we will show that when the current acts on the vacuum, it creates a one-Goldstone boson state. This 
shouldn’t be all that surprising. After all, the whole point of spontaneous symmetry breaking is that 

Jµ(x)|Ωi =6 0 or Q|Ωi =6 0 (3.11.18) 

because this expression does vanish when the symmetry is unbroken, because that’s what it means 
for the vacuum to be symmetric. The former expression makes more sense than the latter, because 
acting Q on the vacuum actually gives infinity. 
If we ignore that, we can use these expressions to show that since [Q, H] = 0, the vacuum and 

Q|Ωi must be degenerate. So if we consider our |π(~p)i state in the limit p~ → 0, this state must have 
zero energy, since it becomes Q|Ωi. This argument is a bit sloppy because these states don’t exist. 
The right way to proceed is via one of those formal, symmetry and unitarity based arguments, 

exactly like what we used to derive the Kallen-Lehmann representation (see Weinberg chapter 19.2 
for more details). Since it is a commutator of two local operators, we can write Z 

∂ � � 
h[Jµ(y), Oi(x)]i = dµ2 ρi(µ 2)D+(y − x, µ 2) − ρi 

∗ (µ 2)D+(x − y, µ 2) (3.11.19)
∂yµ 

where Z 
d4p

D+(z, µ 2) = θ(p 0)δ(p 2 − µ 2)eipz (3.11.20)
(2π)4 

is the retarded part of the Feynman propagator, and we have assumed that Jµ and Oi are hermitian. 
This expression has to vanish when x − y is spacelike, so ρi(µ2) must be real with Z 

∂ h[Jµ(y), Oi(x)]i = 
∂yµ 

� � 
2) 2)dµ2ρi(µ D+(y − x, µ 2) − D+(x − y, µ (3.11.21) 

Now let us use current conservation, differentiate both sides with respect to y, and use 

(�y − µ 2)D+(y − x, µ 2) = 0 (3.11.22) 

This means that Z � � 
2) 2)dµ2 µ 2ρi(µ D+(y − x, µ 2) − D+(x − y, µ = 0 (3.11.23) 
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for all x and y. This is only possible if 

µ 2ρi(µ 2) = 0 (3.11.24) 

You might be tempted to conclude that ρi(µ2) = 0, but this is not possible, because Jµ generates 
the symmetry transformation. In particular, integrating our first equation says that Z 

−Ti
j hOj i = i dµ2ρi(µ 2) (3.11.25) 

and the right side cannot vanish if any charged operators in the theory get vacuum expectation 
values. 
Thus we must have 

ρi(µ 2) = iδ(µ 2)Ti
j hOji (3.11.26) 

So ρi does not vanish, but instead is proportional to a delta function localized at zero mass. This is 
our massless goldstone boson pole! 
Note that this proof did not use any properties of the ‘fundamental’ theory or the Lagrangian. 

In particular, although we showed that there exists a scalar particle in the spectrum, we did not 
assume that there are any elementary or fundamental scalar fields. In fact, in the most relevant 
HEP phenomenological application, namely to pions, there are no elementary scalars in the theory – 
the goldstone bosons are bound states of quarks. However, the theorem still applies! 

3.11.3 Connecting the Two Proofs 

Let’s see how these ideas are related in the simple case of a linear sigma model with a U(1) symmetry. 
In that case � � 

Jµ = i ∂µφ
†φ − φ†∂µφ (3.11.27) 

iπ/v Writing this using φ = (v + h)e , we see that 

Jµ(x) = 2v∂µπ(x) (3.11.28) 

Thus it’s not surprising at all that in the broken phase, when v 6= 0, we have that 

Jµ(p)|0i = 2vpµπ(p)|0i = 2vpµ|pi (3.11.29) 

and so Jµ(p) obviously creates a 1-goldstone boson state! 

3.11.4 Goldstone Bosons are Everywhere 

You know of a lot of light and massless degress of freedom (probably many of which you haven’t 
even thought of in that way). Many of them are Goldstone bosons: 
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• Single free particle states are goldstone bosons of (completely) broken translation invariance. 
The goldstone mode is a 1 + 0 dimensional QFT, otherwise known as a QM theory of that 
single particle, by itself! Since they break 3 translations, there are 3 degrees of freedom, namely 
the position of the particle in the x, y, and z directions. 

• Materials and objects spontaneously break translational symmetry everywhere, not just at one 
point. The associated Goldstone bosons are phonons, which carry sound. This is one way of 
explaining why sound is so ubiquitous. 

• Between these two limits, objects like membranes and strings partially break translation 
symmetry, and perpendicular waves (vibrations) of these objects are goldstone modes. 

• Goldstone bosons are ubiquitous in condensed matter systems (with or without an approximate 
Lorentz invariance). An interesting example are magnetic systems that spontaneously break 
rotational invariance by magnetizing in one particular direction. One famous example is the 
Heisenberg model. The Goldstone bosons are called Magnons. 

• As we will discuss, pions are approximate Goldstone bosons because the up and down quarks 
are light. 

• In supersymmetric theories, the spontaneous breaking of supersymmetry leads to particles 
called ‘Goldstinos’, which are Goldstone fermions. 

• The inflaton mode in the early universe probably spontaneously broke time translation 
symmetry, and therefore its degree of freedom can be viewed as a goldstone boson. 

• There is a hypothesized particle called the QCD axion, which would solve something called 
the strong CP problem. It is an approximate goldstone boson. 

3.11.5 Pseudo-Goldstone Bosons and Pions 

The kinetic terms for the up and down quarks, written in Weyl notation, are 

L = iu† LDuL + iu† / 
LDdL + id† / (u † R 

† uL) + md(d
† dR + d† dL)/ 

RDuR + id† / 
RDdR + mu LuR + u L R 

If we set mu = md = 0, then there is an SU(2)L × SU(2)R global symmetry where we rotate � � � � 
uL uL→ UL (3.11.30)
dL dL 

and similarly for the right-handed Weyl spinors. The mass terms for the quarks break this symmetry, 
but it turns out that they are small, so this is a good approximate symmetry of QCD. It is called 
a chiral symmetry since it acts differently on left and right handed spinors. We can also write it 
as SU(2)V × SU(2)A, for V = L + R and A = L − R. Note that the SU(2)V acts in the ‘obvious’ 
way on the Dirac spinors (u, d), so ¯ dd is invariant under SU(2)V , but this expression is notuu + ¯ 

invariant under SU(2)A. 
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There are also U(1)L × U(1)R symmetries as well, usually written as U(1)V × U(1)A, vector 
and axial, corresponding to L + R and L − R. It turns out that the L − R symmetry is broken by 
quantum effects called anomalies, while the U(1)V corresponds to baryon number. Baryon number 
is also anomalous in the full standard model, although B − L, baryon minus lepton number, is a 
good symmetry. 
Anyway, we are interested in this system because the SU(2)L ×SU(2)R symmetry is spontaneously 

broken by QCD, at the scale ΛQCD ∼ 300 MeV. Specifically, there are VEVs 

huu¯ i = hdd̄ i = V 3 (3.11.31) 

in the books notation, which translates to 

huL 
† uR + uR 

† uLi = V 3 (3.11.32) 

and similarly for the down quark, with V ∼ ΛQCD. Note that SU(2)V is unbroken by these VEVs, 
but SU(2)A is spontaneously broken. This symmetry breaking arises from QCD (the strong force), 
but there is not any easy analytic way of deriving it – in fact we do not have a theoretical proof. 
But it does not matter, since Goldstone’s theorem only requires the existence of a broken symmetry, 
not a mechanism for its breaking! 
The group SU(2)V is often called isospin; it relates protons and neutrons, which are also a 

doublet, because protons are uud and neurtrons are udd states. Ignoring electric charge and quark 
masses (a very good approximation), the proton and neutron are exactly related by a symmetry. 
From now on it will be irrelevant what the short-distance physics was that gave rise to the 

SU(2) × SU(2) → SU(2)V symmetry breaking pattern – everything will follow from symmetry 
and Goldstone’s theorem. We will write down a unique effective field theory with these symmetry 
properties. This means we want to write down the most general possible Lagrangian for the 3 
Goldstone bosons of the broken SU(2)A, constrained by the remaining SU(2)V . 
Thus we need a parameterization that encodes the generators of SU(2)A as Goldstone bosons, 

and it has to transform in a nice way under the remaining SU(2)V . To do this, let us consider a 
2 × 2 matrix of scalar fields Uij transforming linearly under SU(2) × SU(2) via 

U → gLUgR 
† (3.11.33) 

We can think of this U as the quark bilinear � 
uL 

�� 
† † 

� � 
uLu † R uLd

† 
R 

� 
U = u , d = (3.11.34)

dL 
R R dLuR 

† dLd
† 
R 

This gets a VEV according to the symmetry breaking structure, so that det U †U is invariant and 
proportional to the SSB. In other words, it is an order parameter for SSB, and it would vanish it 
the symmetry were unbroken. The phases can be parameterized by 

πa(x)τ
a 

FπU(x) = e 2i (3.11.35) 
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where we note that the V and A transformations are 

U → gV UgV 
−1 , U → gAUgA (3.11.36) 

where the first is unbroken by the VEV proportional to the identity, but the latter is broken. Thus 
under transformations gL = eiθ

a
Lτa iθand gR 

a
Rτa we have = e 

Fπ 1 
fabc(θbπa → πa + (θL

a − θR
a ) − L + θR

b )πc + · · · (3.11.37)
2 2 

This implies that under the unbroken SU(2)V the πa transform in the adjoint representation, but 
they transform non-linearly under the broken SU(2)A – to leading order they shift, as goldstone 
bosons should. Note that this shift symmetry forbids a mass term for the πa , as is to be expected. 
We conventionally write U in terms of the pions as � � √ �� 

i π0 2π− 

exp √ (3.11.38)
2π+ −π0Fπ 

where π0 is the neutral pion, and π± are the charged pions. So we have all 3 of the degrees of 
freedom 
With nothing but symmetry to guide us, we must write down the most general theory of U that 

is invariant under SU(2) × SU(2). This looks like 

F 2 � � � �2 L = π Tr (DµU)(D
µU)† + L1 Tr (DµU)(D

µU)† (3.11.39)
4 � � � � � � 
+L2 Tr (DµU)(Dν U)

† Tr (DµU)(Dν U)† + L3 Tr (DµU)(D
µU)†(Dν U)(D

ν U)† + · · · 

This is the Chiral Lagrangian for pion interactions; all terms must have derivatives because U †U = 1. 
There would be a similar Lagrangian for any SU(N)×SU(N) → SU(N) symmetry breaking pattern. 
The interactions necessitated by this theory are strictly constrained by symmetry, for example � � 
F 2 � � 1 1 1π Tr (DµU)(D

µU)† = (∂π0)2 + (Dµπ
+)(Dµπ−) + − (π0)2(Dµπ

+)(Dµπ−) + · · · + · · · 
4 2 Fπ 

2 3 

The terms involving Li all have at least 4 derivatives, so their effects are always subdominant to the 
first term, which is uniquely fixed in terms of the pion decay constant Fπ. 
But what about the quark masses, which break the symmetry explicitly? These originally 

appeared in the Lagrangian as 

¯ (3.11.40)qMq 

where M is a 2 × 2 matrix in (u, d) space. If we imagined that 

M → gLMgR 
† (3.11.41) 

under SU(2) × SU(2), then our Lagrangian would be invariant once again. This means that 
all violations of the symmetries have to show up in invariant combinations, if we assume this 
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transformation rule for M . The use of this idea is called the spurion method, because we view M as 
a ‘spurious’ field. Using this M matrix, we can add terms to the Chiral Lagrangian of the form 

V 3 �� 
LM = Tr 

2 
MU + M †U † 

V 3 

= V 3(mu + md) − (mu + md)(π0
2 + 2π+π−) (3.11.42)

2Fπ 
2 

Thus the pion masses are 

V 3 

m 2 
π = (mu + md) (3.11.43)

F 2 
π 

This relation has been confirmed using lattice QCD (to measure V ). This means that pions are 
pseudo-Goldstone bosons, because they are associated with spontaneous breaking of an approximate 
symmetry. This also accords from expectations from current conservation, where 

∂µJa
µ ∝ mqqγ̄ 

5τa q =6 0 (3.11.44) 

sets the pseudo-Goldstone boson mass. 
Historically, the theory of the Chiral Lagrangian was very important for the development of 

effective field theory. Originally, the scattering amplitudes and interactions of pions were computed 
using something called ‘Current Algebra’, which just means that people computed correlators of 
the approximately conserved currents that create pion states (Partially Conserved Axial Current, 
or PCAC). Most researchers thought that QFT could not make sense as a description of pions, 
essentially due to the fact that their interactions are all ‘irrelevant’, and so are short-distance 
sensitive. Weinberg and others argued that the pion EFT of the Chiral Lagrangian did in fact make 
sense as an expansion at low-energy, and in particular, that it was predictive. This, along with 
Wilson’s ideas, led to a major rethinking of what QFT means. 

3.11.6 Generalization to SU(3) × SU(3) 

We should briefly note that this analysis generalizes to SU(3) × SU(3), by including the strange 
quark. One then includes the fields 

U ≡ exp 

⎡ ⎢⎣ √ 
2i 

⎛ ⎜⎝ 
⎤ ⎥⎦ 

⎞ ⎟⎠ (3.11.45) 

√1 π0 + √1 η0 π− K+ 
2 6 

1π+ −√1 π0 + √ η0 K0 
2 6 qFπ 

K̄ − K̄ 0 2 η0− 
3 

⎛ ⎜⎝ 

obtaining interactions for the pions, the eta, and the Kaons. Note that since ms ≈ 100 MeV, this 
isn’t as good of an approximation for the interactions, but it’s still good for organization. 
One can also use this symmetry structure to characterize baryons – the proton and neutron end 

up in an octet, just like the pions. That looks like ⎞ ⎟⎠ 
√1 Σ0 + √1 Λ Σ+ P + 
2 6 

Σ− −√1 Σ0 + √1 Λ N (3.11.46)2 6 

Ξ̄0 
q 

Ξ− − 2 
3 Λ 
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Murray Gell-Mann called this the eightfold way. 

