
 

SAE./No.117/August 2018 

Studies in Applied Economics 

MONETARY SERVICES AGGREGATION UNDER 
UNCERTAINTY: A BEHAVIORAL ECONOMICS 
EXTENSION USING CHOQUET EXPECTATION 

William A. Barnett, Qing Han, Jianbo Zhang 

Johns Hopkins Institute for Applied Economics, 
Global Health, and the Study of Business 

Enterprise 



 

  

 

 
  

 
 

 
 

 
 

 
 

 
 

 

 

           

               

             

                 

                    

               

             

            

                

              

 

      

 

      

           

 

Monetary Services Aggregation under Uncertainty: A Behavioral Economics 

Extension Using Choquet Expectation 

William A. Barnett 
University of Kansas, Lawrence, and Center for Financial Stability, NY City 

williamabarnett@gmail.com 

Qing Han 
University of Kansas, Lawrence 

qinghan@ku.edu 

Jianbo Zhang 
University of Kansas, LawrenceA 

jbzhang@ku.edu 

August 1, 2018 

About the Authors: Dr. William A. Barnett (williamabarnett@gmail.com) is an eminent economic 

scientist and originator of the Divisia monetary aggregates and the “Barnett Critique.” He is Oswald 

Distinguished Professor of Macroeconomics at the University of Kansas Department of Economics and 

Core Faculty Member of the Center for Global and International Studies at the University of Kansas, as 

2well as Senior Fellow of the IC Institute at the University of Texas at Austin and Fellow of the Institute 

for Applied Economics at Johns Hopkins University. He is Founder and Editor of the Cambridge 

University Press journal, Macroeconomic Dynamics, and Founder and Editor of the Emerald Press 

monograph series, International Symposia in Economic Theory and Econometrics. Dr. Barnett recently 

founded the Society for Economic Measurement and serves as president. He is also Director of the 

Advances in Monetary and Financial Measurement Program at the Center for Financial Stability. 

Qing Han (saodibonze@gmail.com) is a PhD candidate at The University of Kansas. He previously received 

MA and PhD degrees from Shandong University in China. His research spans from macroeconomic dynamics 

and monetary aggregation to nonparametric estimation and testing. Currently his research focuses on how 

people’s beliefs exert their effects on macroeconomic aggregation. In 2018 he received the Research 

Presentation Award from The University of Kansas. 

mailto:saodibonze@gmail.com
mailto:williamabarnett@gmail.com
mailto:jbzhang@ku.edu
mailto:qinghan@ku.edu
mailto:williamabarnett@gmail.com


 

           

       

      

        

        

     

       

 

 

  

 

   

 

         

  

 

  

         

        

   

      

         

       

     

      

      

          

                                                             
  

   
 

Abstract: A central tenet of behavioral economics is that the axioms producing expected utility 

maximization by consumers are too strong to be descriptive of rational behavior. The existing 

theory of monetary services aggregation under risk assume expected utility maximization. We 

extend those results to uncertainty under weaker axiomatic assumptions by using Choquet 

expectations. Choquet integration reduces to Riemann integration as a special case under the 

stronger assumption of additive probability measure, not accepted in the literature on behavioral 

economics. Our theoretical results on monetary services aggregation are generalizations of prior 

results, nested as special cases of our results under stronger behavioral assumptions. 

JEL Classification: E41, G12, C43 

Keywords: Uncertainty Aversion, User Cost, Choquet Expectation, Monetary Aggregation 

Note: Address correspondence to Qing Han, Economics Department, University of Kansas, 1460 

Jayhawk Blvd., Snow Hall, Lawrence, KS 66045-7585; email: qinghan@ku.edu. 

1. Introduction 

Expected utility maximization is based on behavioral assumptions having strong 

normative support, as in Bayesian econometrics. But as a descriptive model of 

rational behavior by consumers, the growing field of behavioral economics widely 

rejects expected utility maximization.1 We consider monetary aggregation theory 

under non-expected utility and derive the model implications for monetary asset 

user costs and optimal portfolio selection, when agents are uncertainty averse. 

Specifically, under non-expected utility maximization, we permit consumers’ 

subjective probability distributions under uncertainty to be inconsistent with linear 

probabilistic additivity. In contrast most economists assume that subjective 

probabilities must sum to one, as a normative representation of how rational 

11 The central role in behavioral economics of non-expected utility maximization has been emphasized by 
Kahneman and Tversky (1979), Tversky and Kahneman (1992), and Thaler (1993). Also see Grabisch (1996) and 
Chateauneuf and Cohen (2010), among many others. 

mailto:qinghan@ku.edu


      

      

     

      

           

         

         

    

      

       

     

    

    

         

           

      

           

   

       

         

         

           

        

        

     

       

           

          
                                                             
  

 
  

consumers “should behave,” although that assumption is inconsistent with findings 

in the behavioral economics literature about how consumers actually behave. 

We use the term uncertainty, as opposed to risk, since we do not assume that 

the objective probability distribution is known to the consumer. To be consistent 

with the relevant literature, we also assume that the utility function, in a dynamical 

context, exhibits a recursive structure: current period utility depends on expected 

future utility as well as on current consumption. Under the assumption that this 

recursive dependence is separable, the non-expected utility we use is expected utility 

under a nonadditive probability measure. The resulting model aims to separate the 

more subtle "uncertainties" from quantifiable "risk." The objective of this paper is to 

unravel the implications of monetary aggregation theory, when consumers’ behavior 

deviates from expected utility maximization. 

