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Abstract 

Purchasing Power Parity (PPP) relates the prices of two countries by their exchange 

rates. Several economists use PPP to measure inflation in the absence of official and accu-

rate government reports. In the case of Iran, the government’s official inflation figures are 

significantly lower than what one would expect given their economic troubles; therefore, we 

apply PPP to measure inflation in Iran. 

Because of its volatility in the short-run, PPP is often used as a long-run economic 

indicator. The main cause for this is that PPP is a leading indicator, creating short-term 

inaccuracies. 

However, using machine learning algorithms, we forecast both the time until there is zero 

PPP lag (i.e. the official and implied inflation rates are equal) and the difference between the 

official and implied inflation rate (allowing us to predict official inflation rates) for Iran with 

minimal volatility. This allows us to use PPP accurately over both the short- and long-run. 

Keywords: Purchasing Power Parity (PPP), Iranian inflation, Machine learning, Support 

vector machine, Random forest, k -nearest neighbors, Neural network 

1. Introduction 

Purchasing Power Parity (PPP) has been a popular method for measuring inflation in 

countries where official reports of inflation data either stopped or are inaccurate given the 
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country’s economic environment. For example, PPP was used to measure Zimbabwe’s hy-

perinflation once Zimbabwe’s government ended the reporting of official inflation data.1 

Because PPP uses exchange rate data - which is available daily - to predict inflation, 

it serves as a leading indicator for official inflation. Realizing the short-term volatility of 

exchange rates, many economists reject PPP as an acceptable short-run indicator. This 

volatility creates a rift between the PPP implied inflation rate and the official inflation rate. 

According to Rogoff (1996), the difference between the PPP implied inflation rate and the 

official inflation rate decrease only 15 percent per year.2 

This slow mean reversion rate undermines the use of PPP in predicting inflation, espe-

cially over short periods of time (such as in the case of Iran). However, by using machine 

learning (ML) algorithms, we can predict this PPP lag time and the deviation of PPP from 

official inflation rates. 

Recently, machine learning has become significantly more popular, especially in the field 

of economics. Most econometric analysis and empirical economic analysis involves specifiying 

a model, evaluating confidence intervals for estimated parameters, and applying that model.3 

It is important to note that ML models do not serve the same purpose of parameter esti-

mation; while ML models can return regression coefficients, the results are rarely consistent. 

However, using ML in economics offers several advantages to this traditional approach, in-

cluding uncovering patterns, fitting complex data in flexible functions, and finding functions 

that perform accurately out-of-sample. These are some of the main purposes of creating 

supervised ML algorithms.4 

1Hanke, Steve H. and Kwok, Alex K.F. “On the Measurement of Zimbabwe’s Hyperinflation.” Cato 

Journal, vol. 29, no. 2, 2009, pp. 353-364. https://object.cato.org/sites/cato.org/files/serials/files/cato-

journal/2009/5/cj29n2-8.pdf 
2Rogoff, Kenneth. “The Purchasing Power Parity Puzzle.” Journal of Economic Literature, vol. 34, no. 

2, 1996, pp. 647-668. JSTOR, JSTOR, www.jstor.org/stable/2729217. 
3Athey, Susan. “The Impact of Machine Learning on Economics.” The Economics of Artificial Intelli-

gence: An Agenda, by Ajay K. Agrawal et al., University of Chicago Press, 2018. 
4Mullainathan, Sendhil, and Jann Spiess. “Machine Learning: An Applied Economet-

ric Approach.” Journal of Economic Perspectives, vol. 31, no. 2, 2017, pp. 87-106. 

https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.31.2.87 
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2. The PPP Equation 

Before continuing our discussion of PPP, it is important to understand the calculation of 

PPP. For our calculations, let: 

• PI = the Iran price level in Iranian rial (IRR) 

• PUS = the United States price level in U.S. dollars (USD) 