3.12 Non-Abelian Gauge Theories 

We have discussed Lie algebra representations, and we used them to talk about global symmetries 
and their breaking. Now let us move on to a major class of theories – Yang-Mills theories, which 
involve massless spin 1 bosons tranforming according to a non-Abelian Lie group. 
We can disover these theories by asking... how can we make massless spin 1 particles carry a 

gauge charge? Since our bosons are massless, if we are to describe them using local fields Aaµ(x) we 
must eliminate one degree of freedom, which means we need a gauge invariant Lagrangian. This 
suggests that we need to use something like 

F a Aa − Dν A
a 

µν ∼ Dµ ν µ (3.12.1) 

where we have constructed a gauge covariant F using a covariant derivative (to be defined). Then 
we could make an invariant via X 

F µνF a (3.12.2)µν a 
a 

where a labels the different charged, massless, spin 1 bosons. 
But we run into the problem that if the derivative is really covariant (to couple to some other 

spin 1 bosons), we must have bosons that transform as 

Aaµ(x) → Gb
a(x)Aµ

b (x) (3.12.3) 

under the gauge transformation associated with the covariant derivative Dµ. Since Aµ are real G 
must be some Lie Group, with Aaµ in a representation of the group. But the Aaµ must also shift 
under local gauge transformations 

Aµ
a (x) → Aµ

a (x) + ∂µα
a(x) (3.12.4) 

to preserve masslessness. How can these ideas all be compatible? 
The resolution is that Aaµ both rotate and shift under the same gauge transformation – in other 

words, the bosons Aaµ interact with each other, all as representations of one Lie algebra. Since they 
are a part of the covariant derivative, and must be able to parameterize the group itself, the Aµ 

must be in the adjoint representation. 
Specifically, we must have the infinitessimal transformation rule 

1 
αa(x) − fabcαb(x)AcAaµ(x) → Aaµ(x) + ∂µ µ(x) (3.12.5) 

g 

This means that the field strength is 

+ gfabcAbF a Aa − ∂ν A
a Ac (3.12.6)µν = ∂µ ν µ µ ν 
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The field strength simply transforms like a field in the adjoint representation of the group. Unlike in 
QED, it is not gauge invariant, but it is gauge covariant, ie it does not shift like the gauge field Aaµ. 
But we can write a completely gauge invariant action 

1 
F µνLYM = − F a (3.12.7)µν a4 

Now we will give a more geometric picture for these Yang-Mills, or Non-Abelian gauge theories. 

3.12.1 Wilson Lines 

Let us begin by noting a problem – how can we compare φ(x) and φ(y) in scalar QED? Under a 
gauge transformation 

iα(x)φ(x) − e iα(y)φ(y)φ(x) − φ(y) → e (3.12.8) 

and so this difference depends very much on our choice of gauge. We cannot invariantly say 
φ(x) = φ(y) in scalar QED. This also means that 

φ(x + �µ) − φ(x) 
= ∂µφ (3.12.9)

� 

is not well-defined, since we cannot compare nearby points. 
To fix this problem, we can introduce a new bi-local object 

−iα(y)W (x, y) → e iα(x)W (x, y)e (3.12.10) 

so that if we study 

W (x, y)φ(y) − φ(x) (3.12.11) 

then it transforms correctly. In words, the object W (x, y) connects gauge transformations at y to 
those at x. We can now compute derivatives in a sensible way, as 

W (x, x + δx)φ(x + δx) − φ(x)
Dµφ(x) ≡ lim (3.12.12) 

δx→0 δxµ 

Then Dµφ transforms in the same way as φ(x) under gauge transformations. 
We must have that W (x, x) = 1, and we can expand around this to obtain 

W (x, x + δx) = 1 − ieδxµAµ(x) + · · · (3.12.13) 

This defines both Aµ and the covariant derivative Dµ. Now we see why the gauge field Aµ, or 
sometimes just Dµ, are called the connection. This is very similar to in GR, where we use the 
connection to relate vectors at different points on a curved manifold. 
We can now exponentiate Aµ to write a closed form expression � Z � x dzµ 

W (x, y) = exp ie Aµ(z(t)) dt (3.12.14)
dty 
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where we mean the line integral from y to x in the exponent. This object is known as a Wilson line, 
on a path from y to x. Note that under a gauge transformation it transforms as � Z � x dzµ 

−iα(y)W → exp ie (Aµ(z(t)) + ∂µα(z(t))) dt = e iα(x)W (x, y)e (3.12.15)
dty 

which is what we wanted. This gauge transformation rule is independent of the path. If we set x = y 
then we get a Wilson loop, which is gauge invariant. We can use Stokes theorem to write a Wilson 
loop as � Z � 

e 
W (x, x) = exp i Fµν d

2σµν (3.12.16)
2 Σ 

where Σ is a 2-dimensional surface enclosed by the loop’s path. 
Now note that we can take multiple covariant derivatives, so we can compute 

[Dµ, Dν ] = [∂µ, ∂ν ] − ie[∂µ, Aν ] + ie[∂ν , Aµ] = −ieFµν (3.12.17) 

In fact, we can define Fµν by this commutator. This may be familiar, since it is exactly what we 
use to define the Riemann tensor in differential geometry and general relativity. It is the result of 
comparing field values around an infinitessimal closed loop. 

say something about soft factors and Wilson lines? 

3.12.2 Non-Abelian Wilson Lines 

We can generalize this pretty easily to the non-abelian case. When we studied goldstone bosons, we 
discussed theories like !2N h iX X 

2φ†L = ∂µφ
†∂µφj − m φj − λ φ†φj (3.12.18)j j j 

j=1 j 

which have a manifest symmetry under 

φi → Uij φj , φi 
† → Uij 

† φj 
† (3.12.19) 

where U is a unitary matrix. If we promote this to a local symmetry where U → U(x), then we can 
no longer compare φj (x) and φj (y) without a Wilson line n R o 

xig y A
a
µ(z)Tadz

µ

W (x, y) = P e (3.12.20) 

where the P denotes path ordering, which is necessary because group generators at different points 
do not commute. This expression is defined by its Taylor series, and the path ordering works just 
like time ordering on the S operator from scattering theory (which you recall we used to derive 
perturbation theory and Feynman diagrams from the Hamiltonian formalism). 
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Note that this defines Wilson lines in any representation; we just use Ta from that representation. 
Under gauge transformations 

iαa(x)T a 
W → U(x)WU †(x) = e We−iα

b(y)T b 
(3.12.21) 

It’s also reasonable to view Aµ = AaµTa as a matrix valued field. 
Now we can derive the gauge transformation properties of Aµ from those of the Wilson line, 

since infinitessimally (in δx) 

W (x + δx, x) ≈ 1 − igAµδx
µ (3.12.22) 

This means that for infinitessimal gauge transformations (in small αa) 

W (x + δx, x) → (1 + iαa(x + δx)Ta)(1 − igAµδx
µ)(1 − iαa(x)Ta) 

≈ i∂µα
aTa + g [αa(x)Ta, Aµ] (3.12.23) 

We can equivalently write a general version 

W (x + δx, x) → U(x + δx)(1 − igAµδx
µ)U−1(x) 

≈ ∂µUU
−1 − igUAµU

−1 (3.12.24) 

Thus the transformation rule for the gauge field is 

Aµ → UAµU
−1 − 

i 
(∂µU)U

−1 (3.12.25) 
g 

This also implies that the covariant derivative 

Dµφ ≡ (∂µ + igAµ)φ (3.12.26) 

transforms in the same way as the field φ in any given representation of the group. So we see that, 
as discussed, non-abelian gauge fields both rotate and shift under the gauge symmetry. They are 
charged under the force they generate. 
Finally, let us look at the commutator of the covariant derivatives 

[Dµ, Dν ] = −ig(∂µAν − ∂ν Aµ) − g 2[Aµ, Aν ] 

= −igF a 
µν Ta (3.12.27) 

where 

+ gfabcAbF a Aa − ∂ν A
a Ac (3.12.28)µν = ∂µ ν µ µ ν 

In the abelian case this reduces to the usual electromagnetic field strength. Note that Fµν
a transforms 

as 

− fabcαbF cF a → F a (3.12.29)µν µν µν 
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under gauge transformations, which means that it transforms like a charged field (not a gauge field) 
in the adjoint representation. 
Now we can write down a gauge invariant Lagrangian 

N
1 X � a � 
(F a ¯ ∂ + g / T aL = − µν )

2 + ψi δij i/ A ij − mδij ψj (3.12.30)
4 

i,j=1 

where I used fermion fields instead of scalars for variety. This is a non-abelian gauge theory. In the 
case of N = 3, this is precisely the Lagrangian for QCD, the theory of the strong force, which has 
an SU(3) gauge symmetry. The three ‘colors’ of quarks are in the fundamental of SU(3), and each 
quark (up, down, strange, charm, top, and bottom) correspond to a separate Dirac spinor field. 
Since we’ve mentioned QCD, we can also note that one can include a term � � 

= θ�µναβF a θ�µναβ AaF a F aLθ µν = 2θ∂µ αβ (3.12.31)αβ ν 

This term is a total derivative, so it cannot contribute in perturbation theory, but it does have 
effects. For example, θ would give the neutron an electric dipole moment. The absence of such a 
contribution is known as the strong CP problem. 

3.12.3 Conserved Currents 

Our Lagrangians for non-abelian gauge theories have a global symmetry where 

ψi → ψi + iαaTij
a ψj (3.12.32) 

− fabcαbAcAaµ → Aaµ µ (3.12.33) 

with infinitessimal constant α. From Noether’s theorem, there’s an associated conserved current 

ψj + fabcAbJa = −ψ̄ 
iγµT a F c (3.12.34)µ ij ν µν 

Using the equations of motion, one can show that this current is conserved. 
However, this conserved current is not gauge-invariant. Thus it has a very limited physical 

meaning. In particular, although one can write down associated conserved charges, those charges 
are not gauge invariant either. So in non-abelian gauge theories, there is no such thing as a classical 
current (so you cannot run non-abelian gauge current through a wire). We also do not have a 
Gauss’s law. 
We can also define a matter current 

JM
aµ = −ψ̄ 

iγµTij
a ψj (3.12.35) 

which is gauge covariant. It is not conserved, but instead satisfies 

JaµDµ M = 0 (3.12.36) 

with a covariant derivative. So it is not conserved, and there’s no associated charge. 
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Figure 1: The Standard Model particle content, from Wikipedia. 

It’s worth noting that these results are not an accident, but follow from a general theorem, 
called the Weinberg-Witten theorem. It says that a theory with a global non-Abelian symmetry 
under which a massless spin 1 particle is charged can not have a gauge-invariant conserved current. 
Similarly, a theory with a conserved and Lorentz-covariant energy-momentum tensor can not have a 
massless particle of spin 2. This goes a long way towards showing that the graviton cannot be a 
composite state. 

3.12.4 Strong and Electromagnetic Forces in the Standard Model 

We’re now at the point where we can write down the strong and electromagnetic part of the standard 
model, in the form of a Lagrangian. In fact, we could write down the whole SM; the only part that 
you’ll be missing is how the Higgs gives mass to the W and Z bosons. But for simplicity let’s leave 
out the weak interactions for now. 
At low energies, below around 80 GeV, we can view the SM as having the gauge group SU(3) × 

UEM (1), corresponding to the strong force (the gluons) and the electromagnetic force. The quarks 
are charged under both, the leptons only under electromagnetism. Thus we have four kinds of 
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covariant derivatives � � 
2 

Ga T a∂µ + ie Aµ + igs Uj (3.12.37)µ ij3� � 
1 

Ga T a∂µ − ie Aµ + igs Dj (3.12.38)µ ij3 
(∂µ − ieAµ) E (3.12.39) 

(∂µ) N (3.12.40) 

Note that there are three ‘colors’ of quarks (because they are in the fundamental of SU(3), meaning 
that there are way more quark than lepton degrees of freedom. Roughly speaking, the proton is 
made from up-up-down, and the neutron from up-down-down. The baryons are color neutral because 
they can be written as 

�ijkUiUj Uk (3.12.41) 

where the contraction is on their SU(3) color indices. One can always make baryons from N 
fundamental fields in SU(N). In contrast, pions can be viewed as composed from combinations like 

¯ ¯UiU
i + DiD

i (3.12.42) 

which are invariant in a more familiar way. Note that for SU(2) these two types of invariants would 
coincide. 
Since we are ignoring the weak interactions, we are free to view these all as dirac spinors. There 

are three copies of this particle content, the three flavors or three generations. The up-type quakrs, 
down-type quarks, and electron-like leptons have conventional Dirac masses. We don’t know whether 
the neutrino masses are majorana or Dirac. 
Particle contents like what we have above are usually described by contemporary physicists 

purely in terms of the number of fields with a given charge. For U(1) gauge groups we need to 
specify a number (for the charge), whereas for groups like SU(N) we specify the representation. It’s 
unusual to see representations besides the fundamental and adjoint, but sometimes they do appear. 
The weak interactions complicate things significantly, and are not naturally written in terms of 

Dirac spinors (although we can easily accomplish that anyway using 1 ± γ5). 

3.13 Quantization of Yang-Mills Theories 

Now let us discuss quantization of Yang-Mills theories. The Rξ gauges from QED must be generalized. 
We will see that in order to eliminate the unphysical degrees of freedom, the longitudinal polarizations 
of the massless spin 1 Yang-Mills bosons, we must introduce ghosts, which are essentially ‘negative 
degrees of freedom’. There are gauges where this isn’t necessary, but they destroy manifest Lorentz 
invariance, so no one uses them for practical calculations. 
Recall that the problem with obtaining a photon propagator immediately is that 

(gµν � − ∂µ∂ν )A
µ = Jν (3.13.1) 
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and the differential operator simply isn’t invertible. To get around this we added the gauge fixing 
term 

1
(∂µA

µ)2 (3.13.2)
2ξ 

to the action. We justified this by multiplying up and down by a certain function that effected the 
introduction of this gauge fixing term, and then we showed that all it did was change the overall 
normalization of the path integral. 
For non-abelian theories we will use the same trick, but we will see that it is not so innocuous. 