The literature on monetary services aggregation derived from aggregation 

theory began with Barnett (1978, 1980). The resulting literature separates the 

investment motive from the services motive, when monetary assets yield interest as 

well as providing monetary services. If the interest rates paid to monetary asset 

holders were a monetary service, then coal mines, real estate, and the entire capital 

stock of the country would be money. 

That literature was subsequently extended to include risk by Poterba and 

Rotemberg (1987) and Barnett (1995), when current period interest is not known 

until the end of the period. Barnett, Liu, and Jensen (1997) further extended to the 

case of CCAPM (consumption capital asset pricing) and subsequently by Barnett and 

Wu (2005), who extended to the case of intertemporal nonseparability providing 

larger risk adjustments than produced by CCAPM. Recently, Keating and Smith 

(2018) explore the usefulness of aggregation theoretic monetary aggregates in Taylor 

rules policies in the framework of a rational expectations model.2 

We permit the possibility that consumers’ behavior might deviate from 

expected utility maximization. Monetary assets are durable goods and thus have user 

2 Other important contributions to this literature include Barnett (2012), Barnett and Chauvet (2011), Barnett, 
Keating, and Kelly (2011), Belongia and Chalfant (1989), Barnett and Ireland (2014; 2015a,b;2016), Serletis and 
Gogas (2014), and Serletis and Rahman (2013). 



          

         

        

  

        

         

      

         

        

       

         

           

     

        

     

   

      

        

          

 

       

     

       

       

       

        

       

       

                                                             
   

cost prices. Deriving those user costs is a fundamental step in producing monetary 

aggregates from economic aggregation theory. As a result, our research begins by 

determining the implications of non-expected utility for the user costs of monetary 

assets. 

The expected utility of von Neumann and Morgenstern received axiomatic 

support from Savage (1954), using a prior subjective probability that sums up to one. 

The Savage axioms and the resulting expected utility maximization imputed to 

consumers have been building blocks of many economic models. Yet Allais (1953) 

and the Ellsberg (1961) paradox find that human being's behavior frequently falls 

outside the prediction of expected utility. One group of models, seeking to generalize 

expected utility theory, distinguishes between risk and uncertainty, as defined by 

Knight (1921) and further developed by Bewley (2002). In that literature, risk exists 

when economic agents know the objective probabilities, which do sum to one. 

Under uncertainty, the objective probabilities are not known to economic agents, 

and the resulting behavior of economic agents need not be representable by a 

subjective probability distribution, having the same measure theoretic properties of 

the unknown objective probability distribution. Although the subjective joint 

probability of the union of all possible outcomes is necessarily one, the sum of the 

probabilities of each of those independent, separate outcomes is not necessarily 

3one. 

We follow that approach. In particular, the model we use is built on a 

nonadditive probability measure. This approach has its foundations in Schmeidler's 

findings: if probabilities reflect people's willingness to bet, those probabilities need 

not be additive. An axiomatic treatment of nonadditive probability models can be 

found in Schmeidler (1986, 1989), Gilboa (1987, 2009), and Gilboa and Schmeidler 

(1989). While this approach does not capture all of the objections to expected 

utility maximization in the behavioral economics literature, this generalization does 

permit a formal mathematical solution producing an elegant generalization to 

3 For a formal definition of nonadditive probability, see the first paragraph of section 2.1 below. 



      

      

         

           

      

        

      

     

        

       

     

       

           

          

       

          

      

     

    

            

       

       

         

    

       

       

             

    

         

        

expected utility maximization under weaker assumptions than the Savage axioms 

and is consistent with Tversky and Kahneman’s (1992) approach. 

We find that nonadditive probability measure yields boundaries to the user cost 

of monetary assets, depending on whether the marginal utility and rate of return are 

comonotonic or countermonotonic. This does not mean, however, that user costs 

under nonadditive expectation are only subject to inequality constraints. If there 

exists an underlying probability measure to properly define the nonadditive 

probabilities, we find that the user cost has a rank-dependent expected utility 

representation. This solution has an expected utility form, but uses transformed 

distorted additive probabilities as weights. The rank dependence is much less 

restrictive than might appear to be the case, since there is always a permutation to 

line up the objective function in an ascending/descending order. 

We also find that under optimality there is a user cost interval within which the 

agent will not hold any position in the monetary asset. When the user cost is below 

the lower limit of this interval, she will want to buy more of the monetary asset. 

When the user cost is above the upper limit of this interval, she will want to sell the 

monetary asset (short). The two limits of this interval constitute the reserve prices 

for transactions, if the agent's belief reflects uncertainty aversion. This result does 

not hinge on her attitude towards risk. Our model thus is capable of explaining why 

there are situations under which people are not active in changing their monetary 

asset portfolios. A reasonable individual may not behave consistently with Savage's 

model. Maximizing utility under a nonadditive prior can provide a useful rationale for 

observed behavior in the market. When probabilities become additive, the model 

reduces to von Neumann-Morgenstern expected utility case. The existing 

publications on monetary aggregation under risk become special cases of our 

analysis and hence are formally nested within our theory. 