• EIRR/USD = the exchange rate of IRR:USD (IRR per unit of USD) 

PPP, in a static sense, states that: 

PI 
= EIRR/USD

PUS 

PPP in a dynamic sense - which looks at the changes in price levels - states that: 

ΔPI
1 + 

PI ΔEIRR/USD 
= 1 + 

1 + 
ΔPUS EIRR/USD 

PUS 

In countries which we suspect have high inflation, such as Iran, ΔPUS can be assumed to 

be 0, given that it is insignificant compared to ΔPI. Therefore: 

ΔPI ΔEIRR/USD 
= 

PI EIRR/USD 

The final PPP equation relates Iran’s inflation to the IRR’s exchange rate to the USD.5 

Given the volatility of these exchange rates, many economists ignore PPP as an accurate 

measure of inflation in the short-run; many accept that PPP deviations have a 3- to 5- year 

half-life.6 

5We use black market exchange rate data to get a more accurate sense of how the free market values the 

rial, as opposed to the official exchange rate pegs set by the government 
6Rogoff, “The Purchasing Power Parity Puzzle.” 
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3. PPP Deviations in Iran 

Our PPP data for Iran (beginning on 1/19/2012) took over a year and a half to reach 

equilibrium with the official inflation rate (i.e. official inflation rate - PPP implied inflation 

rate = 0). Following this point of inflection, the PPP implied inflation rate stayed relatively 

close to the official inflation rate. Recently, however, the deviation has grown significantly 

(see Figure 1). 

Figure 1: PPP inflation rate deviations in Iran 

On average over all our available data, the PPP implied inflation rate is 10.786% higher 

than the official inflation rate. This indicates the short-run inaccuracies of PPP implied 

inflation rates. 

Before creating models to limit this variance, we must first examine the relationships 

between the factors of PPP inflation and the PPP deviation. We test how the following 

factors correlate to the difference between the official and implied inflation rate (DoI) and 

the months to equilibrium (MtE; months until the two rates are the same): 

Black market exchange rate 
1. Black market premium (%; - 1)

Official exchange rate 
2. Official exchange rate 
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3.1. Difference between Official and Implied Inflation Rate (DoI) 

Figure 2 shows the correlations between the black market premium and official exchange 

rate to the DoI. 

(a) 

(b) 

Figure 2: (a) corr(Black market premium, DoI). (b) corr(Official exchange rate, DoI). 

Both regressions are statistically significant (p-value < 0.05). However, both show a weak 

correlation coefficient (r-value) and coefficient of determination (R2). The models’ R2 values 

of 0.595 and 0.224, respectively, show the models are very weak. 
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3.2. Months to Equilibrium (MtE) 

Figure 3 below shows the correlations between the black market premium and official 

exchange rate to the MtE. 

(a) 

(b) 

Figure 3: (a) corr(Black market premium, MtE). (b) corr(Official exchange rate, MtE). 

Both these regressions are weak - again. Despite their statistical significance, the r-value 

and R2 are too low to be able to make low-variance predictions about PPP lag using these 

linear regressions. The same goes for the DoI regressions. 
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4. Machine Learning Practices 

Like most ML algorithm creators, we split the data into two components: 

1. The training set. This is what the models use to ”learn” the coefficients of the model 

2. The test set. This is a set of known data for which the model predicts data. The 

predicted data is compared to the observed data to measure the model’s accuracy. 

Although ML algorithms have proven to be very powerful in fitting data, in many cases, 

they overfit the data to the specific training data. Overfitting creates a very high variance 

for the models when they are applied to data outside of the give training set (i.e. when 

applied to the most recent data outside the training set to predict PPP lag). 

To examine the possibility of overfitting, we employ k -fold cross-validation (with k = 

3). Cross-validation tests the model on difference splits of the dataset. In k -fold cross-

validation, the original sample is randomly divided into k equal samples. This allows us to 

test the model’s performance on a different test set to ensure that its accuracy holds when 

applied to different datasets of the same type. 