We start by introducing N2 − 1 fields πa , one for each gauge boson DoF. Gauge fields transform as 

Aa 1 
αa(x) − fabcαb(x)Ac µ(x) → Aµ

a (x) + ∂µ µ(x) (3.13.3) 
g 

or equivalently as 

1 
Aaµ(x) → Aaµ(x) + 

g
Dµα

a (3.13.4) 

Thus let us multiply and divide our path integral by Z � Z � 
f [A] = Dπ exp −i d4 x 

1
(∂µDµπ

a)2 (3.13.5)
2ξ 

In the abelian case, π was neutral and f was just a number, but now it actually depends on Aaµ. 
In Non-Abelian theories, we can still define a gauge parameter αa that takes us to Lorenz gauge, 

so that 

1 
∂µAaµ = ∂µDµ

aαa[A] (3.13.6) 
g 

If we shift πa by α
g 

a 
for αa , we obtain Z � Z � 

1 
f [A] = Dπ exp −i d4 x (∂µAaµ − ∂µDµπ

a)2 (3.13.7)
2ξ 

Thus by multiplying the path integral by f/f , we obtain Z � Z � 
1 1 DπDAµDφi exp iS[A, φi] − i d4 x (∂µAµ

a − ∂µDµπ
a)2 

f [A] 2ξZ � Z � 
1 

d4 1 (∂µAa )2 = N DAµDφi exp iS[A, φi] − i x (3.13.8)
f [A] 2ξ µ 

where we shifted Aµ by Dµπ
a in the second line, and then the explicit Dπ integral gives an overall 

constant. 
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The difference from the abelian case is that we have the explicit functional f [A] in the denominator. 
But it is just s 

1 
f [A] ∝ (3.13.9)

det[(∂µDµ)2] 

So its inverse is simply det(∂µDµ). We saw when we discussed the path integral that positive 
determinant factors are just Grassman integrals. Thus we can write Z � Z � 

1 
f [A] 

= DcDc̄ exp i d4 xc̄(x)(−∂µDµ)c(x) (3.13.10) 

for ghost fields c and c̄. Thus we have the full Lagrangian for the gauge fixed gauge field and the 
fermionic ghosts 

1 
F 2 1

(∂µAa a)(δac∂µ + gfabcAb cL = − − )2 + (∂µc̄ )c (3.13.11)µν µ µ4 2ξ 

This is the Faddeev-Popov Lagrangian for the Yang-Mills field and ghosts in the Rξ gauge. We 
can find an appropriate ghost Lagrangian for any gauge choice, not just this one, as the book and 
Weinberg explain. 
One can think of the ghosts as ‘negative degrees of freedom’ included to cancel the unphysical 

gauge boson modes. In fact it’s possible to choose a gauge where they do not appear, but not without 
breaking manifest Lorentz invariance. For example, in axial gauge we get 

− 
1
(rµAaµ)

2 + (rµc̄
a)(δac∂µ + gfabcAµ

b )c c (3.13.12)
2λ 

and so in the limit λ → 0, we are forced to have r · A = 0, and the ghosts decouple. We do not use 
this gauge for computations because it breaks manifest Lorentz invariance, and also gives the gauge 
boson propagator a bad high-energy behavior. 
The Y-M gauge boson propagator in Rξ gauge from Faddeev-Popov is 

p−gµν + (1 − ξ)p
µ 

p 

ν 

δab
2 

i (3.13.13) 
p2 + i� 

which is just the photon propagator times δab , which means that the propagator is diagonal in the 
non-Abelian gauge group indices, as one would expect. 

3.13.1 BRST Symmetry 

In the case of QED, we saw that although the gauge fixing term broke gauge symmetry, we were 
still able to show that correlators and scattering amplitudes are gauge invariant. The reason is that 
our gauge fixing only modified the photon propagator, and the interactions involved AµJµ, which is 
gauge invariant because ∂µJµ = 0. For scattering amplitudes, we also used the fact that we could 
relate Aµ to the conserved electromagnetic current Jµ (for LSZ). 
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But in non-abelian theories neither of these tricks work, since the current isn’t gauge invariant. 
This is a major problem, because it suggests that when we renormalize the theory, we may generate 
UV sensitive gauge symmetry breaking terms, which would spoil the whole theory. Also, in non-
abelian theories it’s somewhat unclear how to separate the gauge invariant data from the gauge 
redundancy dependent stuff. 
Fortunately, there is a global symmetry of the gauge fixed YM and QED Lagrangians that 

protects the quantum theory from generating gauge-symmetry breaking operators. This is called 
BRST symmetry, and it exists in both gauge-fixed QED and YM. 
For the QED case, consider the gauge-fixed Lagrangian 

1 1 L = − Fµν 
2 − (∂µAµ)

2 − c̄�c (3.13.14)
4 2ξ 

Let us introduce a Grassman number θ, and view θc(x) as a bosonic gauge transformation parameter. 
Then under the transformation 

1 
Aµ → Aµ + θ∂µc 

g 
(3.13.15) 

we generate the terms 

(∂µAµ)
2 → (∂µAa )2 

µ

2 
+ (∂µAµ)(θ�c) + 
g 

1 
(θ�c)(θ�c) 

g2 
(3.13.16) 

The last term vanishes because θ2 = 0. Thus if we also perform 

1 1 
c̄  → c̄  − θ ∂µAµ (3.13.17) 

g ξ 

then the Lagrangian is entirely invariant. This is the abelian version of BRST symmetry. The 
non-abelian case is more complicated, but similar, and it can be used to constrain renormalization, 
proving that only a finite number of BRST-invariant counter-terms are needed to renormalize YM 
theories. 
BRST is also associated with a cohomology theory, because the BRST transformation satisfies 

Δ2 = 0, meaning that we can consider the (closed) states with Δψ = 0 up to differences of the form 
Δχ (exact states); these are the closed states modulo the exact states. This gives a precise way to 
characterize the field configurations that are gauge invariant. 

3.14 Renormalization in YM and Asymptotic Freedom 

For the Feynman rules in YM theory with fermions and scalars, see the Schwartz book, section 26.1 
and 26.2. 
The renormalized Lagrangian can be written as 

)2 − gRZA3 fabc∂µ AµbAνc − 2 ZA4 (f eabAa )(f ecdAµcAνd)L = − 
1 
Z3(∂µA

a − ∂ν A
a Aa 1 

g Ab ν µ ν R µ ν4 4 
¯ a ¯ fabc(∂µ

c+Z2ψi(i∂/ − ZmmR)ψi − Z3cc̄
a�c + gRZ1A

a ψiγ
µT a ψj + gRZ1c c̄a)Ab c (3.14.1)µ ij µ 
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where we have an abundance of Z factors to allow us to define renormalized fields and couplings. 
Just as gauge invariance and the Ward identity demand charge universality in QED, in QCD we 

must have r 
Z1 Z1c ZA3 ZA4 

= = = (3.14.2)
Z2 Z3c Z3 Z3 

as exact non-perturbative statements. Similar equalities hold if we have more species of charged 
particles, perhaps in more general representations of the SU(N) gauge group. This means that the 
strength of the coupling of any charged representation to the YM field Aaµ must be universal, given 
in terms of the single number gR. 

3.14.1 Vacuum Polarization and the β Function 

In QCD, there are four types of diagrams, a quark loop, two gauge boson loops, and a ghost loop. 
The book also draws a diagram for the sum of contributions from counter-terms, which are treated 
in perturbation theory. 
In renormalized perturbation theory we can write the coupling of a fermion to the gauge field as 

4−d 4−d Z1 (0) (0)
2 2µ gRZ1A

a
µψ̄

 
iγ
µTij

a ψj = µ gR √ Aµ(0)ψ̄ 
i γ

µTij
a ψj (3.14.3)

Z2 Z3 

where we are explicit about the scale dependence from dim reg. Thus the bare coupling, which must 
be independent of the renormalization scale, is 

4−d Z1 
2g0 = µ gR √ (3.14.4)

Z2 Z3 

Differentiating with respect to µ and expanding in perturbation theory tells us that �� � ���d � d 1 
β(gR) = µ gR = gR − − µ δ1 − δ2 − δ3 (3.14.5)

dµ 2 dµ 2 

with � = d − 4. But the δi only depend on µ through their gR dependence. So we can solve this 
relation perturbatively giving � � 

� � ∂ 1 
β(gR) = − gR + gR 

2 δ1 − δ2 − δ3 (3.14.6)
2 2 ∂gR 2 

Using the 1-loop counter-term values obtained from modified minimal subtraction, we find that 

3 � � 
� gR 11 4 

β(gR) = − gR − CA − nf TF (3.14.7)
2 16π2 3 3 

Note that the ξ dependence cancels, giving a gauge invariant result. 
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We could have also obtained the same result from � � 
� � ∂ 3 

β(gR) = − gR + gR 
2 δA3 − δ3 (3.14.8)

2 2 ∂gR 2 

but this gives exactly the same result, due to gauge invariance. There is only one charge setting the 
strength of the strong interactions. 

2 
sSpecializing to QCD in the standard model, we have N = 3, so CA = 3, and we write αs = 
4 
g
π . 

We also ahve TF = 1/2, so at one loop we have � � 
d α2 2nf 

µ αs = − 2 11 − (3.14.9)
dµ 2π 3 

In nature we have nf = 6, but this varies with scale, because they drop out of the RG below the 
scale of their masses. However, as long as nf < 17, note that the β function for αs is negative, which 
means that the strong couplings gets stronger at low energies, and weaker at high energies, unlike 
electromagnetism. 
In particular, since αs → 0 at very high energies, QCD exhibits asymptotic freedom, which just 

means that the quarks and gluons are free at high energies. Conversely, QCD gets very strong at a 
fixed scale ΛQCD, where we can solve the RG to write 

2π 1 
αs = µ (3.14.10) 

11 − 2nf log
3 ΛQCD 

Measuring αs at any scale µ determines the QCD scale, which in reality is very rougly near 1 GeV. 
The QCD scale sets the characteristic energy scale of strong-force bound states, such as the proton. 

3.15 Higgs Mechanism 

We can combine our knowledge of Goldstone bosons and non-Abelian gauge theories to understand 
how to describe massive interacting spin 1 bosons. 
Let us try to imagine a theory of massive, charged (interacting) spin 1 particles. In such a theory, 

one would naively guess that at very high energies E � mA, the masses of the spin 1 particles 
should be un-important for the physics. This is certainly true for fermions and scalar particles – at 
high energies their masses have a negligible effect on physics. 
However, with spin 1 particles we run into a problem – we know that massive spin 1 particles 

have 3 polarization states, while massless spin 1 particles have 2 polarizations. So no matter large 
E/mA, the massive theory must be qualitatively different from the massless theory. However, the 
only interaction that mixes the 2 transverse polarization states with the longitudinal polarization is 

mA 
2 AµA

µ (3.15.1) 

So at very high energies (or on very short time scales), the transverse and longitudinal polarizations 
do not mix, and we could separately talk about the transverse and longitudinal polarization. 
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This suggests that theories of massive spin 1 bosons must combine the transverse polarizations 
of a massless spin 1 with some other degrees of freedom that provide the longitudinal component, 
since at high energies these two types of degrees of freedom become independent. This is the Higgs 
mechanism. 
Furthermore, note that ∂µπ for a scalar π(x) has the correct Lorentz transformation properties 

to create the longitudinal mode at high-energies. This suggests that scalar degrees of freedom are 
the ingredient we need. To see this in more detail, simply recall that the polarization states of a 

µ 
p

massive spin 1 particle with p = ( p2 + m2 , 0, 0, p) are 

�1 = (0, 1, i, 0) (3.15.2) 

�2 = (0, 1, −i, 0) (3.15.3)� p � µ1 
2 

p
�L = p, 0, 0, p2 + m ∼ (3.15.4) 

m m 

where the last approximate equality holds when p/m is large. This is exactly what we obtain from 
the Fourier transform of ∂µπ(x) for a scalar π(x). In fact, as we will see, these scalars must be (what 
would have been) Goldstone bosons. 

3.15.1 Abelian Case and Superconductivity 

Superconductors are materials in which the photon has a mass. All of their phenomenological 
properties can be derived from this fact. We won’t be studying them immediately, however, because 
the goldstone bosons that the photon ‘eats’ are particles made from pairs of electrons, and this is 
more complicated than the simple Abelian Higgs model with which we will begin. 
Let us study a theory, the ‘Abelian Higgs Model’, with Lagrangian � 

2 �21 λ v 
L = − F 2 + (∂µφ

† − ieAµφ
†)(∂µφ + ieAµφ) + |φ|2 − (3.15.5)µν4 4 2 

In this theory, φ gets a VEV, and so we can parameterize it as 

1 π(x) 

φ(x) = √ (v + H(x))e i (3.15.6)v 

2 

Plugging this into the Lagrangian gives � �� � � �2
1 (v + H)2 ∂µπ ∂µH ∂µπ ∂µH λ √ H2 

L = − Fµν 
2 + −i + − ieAµ i + + ieAµ − 2Hv + 

4 2 v v + H v v + σ 4 2 
1 
F 2 1 2 1 2 λv2 

H2≈ − (∂H) + (∂µπ + mAAµ) − + · · · (3.15.7)µν + 
4 2 2 2 

where the masses are 

mA = ev (3.15.8) 

mH = λv (3.15.9) 
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for the photon and the ‘Higgs’ field. Note that this means that we can completely decouple the 
Higgs field by sending λ →∞ with v fixed. Then we are just left with π and Aµ. 
Now what happens under gauge transformations? If we shift 

Aµ → Aµ + ∂µα(x) (3.15.10) 

where we choose 

1 
α(x) = − π(x) (3.15.11) 

mA 

then no matter what value π(x) takes, we can eliminate it from the Lagrangian, leaving 

2L = − 
1

4 
Fµν 
2 + 

1

2 
mAA

2 
µ + · · · (3.15.12) 

Note that this is a gauge choice, called Unitarity Gauge. It has this name because it makes it clear 
what the menu of particles are in our theory – in this case, we have a single massive photon. But 
π(x), which wanted to be a goldstone boson, has vanished. 
We can also obtain this gauge choice in the original theory by noting that since 

1 π(x) 1 π(x)
ieα(x)φ(x) i i +ieα(x)φ(x) → e or √ (v + H(x))e v → √ (v + H(x))e v (3.15.13)

2 2 

So we can specify a gauge by using φ(x) instead of Aµ, by stipulating that 

1 
φ(x) = √ (v + H(x)) (3.15.14)