The rest of the paper is organized as follows. In section 2 we introduce the 

model and the associated nonadditive probability measure, solve for the user cost 

under uncertainty aversion, and derive the user cost boundaries. In section 3 we find 

the conditions under which the user cost has a rank-dependent expected utility 



         

       

        

        

 

  

 

    

 

        

            

        

   

        

         

   

        

   

 

         

       

     

    

 

             

  

                                                             
   

 

representation. In section 4 we consider the consumer's problem from an asset 

pricing perspective and demonstrate our main theorem providing the user cost 

interval within which no trade will happen. In section 5 we conclude the paper. The 

appendix contains the mathematical proofs of theorems and useful lemmas. 

2. The Model 

2.1. Utility Function and Uncertainty Averse 

When we say the probability is nonadditive, we mean that if A and B are two 

disjoint events in the sample space  , such that A B  , with their 

probabilities being  v A and  v B respectively, then     1v A v B  , although 

  1v A B  . As explained below, uncertainty aversion will imply     1v A v B  . 

Under a nonadditive probability measure, the proper way to define an integral is no 

longer Riemann but Choquet. Under these conditions, Riemann integration suffers 

from discontinuity, nonmonotonicity, and ambiguity (dependence upon the form of 

the utility function). Suppose there is a function 0f  . Then the Choquet (1954) 

integral integrates over rectangles horizontally: 

 
0

| ( ) ,fdv v s f s t dt


  

where the right hand side is a standard Riemann integral.4 The Choquet integral has 

many attractive properties, such as reflecting linear translations multiplied by a 

positive coefficient. But generally it is not additive, unless the functions under 

evaluation are comonotonic, a property that will be relevant to some of our results 

below. 

Under uncertainty, the utility function under our consideration is in the 

form of nonexpected utility as follows: 

4 For a more formal, but conveniently accessible, definition and discussion of Choquet integration, see its 
Wikipedia entry at https://en.wikipedia.org/wiki/Choquet_integral. 

https://en.wikipedia.org/wiki/Choquet_integral


    

          

         

       

      

     

      

         

         

      

    

  

    

  

     

       

        

           

        

      

     

      

      

    

                                                             
  

  
  

   1 1, , , ,C

t t t t t t t tV U c E V u c V dv    m m  (1) 

where tc is the date t consumption of goods, mt is the vector of monetary assets, 

and 
1

C

t tE V 
is expected future utility, conditional on all information at time t.5 We 

use a superscript C on the expectation operator to denote Choquet expectation. In 

this uncertainty context,  U  is the aggregator function through which current 

consumption, all monetary assets, and expected future utility are aggregated. We 

follow canonical macroeconomic models to allow time separability, where β is the 

subjective discount factor and 1tV  is tomorrow's utility in each of tomorrow's states. 

Without the separability assumption, the discount factor would be the derivative of 

 U  with respect to its third argument. 

We further assume there exists a linearly homogenous aggregator function, 

 mt tM M , such that: 

   ,   , .  m mt t t tc F c Mu     (2) 

In this paper, additive probability is denoted by P , while capacity (nonadditive 

probability or “charge”) is denoted by v , so that  dv is the Choquet integral. 

More formally, suppose that S is a finite set of states of nature, and in every 

period there are a finite number of n different states. Let ℱ be the σ-algebra 

generated by the events on S . Then capacity 𝑣 on a measurable space (S,ℱ) is a 

real-valued set function 𝑣: ℱ→[0,1], such that 𝑣(φ)=0, 𝑣(S)=1, and 𝑣(𝑆) ≤ 𝑣(𝐵) 

for all A⊆B∈ℱ. An example of capacity could be v P . In this case,  measures 

the agent's attitude towards uncertainty. If 1  , then capacity reduces to an 

additive prior probability measure. As this result illustrates, nonadditive probability 

reflects both the presence of uncertainty and the agent's attitude towards it. 

Using the example from the beginning of this section, 

5 Distinguishing attitudes towards risk from behavior towards intertemporal substitution is beyond the scope of 
this paper. Once we include monetary assets in the utility function, the effects of Epstein and Zin (1989) or Weil’s 
(1990) generalized isoelastic utility are much harder to find. But it could be a topic worth pursuing. 



      

    

    

    

       

    

         

           

          

        

   

       

 

  

 

      

   

            

  

    

    

         

          

                                                             
       

      

     1v A v B v A B    is equivalent to concluding that the agent's decisions 

reflect uncertainty aversion.6 Schmeidler (1986, 1989) defines uncertainty aversion 

in terms of probability capacity by 

        ,v A v B v A B v A B     (3) 

although that definition is not universally accepted. That condition is also known as 

supermodularity, convexity, or 2-monotonicity of v . 

The states of nature are a natural partition of the sample space S. If today's 

nature is denoted by s, we denote the state of nature tomorrow by s’. With a 

somewhat informal notation for V , it can be useful to rewrite the utility function (1) 

in terms of states for any given sequence,  
0

, ,
T

t t t
c


X m as 

            10 0 1 1 1lim , , , .
TT T s T s

T
V u c u c u c v ds v ds



    
  X m m m  (4) 

This facilitates the calculation of Choquet integral using Riemann integrals. 

2.2. Equilibrium 

The agent holds two types of assets, monetary assets and nonmonetary assets. 