5. Support Vector Machines (SVMs) 

The support vector machine was first invented by Vapnik and Lerner (1963).7 It seeks 

to find supporting vectors that create the maximum distance between groups, or maximize 

margin (defined as the distance between supporting hyperplanes). 

Because SVMs create separations that are less influenced by large outliers, they can 

often be more accurate than other regressions. Furthermore, SVMs can be made with both 

a linear kernel and a radial basis function kernel. This non-linear regression is called the 

kernel trick, which allows us to map inputs into features of higher dimensions, allowing for 

further optimization of the model. 

7Vapnik, Vladimir N. and A. Lerner. “Pattern recognition using generalized portrait method.” Automa-

tion and Remote Control, vol. 24, 1963, pp. 774-780. 
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6. Random Forests (RFs) 

Random Forests (RFs) were first introduced by Tin Kam Ho.8 Random Forests create 

several decision trees from the training set, and output the mean prediction of the trees. 

The primary advantage of a random forest over a normal decision tree is that random forests 

reduce overfitting, thereby increasing their accuracy. 

7. k-Nearest Neighbors (k -NNs) 

k -Nearest Neighbors were invented by Evelyn Fix and J.L. Hodges in an unpublished 

military report in 1951.9 The model predicts a value for an input based on the average its k 

nearest neighbors. 

One advantage of the k -Nearest Neighbors regressor is that it is a simple lazy-learner 

algorithm, meaning that the function is calculated locally and values are predicted only 

once test data is put in (as opposed to eager learners, who learn from the training data). 

Furthermore, because it predicts values based on data similar to the input, it works very 

well on both noisy and simple data. 

8. Deep Neural Networks (DNNs) 

Artificial neural networks were first introduced by Warren McCulloch and Walter Pitts.10 

Artificial neural networks are based around computing values similar to an animal brain; they 

create several connected nodes called artificial neurons, which can process and send signals. 

These connections are called ”edges.” Both the neurons and the edges have set weights that 

change as the network learns. 

8Ho, Tin Kam. “Random Decision Forests.” Proceedings of the 3rd International Conference on Document 

Analysis and Recognition, Montreal, QC, 14-16 August 1995, pp. 278-282. 
9Fix, Evelyn and J.L. Hodges. “Discriminatory Analysis . Nonparametric Discrimination: Consistency 

Properties.” International Statistical Review / Revue Internationale De Statistique, vol. 57, no. 3, 1989, pp. 

238-247. JSTOR, JSTOR, www.jstor.org/stable/1403797. 
10McCulloch, Warren and Walter Pitts. “A Logical Calculus of Ideas Immanent in Nervous Activity.” 

Bulletin of Mathematical Biophysics, vol. 5, no. 4, 1943, pp. 115-133. doi:10.1007/BF02478259. 
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This layer of neurons is called the ”hidden layer.” A DNN has multiple hidden layers. 

Because they have the structure of a brain instead of a defined structure (i.e. linear), neural 

networks are robust in approximating functions regardless of their structure. 

9. Hyperparameter Search Space 

We created our models using scikit-learn in Python.11 To optimize the accuracy of the 

models, we tested the models using varying hyperparameters, and chose the ones that yielded 

the highest accuracy. We tested: 

• SVM 

– γ (gamma; kernel coefficient) - {0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 

1/n features (scikit-learn’s automatic value)} 

– C (penalty parameter of the error term) - {0.001, 0.01, 0.1, 1, 10, 100, 1000} 

– kernel (the kernel type to be used in the algorithm) - {linear, radial basis function, 

polynomial, sigmoid} 

– � (epsilon; the epsilon-tube within which no penalty is associated in the training 

loss function with points predicted within a distance epsilon from the actual value) 

