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1. Introduction 

While money is an asset, credit is a liability.  In accounting conventions, assets 

and liabilities cannot be added together.  But aggregation theory and economic 

index number theory are based on microeconomic theory, not accounting 

conventions.  Economic aggregates measure service flows.  To the degree that 

money and some forms of credit produce joint services, those services can be 

aggregated. 

A particularly conspicuous example is credit card services, which are directly 

involved in transactions and contribute to the economy’s liquidity in ways not 

dissimilar to those of money. While money is both an asset and part of wealth, credit 

cards are neither.  Hence credit cards are not money.  To the degree that monetary 

policy operates through a wealth effect (Pigou effect), as advocated by Milton 

Friedman, credit cards do not play a role.  But to the degree that the flow of 

monetary services is relevant to the economy, as through the demand for monetary 

services or as an indicator measure, the omission of credit card services from 

“money” measures induces a loss of information. 

Barnett, Chauvet, Leiva-Leon, and Su (2016) derived the aggregation and index 

number theory needed to aggregate jointly over the services of money and credit 

cards. The derivation uses strongly simplifying assumptions.  They assume credit 

cards are used to purchase consumer goods. All purchases are made at the 

beginning of periods, and payments for purchases are either by credit cards or 

money.  Credit card purchases are repaid to the credit card company at the end of 

the current period or at the end of a future period, plus interest charged by the 

credit card company. Stated more formally, all discrete time periods are closed on 

the left and open on the right. After aggregation over consumers, the expected 

interest rate paid by the representative credit card holder can be very high, despite 

the fact that some consumers pay no interest on credit card balances. 

The derivation in Barnett, Chauvet, Leiva-Leon, and Su (2016) assumes perfect 

certainty or risk neutrality.  With monetary assets, having relatively low risk 

returns, risk aversion is not likely to have much effect on the behavior of 
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aggregation theoretic monetary aggregates, such as the Divisia monetary 

aggregates.  Studies have tended to show that weakening the assumption of risk 

neutrality in the derivation of the Divisia monetary aggregates has little effect on the 

behavior of the aggregates.  See, e.g., Barnett, Liu, and Jensen (1997).  But inclusion 

of credit card services introduces a high risk rate of return:  the interest rate on 

credit card debt.  As a result, extension of the aggregation theory to the case of risk 

neutrality might alter the behavior of the aggregate in a non-negligible manner.  We 

extend the theory of Barnett, Chauvet, Leiva-Leon, and Su (2016) by removing the 

assumption of risk neutrality.  The derivation is thereby altered by replacing the 

perfect certainty first order conditions with the relevant Euler equations. 

To reflect the fact that money and credit cards provide services, such as liquidity 

and transactions services, money and credit are entered into a derived utility 

function, in accordance with Arrow and Hahn’s (1971) proof.1 The derived utility 

function absorbs constraints reflecting the explicit motives for using money and 

credit card services.  Since this paper is about measurement, we need only assume 

the existence of such motives.  In the context of this research, we have no need to 

work backwards to reveal the explicit motives.  As has been shown repeatedly, any 

of those motives, including the highly relevant transactions motive, are consistent 

with existence of a derived utility function absorbing the motive.2 

1 Our research in this paper is not dependent upon the simple decision problem we use for derivation 
and illustration.  In the case of monetary aggregation, Barnett (1987) proved that the same 
aggregator functions and index numbers apply, regardless of whether the initial model has money in 
the utility function or production function, so long as there is intertemporal separability of structure 
and separability of components over which aggregation occurs. That result is equally as applicable to 
our current results with augmented aggregation over monetary asset and credit card services.  While 
this paper uses economic index number theory, it should be observed that there also exists a 
statistical approach to index number theory. That approach produces the same results, with the 
Divisia index interpreted to be the Divisia mean using expenditure shares as probability.  See Barnett 
and Serletis (1990). 
2 The aggregator function is the derived function that always exists, if monetary and credit card 
services have positive value in equilibrium.  See, e.g., Samuelson (1948), Arrow and Hahn (1971), 
stockFischer (1974), Phlips and Spinnewyn (1982), Quirk and Saposnik (1968), and Poterba and 
Rotemberg (1987).  Analogously, Feenstra (1986, p. 271) demonstrated “a functional equivalence 
between using real balances as an argument of the utility function and entering money into liquidity 
costs which appear in the budget constraints.” The converse mapping from money and credit in the 
utility function back to the explicit motive is not unique. But in this paper we are not seeking to 
identify the explicit motives for holding money or credit card balances.  
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2. Intertemporal Allocation 