Nonmonetary assets provide only investment return, while monetary assets provide 

both investment return and monetary service flows, which we seek to measure. The 

budget constraints are 

1 1

L K

t t t t it t jt

i j

W p c p m p k
 

    , (5) 

1 , 1 , 1 1

1 1

L K

t i t t it j t t jt t

i j

W R p m R p k y   

 

    , (6) 

where tW is the agent's wealth in period t, tp is the true cost of living index, 

is consumption of goods, and 1ty  is income from all other sources, received at the 

tc

6 We avoid use of the word "ambiguity," which is usually defined to mean that the agent vaguely perceives the 
probability of a particular state in a range. This possibility is outside the scope of this paper. 



           

        

            

  

         

        

          

      

    

         

           

          

         

 

            

       

    

         

 

    

       

    

     

beginning of t+1. The variables, itm and 
jtk , denote the quantities of monetary 

asset i and nonmonetary asset j respectively. The interest rate 
, 1i tR 

is the gross rate 

of return on monetary asset itm , while the interest rate , 1j tR  is the gross return of 

nonmonetary asset 
jtk . 

Suppose L and K are the number of the two types of assets in the agent’s 

portfolio. Since nonmonetary assets do not provide service flows, other than their 

investment rates of return, it follows that R is higher than R . Combining equation 

(5) and (6) yields the following flow of funds equation: 

1 , 1 1 , 1

1 1

.
L K

t t it t i t t it jt t j t t jt t

i j

p c R p m p m R p k p k y   

 

           (7) 

Hence, the individual's consumption of goods is funded each period from the 

proceeds from rolling over the monetary assets and nonmonetary assets and from all 

other income. Note that equation (7) is the one used in Barnett (1980) and Barnett, 

Liu, and Jensen (1997) to facilitate comparison of our results with the existing 

literature. 

The agent maximizes lifetime discounted utility (4), subjects to the flow of 

funds constraint (7). The resulting Bellman equation is: 

 
 

      ' 1
, ,

1 , 1 1 , 1

1 1

sup , '

. . .

t t t

s t t t s t s
c

L K

t t it t i t t it jt t j t t jt t

i j

V W u c V W v ds

s t p c R p m p m R p k p k y



   

 

 

         



 

m k

m 

(8) 

Here  s tV W denotes the Bellman value function. The agent is also subject to the 

following transversality condition: 

*
*

*
lim 0,t

t
t

t

V
W

W








(9) 

with ∗ denoting the solution value from the optimization. 

After substituting from the Benveniste-Scheinkman equation, the first order 

conditions (Euler equations) with respect to consumption become 



    

       

    

      

       

    

      

     

       

         

   

      

   

         

 

    

      

, 1

1 1

,C t
t j t

t t t

pu u
E R

c c p


 

  
  

  
 (10) 

while the first order conditions with respect to monetary assets become 

, 1

1 1

.C t
t i t

it t t t

pu u u
E R

m c c p


 

   
   

   
 (11) 

The contemporaneous real user-cost price of the services of monetary asset i is the 

marginal rate of substitution between the monetary asset and consumption, 

, 1 , 1

1 1 1

, 1 , 1

1 1 1

.

C Ct
t i t t i t

t t t t tit
it

C Ct
t j t t j t

t t t t

pu u u uu
E R E r

c c p c cm

u pu u
E R E r

c c p c

 

  

 

  

      
    

         
     

        

 



 

(12) 

For notational convenience, we convert the nominal gross returns, 
, 1i tR 

and , 1j tR  , 

to the corresponding real gross rates of return, 
, 1 , 1

1

t
i t i t

t

p
r R

p
 



 and 
, 1 , 1

1

t
j t j t

t

p
r R

p
 



 . 

Since the expectation  C

tE  is not additive, it is the Choquet integral. 

Also note that under the weak separability condition (2), we have 

.t

it t it

Mu F

m M m

 


  

Substituting the definition of the user cost, we acquire: 

.t t
it

it

t

u

M c

Fm

M





 






Taking the total differential of the monetary aggregator function,  mt tM M , 

yields 

1 1 1

log .
L L L

t t t
t it it it it it it

i i iit

t t

u u

M c c
dM dm dm m d m

F Fm

M M

 
  

 

  
  

 

 

   (13) 

Since  mtM is linearly homogenous of degree one, Euler’s theorem simplifies (13) 
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1 1

.
L L

t t
t it it it

i iit

t

u

M c
M m m

Fm

M


 



 
 





  (14) 

Dividing equation (13) by (14) yields the Divisia index 

1

log log
L

t it it

i

d M s d m


 , (15) 

where 

1

it it
it L

lt ltl

m
s

m









is the user cost valued expenditure share. We conclude that 

the resulting Divisia quantity index is in exactly the same form as in Barnett (1980), 

with the only difference being that the user costs now are computed under a 

nonadditive probability measure. 

2.3. User-Cost Boundaries 

We now return to the user-cost, it , in equation (12). Because the expectation 

is non-additive, we no longer have 

 , 1 , 1 , 1

1 1 1

, .t i t i t t t i t

t t t

u u u
E r Cov r E E r

c c c
  

  

       
     

       
Instead, we have the 

following theorem: 

Theorem 1. If 
, 1

1

, 0i t

t

u
r

c








are comonotonic, then 

 , 1 , 1

1 1

.C C C

t i t t t i t

t t

u u
E r E E r

c c
 

 

    
   

    
(16) 

If v is submodular, while 
1t

u

c 




and , 1i tr  are countermonotonic, then: 



    

    

       

    

           

      

     

       

   

             

      

        

       

         

      

     

  

        

      

       

          

    

           

                                                             
  

     
   

 

 

 , 1 , 1

1 1

.C C C

t i t t t i t

t t

u u
E r E E r

c c
 

 

    
   

    
(17) 

The proof of this theorem is in the appendix. 