2 

exactly. This leads again to the choice we made above for α(x). Note that from this point of view, 
if e = 0 so that the photon is decoupled, then we would simply have had a goldstone boson π(x) 
associated to the spontaneous breaking of a global U(1). But with e 6= 0 the Lagrangian wasn’t just 
invariant under 

iαφ(x) iα(x)φ(x)φ(x) → e but under φ(x) → e (3.15.15) 

or in other words, we do not have a global symmetry, but a local gauge redundancy. So the 
redundancy allowed us to make a choice of gauge that ‘rotated away’ or ‘ate’ the Goldstone mode 
π(x), eliminating it from the spectrum. Instead of spontaneously breaking a global symmetry and 
getting a Goldstone boson, we have spontaneously broken the gauge symmetry (redundancy), and so 
we do not have a Goldstone boson, but a massive photon. 
Note that the ‘Higgs Boson’ of the Higgs mechanism is the mode H(x), not π(x). And in fact 

we do not need H(x) in our abelian theory – the photon ate π(x), not H(x), which we were able 
to decouple. In fact, all we needed for the Higgs mechanism were the goldstone modes, which we 
could have represented in a non-linear sigma model (a theory like the chiral Lagrangian, where 
we only have the π(x) mode around). In the Non-Abelian theory we will discuss next, we cannot 
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simply have massive interacting spin 1 boson by themselves, because at high energies the theory 
becomes inconsistent. However, this is not because of the tranverse polarizations, but because of the 
longitudinal goldstone-like polarizations. The real problem is that the non-linear sigma model breaks 
down at high energies (is not UV or short-distance complete) because it has derivative interactions 
suppressed by the scale v. 
So why is this a theory of superconductivity? The expulsion of magnetic fields, called the 

Meissner Effect, is obvious because they would have a very large amount of energy due to the mA 
2 A2 

µ 

(note that Aµ ∼ xB so Aµ would grow spatially). We also see that the Aµ field naturally falls off 
exponentially with distance due to the mass, this gives the penetration depth. 
In general, it’s possible that hφ(x)i might be x-dependent, and in particular, there can be regions 

where hφ(x)i = 0. This can happen if we apply a lot of magnetic field to the superconductor, so that 
it becomes energetically favorable to let magnetic field lines penetrate in little bundles or ‘vortices’. 
Depending on the relationship of the ‘Higgs mass’ (mass associated with Cooper pairs) to the photon 
mass, we have type I vs type II superconductors, which are primarily differentiated by how vortices 
behave. 

3.15.2 Non-Abelian Higgs Mechanism 

Now let us discuss the Non-Abelian version. 
Let us imagine that we have a theory such that when the gauge coupling g = 0, we would have a 

global symmetry with scalar fields transforming as 

φi(x) → Ui
j φj (x) (3.15.16) 

Now if that symmetry were spontaneously broken, so that hφii = vi, then we have a set of massless 
goldstone modes, plus other degrees of freedom that are generically massive. So we can write 

iπa(x)ta 
φi(x) = e ij (vj + hj (x)) (3.15.17) 

where we have separated out the goldstone modes πa(x) from the massive modes hj (x) by rotating 
the φi(x) to a caononical basis. 
Now let us turn on the gauge coupling g, so that the global symmetry suddenly becomes a gauge 

redundancy. This means that the transformation h i−1 
iπa(x)ta 

ijφi(x) → e φi(x) = vj + hj (x) (3.15.18) 

that rotated the fields to the special basis vj is just a part of the gauge redundancy. This means 
that the goldstone boson fields πa(x) are no longer physical fields. But it also means that we have 
eliminated a part of the redundancy by fixing it using the φi VEVs. We have chosen unitarity gauge. 
Given that the gauge redundancy is the same thing as the original global symmetry, it must be 

that the Lagrangian contains terms 

1 2 1 2 Abµ∂µhi(x) − igTij
a Aaµ(vj + hj (x)) ⊃ g vivj Tik

a Tkj 
b Aµ

a (3.15.19)
2 2 
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which gives the gauge bosons a mass term. For each would-be massless goldstone boson there is a 
massive spin 1 boson. Note that 

hiT a Aaµ(vj + hj (x)) = 0 (3.15.20)∂µ ij 

by definition of the Higgs and goldstone directions (they are orthogonal), so the Higgs bosons do 
not mix with the gauge bosons. 
Let us consider an example with an SO(3) gauge group and an SO(3) fundamental scalar field. 

It gets a VEV 

h(φ1, φ2, φ3)i = (0, 0, v) (3.15.21) 

The gauge boson acts in this representation as 

Aa T a 
µ ij = 

⎛⎝ 0 −A3 
µ Aµ 

2 

A3 
µ 0 −A1 

µ 

⎞⎠ (3.15.22) 
0−A2 

µ A1 
µ 

and the mass term looks like � 
1Aµ 

2 2g v � 
Aµ1 + A2 

µA
µ2 (3.15.23)

2 

Thus we get two massive gauge bosons and one massless gauge boson. What about the remaining 
massless ‘photon’ (we call it that because it’s a U(1)) – how does it interact? 
The Higgs field, which was the φ3 direction of φi, will not be charged under the remaining A3 

µ – 
this must be the case because it’s merely a real scalar field, and those cannot have charge. However, 
note that we can write 

W ± = A1 ± A2 (3.15.24)µ µ µ 

has charge ±1 with respect to the remaining A3 
µ photon. So the massive gauge bosons are charged. 

In fact, this model was once proposed as a potential description of the weak interactions. 
It’s worth noting, as the book does, that one can break SU(5) to SU(3) × SU(2) × U(1) via an 

adjoint Higgs field 

vaT a = 

⎛ ⎜⎜⎜⎜⎝ 
2 
2 
2 

⎞ ⎟⎟⎟⎟⎠ (3.15.25) 
−3 

−3 

That’s how grand unification works. Note that this leads to massive ‘X-Y ’ gauge bosons at the 
GUT scale, leaving our Standard Model gauge bosons massless. 
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3.15.3 Renormalizability and UV Completeness 

Historically, proving the renormalizability of theories of massive spin 1 boson with non-abelian 
interactions was very important. In part this was because renormalizibility was viewed as necessary 
for the consistency of QFT, although we have seen that it’s not. However, it is important to know 
how the theory behaves at short distances, whether more counter-terms will be needed to absorb 
short-distance sensitivity, whether the pattern of massive and massless particles is consistent and 
natural, etc. 
The naive problem is that a massive vector boson propagator would appear to be (in Unitarity 

gauge) � � 
µ νi p pµν δab 

2 −g + 
2 (3.15.26) 

p2 − mA mA 

Why is this bad? The reason is that this seems to behave as a constant as p →∞, instead of falling 
off as 1/p2 . If true, this would mean that loop corrections are completely unsupressed, no matter 
how many propagators are included. Thus one would have an extreme amount of short-distance 
sensitivity, and the theory would be completely unmanageable. 
The technical resolution to this is to restore the gauge redundancy, and then eliminate it in a 

different way. This gives rise to � �2
1 1 πa 1 � �22 ∂µ aL = − (F a )2 + m Aa + − ∂µAa − ξmAπ

a + c̄a(−∂µDµ + ξm2 )cµν A µ µ A4 2 mA 2ξ 

when we use ∂µAaµ − ξmAπ
a as our gauge fixing functional and repeat our Faddeev-Popov derivation. 

This gives a vector boson propagator � � 
µ νi p pµν δab 

2 −g + (1 − ξ) (3.15.27) 
p2 − mA p2 − ξm2 

A 

But we also have fictitious goldstone bosons and ghosts present in the theory, with fictitious masses 
ξm2 

A. The advantage is that we maintain manifest renormalizability. If we take ξ → ∞ these 
extra fictitious states disappear, and we’re back to unitarity gauge. The most convenient gauge for 
calculations is ξ = 1 though, where propagators become very simple. 
These gauge tricks do not completely resolve issues with renormalizability. However, renormaliz-

ability is really a question of whether the theory needs a short-distance completion. But at very 
short distances the longitudinal and transverse polarizations of the vector bosons decouple, and 
we approach the regime of applicability of the Goldstone boson equivalence theorem. This theorem 
says that the high-energy behavior of longitudinal gauge boson polarizations is identical to the high 
energy behavior of the would-be Goldstone bosons in a theory where the gauge coupling g = 0. In 
particular, if the theory of the Goldstone bosons is UV complete, so that it makes sense to arbitrarily 
short distances, then the same will be true of the massive vector boson theory. If not, the theory will 
be incomplete, but this is entirely a problem of UV completing the Goldstone theory. The transverse 
polarizations of the vector bosons in YM theories will always be well-behaved on their own. 
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Note that this means that any theory consistingly only of massive non-abelian gauge bosons, 
without any other particles, must be incomplete. This is because an interacting non-linear sigma 
model (any model of interacting goldstone bosons) will be non-renormalizable, since derivative 
interactions are always non-renormalizable (the lowest dimension operator would be something of 
the schematic form π(∂π)2/Fπ, and this already dimension 5). 
This simple observation has important implications. First of all, it means that if we get our 

Goldstone bosons from a linear sigma model, ie a standard ‘Higgs’ theory with a V (h) = −m2h2 +λh4 , 
then since that scalar theory is renormalizable, our theory of Higgsed massive vector bosons will 
also be renormalizable. However, we needn’t get Goldstone modes in this way – for example, we saw 
earlier that in QCD, the pion is an approximate Goldstone boson. If we had a theory of QCD with 
massless quarks, but the same pattern of spontaneous SU(N)L × SU(N)R chiral symmetry breaking, 
then the resulting degrees of freedom could be used to produce the longitudinal modes of an SU(N) 
vector boson theory. In fact, this was a (now-defunct) proposal for the W and Z bosons, called 
technicolor. In such a theory, there would be no Higgs boson at all, but only the massive W and Z. 

3.15.4 The Higgs Mechanism and Fermions 

It’s often said that the Higgs mechanism gives rise to fermion masses. This is true in the Standard 
Model, but it’s something of a side effect. One can have models where fermion masses appear 
directly, where they arise from the spontaneous breaking of a global symmetry, or where they arise 
from the Higgs mechanism (giving gauge bosons a mass at the same time). 
The idea is the following. Consider a theory where there are left handed spinor fermions Qi 

(it’s easiest to think of them as Weyl spinors) that transform as a doublet (fundamental) under 
SU(2). But assume that there are no right-handed spinor doublets; instead we have left-handed 
spinor singlets U and D. Then it’s impossible to write an SU(2) invariant mass term, because it 
would have to involve both Q and either U or D, but this is forbidden by symmetry. To be specific, 
Q†Q, U †U, D†D could be SU(2) invariant, but they are prohibited by Lorentz invariance (recall mass 
terms must couple two left-handed or two right-handed spinors), while terms like QU or Q†D† are 
prohibited by SU(2). 
However, if we have an SU(2) double scalar field Hi, then we can write down 

L ⊃ λU QiHi 
†U + λD�

ijrQiHj D (3.15.28) 

So far, these are not mass terms, but are simply yukawa couplings. However, if Hi gets a VEV 
hHii = vi, then these Yukawa couplings turn into mass terms! This is how all of the elementary 
fermions in the Standard Model get masses. 
Note that the SU(2) could have been either a global symmetry or a gauge redundancy. In the 

SM it happens to be the SU(2) Weak-force gauge redundancy. We can also use a wide variety of 
symmetries besides SU(2) in the same way. However, this idea can only work in a chiral theory, 
where we treat left and right-handed spinors differently. Without a chiral symmetry (which breaks 
parity) one cannot prohibit fermion masses. 
For a nice discussion of the electroweak theory itself, where these ideas are concretely realized, 

see Weinberg chapter 21.3. 
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3.16 Lattice Gauge Theory, QCD, and Confinement 

We have discussed Wilson loops, but let us now discuss their physical relationship with confinement. 
When we studied QED we were able to probe the potential by looking at 

2e 
V (r) = hΩ|T {J0(r)J0(0)}|Ωi ≈ (3.16.1)

4πr 

where J0(r) = δ3(~r − ~x) and J0(0) = δ3(~x). We computed quantum corrections to this quantity, 
namely the vacuum polarization Feynman diagram, and we saw how the electromagnetic force 
changes with scale. However, we cannot compute a directly analogous quantity in QCD because it 
wouldn’t be gauge invariant. 
However, we can probe the potentual by devising a suitable setup. So consider an experiment 

where we create a pair of charges, pull them apart to some finite distance D, let them exist for a 
very long time T , and then re-annihilate them. In the limit where the charges act like fixed external 
classical sources, the action for this process is exactly given by the expectation value of a rectangular 
Wilson loop with space-like sides of length D and time-like sides of length T . Thus if we can compute 
Wilson loop expectation values we can probe the potential in the theory! 
So the formal claim is that 

1 
V (R) = lim loghΩ| Tr {Wloop}|Ωi (3.16.2)

T →∞ iT 

where W is a Wilson loop (path ordered) integrated along a rectangle with sides of length R and T 
in space and time, respectively. We can write it as n oH 

ig P A
a
µT a dxµWloop = P e ij (3.16.3) 

We can compute this in any representation; for particles like quarks we would use the fundamental, 
but we could also use the adjoint or another representation. 
This can be done analytically in 2 + 1 dimensional QED; see Polyakov’s book ‘Gauge Fields and 

Strings’. One finds that in fact, that theory is a confining gauge theory, meaning that the potential 
between two charges grows linearly with the distance between charges. 
Let us first see how in perturbation theory it gives the correct result. If we choose 

J0(x) = δ(x)δ(y)δ(z − R) − δ(x)δ(y)δ(z) (3.16.4) 

where we turn this on and off at times ±T 
2 , and connect up the ‘ends’ to make the Wilson loop. 

Thus we write R R 
DAeiS[A]+ eAµJµ 

e iET = hΩ|e iHT |Ωi = R (3.16.5)
DAeiS[A] 

We can compute this exactly in QED, to obtain 

R 2 
iET i d4xd4y Jµ(x)Dµν (x,y)Jν (y)

2e = e 
e 

(3.16.6) 
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where Dµν is the position space Feynman propagator for the photon. There are R-independent 
divergences (associated to self-energies of charges), but the only R dependence at large T comes 
from the two opposite sides of the loop, giving 

2 2 Z T/2 Z ∞ e 1 e2T 
iET = − dt dt0 = i (3.16.7)

4π −T/2 −∞ (t − t0)2 − R2 − i� 4πR 

giving the expected E = V (R). We took T → ∞ in the second integral for simplicity, since this 
does not alter the leading T behavior. 
A similar computation has been performed at 1-loop in pure YM (and at higher-loops), giving �

2 � 2 � 2 � 
g g 11 ~q

Ṽ (~q) = −CF 1 + CA log + · · · + · · · (3.16.8) 
~q2 16π2 3 µ2 

This is a gauge-invariant result that shows the effect of the running coupling on the strength of the 
YM (or in the case of QCD, the strong) force. 