- {.001, .01, .1, 1} 

• RF 

– number of trees - {10, 50, 100, 200, 300} 

– criterion to measure the quality of a split - {mean squared error, mean absolute 

error} 

• k -NN 

– n neighbors (number of neighbors to call) - {3, 4, 5, 8, 10, 15} 

– weights - {uniform, distance} 

11All definitions are from the scikit-learn website (http://scikit-learn.org/) 
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• DNN 

– hidden layers -{25, 50, 75, 100, 150, 200} 

– activation function for the hidden layer - {identity (no-op activation), logistic 

sigmoid function, hyperbolic tan function, rectified linear unit function} 

– solver for weight optimization - {LBFGS (quasi-Newton method), “adam” stochas-

tic gradient-based optimized} 

10. Model Creation 

Our models accept the black market premium, official exchange rate, and PPP implied 

inflation rate as its inputs. They predict the DoI and MtE with these inputs. 

Along with optimizing the hyperparameters for accuracy, we tested different splits of the 

train and test set to see which split yielded the highest accuracy. We found the following 

parameters yielded the most accurate models: 

• Models predicting DoI (difference of inflation, or reported - implied inflation rate) 

– Training dataset size: 60%, testing dataset size: 40% 

– SVM 

∗ γ (gamma) = 0.0001 

∗ C = 100 

∗ kernel = radial basis function 

∗ � (epsilon) = 0.01 

– RF 

∗ number of trees = 50 

∗ criterion = mean absolute error 

– k -NN 

∗ n neighbors = 4 

∗ weights = distance 
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– DNN 

∗ hidden layers = 50 

∗ activation function = identity (no-op activation) 

∗ solver for weight optimization = LBFGS (quasi-Newton method) 

• Models predicting MtE (months to equilibrium, or months until DoI = 0) 

– Training dataset size: 70%, testing dataset size: 40% 

– SVM 

∗ γ (gamma) = 0.000001 

∗ C = 100 

∗ kernel = radial basis function 

∗ � (epsilon) = 0.01 

– RF 

∗ number of trees = 50 

∗ criterion = mean squared error 

– k -NN 

∗ n neighbors = 5 

∗ weights = distance 

– DNN 

∗ hidden layers = 50 

∗ activation function = identity (no-op activation) 

∗ solver for weight optimization = LBFGS (quasi-Newton method) 

11. Description of DoI and MtE Data 

11.1. Distribution of Data 

Before analyzing the accuracy of the different models, it is important to understand the 

distribution and autocorrelation of the outputs (DoI and MtE). 
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Though we expect the DoI data may be normally distributed, we do not expect the 

MtE data to be normally distributed. This is because the inflation rates reach equilibrium 

multiple times throughout the dataset. Therefore, after the first time when the inflation 

rates are at equilibrium, most of the MtE values will be low. Therefore, we expect the MtE 

distribution to have higher frequencies at lower MtE values. See Figure 4 on the next page. 

(a) 

(b) 

Figure 4: (a) Histogram of DoI data. (b) Histogram of MtE data. 

As expected, the distribution for the DoI appears close to normal, while the MtE distri-

bution is far from it. Though it is important to note that the data itself does not come from 

a normal distribution, it does not affect our model creation. 
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11.2. Autocorrelation of Data 

We expect the DoI data to have high autocorrelation, given that the PPP implied in-

flation rate and official inflation rate approach each other when the DoI is high (i.e. mean 

reversion). Therefore, the DoI data will have a high autocorrelation in the beginning of the 

data, which will level out after the inflation rates reach equilibrium for the first time. This 

same phenomenon will likely apply to the MtE data. At the beginning of the dataset (i.e. 

before the first time DoI = 0), the MtE is always approaching 0. Therefore, it will have high 

autocorrelation in the beginning of its data. See Figure 5. 