Comonotonicity is defined as follows. For every pair of states, s₁’, s₂’∈S, 

       1 2 , 1 1 , 1 2

1 1

' ' ' ' 0.i t i t

t t

u u
s s r s r s

c c
 

 

  
        

(18) 

Then the marginal utility and the rate of return increase or decrease at the same 

time. Countermonotonicity reverses the direction of the above inequality. Hence, 

under nonadditive probabilities, we do not have covariances, but we have 

inequalities. Equation (17) corresponds to uncertainty loving which is unusual and 

not the focus of this paper.7 

Barnett, Liu, and Jensen (1997) proved, in their Theorem 1, that the user cost of 

the services of monetary assets under risk aversion has an additional adjustment 

term not appearing in the risk free user cost. That adjustment term is about 

covariances, as in all CCAPM risk adjustments. The Barnett, Liu, and Jensen's risk 

adjusted user cost is a special case of our result. If the probability measure is additive, 

so that uncertainty is removed, risk aversion is all that is left. Then the Choquet 

expectation in equation (12) becomes the linearly additive expectation, and 

covariances appear. 

When the agent is not only risk averse but also uncertainty averse, then 

equation (12) cannot be further simplified by collecting covariances. We end up with 

inequalities giving rise to boundaries on user costs. In the next section, we will see 

that equality solutions do exist for , 1

1

C

t i t

t

u
E r

c




 
 
 

, but those again hold as special 

cases of Choquet expectation. Our case nests Barnett, Liu and Jensen's (1997) result. 

If we further assume away both uncertainty aversion and risk aversion, we will have 

7 Although we do not consider uncertainty loving to be relevant monetary aggregation theory, there are 
circumstances under which it is not unreasonable. If we think about gain-loss asymmetry, when people 
particularly hate to lose what they have already had, such an extreme loss aversion might lead people to behave 
in an uncertainty loving way in the domain of losses. 



       

  

               

      

       

        

            

         

       

   

    

      

   

    

    

        

   

    

           

  

    

the perfect certainty case. Then equation (12) reduces to the user cost derived in 

Barnett (1980). 

It is convenient to work on rates of returns, 
, 1i tr 

, which are usually assumed to 

be stationary, so that taking averages is meaningful. But marginal utility, 
1t

u
c 




, 

is not observed and difficult to estimate. Therefore we reinterpret equation (12) in 

terms of a stochastic discount factor, which, although still not observable, is much 

easier to estimate. We assume the agent has not passed the bliss point, so that 

0
t

u
c

 


t

u
c




can 

. Given date t information, uncertainty at time t has been resolved, and 

be treated as a constant. By the positive homogeneity of Choquet 

integral, equation (12) can be written as 

1
, 1

1 , 1

1 , 11
, 1

1
1

,

C t
Ct i t

t t i tt

it C
C t t j tt
t j t

t

u c
E r

E Q ru c

E Q ru c
E r

u c




 

 


  
         

      
 

  







(19) 

where we denote by 1
1

t
t

t

u c
Q

u c
 



 


 
the pricing kernel. Note that from equation 

(10) and (11), we have respectively 

1 , 11 ,C

t t j tE Q r 
   

1 , 11 .C

it t t i tE Q r 
    

(20) 

(21) 

Based on equation (19), a reinterpretation of Theorem 1 is that, if 1 , 1, 0t i tQ r  

and 1 , 1, 0t j tQ r   are both comonotonic, then: 

   
   

1 , 1

1 , 1

1
.

C C

t t t i t

it C C

t t t j t

E Q E r

E Q E r

 

 


 (22) 

If v is submodular and 1tQ  and the rate of return on both the monetary and 

non-monetary assets are countermonotonic, we have: 

   
   

1 , 1

1 , 1

1
.

C C

t t t i t

it C C

t t t j t

E Q E r

E Q E r

 

 


 (23) 



       

   

      

       

        

     

          

        

       

     

         

 

  

  

 

        

          

       

     

           

   

   

   

Since returns tend to move together, the dual satisfaction of comonotonic (or 

countermonotonic) with 1tQ  is not restrictive. 

Therefore when the probability measure is nonadditive, Choquet expectation 

produces boundaries to the user cost of monetary assets. More specifically, assume 

the real rates of return on both types of assets are positive and the substitution 

effect on intertemporal consumption dominates, so that the comonotonicity 

between 1tQ  and  , 1 , 1i t j tr r  is satisfied. Then the calculated user cost should be 

lower than . On the other hand, if the agent were 
   

   
1 , 1

1 , 1

1 C C

t t t i t

C C

t t t j t

E Q E r

E Q E r

 

 



uncertainty loving and the income effect dominates the intertemporal allocation of 

consumption, the countermonotonicity between 1tQ  and  , 1 , 1i t j tr r  is satisfied. 