We begin by defining the variables in the risk neutral case for the representative 

consumer: 

𝐱𝑠 = vector of per capita (planned) consumptions of N goods and services 

(including those of durables) during period 𝑠. 

𝐩𝑠 = vector of goods and services expected prices, and of durable goods 

expected rental prices during period 𝑠. 

= planned per capita real balances of monetary asset 𝑖 during𝑚𝑖𝑠 

period 𝑠 (𝑖 = 1,2, … , 𝑛). 

= planned per capita real expenditure with credit card type 𝑗 for transactions 𝑐𝑗𝑠 

during period s (𝑗 = 1,2, … , 𝑘).  In the jargon of the credit card industry, those 

contemporaneous expenditures are called “volumes.” 

𝑧𝑗𝑠 = planned per capita rotating real balances in credit card type j during period s 

from transactions in previous periods (𝑗 = 1,2, … , 𝑘). 

𝑦𝑗𝑠 = 𝑐𝑗𝑠 + 𝑧𝑗𝑠 = planned per capita total balances in credit type j during period s 

(𝑗 = 1,2, … , 𝑘). 

𝑟𝑖𝑠 = expected nominal holding period yield (including capital gains and losses) 

on monetary asset 𝑖 during period 𝑠 (𝑖 = 1,2, … , 𝑛). 

𝑒𝑗𝑠 = expected interest rate on 𝑐𝑗𝑠. 

= expected interest rate on 𝑧𝑗𝑠. 

𝐴𝑠 = planned per capita real holdings of the benchmark asset during period 𝑠. 

𝑅𝑠 = expected (one-period holding) yield on the benchmark asset during 

period 𝑠. 

𝐿𝑠 = per capita labor supply during period 𝑠. 

𝑤𝑠 = expected wage rate during period 𝑠. 

∗

jse

𝑝𝑠 = 𝑝𝑠
∗(𝐩𝑠) is the true cost of living index, as defined in Barnett (1978,1980). 

The benchmark asset is defined to provide no services other than its expected 

yield, 𝑅𝑠, which motivates holding of the asset solely as a means of accumulating 
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wealth.  As a result, 𝑅𝑠 is the maximum expected holding period yield available to 

consumers in the economy in period s from holding a secured asset. The benchmark 

asset is held to transfer wealth by consumers between multiperiod planning 

horizons, rather than to provide liquidity or other services. In contrast, jse  is not 

the interest rate on an asset and is not secured.  It is the interest rate on an 

unsecured liability, subject to substantial default and fraud risk.  Hence, jse can be 

higher than the benchmark asset rate, and historically has always been much higher 

than the benchmark asset rate.3 

It is important to recognize that the decision problem we model is not of a single 

economic agent, but rather of the “representative consumer,” aggregated over all 

consumers.  All quantities are therefore averaged over all consumers.  Gorman’s 

assumptions for the existence of a representative consumer are implicitly accepted, 

as is common in almost all modern macroeconomic theory having microeconomic 

foundations.  This modeling assumption is particularly important in understand the 

credit card quantities and interest rates used in our research.  About 20% of credit 

card holders in the United States do not pay explicit interest on credit card balances, 

since those credit card transactions are paid off by the end of the period. But the 