(a) 

(b) 

Figure 5: (a) Autocorrelation plot of DoI data. (b) Autocorrelation plot of MtE data. 
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As expected, both datasets have some autocorrelation. Datasets with minimal or no 

autocorrelation will have autocorrelation values near 0 for the majority of the dataset. The 

high autocorrelation values in the first 1̃0 lags, along with the negative autocorrelation after 

the first time DoI = 0 shows that both the DoI and MtE data have autocorrelation. 

12. Model Analysis 

12.1. DoI Models 

Because we are primarily interested in finding and analyzing the PPP lag time, our 

discussion of the DoI models will be limited to simple goodness-of-fit metrics - R2 and mean 

squared error. Both these metrics give an estimate of how well the model fits the data. 

Table 1 below shows the R2 and mean squared error for the DoI models. 

Model R2 Mean Squared Error 

SVM 0.938 81.004 

RF 0.973 35.309 

k -NN 0.914 112.929 

DNN 0.961 50.970 

Table 1: R2 and mean squared error of DoI models. 

All four models have very strong accuracy according to their R2 and mean squared error. 

Furthermore, the models have a significantly lower variance than the simple linear models 

(made in Sections 3.1 and 3.2). 

12.2. MtE Models 

As we did with the DoI models, we will first examine the R2 and mean squared error of 

the models. 

After measuring these basic goodness-of-fit metrics, we will then perform k -fold cross-

validation, along with various analyses on the models’ residuals to both further examine 

their accuracy by testing their randomness and normality. 

12.2.1. R2 and Mean Squared Error 

Table 2 on the next page shows the R2 and mean squared error of the models. 
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Model R2 Mean Squared Error 

SVM 0.902 2.181 

RF 0.883 2.607 

k -NN 0.860 3.113 

DNN 0.747 5.615 

Table 2: R2 and mean squared error of MtE models. 

The models’ R2 values are relatively strong, and the mean squared error for all models 

is low. All models have a mean squared error of less than 6 months, indicating that our 

estimates for PPP lag will likely have an error of less than half a year. 

12.2.2. k-Fold Cross-Validation 

To examine that our models are not overfitting (meaning they would have very high 

variance when applied to other data), we performed k -fold cross-validation for the models’ 

R2 scores. 

Table 3 below shows the cross-validation scores and the 95% confidence intervals of the 

scores. 

Model Cross-Validation Score for R2 95% Confidence Interval 

SVM 0.874 ±0.103 

RF 0.710 ±0.268 

k -NN 0.768 ±0.096 

DNN 0.468 ±0.344 

Table 3: Cross-validation scores and 95% confidence interval for R2 

Only the DNNs cross-validation score is significantly lower than its R2 . This combined 

with the fact that its 95% confidence interval has the largest range of the regressions indicates 

that the DNN is likely overfitting to some extent. However, the DNN had the lowest R2 and 

highest mean squared error of the 4 regressions, so we already suspected it would be the 

least accurate. This assumption will be tested more later. 

The other three regressions have cross-validation scores only marginally lower than their 

R2 , and their 95% confidence intervals have small ranges. The R2 for the RF and k -NN is at 
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the upper end of the 95% confidence interval for the cross-validation score. Meanwhile, the 

SVM’s R2 is very close to its cross-validation score. Therefore, the SVM is likely the most 

accurate regression. The RF and k -NN regressions are similarly accurate, and the DNN is 

the least accurate. 

12.2.3. Standardized Residuals Test 

To prove that the models’ errors are truly random and to account for the fact that 

variances for different observations differ, we standardized the residuals of all four models. 

Because the number of samples (n) in our test set is less than 30, we used the following 

equation: 
observed - expected valuei

Standardized Residuali = r P n( i=1 observed - expected valuei)2 

n − 2 

95% of the standardized residuals should be within two standard deviations of the mean, 

and any standardized residual with an absolute value greater than 2 is an outlier. See Figure 

6 below. 