Then any calculated user cost would be incorrect, if it were lower than 

   
   

1 , 1

1 , 1

1 C C

t t t i t

C C

t t t j t

E Q E r

E Q E r

 

 


. 

3. Rank-Dependent Representation 

The existence of derived boundaries is not our only result under nonadditive 

probabilities. In this section we show that under some circumstances, there exists a 

linear solution for equation (21). Suppose  1 2, , ,P
T

nP P P is an additive 

probability vector satisfying 
1

1
n

ss
P


 , and suppose there is a probability measure 

μ such that for some nondecreasing function f: [0,1]→[0,1] with f(0)=0 and f(1)=1, 

the capacity v =f(μ) is well-defined. Then a new, additive, probability vector P
 is 

permissible to order events as follows: 

 

           

1 2

2 2 3 1

, , ,

1 , , , , .

P
T

n

T

s s s s n ns s s s n

P P P

f P f P f P f P f P f P

   

    



    
    

(24) 



       

           

     

        

       

     

       

   

    

      

      

  

  

      

         

     

     

         

 

 

         

          

     

If the agent is uncertainty averse,  f  should be concave, so higher states are 

weighted less. Such a transformed probability could be tailored for accumulative 

lottery outcomes, where 1 nx x  in a lottery  1 1, ; ; , .n nx P x P This 

observation is a reason we choose the notation  on the left side of equation (24). 

Take the distorted probability as an example, in which  f   , where 

 0,  , and  is the probability measure relative to which the additive 

probabilities sP are given. Then so that the above    1
,

n n

t s ss t s t
P P P

 


  
  

probability vector P
 becomes 

           
2 2 3 1

1 , , , , .P
T

s s s s n ns s s s n
P P P P P P

     

    

    
  

   

The higher states are weighted less in this example when, 1  . 

Similarly, we define another probability vector, P
 , for decumulative outcomes 

1 nx x  as follows: 

 

           

1 2

1 12 1 2 1

, , ,

, , , ,1 .

P
T

n

T

s s s ss s n s n s n

P P P

f P f P f P f P f P f P

   

      



    
    

(25) 

If the agent is uncertainty averse, higher states are weighted more. This approach is 

also the method proposed by Yaari (1987) to deal with the violation of continuity and 

monotonicity in Kahneman and Tversky's (1979) prospect theory. 

We therefore have the following lemma showing that Choquet expectation has 

an expected utility solution, but with a transformed probability measure on ordered 

utilities. 

Lemma 2. Suppose P is an additive probability measure for any capacity 

 v f  that is well supported by the probability measure  and for any 

nonnegative function nu  . Then the Choquet integral has a rank-dependent 



  

          

        

  

 

             

     

    

    

    

       

       

       

        

    

     

        

      

     

       

      

        

   

    

expected utility representation: 

, if u is weakly increasing in s , (26)  
1

u P
n

T

s s s

s

u v ds u P 



 

 
1

u P
n

T

s s s

s

u v ds u P 



  , if u is weakly decreasing in s , (27) 

where P
 and P

 are state-reweighted probability vectors defined above. 

The proof of the lemma is in the appendix. With this result, if 1 1t itQ r  is weakly 

increasing in 's , as can always be done by permutation, we have 

1 , 1 1 , 1 '

' 1

1 1 .
n

C

it t t i t t i t s

s

E Q r Q r P

   



       (28) 

If 
1 , 1t i tQ r 

is weakly decreasing in 's , then 

1 , 1 1 , 1 '

' 1

1 1 .
n

C

it t t i t t i t s

s

E Q r Q r P

   



       (29) 

Therefore, in addition to deriving inequality bounds, we also have an alternative 

solution. Choquet expectation relative to v coincides with an expected utility model 

defined by  f  . This expected utility requires rank dependence, so that the product 

   1 1' 't itQ s r s  must be either weakly increasing or weakly decreasing in 's . The 

correspondence between Choquet expectation and the rank-dependent 

representation does not always exist. Rather, the rank-dependent expected utilities 

are a special case of Choquet expected utility, a case in which the underlying 

probability measure  exists and contains sufficient information to define v . 

The Ellsberg paradox is a violation of this condition and therefore has no 

rank-dependence representation. In those cases, there does not exist an underlying 

measure, providing all we need to know about events. Potentially, Choquet 

expectation is more general, in that it allows us to work on scenarios during which 

our capabilities of defining probabilities are limited. 

Note that equation (20) also features a similar rank-dependent solution: 



         

        

   

       

       

 

    

         

         

      

         

         

    

 

   

 

         

         

       

      

       

  

  

         

    

if 
1 , 1t j tQ r 

is weakly increasing in 's , (30) 
1 , 1 '

' 1

1
n

t j t s

s

Q r P

 





1 , 1 '

' 1

1
n

t j t s

s

Q r P

 



 if 
1 , 1t j tQ r 

is weakly decreasing in 's . (31) 

These two equations provide a useful guidance for estimating the stochastic discount 

factor, when uncertainty aversion is involved. We can compare equation (20) with 

the classical asset pricing theory under additive priors. In that case, returns should 

follow 

 1 11 .t t tE Q r  (32) 

Then one dollar paid today is weighted against how many dollars or units of 

consumption the agent will get in return tomorrow. If the decision also involves 

attitudes towards uncertainty, we now see that (32) becomes  1 11 .C

t t tE Q r 

With the implication of Lemma 2, it becomes clear that even if people manage to 

evaluate this true equation, as in (30) and (31), the result would still be a special case 

of our more general theory. 