80% who do pay interest pay very high interest rates.4 The Federal Reserve 

provides two interest rate series for credit card debt.  One, jse , includes interest only 

on accounts that do pay interest to the credit card issuing banks, while the other 

series, 𝑒𝑗𝑠, includes the approximately 20% that do not pay interest.  The latter 

interest rate is thereby lower, since it is averaged over interest paid on both 

3 Barnett, Chauvet, Leiva-Leon, and Su (2016) follow the Center for Financial Stability (CFS) and the 
Bank of Israel in using the short term bank loan rate as a proxy for the benchmark rate.  That interest 
rate has always exceeded the interest rate paid by banks on deposit accounts and on all other 
monetary assets used in the CFS Divisia monetary aggregates, and has always been lower than the 
Federal Reserve’s reported average interest rate charged on credit card balances.  For detailed 
information on CFS data sources, see Barnett, Liu, Mattson, and Noort (2013).  For the additional data 
sources used by the CFS to extend to credit card services, see Barnett and Su (2016). 
4 The following statement is from www.motherjones.com/kevin-drum/2011/10/americans-are-
clueless-about-their-credit-card-debt.  "In the four working age categories, about 50% of households 
think they have outstanding credit card debt, but the credit card companies themselves think about 
80% of households have outstanding balances." Since these percentages are of total households, 
including those having no credit cards, the percent of credit card holders paying interest might be 
even higher. 
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categories of accounts. Since we are modeling the representative consumer, 

aggregated over all consumers, 𝑒𝑗𝑠 is always less than jse  for all j and s.  The interest 

rate on rotating credit card balances, jse , is paid by all consumers who maintain 

rotating balances in credit cards.  But 𝑒𝑗𝑠 is averaged over those consumers who 

maintain such rotating balances and hence pay interest on contemporaneous credit 

card transactions (volumes) and those consumers who pay off such credit card 

transactions before the end of the period, and hence do not pay explicit interest on 

the credit card transactions.  The Federal Reserve provides data on both jse  and 𝑒𝑗𝑠. 

Although 𝑒𝑗𝑠 is less than jse , 𝑒𝑗𝑠 also has always been higher than the benchmark 

rate.    This observation is a reflection of the so-called credit card debt puzzle.5 

Barnett, Chauvet, Leiva-Leon, and Su (2016) use the latter interest rate, 𝑒𝑗𝑠, in 

their augmented Divisia monetary aggregates formula, since the contemporaneous 

per capita transactions volumes in our model are averaged over both categories of 

credit card holders. They do not include rotating balances used for transactions in 

prior periods, since to do so would involve double counting of transactions services.  

The expected interest rate, 𝑒𝑗𝑠, can be explicit or implicit, and applies to the 

aggregated representative consumer.  For example, an implicit part of that interest 

rate could be in the form of an increased price of the goods purchased or in the form 

of a periodic service fee or membership fee.  But we use only the Federal Reserve’s 

average explicit interest rate series, which is lower than the one that would include 

implicit interest. Nevertheless, that downward biased explicit rate of return to credit 

card companies, 𝑒𝑗𝑠, aggregated over consumers, tends to be very high, far 

exceeding 𝑅𝑠, even after substantial losses from fraud. 

We follow Barnett, Chauvet, Leiva-Leon, and Su (2016) in using the credit card 

industry’s definition of “credit card,” which excludes “store cards” and “charge 

cards.” According to the trade’s definition, “store cards” are issued by businesses 

5See, e.g., Telyukova and Wright (2008), who view the puzzle as a special case of the rate dominance 
puzzle in monetary economics.  The “credit card debt puzzle” asks why people do not pay down debt, 
when receiving low interest rates on deposits, while simultaneously paying higher interest rates on 
credit card debt. 
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providing credit only for their own goods, such as gasoline company credit cards or 

department store cards.  To be a “credit card” by the trade’s definition, the card 

must be widely accepted for many goods and services in the economy not 

constrained to cash-only sales.  “Charge cards” can be widely accepted for goods 

purchases, but do not charge interest, since the debt must be paid off by the end of 

the period.  To be a “credit card,” the card must provide a line of credit to the card 

holder with interest charged on purchases not paid off by the end of the period.  For 

example, American Express provides both charge cards and credit cards.  The first 

credit card was provided by Bank of America.  There now are four sources of credit 

card services in the United States:  Visa, Mastercard, Discover, and American 

Express.  From American Express, we use only their credit card account services, not 

their charge cards. We use data from only those four sources, in accordance with the 

credit card industry’s conventional definition of “credit card.” 