Figure 6: Standardized residuals test results for all four models. 
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Only the RF fails to pass the 95% threshold for standardized residuals within two stan-

dard deviations of the mean. Furthermore, it has two standardized residuals with absolute 

value greater than 2. Therefore, its errors are not truly random. 

Along with passing the 95% threshold, each of the other three models have only one 

standardized residual with absolute value greater than 2. Furthermore, their standardized 

residuals plots have no visible trend, further indicating that the models’ errors are random. 

Therefore, the standardized residuals test confirms that the errors of the SVM, k -NN, 

and DNN are random and likely normally distributed. The results question the accuracy of 

the RF model, given that it fails some qualifications of the statistical test. 

12.2.4. Q-Q Plot for Standardized Residuals 

To further examine the distribution of the standardized residuals for the models, we 

created a Q-Q plot (quantile-quantile). A Q-Q plot plots the quantiles of our sample data 

against the quantiles of a normal distribution. A normally distributed sample has a Q-Q 

plot with a line y = x, with most of the points close to said line. See Figure 7 below. 

Figure 7: Q-Q plot of standardized residuals for all four models. 
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All the Q-Q plots seem to have a line with a 45◦ angle. Furthermore, they all appear to 

have a line close to y = x, though the DNN’s line is slightly elevated. 

The points for the SVM, k -NN, and DNN appear very close to the line with no significant 

jumps. Though most of the RF’s points fall close to the line, the two left-most points have 

a significant jump between them and the rest of the graph. 

Therefore, the SVM, k -NN, and DNN standardized residuals likely follow a normal dis-

tribution according to the Q-Q plot, while the RF standardized residuals likely follow a 

bimodal distribution because of the jump in the data. 

12.2.5. Shapiro-Wilk Test for Normality of Standardized Residuals 

To further test whether the models’ standardized residuals are normally distributed, we 

performed a Shapiro-Wilk test on the standardized residuals. 

The test returns a W-value between 0 and 1. W = 1 when the data is perfectly normally 

distributed. Smaller values for W indicate the data is less likely to be normally distributed. 

The test also returns a p-value. Note, however, that the H0 (null hypothesis) of a Shapiro-

Wilk test is that the data is not normally distributed. Therefore, higher p-values indicate a 

higher likelihood that the data is normally distributed, as a higher p-value signals a lower 

probability of rejecting H0. See Table 4 below. 

Model W-value p-value 

SVM 0.943 0.193 

RF 0.895 0.016 

k -NN 0.965 0.556 

DNN 0.965 0.550 

Table 4: Shapiro-Wilk test for normality of standardized residuals results. 

The Shapiro-Wilk test confirms our suspicion from the Q-Q plot that the RF’s standard-

ized residuals are not normally distributed. The RF had the lowest W-value of the four 

models, and its p-value of 0.016 indicates we can reject H0. Therefore, because the p-value 

allows us to reject H0, we conclude that the RF’s standardized residuals are not normally 

distributed. 
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The test’s result for the other three models’ standardized residuals are encouraging. The 

SVM has the lowest p-value of the three, at 0.193. However, because p > 0.05, we cannot 

reject the H0 that the SVM’s standardized residuals are normally distributed. 

Because the k -NN and DNN have W-values close to 1 and high p-values, it is very likely 

k -NN and DNN’s standardized residuals are normally distributed. Despite the SVM’s high 

W-value, its low p-value indicates there is a higher chance of rejecting H0 for the SVM than 

for the k -NN and DNN. Therefore, though it is likely the SVM’s standardized residuals are 

normally distributed, we cannot come to a certain conclusion. We can, however, conclude 

with high certainty that the RF’s standardized residuals are not normally distributed, given 

that p < 0.05. 

12.2.6. Durbin-Watson Test for Autocorrelation of Standardized Residuals 

Along with testing that the models’ standardized residuals are normally distributed, it is 

important to test that they have minimal autocorrelation. Any significant autocorrelation 

in a model’s errors indicates it makes the same mistake several times and is, therefore, 

underfitting to an extent (i.e. the model is not complex enough to accurately understand a 

relationship between our inputs and outputs). 