4. Choice under Uncertainty Aversion: A No Trade Interval 

In this section we reverse the perspective by looking for the portfolio no trade 

region. Given that v is a probability measure, the value of expected discounted real 

rate of return exhibits linearity and translation invariance; that is, 

1 , 1 1 , 1

C C

t t i t t t i tE Q r E Q r   
            , if 0, .   But this property does not 

hold, when  is negative. Therefore, we consider 1 , 1

C

t t i tE Q r 
    instead, giving 

rise to the following lemma: 

Lemma 3. If the agent is uncertainty averse, the Choquet expected value satisfies 

1 , 1 1 , 1

C C

t t i t t t i tE Q r E Q r   
         . (33) 



 

         

           

         

     

            

      

         

    

         

  

     

      

      

 

 

          

        

   

    

          

 

   

     

The proof is in the appendix. Intuitively, adding a constant to a random variable 

or multiplying a random variable by a positive number will linearly shift the Choquet 

expectation. This relationship does not hold for negative multipliers. The 

nonadditivity of the probability causes an asymmetric effect, producing an interval 

within which there are no transactions of monetary asset i. There will be a range of 

discounted returns from , within which the agent 1 , 1

C

t t i tE Q r 
   to 1 , 1

C

t t i tE Q r 
   

neither want to buy nor to sell the monetary asset. If the discounted return 

1 , 1

C

t t i tE Q r 
   is larger than 1, she will 

discounted return 1 , 1

C

t t i tE Q r 
    is 

want to buy the monetary asset. If the 

lower than 1, she will want to sell this 

monetary asset (short). 

To prove this result, we assume the utility function, 0u  , is twice continuously 

differentiable with ' 0u  and '' 0.u  We use Jensen's inequality to prove this 

result. But first we need to verify whether Jensen's inequalities hold under a 

nonadditive probability measure. 

Lemma 4. Let  , ,VS F be a nonadditive probability space, 's S , and let 

v V be capacity. Suppose  1 'tx s is Choquet integrable. If u is a concave function 

on  0, , then Jensen’s inequality follows: 

     1 1' ' .C C

t t t tu E x s E u x s        (34) 

Proof: We produce a second order Taylor expansion of   1 'tu x s around 

  1 'C

t tE x s : 

           
21

' '' .
2

C C C Cu x u E x u E x x E x u x E x                  

Taking Choquet expectation on both sides, we have: 



    

     

                    

 

         

        

   

     

 

     

         

 

           

            

        

       

       

  

 

     

           

         

      
     

       

2

2

1
' ''

2

1
' ''

2

'

'

'

C C C C C C

C C C C C

C C C C

C C C C

C C C C

E u x E u E x u E x x E x u x E x

u E x E u E x x E x u x E x

u E x E u E x x E x

u E x u E x E x E x

u E x u E x E x E x





 
                       

 

 
                   

 

            

            

        

  ,C

v

u E x

  

   

(35) 

where      1 1' 1 'C

t t tx s E x s         with  0,1 . The convex case can be 

proved similarly. ■ 

The second line holds because of comonotonic additivity. The constant is 

comonotonic with any variable. The third line holds because the Choquet integral is 

monotone and The fourth line is true because of  '' 0u   ,  
2

0.Cx E x   

positive homogeneity, and  ' Cu E x   is a constant. The rest holds because of 

translation invariance. 

So Jensen’s inequalities are still satisfied under nonadditive probabilities, and 

they are satisfied in multivariate case. We now have the main result, as follows: 

Theorem 5. Consider a risk neutral or risk averse agent with wealth, tW , who is 

considering investing itm in a monetary asset, yielding a real rate of return , 1i tr  . 

Suppose the two conditions in Lemma 4 are satisfied. Denoting the Choquet expected 

discounted rate of return by 1 , 1

C

t t i tE Q r 
   , she will buy this monetary asset, if 

1 , 11 C

t t i tE Q r 
    , or equivalently if 0.it  She will sell the asset (short), if 

1 , 11 C

t t i tE Q r 
     , or equivalently . 1 , 1 1 , 1

C C

it t t i t t t i tE Q r E Q r   
         

We only sketch the proof. Suppose the agent spends itm on this monetary asset. 



  

    

            

     

        

 

    

     

      

 

     

          

       

           

     

      

           

      

 

   

 

     

   

        

          

Then by Jensen's inequality 

     1 , 1 1 , 1 .C C

t t it it t i t t t it it t i t tE u W m m Q r u E W m m Q r u W   
              (36) 

The last inequality holds, if 1 , 1 1.C

t t i tE Q r 
    Therefore the individual is at least as 

well off not buying anything as holding a positive position in monetary asset i. 

Analogous arguments give rise to selling the asset, if 1 , 11 C

t t i tE Q r 
     . In this 

circumstance, 

1 , 1

1 , 1 1 , 1 1 , 1

1

1 0.