3.16.1 Lattice Gauge Theories 

Now let us discuss how one can compute without using perturbation theory, by turning QFT into a 
finite system and using a computer (although we won’t be writing any programs). We will see is 
that one can derive suggestive non-perturbative results via a rough analytic argument. 
Let us make spacetime into a 4d lattice with nsites sites in each direction, with a spacing a. This 

reduces QFT to QM with n4 degrees of freedom. As we saw long ago in the case of a scalar field,sites 

we can naturally put matter fields like φ(x) → φ(nµ), where nµ labels the lattice points. Notationally, 
we can denote µ̂ as the unit vector (length a) in the µ direction, so that φ(n + µ̂) and φ(n) are 
nearest neighbors. 
Gauge transformations are also discrete and act at lattice sites, so 

φa(n) → Ua
b(n)φ(n) (3.16.9) 

would be a gauge transformation where the matrix U(n) is in some appropriate representation of the 
gauge group. To compare fields at difference sites, we need discrete Wilson loops, transforming as 

Wµ(n) → U(n)Wµ(n)U
†(n + µ̂) (3.16.10) 

so that 

φ†(n)Wµ(n)φ(n + µ̂) (3.16.11) 

is gauge invariant. We can multiply together many of the 

iaAµ(n)Wµ(n) = e (3.16.12) 

on successive lattice sites in order to connect distant fields. Thus it’s more natural to view Wµ(n) 
as living on the links between lattice sites, and they are called link fields. We have absorbed the 
coupling g into the Aµ(n) field. 
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The gauge invariant YM field operators are Wilson loops. The simplest non-trivial example is a 
plaquette which is defined as 

Wµν (n) = W−ν (n + ν̂)W−µ(n + µ̂+ ν̂)Wν (n + µ̂)Wµ(n) 

= Wν 
†(n)Wµ 

†(n + ν̂)Wν (n + µ̂)Wµ(n) (3.16.13) 

We can connect this with the continuum by using 

A B A+B+ 1 [A,B]+··· 
2e e = e (3.16.14) 

2so that to order a we have 

log Wµν (n) = ia(Aµ(n) + Aν (n + µ̂) − Aµ(n + ν̂) − Aν (n)) 
2a 

+ [Aν (n) + Aµ(n + ν̂), Aν (n + µ̂) + Aµ(n)]
2 
2 2a a − [Aν (n), Aµ(n + ν̂)] − [Aν (n + µ̂), Aµ(n)] (3.16.15)
2 2 

Now we can write 

Aν (n + µ̂) = Aν (n) + a∂µAν (n) + · · · (3.16.16) 

to compute that 

ia2Fµν (n)+··· Wµν (n) = e with Fµν (n) = ∂µAν − ∂ν Aµ − i[Aµ, Aν ] (3.16.17) 

This means that we can expand to see that 

4a 
Wµν (n) = 1 + ia2Fµν (n) − Fµν (n)Fµν (n) + · · · (3.16.18)

2 

where we recall that these are matrices, so the third term is a product of gauge-group matrices. We 
can therefore write the lattice action Xi 

S[Wµν ] = − Re Tr [1 − Wµν (n)] (3.16.19)
2g2N 

n,µ,ν 

Now one can perform the path integral by directly summing over lattice field configurations in terms 
of the link fields Wµ(n). 
One can use this to compute correlators by inserting operators. For example, by computing 2-pt 

functions and looking at their x-dependence, we can extract the masses of particles such as the pion. 
As discussed above, we can also probe confinement by computing Wilson loop expectation values. 
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3.16.2 Strong Coupling Expansion and Confinement 

Now let us discuss what happens to our Wilson loop computation if we take the limit of strong 
coupling, g →∞. The result will be equivalent for any gauge theory, abelian or non-abelian. 
We want to evaluate the expectation value of a large Wilson loop with sides R and T n oHR 

Aa T a DAeiS[A]P i P µ ij dx
µ 

e 
hW i = R 

DAeiS[A] n oQ R i P 
2 S[Wµ(n)] i Wµ

a(n)T a 

n dWµ(n)e g P e C ij 

= i (3.16.20)Q R S[Wµ(n)]
g(n)e 2 

n dWµ 

where we have normalized the fields so that the coupling appears as an overall factor outside the 
action. We want to consider the limit g2 large, which means that we can expand the exponential in 
powers of 

g 
1 Thus we get2 . " #Z � �2 oY n Pi 1 i i W a(n)T a 

dWµ(n) 1 + S[Wµ(n)] + S[Wµ(n)] + · · · P e C µ ij (3.16.21) 
g2 2 g2 

n 

When the loop contour C is large, the low orders in this expansion all vanish. This is because 
segments of the loop include many factors of Z 

iWµ(n)dWµ(n)e = 0 (3.16.22) 

which are pure phases, and vanish. It is only when these phases are cancelled that we can obtain a 
non-vanishing result. 
These phases can only be cancelled if we expand to such a high order in 1/g2 that we get a 

contribution from all plaquettes inside the Wilson loop. If one tiles the inside of the loop with 
plaquettes, all contributions cancel internally, and we are left with the contributions along the 
perimeter of the loop. These cancel the explicit phases from n oP 

W a(n)T a 
C µ ijP e i (3.16.23) 

This requires us to pull down a factor of � �TR 
1 2)iT R log(g= e (3.16.24) 
g2 

which means that the expectation value of the Wilson loop is proportional to the exponential of its 
area = RT . Note that we are pulling down one plaquette each inside the loop, so there is no 1/n!, 
or in other words, the combinatorics of all the possible plaquette contributions cancels this 1/n! 
with a numerator factor of n!. 
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To obtain the potential between two quarks, we equate this with eiET , and so we learn that 

E = V (R) = R log(g 2) (3.16.25) 

This means that the potential between quarks (charges) grows linearly with their separation. Infinitely 
separated quarks would require an infinite energy. This is confinement, derived from the strong 
coupling g →∞ expansion. This argument makes it plausible that when the QCD coupling runs to 
become large, we enter into this regime, and obtain the confinement of quarks and gluons observed 
in nature. 

3.17 Parton Model and Deep Inelastic Scattering 

Now we will think simultaneously about the consequences of confinement and jets (our discussion 
will be rather anachronistic, skipping around in history). Naively, one might expect that confinement 
and the ‘strength’ of the strong force (QCD) makes it impossible to use perturbation theory for 
anything. However, due to asymptotic freedom (running of αs), at large energies (or short distances) 
the quarks and gluons of QCD interact weakly. In what ways can we make use of this? 
The dumbest way is through processes like e+e− → hadrons. Although the specific products 

one obtains depend a great deal on the details of QCD, at large center of mass energies, the total 
differential cross section can be reliably estimated by computing e+e q, q¯− → q¯ qg, etc, even though 
quarks and gluons can never be found by themselves. Conceptually, the reason this (should) work 
is because one first makes a few very high energy quarks in the perturbative regime, and then, as 
they spread apart, the effective strength of αs increases (and there is a lot of soft radiation), until 
the various partons reach separations of order 1/ΛQCD, at which point hadronization occurs, and 
the quarks and gluons form strongly interacting bound states. But since the total cross section is 
limited by the rate for the very first process, it can be estimated perturbatively, with uncomputable 
corrections that go like powers of ΛQCD/E. 
Once again, it’s a separation of scales that makes it possible to do a reliable perturbative 

computation. There is in fact a whole effective field theory concerned with these kinds of processes, 
called Soft-Collinear Effective Theory (SCET). The author of the textbook is a SCET expert, so it 
is discussed in the book, if you’re curious. 
What about scattering of protons, neutrons, and mesons? If the proton was an elementary 

particle it would scatter off of electrons just as predicted by QED, with � 
2 � 

dσ αe 
2 E 0 2 θ q θ 

= cos − sin2 (3.17.1)
dΩ 4E2 sin4 θ E 2 2mp 

2 2 
2 

in the lab frame, where E 0 and E are the final and initial electron energies. At low energies this is 
correct. As you derived on a problem set, we can parameterize the general photon vertex with F1 

and F2, although it turns out that 

gp = 5.58, gn = −3.82 (3.17.2) 
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so the proton and neutron have magnetic moments that are very different from what one would 
expect from a truly elementary particle. In fact, just from the form factors one can see that the 
proton seems to have a characteristic ‘size’ of about 1/(0.84GeV ), so it is not point-like. 
In the 1950s, no one knew what this substructure meant. Some interactions of the proton seemed 

weaker than one might expect. For example, proton-proton collisions at 10 GeV led to the production 
of large numbers of pions, but they mostly flew in the same direction as the original incident protons, 
as though the proton itself was breaking apart into blobs flying in the same direction. The probability 
of making pions that fly off perpendicular to the beam axis was very suppressed. This led to the 
idea that perhaps the proton is goopy (with many many constituents), and so in collisions it just 
flies into a cloud of pieces. Mathematically, since the pieces stay collinear, we can characterize this 
‘goopy’ hypthesis by the claim that although the nearly light-like momenta q exchanged among the 
constituents may be large, the invariant q2 would always be very small. 
These ideas were decisively tested via the 1960s SLAC-MIT Deep Inelastic Scattering experiments, 

which involved 20 GeV electron beams scattering off of protons. The direction of the outgoing 
electron gave a direct indicator of q2 . If protons were goop, then all electron deflection angles would 
be small (think of a bullet going through water, vs two bullets colliding). In fact, large deflection 
angles often occurred, but protons themselves rarely survived. But the overall rate was roughly in 
accord with what one would have gotten if the proton was an elementary particle. 
To explain these observations, Bjorken and Feynman proposed the parton model – that protons 

are made of a loosely bound assemblage of partons (as we know now, these are quarks and gluons). 
Electrons just scatter off of one of these quarks, possibly exchanging a large q2 , but the rest of the 
proton is just left behind, and propagates collinearly with the proton beam. Only the ejected quark 
and its hadronization products have large scattering angles. Note that the parton model isn’t really 
so new – it’s also a good description of a hydrogen atom. 
Let us see what this model predicts at the most basic (quantitative) level. The square of the 

electron-quark matrix element is � 
2 �X1 8e4Q2 s2 + u |M |2 = i (3.17.3)

4 t2 4 
spins 

where s, t, u are mandelstam invariants, and since we’re at high energy, we ignore all masses. The 
parameter Qi is the quark (parton) charge. This leads to a cross section that can be written as 

dσ 2πα2Q2 
i s
2 + (s + t)2 

= (3.17.4)
2 t2dt s 

using t = −s(1 − cos θ)/2 in the CoM frame. We can write t = −Q2 , where Q2 = −q2 is positive. It 
is directly measurable in terms of the electron’s initial and final momentum. 
Writing s in terms of easily measurable quantities is more difficult. Working in the electron-proton 

center of mass frame and ignoring masses, we can characterize a given parton by the fraction of the 
proton’s total momentum that it carries. We call this the longitudinal momentum fraction x, with 
0 < x < 1. For each species of parton, there is a parton distribution function f(x) that expresses 
the probability that the proton contains a parton of this type with longitudinal fraction x. The 
momentum of the parton is p = xP , where P is the proton momentum. 
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Physically, the idea is that the momentum transfers back and forth among the various partons, 
and so on average there is some probability distribution to have a given kind of parton with a 
given momentum. This is obviously wrong quantum mechanically – really the proton just has a 
wavefunction – but the separation of scales between Q and ΛQCD justifies a decoherent, statistical 
approach. In fact it’s very challenging to prove rigorously that this factorization is correct. 
If k is the initial electron momentum then 

s = (p + k)2 = 2p · k = 2xP · k = xspe (3.17.5) 

where spe is the square of the electron-proton center of mass energy. If we assume that the 
electron-parton scattering is elastic, then we can determine x via 

0 ≈ (p + q)2 = 2p · q + q 2 = 2xP · q − Q2 (3.17.6) 

so that 

Q2 

x = (3.17.7)
2P · q 

For each scattered electron, we can determine the value of Q2 and x for the process, and the parton 
model predicts the event distribution in the x-Q2 plane. Note that x is determined from q and P , 
which are known. 
Using the parton distribution functions fi(x), we have !� �2Xd2σ 2 2πα

2 Q2 

= fi(x)e 1 + 1 − (3.17.8)i Q4dxdQ2 xs 
i 

where the PDFs fi(x) depend on the detailed structure of the proton, where ei is the charge of 
parton i. 
But this formula still makes a prediction, namely that when we divide the DIS cross section by 

the factor in parentheses and multiply by Q4 , we should get a quantity that depends only on x but 
is independent of Q2 . This is called Bjorken scaling, and it was observed to about 10% accuracy 
above 1 GeV in the SLAC-MIT experiment. Bjorken scaling is essentially the statment that the 
proton looks the same to an electromagnetic probe no matter how hard the proton is struck, and 
that the partons themselves act like elementary free particles, without complicated form factors. In 
the proton frame the energy of the incident (effective) photon is 

P · q Q2 

q 0 = = (3.17.9) 
m 2xmp 

The inverse of this gives a time scale for interaction. DIS is when q0 � mp, so that the scattering is 
very rapid on the characteristic time scale of the proton. Bjorken scaling assumes that during this 
very rapid scattering, the interactions among the constituents of the proton can be ignored. 
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3.17.1 PDF Sum Rules 

So for any bound state, there are PDFs that indicate how much of each type of particle one can 
‘find’ inside. We often say that the proton is a uud bound state. If it had exactly one down quark,R 
then dxfd(x) = 1, but in fact this is false, because we can make down anti-down pairs. However, 
what we do know is that Z 

d(x)) 

u 

s(x)) 