To test for autocorrelation, we performed a Durbin-Watson test. A Durbin-Watson test 

returns a Durbin-Watson test statistic (DW-value) between 0 and 4. A value of 2 indicates 

no autocorrelation. Values between 0 and 2 indicate positive autocorrelation, and values 

between 2 and 4 indicate negative autocorrelation. See Table 5 below. 

Model DW-value 

SVM 2.159 

RF 2.600 

k -NN 2.009 

DNN 2.054 

Table 5: Durbin-Watson test for autocorrelation of standardized residuals results. 

The Durbin-Watson test confirms our results from the other tests in terms of which 

models are most usable. The k -NN and DNN have DW-values closest to 2, with the SVM 
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close behind them. The RF has a DW-value significantly farther from 2 than the other three 

models. Therefore, the Durbin-Watson test helps prove that the k -NN and DNN are the 

most accurate models, followed by the SVM, and then the RF. 

13. Improving Accuracy for Future Models 

Though our models are already very robust, we suspect they can be improved with more 

data. Our data extends back to only January 2012. Because we only included points for 

which the official inflation rate was available, we only have one data point per month. 

To examine whether adding more data would increase the models’ accuracy, we plotted 

the models’ learning curves (their training and testing set error with varying training set 

sizes). The trend of the error lines indicates not only whether future data will improve the 

model accuracy but also if there is a high bias or error in the models. We can examine these 

lines for both mean squared error (MSE) and R2 . See Figure 8 below. 

Figure 8: Learning curve of all four models for MSE. 
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Note that the k -NN data starts at a training set size of 5 because the k -NN is constructed 

using the 5 nearest neighbors, and n samples ≥ n neighbors. 

The noticeable difference between the training set error and testing set error lines for the 

RF and k -NN indicate that adding more training data is very likely to increase accuracy. 

Though the training and testing set lines appear very close together for the SVM and 

DNN, there is still a significant margin between the final result. The difference between the 

testing set error and training set error for the SVM and DNN is about 33.336 and 48.960, 

respectively. Therefore, all four models are likely to have a decreased MSE if more training 

data was added. 

The minimal changes in the training set error indicate that the models are in a low bias, 

high variance state. We think this is the ideal case in the bias-variance tradeoff for our 

models, given that additional data will have similar qualities to our current training data. 

We also made a learning curve for the models’ R2 . See Figure 9 below. 

Figure 9: Learning curve of all four models for R2 . 
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These learning curves also show a low bias state. Because the training set’s R2 is between 

0 and 1, it is difficult to see how close the testing set error line is to the training set error 

line. See Figure 10 below for the learning curves with a smaller y-axis range, such that the 

difference between the training set error and testing set error lines is clear. 

Figure 10: Learning curve of all four models for R2 with y-axis range of (-10, 5). 

This shows that though the R2 of the testing set is approaching that of the training set, 

there is still a sizable difference between the two. Therefore, the models’ R2 would increase 

if more training data was added. 

14. Conclusion 

By applying ML algorithms to Iran’s inflation data, we can accurately measure the PPP 

lag time, and how long it will take for there to be no PPP lag. 

Though we only minimally discussed the DoI models, they can be used to predict Iran’s 

official inflation rate with very high accuracy (at least by basic goodness-of-fit metrics). 
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Our MtE models are also very robust. They not only have strong goodness-of-fit metrics, 

but also pass various other tests examining whether the errors are normally distributed and 

random. Therefore, they can be used to measure PPP lag times with minimal variance and 

high accuracy. 

As more data becomes available, the models’ accuracy will improve, as shown by the 

learning curves. This will make even lower variance predictions of PPP lag. Furthermore, 

these same methods can be applied to other countries with enough data to predict their PPP 

lag. 
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