C

t t i t

C C C

t t i t t t i t t t i t

E Q r

E Q r E Q r E Q r

 

     

      

                  

(37) 

Since 1 , 11 C

it t t i tE Q r 
     , this condition is equal to 

1 , 1 1 , 1

C C

it t t i t t t i tE Q r E Q r   
          , and by Lemma 3 this difference is positive. ∎ 

Hence 1 , 1 1 , 10, C C

t t i t t t i tE Q r E Q r   
           is a range of user costs with no 

trade under uncertainty aversion. If the user cost, it , is lower than zero, we 

conclude 1 , 11 C

t t i tE Q r 
    , so the return tomorrow is larger than the one dollar 

spent on the asset today, and she will buy it. If it is larger than 

1 , 1 1 , 1

C C

t t i t t t i tE Q r E Q r   
         , then  1 11 C

t t itE Q r    and the uncertainty 

premium is not enough to compensate for the cost of holding the monetary asset. 

She will want to sell it. This range of user costs depends only on the beliefs and 

attitude towards uncertainty, not on the attitude towards risk. 

5. Concluding Remarks 

In this paper we consider monetary services aggregation theory under 

uncertainty, as distinguished by Knight (1921) from risk. The agent's attitude towards 

uncertainty is represented by a probability measure that need not be additive, in 

accordance with Schmeidler (1986, 1989), Gilboa (1987, 2009), and Gilboa and 



     

        

          

         

           

     

       

         

        

       

      

    

    

       

    

     

           

        

  

  

     

            

  

   

     

 

Schmeidler (1989). We acquire three primary conclusions. First, different from 

CCAPM risk adjusted user costs incorporating covariances and subject to the “equity 

premium puzzle” critique, we find that the uncertainty adjusted user cost, in its most 

general form, produces boundaries. The previously derived perfect certainty user 

cost and the risk adjusted user cost are special cases of ours, if the probability 

measure becomes additive. Second, we are able to derive an expected utility 

analogous solution, using transformed additive probabilities. The resulting model of 

expectations is a special case of Choquet expectation. Third, user costs under 

uncertainty produce an interval within which no transactions of monetary assets will 

occur. This effect is brought about solely by uncertainty aversion, not by risk 

aversion captured by the utility function. The resulting behavioral corner solutions 

are not produced or explained by conventional expected utility maximization 

solutions for monetary asset service user costs. 

While our approach does not resolve all of the objections to expected utility 

maximization in the behavioral economics literature, the approach using Choquet 

expectations has established connections with the method proposed by Yaari (1987) 

to deal with the violation of continuity and monotonicity discussed in Kahneman and 

Tversky's (1979), and is consistent with the use of Choquet integration in Tversky and 

Kahneman (1992). 

Appendix 

Proof of Theorem 1: 

Let 
1t

u

c 




and , 1i tr  be comonotonic in the sense that for each pair of states, 

1 2', ' ,s s S

       1 2 , 1 1 , 1 2

1 1

' ' ' ' 0.i t i t

t t

u u
s s r s r s

c c
 

 

  
        

Suppose , 1

1

C

t i t
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u
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1
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u
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
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
For any given 0 ',s we have by 

comonotonicity 
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  
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That is 

       , 1 0 , 1 0 0 , 1 , 1 0

1 1 1 1

' ' ' ' .i t i t i t i t

t t t t

u u u u
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   

   

   
  

   

Since Choquet expectation is monotone, we have 

       , 1 0 , 1 0 0 , 1 , 1 0

1 1 1 1

' ' ' ' .C C

t i t i t t i t i t

t t t t

u u u u
E r s r s E s r r s

c c c c
   

   
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      

Given 0 ',s  0

1

'
t

u
s

c 




, and  , 1 0 'i tr s

are constants. By translatability, we have8 
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E r s r s v E s r r s

c c c c
   

   

      
     

      

By positive homogeneity, since  0

1

'
t

u
s

c 




and  , 1 0 ' 0,i tr s  we have 
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and this holds for any 0 ' .s S That is, 
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1 1 1 1
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When both  , 1

C

t i tE r 
and 

1

C

t

t

u
E

c 

 
 
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are finite, apply translatability again to 

acquire 
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Dividing the norm on both sides, we find 
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1
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Since v is a probability measure, 1v  . This proves part 1 of the theorem. 

8 Choquet integrals are translatable for any real number β, such that     ,
C C

t t
E X E X v    if v

is a monotone measure on the measurable space (S,ℱ). 



      

                                  

 

     

     

     

        

   

                       

 

        

  

   

      

If v is submodular and 
1t

u

c 




and 

, 1i tr 
are countermonotonic, the second part 

of the theorem follows from the same logic. ∎ 

Proof of Lemma 2: 

Suppose u is weakly increasing in .s S Given a monotone measure space, 

 , ,S F V , we denote     su t s u s t   for any 0t  . The Choquet integral of u

over S with respect to a real monotone measure v is 
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The weakly decreasing case of u can be proven likewise. ∎ 

Proof of Lemma 3: Now we prove the fact that 

Denoting by       1 , 1' ' ' ,t i tA t s S Q s r s t    we find 
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Based on the definition   ,A t consider the event    1 , 1' 't i tQ s r s t   so that 
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Here the superscript lower case c means complement of  A t . It should not be 

confused with the upper case C superscipt notation for Choquet. We have therefore 
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Furthermore,        1 , 1 1 , 1' ' ' 'C C
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by the fact that the probability is nonadditive. When the agent is uncertainty averse, 

    1,cv A v A  so that       1 0.
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  The conclusion of the 

lemma follows. ∎ 
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