¯

¯ 

¯ 

dx(fd(x) − f = 1 (3.17.10) Z 
dx(fu(x) − f (x)) = 2 (3.17.11) Z 
dx(fs(x) − f = 0 (3.17.12) 

and similarly for the other quarks, because quark number conservation is an approximate symmetry. 
This is what we mean when we say that a proton is uud, it has 2 up and 1 down valence quark. 
We also have by momentum conservation that ZX 

dxxfj (x) = 1 (3.17.13) 
j 

since xP is the momentum fraction of each parton, and the total momentum must be P . All of 
these sum rules can be derived from the conservation of a current. 
Note that Z 

dxx(fu(x) + fd(x)) ≈ 0.38 (3.17.14) 

so in fact, most of the momentum of the proton is not carried by the quarks! Most of the rest (35 to 
50 %) is made up by gluons, and the remainder comes from ‘sea quarks’, so quark anti-quark pairs 
that can be created. 
Actually, as we will now discuss, all of these numbers depend on the energy scale at which we 

probe the proton. What the proton is made of depends on how you look at it! 
The form of the equations for the evolution of the PDFs, often called Alterelli-Parisi or DGLAP 

equations, is very much like the Boltzmann equations in thermodynamics. You can think of the 
proton as a box containing quarks and gluons, in which all possible interactions occur. Thus quarks 
can emit gluons, and gluons can split into quarks. The number of quarks and gluons will be 
proportional to the number that are produced minus the number that disappear. Equilibrium will be 
the situation where these effects balance. Finally, you can think of the energy scale (or perhaps, more 
accurately, its logarithm) at which we probe the proton as analogous to the temperature – as we 
slowly increase the temperature, we get more and more stuff, and we obtain a different equilibrium 
balance. This analogy works pretty well for understanding the PDFs and their energy dependent 
evolution. 
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3.17.2 Equivalent Photons and the ‘Parton Model’ for QED 

On your problem set you studied the equivalent photon approximation – the idea that a high energy 
electron can also be viewed as a source for high-energy, nearly on-shell photons. This is the QED 
equivalent of the parton model, since it suggests that a single electron really isn’t so simple, but can 
actually be regarded as a smeared bundle composed of an electron, some photons, and some e+e− 

pairs. 
You showed that there is a photon ‘PDF’ � � 

α s 1 + (1 − z)2 

fγ (z) = log (3.17.15)
2π m2 

e z 

representing the distribution of photons with momentum zp ‘inside’ an electron with momentum p. 
It can be used to compute Z 1 

σ(e −X → e −Y ) = dzfγ (z)σ(γX → Y ) (3.17.16) 
0 

so we can get electron scattering from the photon PDF times the cross section for photons to interact. 
In fact, we can go on to work out the consequence of these ideas to higher orders. This means 

we can ask for the probability of finding an electron ‘inside’ an electron, by including the possibility 
that electrons produce photons that split into electrons, or that free photons contain e+e− pairs. 
Following the same steps that led to the equivalent photon approximation tells us that � 

2 � 
α s 1 + x 3 

fe(x) = δ(1 − x) + log 
2 

+ δ(1 − x) (3.17.17)
2π me (1 − x)+ 2 

There are actually several subtleties here. First of all, the δ(1 − x) encodes the leading order 
expectation that we find exactly one electron with momentum p. This means that the sub-leading 
term has to be normalized to maintain Z 1 

dx [fe(x) − fē(x)] = 1 (3.17.18) 
0 

as expected from sum rules. That is how the second δ(1 − x) was determined. Relatedly, the first 
factor contains a 1/(1 − x) singularity that has to be regulated; the ‘+’ indicates that we are doing 
this by Z 1 f(x)

dx 
(1 − x)+0 

Z 1 f(x) − f(1)≡ dx 
1 − x0 

(3.17.19) 

Even with this regulator, the distribution is still very singular near x = 1, and will receive corrections 
from multiple photons. 
In fact, if we look at multiple photon emissions with 

p1⊥ � p2⊥ � p3⊥ � · · · (3.17.20) 
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we find that the electron propagators and interactions squared and integrated over phase space 
contribute Z Z s p21 

Z 
⊥ p22⊥� α �k 1 � α �kdp21⊥ dp22⊥ dp23⊥ s 

logk (3.17.21)· · · = 
2 2 2 22π k! 2πp p p m2 

e 
2 
e 

2 
e1⊥ m 2⊥ m 3⊥m e 

This is just our usual exponentiation of soft and collinear emissions. Note that the ordering is 
required because otherwise there isn’t a denominator pi 

2 
⊥ for each i = 1, · · · , k, and we do not get 

the leading logarithmic behavior. This is called the strongly ordered region of phase space. 
We can interpret this sequence of photon emissions as probing larger and larger values of p⊥ 

2 , or 
in other words, they are probing the electron structure at different energy scales. Viewing emission 
as a continuous process, we can obtain an RG equation for the PDFs. 
Thus we let fγ (x, Q) and fe(x, Q) be the probabilities of finding a photon or electron of longitudinal 

momentum fraction x inside a physical electron, taking into account collinear photon emissions 
with transverse momenta p⊥ < Q. As we change Q, we must account for Q < p⊥ < Q + δQ. The 
differential probability for an electron to split off such a photon is just 

α 1 + (1 − z)2 dp⊥ 
2 

2 (3.17.22)
2π z p⊥ 

We can use this to compute that Z 1 Z 1 � � 
α 1 + (1 − z)2 d(Q2) 0fγ (x, Q + dQ) = fγ (x, Q) + dx0 dz fe(x , p⊥)δ(x − zx 0) 

0 0 2π z Q2 Z 1 � � 
dQ dz α 1 + (1 − z)2 x 

= fγ (x, Q) + fe( , p⊥)
Q x z π z z 

This leads to the differential equation Z 1 � �d dz α 1 + (1 − z)2 x 
fγ (x, Q) = fe , Q (3.17.23)

d log Q x z π z z 

Similarly, the electron distribution evolves as Z � �1 2 � �d dz α 1 + z 3 x 
fe(x, Q) = + δ(1 − z) fe , Q (3.17.24)

d log Q x z π (1 − z)+ 2 z 

If we integrate these equations from Q ∼ me with the boundary condition that at that scale, there 
are no photons and only one electron at x = 1, we get PDFs at other energy scales. 
There is another effect, namely that of γ → e+e− , which you can find in Peskin and Schroder, 

which leads to combined differential equations for fγ , fe, and fē. Since we aren’t going to do the 
explicit calculation I won’t write out the details. 
These PDFs can be used to compute reaction rates via Z 1 

σ(e −X → e − + nγ + Y ) = dxfγ (x, Q)σ(γX → Y ) (3.17.25) Z0 
1 

σ(e −X → nγ + Y ) = dxfe(x, Q)σ(e 
−X → Y ) (3.17.26) 

0 
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where the cross sections assume a photon or electron with longitudinal momentum fraction x. 
But the central point here is that we have found renormalization flow equations for the PDFs 

that determine the internal structure of the electron, where the scale is that at which we probe the 
electron. The reason for this flow is that there are logarithms that contribute at all scales. 

3.17.3 DIS and the DGLAP Equations for QCD 

Peskin and Schroder’s discussion of Parton Distribution Functions in their chapter 17.5 is nicer and 
more complete than the discussion in Schwartz, and so is recommended. 
Let us study electron-proton scattering, while remaining agnostic about the products – so we 

study e−p+ → e−X for all X. This is called Deep Inelastic Scattering (DIS). However, we will be 
assuming that the parton model is valid. We can parameterize the process via the scattering angle 
of the electron and its initial and final energies, E and E 0 , via 

dσ αe 
2 E 0 

= Lµν Wµν (3.17.27)
dΩdE 0 4πmpq4 E 

where we are in the lab frame, Lµν is the leptonic tensor (it encodes information about the electron 
polarizations) and Wµν is the much more complicated hadronic tensor, which is what we’re really 
interested in. 
For unpolarized beams, the lepton tensor is just 

1 � �0
γµ/ + k0ν kµ − k · k0 µν )Lµν = Tr k/ kγν = 2 (k0µkν g (3.17.28) 

2 

where k and k0 are initial and final electron momenta. This came from ū(k0)γµu(k) squared and 
summed over polarizations. 
The hadronic tensor must necessarily include an integral over the phase space of all possible final 

state X. Since the electron actually only probes the proton with a photon, we really have Z 
1 

e 2�µ� 
∗ 
ν W µν = dX(2π)4δ4(q + P − pX )|M(γ ∗ p + → X)|2 (3.17.29)

2 

where �µ is an (off-shell) photon polarization. Since we’ve summed over final states, this can only 
W µνdepend on P and q, and it must be symmetric and have qµ = 0 by the Ward identity. Thus � � � �� � 

qµqν P · q P · q
W µν µν µ ν = W1 −g + + W2 P µ − q P ν − q (3.17.30)

2 2 2q q q 

where W1 and W2 only depend on q2 and P · q, and we recall that x = −q2/(2P · q). 
Now let us look at this parton-by-parton. We can write Ŵ 

µν (z, Q) where 

Q2 

z ≡ (3.17.31)
2pi · q 

where pi is the ith parton momentum, so that 

pi = ξP µ (3.17.32) 
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with 0 < ξ < 1. In other words x = zξ, and our PDFs for the ith parton are fi(ξ). So Z ZX 1 1 

W µν (x, Q) = dz dξfi(ξ)Ŵ 
i
µν (z, Q)δ(x − zξ) 

i Z 0 0 � �X 1 

W µν= 
dξ 
fi(ξ) ˆ i 

x
,Q (3.17.33) 

x ξ ξ 
i 

At leading order, the only partonic process that contributes is γ∗ q → q. This has a trivial matrix 
element (identical to the leptonic Lµν matrix), which just gives 

Q2 

Ŵ 
1 = 2πei 

2δ(1 − z) = Ŵ 
2 (3.17.34)

4z 
This just means that at leading order, we have a quark with z = 1 identically. 

At higher order, a given parton can split into other partons, making a non-trivial contribution to 
the PDFs fi(x). In particular, there is a loop correction to γ∗ q → q, and more interestingly, there 
are graphs for 

γ ∗ qi → qig (3.17.35) 

g → qiq̄  i (3.17.36) 

g → gg (3.17.37) 

where i now labels the various quarks, u, d, s, etc. Note that γ∗ can only interact directly with the 
quarks at leading order. This leads to the DGLAP evolution equations � � Z 1 � �� � 

d fi(x, µ) X αs dξ Pqiqj (
x ) Pqig(

x ) fj (ξ, µ)µ = ξ ξ (3.17.38)
dµ fg(x, µ) π x ξ Pgqj (

x
ξ ) Pgg(

x
ξ ) fg(ξ, µ)

j 

conveniently packaged in matrix form. The formulas for the P (z) functions are given in the book; 
they are all derived by studying the simple processes mentioned above, and can be found derived in 
more detail in Peskin and Schroder. 
These equations tell us how the PDFs change with energy scale µ. As we mentioned above, 

their form is quite analogous to that of the Boltzmann equations for the distributions of matter in 
statistical mechanics. 
The splitting amplitudes are universal, and are identical to the soft and collinear photon/gluon/etc 

amplitudes that we discussed when we talked about soft and collinear divergences. This means they 
also tell us about rates for processes that occur after hard quarks are produced in a high-energy, 
when they shower, producing many lower energy gluons and quarks that form into jets. These jets 
then hadronize. So these splitting functions are used as probabilities in Parton Showers, which 
are computer codes that try to model the distribution of jets and radiation in QCD, as the book 
discusses. 

3.18 DIS, CFTs, and the OPE 

Lots of acronyms – Deep Inelastic Scattering, Conformal Field Theory, and the Operator Product 
Expansion. 
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3.18.1 Reformulating DIS in terms of Operators 

Let’s begin again, by studying an electron scattering off of a proton. Recall that we showed that 
instead of using the photon field Aµ to compute photon scattering amplitudes, we can instead just 
compute correlators of the electric current Jµ. At a direct level, this follow because if we couple to 
spinors then the current has matrix elements 

hp 0|Jµ(x)|pi = ū 2(p 0)γµu1(p)e 
i(p0−p)·x (3.18.1) 

¯which follows immediately since Jµ ⊃ ψ(x)γµψ(x) for fermions. 
To study DIS, we are interested in γ∗ p+ → X, where γ∗ is an off-shell photon. So we can just 

use matrix elements of this current to get 

M(γ ∗ p + → X) = e�µhX|Jµ(0)|P i (3.18.2) 

This means that the hadronic tensor for DIS is justZ 
1 

Wµν ( , Q) = dXhP |Jµ(0)|XihX|Jν (0)|P i(2π)4δ4(qµ + P µ − pµ )X x Z 
i(q+P −pX )·y= dXd4 yhP |Jµ(0)|XihX|Jν (y)|P ie �Z � 

= 2Im d4 yhP |T {Jµ(y)Jν (0)}|P ieiq·y (3.18.3) 

Something very nice has occurred – the square of the matrix elements turned into the correlator of 
Jµ(y)Jν (0) in a 1-proton state with momentum P , after summing over X! This was guaranteed by 
the optical theorem, since we are summing over all states X (we took the imaginary part in order to 
justify the time ordering symbol inside the correlator; we could also have left it without the time 
ordering symbol and without the imaginary part operation). 
We would like to use this expression to study DIS at large Q2 = −q2 . When q is very large, one 

might expect that we are dominated by y2 → 0. This does not quite mean that yµ → 0, since near 
the lightcone we have yµ large but y2 ≈ 0. However, for most purposes it will be good enough to 
study yµ small. In particular, when we study integrals over the partonic x variable associated with 
the PDFs, our large Q expansion will make sense. Recall 

2q 
x ≡ − (3.18.4)

2P · q 
where q is the off-shell photon momentum and P is the proton momentum, and the physical region 
is 0 < x < 1. To integrate Wµν over this region, we need to integrate the imaginary part of the 
time-ordered correlator, which we can get from a discontinuity in the complex x plane across the real 
axis. But we can deform this contour of integration to pick up only poles at x = ∞. This justifies 
series expanding around Q2 = 0. 
This means we need to understand X 

Δn−2ΔJ OµνJµ(y)Jν (0) ∼ Cny n (0) (3.18.5) 

where we have organized an expansion in powers Δn of y, so that we can focus on the terms that are 
most important at small y2 . Let us now discuss and justify such an Operator Product Expansion. 
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3.18.2 CFTs, Radial Quantization, and the OPE 

Can we actually expand Jµ(y)Jν (0) as written above? 
This is a rather ambitious expansion to attempt. After all, expanding around y → 0 means 

that we are probing arbitrarily short-distance physics, which is something that we’ve almost always 
remained agnostic about. For this OPE to be well-defined, we need to understand our theory at 
very short distances. If, for example, the theory becomes strongly coupled at very short distances in 
a way that we do not understand, then this OPE will be very hard to compute. 
In particular, if there is a non-trivial renormalization flow that continues as we go to shorter and 

shorter distances, then it’s hard to imagine the OPE can be defined or understood. Thus we can 
only attempt an OPE expansion in theories where the renormalization flow slows and stops at short 
distances. So the OPE only makes sense if the theory becomes scale invariant. It turns out that 
essentially all QFTs that are scale invariant have an even larger set of symmetries, called conformal 
symmetries. QFTs with such a symmetry pattern are called Conformal Field Theories. 
[Aside: However, if the theory is nearly scale invariant over a wide range of distance scales, so 

that it’s well-described by a scale-invariant theory, we can just use the OPE of that theory and get 
nearly-correct results. So even in EFTs that eventually break down, the OPE can still be useful, 
and we needn’t abandon our EFT intuition that very very short-distance physics is ‘irrelevant’. 
Practically speaking, we will study QCD and use Q � ΛQCD, but we needn’t take Q all the way 
→∞, where, e.g., grand unification and quantum gravity would become important.] 
In fact, we do expect that QCD has this property of scale invariance at short distances, because 

it is asymptotically free. It turns into a very simple kind of CFT at short distances – it becomes a 
free theory. So the OPE does make sense in QCD, and we can compute it by starting with a free 
theory of quarks and adding perturbative corrections, which are small at very short distances. 
The best and most general way to think about the OPE is via a radical re-interpretation of the 

path integral, known as radial quantization. 
Let us study our theory in Euclidean space, so the metric is ‘all +’. If our theory makes sense 

down to arbitrarily short distances, then we can choose a special origin, and consider spheres about 
that origin. We define our notion of ‘time’ to be the (logarithm of) the radius of these spheres. This 
means that states live on concentric spheres. 
What happens if we evolve in ‘time’ down to arbitrarily small distances? Then we left with a 

sphere of radius � where any given state ψ lives. But since the state lives on an arbitrarily small 
sphere, we can take the t → −∞ limit and view it as living exactly at a point, the origin. Thus we 
identify states at the origin with operators Oψ where 

Oψ(0)|0i = |ψi (3.18.6) 

This is the operator/state correspondence, which is an isomorphism in CFTs. 
Now consider two operators O1(x)O2(0). We can surround them by a sphere, and thus study 

the state ψO1,O2 (x, y) that results on that sphere. If we shrink that state down to zero size, we get 
another local operator, which will be a linear combination of any set of basis operators in the theory. 
Thus we have derived the Operator Product Expansion (OPE). The specific form of the OPE will be 
strongly constrained by symmetry. 
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3.18.3 Applying the OPE to DIS 

Now we want to use the OPE to evaluate the Euclidean correlator Z 
Xµν = i d4 yhP |Jµ(y)Jν (0)|P ieiq·y (3.18.7) 

We have removed the Lorentzian time ordering symbol because (unordered) Euclidean correlators 
automatically analytically continue to time-ordered Lorentzian correlators. 
The OPE is an operator relation (so it’s true when sandwiched inside any pair of states), so we 

want to evaluate 

Jµ(y)Jν (0) = q̄(y)γµq(y)q̄(0)γν q(0) (3.18.8) 

We get no non-trivial contribution to Xµν if we fully contract the fields, so the leading contribution 
comes from contracting a q̄(y)q(0) or q(y)q̄(0), which just give free quark propagators to leading 
order. Note that the quarks have to be of identical types for us to make these contractions and get 
singular terms as y → 0. 
We need to take a Fourier transform, so it’s most convenient to write the result as Z 

i(i∂/ + /q)
d4 iq·y ¯ ψ(y) ¯ ψ̄(q)γµye ψ(y)γµ ψ(0)γν ψ(0) = γν ψ(0) (3.18.9)

(i∂ + q)2 

where I am writing the quark field as ψ to differentiate it from the momentum. 
We can write the denominator as 

∞ � �nX1 −1 1 2iq · ∂ − ∂2 

= = − (3.18.10)
(i∂ + q)2 Q2 − 2iq · ∂ + ∂2 Q2 Q2 

n=0 

Naively one would expect that all terms aside from n = 0 should be suppressed at large Q, but in 
fact we will see that although we can ignore ∂2 ∼ P 2 ∼ mp 

2 , we must keep 

2iq · ∂ 2xq · P ∼ ∼ 1 (3.18.11)
Q2 Q2 

where we have inserted a parton model ‘x’ type variable. Roughly speaking, we cannot neglect these 
terms because although we are taking Q large, we are not just probing short distances, but short 
distances near the lightcone. This is another way of saying that we are interested in protons that are 
highly boosted. 
One can simplify the gamma matrices to give Z ∞ � �n 

d4 
� � 1 X 2iq · ∂iq·y ¯ µνye ψ(y)γµψ(y)ψ̄(0)γν ψ(0) = −iψ̄ 2γµ(i∂ν ) − g /q ψ (3.18.12)

Q2 Q2 
n=0 

Thus we see that the operators that dominate the OPE for DIS are 

ψ̄γµ1 (i∂µ2 )(i∂µ3 ) · · · (i∂µ` )ψ (3.18.13) 
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where the indices µi are completely symmetric. This should be made gauge invariant, giving 

= ψγµ1 (iDµ2 )(iDµ3 ) · · · (iDµ` )ψ (3.18.14)O`
µi ¯ 

Using these operators, we can write a general expression for Z ∞ 

d4 
X (2qµ1 ) · · · (2qµ`−2 )Oµνµi µν (2qµ1 ) · · · (2qµ`−2 )Oµiyeiq·yJµ(x)Jν (0) = 4 − g (3.18.15)` ` 
n=2 

Q2`−2 Q2`−2 

Let us use dimensional analysis to observe the relative importance of various operators. Due to the 
extra indices of spin ` operators, the overall contribution must be � �` 

P · q 1 ` Q2+`−Δ∝ x (3.18.16)
Q2 QΔ−`−2 

This means that at large Q with fixed x, the process is dominated by the operators of smallest twist 
τ ≡ Δ − `, where Δ is the scaling dimension of the operator. 
One can now analyze DIS by looking directly at the renormalization of the operators O` and 

keeping large logarithms. You can read much more in the textbook or in Peskin and Schroder 
(section 18.5). The punchline is that these operators control moments of the PDFs, ie quantities like Z 1 

dx x `−1fi(x; Q) (3.18.17) 
0 

and the renormalization of O` tells us about the Q dependence. Thus the DGLAP equations and 
the operator product expansion analysis of deep inelastic scattering encode exactly the same physics. 
There’s a universal term from the stress energy tensor T µν of QCD, which gives the ` = 2 

contribution and dominates at very very large enerties. It’s presence tells us Z 1 1 
dx xfi(x; Q) = 16 (3.18.18) 

0 + Nf3 

where Nf is the number of flavors of quarks. This tells us how much momentum is carried by quarks 
and gluons in the very very large energy limit. One can compare all of this directly to the DGLAP 
equations by taking moments of the PDFs derived from them. 

3.19 Anomalies – A Summary 

This is the most important subject that we haven’t yet covered. The essential point is that in some 
situations, symmetries of the classical action can be broken by quantum effects. The word ‘anomaly’ 
is used in many different contexts to indicate a few different effects: 

• There is the chiral anomaly, whereby chiral symmetries – those that rotate left-handed and 
right-handed spinors ψL and ψR spinors differently (oppositely) – are violated by quantum 
effects. These anomalies have important consequences for gauge theories and gravity. 
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• Sometimes the quantum violation of scale invariance is referred to as an anomaly. For example, 
QED was clasically scale invariant, so the renormalization flow of α(µ) can be viewed as an 
anomaly. This viewpoint is not usually well-developed, although it’s valid. 

• And as a more advanced comment... certain contact terms in correlators are referred to as 
anomaly terms. The most famous examples come from conformal field theories. Usually 
conformal invariance is associated with the statement that the trace Tµ

µ = 0 in conformally 
invariant theories (one can show this by deriving the currents associated with scale invariance 
and special conformal transformations). However, if we study a CFT in a spacetime that is not 
flat, then Tµ

µ can get contributions proportional to the spacetime curvature. This corresponds 
to the statement that correlators of Tµ

µ with one or more other stress tensors may not vanish. 
The coefficients are called ‘conformal anomaly coefficients’. 

An outline of some important theoretical points: 

• Chiral anomalies have both an UV and IR aspects, and are related to closely related to 
topology. They connect topological solutions in gauge theories, called instantons, to (integer) 
fermion numbers. The simplest example of an anomaly occurs in 1 + 1 dimensional QED (this 
is discussed in Peskin’s textbook and also in TASI lectures by Harvey). 

• The UV aspect can be seen because the anomaly shows up at short distances, in contact terms, 
and in a kind of residue from the regulator of loop diagrams. Chiral anomalies also involve 
a tension between Lorentz invariance and symmetry – we could eliminate the anomaly by 
breaking Lorentz invariance. 

• The IR aspect is that chiral anomalies can only be produced by massless particles, and in fact 
they are one-loop exact. This can be seen by integrating the anomalous current conservation 
equation 

2 

∂µJ5 g
�µνρσFµν Fρσµ = (3.19.1)

16π2 

On the LHS we find NR − NL, the difference in the number of left and right chiral fermions. 
On the RHS we find a topological invariant of the gauge field. Both sides must be integers, so 
there cannot be any further perturbative corrections to the anomaly. 

• From the path integral perspective, we saw that classical symmetries will become quantum 
symmetries if they leave the action and the measure of the path integral invariant. It is the 
non-invariance of the path integral measure that leads to anomalies. 

• Anomalies impose ’t Hooft anomaly matching conditions between the UV and IR descriptions 
of theories. These give information on IR theories of goldstone bosons, powerful constraints on 
the possible compositeness of quarks and leptons, and in the case of conformal theories, they 
constrain renormalization flows via the c-theorem and a-theorem of 2d and 4d QFT. 

A few important phenomenological implications: 
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• There is no η0 particle. This is a putative goldstone boson of the U(1) chiral global symmetry 
of SU(2) × SU(2), but it is absent because that symmetry is anomalous (and thus isn’t a 
symmetry). 

• The decay π0 → γγ is possible and predicted by the anomaly, although classically this process 
is impossible. The vertex is 

Nce
2 π0(x)

�µνρσFµν (x)Fρσ(x) (3.19.2)
48π2 Fπ 

derived from studying the effect of anomalies on goldstone bosons. Note that this affords 
a direct measurement of Nc! Historically, it was one of the original ways that physicists 
determined Nc = 3 in the standard model. 

• The standard model does not have any anomalies in its gauge symmetries; this is necessary for 
the self-consistency of these theories. The absence of anomalies puts non-trivial constraints 
on beyond the standard model fermions (such as supersymmetric models that postulate new 
fermion partners). 

• Anomaly matching conditions strongly constrains goldstone bosons in the IR theory, and can 
be used to prove that the SU(3) × SU(3) global symmetry must be spontaneously broken in 
the standard model. The idea here is that the low-energy theory of goldstone bosons must 
include anomaly terms that match the UV theory (of fermions). 

3.20 Anomalies as Almost Local Effects 

The most important feature of anomalies is that they represent effects that are almost but not quite 
local, as we will now describe. 
One way to talk about anomalies is by introducing sources for any and all operators that one 

wants to study. The main use of this formalism is that it makes it easy to distinguish between local 
and non-local effects. If we want to study the correlation functions of conserved currents, then we 
should introduce background vector fields Aµ corresponding to each current Jµ, and then study the 
functional Z R 

DφeiS[φ]+ ddxJµ(x)Aµ(x)Z[Aµ(x)] = (3.20.1) 

This object will be extremely complicated and non-local. By the words ‘non-local’ I just mean that 
when we vary with respect to Aµ(x), ie via 

δ δ 
Z = hJµ(x)Jν (y)i (3.20.2)

δAµ(x) δAν (y) A=0 

and this is non-zero when x =6 y. We will not be so ambitious as to try to explicitly discuss or 
classify the non-local structures that can appear in Z[A]. 
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However, we might also expect that Z[A] will have purely local terms. These would only 
contribute to correlators like hJµ(x)Jν (y)i when x = y, which means that they produce pure delta 
functions in these correlators. For example we might have a term of the form R 

ddxAµ(x)Aµ(x)Z[A] ⊃ e (3.20.3) 

which would produce a correlator 

hJµ(x)Jν (y)i ⊃ gµν δ
4(x − y) (3.20.4) 

for the physical currents Jµ (which are the genuine operators in our theory; remember that we are 
viewing the Aµ as background sources). 
Naively, from the point of view of low-energy physics and/or effective field theory, we should 

expect that these local terms are not very interesting. This follows from their definition – since they 
are local or ‘contact’ terms, they are only important when operators are at exactly the same point, 
which seems to mean that they must be UV sensitive. In particular, we would expect these terms 
to depend very explicitly on what regulator we use to define the very short-distance physics of our 
theory. This suggests that they are not at all universal. Anomaly terms are the exceptions to this 
intuition, which is one reason why they are interesting. 
Anomalies represent a violation of the symmetry, so before discussing them we need to understand 

how the symmetry appears in Z[Aµ(x)]. This is relatively simple. The symmetry says that the 
current is conserved, so 

∂µJµ = 0 (3.20.5) 

This means that Z[Aµ(x)] should be invariant under transformations that look like gauge transfor-
mations, insofar as 

Aµ(x) → Aµ(x) + ∂µα(x) (3.20.6) 

just takes Z Z 
δ JµAµ = ddxJµ(x)∂µα(x) Z 

= − ddx∂µJ
µ(x)α(x) = 0 (3.20.7) 

as long as α(x) vanishes at infinity (note that we use more complicated non-linear transformations 
for some non-abelian symmetries). Thus an anomaly must show up as a violation of the gauge 
invariance of Z[Aµ]. Ordinary violations of the symmetry can show up as non-local terms in Z. 
Anomalies are special terms that are almost local. If they really were entirely local, then they 

would just be cutoff-dependent objects that could be removed by a shift in the regulator (ie by 
adding purely local counter-terms to Z[A]). If they were entirely non-local, they would involve 
separate points and the symmetry would be completely and obviously broken. How can something 
be ‘almost’ local? The answer is that anomaly terms are non-local, but their variation under 
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Aµ(x) → Aµ(x) + ∂µα(x) is in fact purely local. What could this mean? Well consider a function 
like Z 

∂µAµ
ddX = x G[A; x] (3.20.8)

∂2 

where G is some general function of sources or fields (it depends on A, or perhaps on other similar 
sources for other currents and operators). Then under Aµ → Aµ + ∂µα, we see that this term 
becomes the purely local object Z 

δX = ddxα(x)G[A; x] (3.20.9) 

Thus it has a local variation under the symmetry transformation, even though it’s not local itself. It 
also has the implication that 

δX h∂µJµi = ∂µ = G[A; x] (3.20.10)
δAµ 

so that G does appear as an ‘anomaly’, ie as a violation of the usual current conservation condition. 
As a more complete example, the simplest type of anomaly, that associated with three U(1) currents, 
can appear as Z 

∂µAµ
d4 �abcdFabFcdx (3.20.11)

∂2 � � 
�abcdAbFcdNote that �abcdFabFcd = ∂a and so it is a total derivative. Thus derivatives in this 

expression can be moved around using integration by parts. It’s also worth noting that our anomaly 
term is formally scale-invaraint, ie it does not require a dimensionful coefficient. 
This almost local property of anomalies is what makes them special, important, and powerful. 

Usually anomalies are discussed as quantum effects that violate classical symmetries. This is correct 
of course, but by itself it doesn’t explain why they’re subtle. The point is that fully non-local 
violations of a symmetry would be very obvious, and would already be visible at the classical level. 
Purely local symmetry violations (such as what we would obtain from choosing a regulator that 
breaks the symmetry) could just be removed by a redefintion of the regulator. Anomalies straddle 
these two unsubtle limits. 
Since the anomalies are non-local, they can only be produced by massless particles. This follows 

because massive particle could just be integrated out of the theory, resulting in purely local terms 
suppressed by 

M 
1 
2 . However, because anomalies are ‘almost local’, they can still be seen in calculations 

at very high energies; as we observed they are essentially scale-invariant. Thus we see the famous 
fact that anomalies are in some sense simultaneously UV and IR phenomena, which makes it possible 
to match anomalies between UV and IR descriptions of a single theory (e.g. between a theory of 
quarks and the chiral Lagrangian for goldstone bosons). 
Of course it’s useful to pierce all this abstraction with a concrete example. The simplest possible 

anomaly occurs in 1 + 1 dimensions, where the anomaly term for QED is simplyZ 
∂µAµ

d2 x �abFab (3.20.12)
∂2 
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corresponding to the statement that the axial current 

Jµ 1 
�abFabh∂µ i = (3.20.13)axial 2π 

We can compute this directly by calculating a fermion loop. 
For this purpose, note that we can take the 2 gamma matrices (so we are dealing with a 1 + 1 

dimensional Dirac spinor) to be � � � � � � 
γ0 = 

0 
i 
−i 
0 

, γ1 = 
0 
i 

i 
0 

, γ̄ = 
1 
0 

0 
−1 (3.20.14) 

where γ̄ = γ0γ1 is the equivalent of γ5 in 3 + 1 dimensions. Then the vector and axial currents are 

¯Jµ
V = ψγµψ 

Jµ
A ¯ ¯ (3.20.15)= ψγµγψ 

and we simply have 

= −�µν JVJA (3.20.16)µ ν 

= −�µν γν .because γµγ̄ The fermion loop simply gives 

iΠµν (q) = i(q 2ηµν − qµ 1 
q ν ) (3.20.17)

πq2 

The vector current is conserved, but the axial vector current has 

�µνqµhJA
µ(q)i = 1 

qµAν (3.20.18)
π 

in the presence of a non-zero background electromagnetic field Aµ. 

3.21 A Lecture on Cosmological Perturbation Theory 

Why is the universe inhomogeneous? We think the answer is that it began being very, but 
not completely, homogeneous and those inhomogeneities collapsed. So where did those initial 
inhomogeneities come from? We think they arose from quantum fluctuations during an inflationary 
phase. To discuss this, we will cover four topics: 

1. FRW Cosmology and Inflation (Classically) 

2. Quantizing a scalar field in deSitter space and the 2-pt correlator. 

3. Gauge fixing issues and perturbations from a shift of the inflationary ‘clock’ 

4. Linear growth of density perturbations. 
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3.21.1 Classical FRW Cosmology and Inflation 

Einstein’s equations have solutions corresponding to homogeneous matter and energy called FRW 
solutions, with spacetime metric: 

ds2 = dt2 − a 2(t)dx2 
i (3.21.1) 

where a(t) is called the scale factor, and the Hubble parameter (not always a constant) is H = a
a 
˙ . 

Here we have already assumed that fixed time surfaces are spatially flat. There are two other 
possibilities – positive curved (spheres) or negatively curved (hyperboloids) but I’ll ignore that for 
reasons that will eventually be explained. 
The equations of motion for a(t) depend on the matter and energy in the universe. This isn’t a 

course on cosmology or GR, so I’ll be brief with all that. If we write the stress energy tensor of 
matter Tµν in the perfect fluid form then 

ȧ 
ρ̇ = −3 (ρ + p) 

a 
ä 4πG 
a 
= − 

3 
(ρ + 3p) (3.21.2) 

The first equation tells us how the energy density evolves with time, while the second tells us how 
athe scalar factor responds to the energy density. Note that 3 
a 
˙ is the relative rate of change of the 

Vspatial volume, ie it is 
V 
˙ 
. 

It’s conventional to define an equation of state for the perfect fluid as 

p = wρ (3.21.3) 

where we take w to be a constant. Free particles, aka ‘dust’ or non-interacting matter corresponds 
to w = 0, while radiation (relativistic particles) have w = 

3
1 . This simplifies the equations further to 

ρ̇ ȧ 
= −3 (1 + w)

ρ a 
ä 4πG 
= − ρ(1 + 3w) (3.21.4) 

a 3 

Note that there are two very special values of w, where the behavior of the equations changes 
qualitatively – w = −1 and w = −

3
1 . The former corresponds to a cosmological constant (the latter 

indicates the border between ‘accelerating’ and ‘decelerating’ cosmological expansion). Note that a 
cosmological constant does what its name implies – ρ̇ = 0 for w = −1. It is believed that all forms 
of matter satisfy w ≥ −1, so the cosmological constant is at the far end of a spectrum. 
DeSitter space corresponds to the solution w = −1. In this case, since ρ is constant, we simply 

have 

8πGρ 
ä = a (3.21.5)

3 
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which has exponentially growing and shrinking solutions 

a(t) = e Ht (3.21.6) 

8πG where the (constant) H2 = 
3 ρ. This is the paradigmatic example of an inflating spacetime. Since 

our universe has a cosmological constant, it will eventually (in many billions of years) look like this. 
Next let’s consider a classical scalar field, which provides a very specific kind of matter. Let’s 

take 

L = 
1
(∂φ)2 − V (φ) (3.21.7)
2 

as usual. If we include gravity, then we obtain FRW equations involving a(t) and φ. Let’s assume 
that φ is rolling down its potential homogeneously, so that φ(t). Then its equation of motion is 

¨ φ + 3Hφ̇ = −V 0(φ) (3.21.8) 

along with 

1 
φ̇2ρ = + V (φ)
2 

p =
1 
φ̇2 − V (φ) (3.21.9)
2 

Let’s think about these equations. The last two say that φ̇2 � V (φ) then the scalar field basically 
¨ acts like a cosmological constant. The first equation tells us that if φ � Hφ̇ then the scalar 

field’s motion is dominated by friction – specifically, what’s called ‘Hubble friction’. In this friction 
dominated, slow-roll limit we can write 

V 0 V 0 
φ̇ = − = √ (3.21.10)

3H 24πGV 

˙Slow roll inflation occurs when φ is small and the motion of φ is dominated by Hubble friction. We 
can translate this into the statement that 

V̇ � 1 
HV 
¨ φ � 1 (3.21.11)
Hφ̇ 

With some algebra we can translate these statements into conditions on the potential V and its 
˙ = V 0 ˙derivatives, noting that V φ. 
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3.21.2 A Free Scalar Field in DeSitter Space 

Now let’s discuss the quantization of a free massless scalar field in DeSitter space. This may be an 
interesting problem in its own right, but as we’ll explain in the next section, it’s the crucial ingredient 
we need to understand how density perturbations are generated during (slow-roll) inflation. 
For this purpose, it’s easiest if we change coordinates and write the pure dS metric as 

1 � � 
ds2 = 

H2η2 
dη2 − dx2 

i (3.21.12) 

2Htdx2 2Ht It’s easy to get here from dt2 −e i by pulling out an overall factor of e . Note that η ∈ (−∞, 0). 
Now we just proceed with canonical quantization according the to usual rules. In this metric, 

the action for our field is Z � �dηd3xi ~ 
H2η2 

(∂ηφ)
2 − (rφ)2 (3.21.13) 

The equations of motion are very simple to derive. We can go to (spatial) momentum space, in 
which case the solutions are 

H √ ikη f(η, k) = (1 − ikη) e (3.21.14) 
2k3 

and their complex conjugates. Here we have normalized the solutions so that the quantum operators Z � � 
φ(η, x) = d3k f(η, k)ak + f †(η, k)ak 

† (3.21.15) 

have canonical commutation relations with the canonical momentum fields 

∂ηφ 
π(η, x) = (3.21.16)

H2η2 

To check this, note that Z 
1 H2 � � 

ik(x−y)[π(η, x), φ(η, y)] = d3k e (1 + ikη)k2η − (1 − ikη)k2η 
H2η2 2k3 

= iδ3(~x − ~y) (3.21.17) 

and so we have canonically quantized correctly. 
Now we can compute the physical 2-pt correlator of the fields φ at the same time. This is 

~hφ(η, k)φ(η, k0)i = (2π)3δ3(~k + k0)|fk(η)|2 

H2 
~ = (2π)3δ3(~k + k0) (1 + k2η2) (3.21.18)
2k3 

This is the crucial result. Note that when kη � 1 this has an even simpler form. The fact that it is 
proportional to k−3 means that naively, in position space there isn’t any dependence on ~x − ~y at 
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all! This is the scale invariance that is often referenced with regards to density perturbations and 
fluctations in deSitter spacetime. 
Note that in fact the Fourier transform of the 2-pt correlator contains a logarithm, so it isn’t 

purely constant. Thus 

hφ(η, x)φ(η, y)i ∝ H2 log |~x − ~y| (3.21.19) 

This is in comoving coordinates. But in physical coordinates and the more physical time t, |~x − ~y| ∝ 
eHt for x and y on geodesics. This means that the 2-pt function between two points of separate 
timelike geodesics behaves as 

hφ(t)φ(t)i ∼ H3t (3.21.20) 

which means that the 2-pt function grows linearly in physical time! This is exactly the behavior 
expected for a random walk. This is no accident – the correlators in deSitter space are thermal, with 
Hawking temperature T = 

2 
H
π , and we are seeing a random walk due to this quantum temperature. 

3.21.3 Time at the End of Inflation as the Origin of Inhomogeneities 

Now we have the task of relating the very simple canonical quantization result from the last section 
to the actual, physical spectrum of density perturbations from slow-roll inflation. To do this precisely 
and correctly is actually more difficult and subtle than the simple computation in the previous 
section (see astro-ph/0210603 for the full analysis). Here we will just rely on a physical argument 
and explanation. 
We are studying a slow-roll model, which means that 

V̇ � 1 
HV 
¨ φ � 1 (3.21.21) 
Hφ̇ 

This can be translated into a statement about the standard slow roll parameters defined as � �2 

� ≡ 
1 
2GN 

V 0 

V 
φ̇2GN∼ 

2H2 
� 1 

η ≡ 
V 00 

GN V 

¨ ˙φ φ2GN∼ − + 
H ˙ 2H2φ 

� 1 (3.21.22) 

This also means that 

1 
φ̇2 � V (φ) (3.21.23) 
2 

in the slow roll regime, so the energy density of the universe is dominated by the potential V rather 
than by the kinetic energy of the scalar. This means that p ≈ −ρ or w ≈ −1, and so the spacetime 
metric will be approximately equal to that of deSitter space. 
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Thus we can view φ(t, x) = φcl(t) + δφ(t, x) where δφ is a quantum fluctuation about the 
time-dependent classical solution. Simply by virtue of the fact that φcl(t) is a solution to the classical 
equations of motion, if we expand φ in this form then δφ will not contribute at zeroth or first order, 
and so will just look like an massless scalar field in deSitter. We quantized such a field in the last 
section, so we know the behavior of the quantum fluctuations δφ. Very roughly speaking, we expect 
that δφ ∼ 

2 
H
π , and that correlations of δφ are scale invariant. 

The question we now face is – how do we translate the behavior of δφ into a prediction for the 
spectrum of density perturbations, the primordial inhomogeneities? 
Naively, you might expect that this is easy. Fluctuations δφ change the value of V (φ) = V (φcl+δφ), 

and this alters the energy density in the universe. This would lead to a prediction 

Thus we see that if this is the whole story, then δρ � H 

? V 0H 
δρ ≈ V 0δφ ∼ 

2π 

√ H ∼ � V 
Mpl 

(3.21.24) 

√ 
ρ ∼ , so the density perturbations would be 

Mpl 

double suppressed. 
However, this answer is completely wrong. The reason is that the primordial inhomogeneities 

are not dominated by shifts in the local energy density. Rather, they are dominated by the effect of 
shifts in the total time that the universe inflates (as a function of local position), which leads to 
more or less expansion (and thus dilution) in different regions. Thus we have that 

� � δφ 3H2 H3Hδt − 1δρ ≈ ρ e ≈ ρ3H ≈ ρ ≈ √ ρ (3.21.25)
φ̇ 2πφ̇ �Mpl 

and this last result is enhanced by √1 
� . This is the correct result. 

Why did we have to guess the answer this way? The reason is that to do the calculation 
correctly, one must couple φ to the full gravitational theory in perturbation theory, fix the gauge 
(general relativity has a huge gauge freedom), eliminate some auxiliary fields (like solving for one 
non-propagating component of Aµ after gauge fixing), then finally find an action for the remaining 
scalar fields in a physically sensible gauge. This is technically complicated and potentially confusing 
(see astro-ph/0210603 if you’re interested in how it’s really done). 

3.21.4 Growth of Linear Perturbations 
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