The resulting flow of funds identity for each period s is: 

𝑛 

∗𝐩𝑠
′ 𝐱𝑠 = 𝑤𝑠𝐿𝑠 + ∑[(1 + 𝑟𝑖,𝑠−1)𝑝𝑠−1𝑚𝑖,𝑠−1 − 𝑝𝑠

∗𝑚𝑖𝑠] 
𝑖=1 

𝑘 

∗ + ∑[𝑝𝑠
∗𝑐𝑗𝑠 − (1 + 𝑒𝑗,𝑠−1)𝑝𝑠−1𝑐𝑗,𝑠−1]     (1) 

𝑗=1 

𝑘 

∗ ∗+ ∑ [𝑝𝑠
∗𝑧𝑗𝑠 − (1 + , 1j se  ) 𝑝𝑠−1𝑧𝑗,𝑠−1] + [(1 + 𝑅𝑠−1)𝑝𝑠−1𝐴𝑠−1 

𝑗=1 

− 𝑝𝑠
∗𝐴𝑠]. 

Planned per capita total balances in credit type j during period s are then 𝑦𝑗𝑠 = 𝑐𝑗𝑠 + 

𝑧𝑗𝑠. 

Equation (1) is an accounting identity, with the right hand side being funds 

available to purchase consumer goods during period s. On the right hand side, the 

first term is labor income.  The second term is funds absorbed or released by rolling 

over the monetary assets portfolio, as explained in Barnett (1980).  The third term is 

particularly important to this paper.  That term is the net change in credit card debt 

during period s from purchases of consumer goods, while the fourth term is the net 
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change in rotating credit card debt.  The fifth term is funds absorbed or released by 

rolling over the stock of the benchmark asset, as explained in Barnett (1980).  The 

third term on the right side is specific to current period credit card purchases, while 

the fourth term is not relevant to the rest of our results, since 𝑧𝑗𝑠 is not in the utility 

function.  Hence 𝑧𝑗𝑠 is not relevant to the user cost prices, conditional decisions, or 

aggregates in the rest of this paper. 

In the perfect certainty case, Barnett (1980) found that the current nominal user 

cost price, 𝜋𝑖𝑡, of 𝑚𝑖𝑡 is 

𝑝𝑡
∗(𝑅𝑡 − 𝑟𝑖𝑡)

𝜋𝑖𝑡 = , (2) 
1 + 𝑅𝑡 

while Barnett, Chauvet, Leiva-Leon, and Su (2016) proved that the current period 

nominal user cost, 𝜋̃𝑗𝑡, of 𝑐𝑗𝑡 is 

𝑝𝑡
∗(𝑒𝑗𝑡 − 𝑅𝑡)

𝜋̃𝑗𝑡 = . (3)
1 + 𝑅𝑡 

The corresponding real user costs are 

𝜋𝑖𝑠 ∗ = (4a) 𝜋𝑗𝑠 ∗𝑝𝑠 

and 

𝜋̃𝑗𝑡 ∗𝜋 = . (4𝑏) ̃𝑗𝑠 ∗𝑝𝑠 

Equation (3) can be understood in terms of the delay between the goods 

purchase date and the date of repayment of the loan to the credit card company.  

During the one period delay, the consumer can invest the cost of the goods 

purchased at rate of return 𝑅𝑡 . Hence the net real cost to the consumer of the credit 
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card loan, per dollar borrowed, is 𝑒𝑗𝑡 − 𝑅𝑡. Multiplication by the true cost of living 

index in the numerator of (3) converts to nominal dollars and division by 

1 + 𝑅𝑡 discounts to present value within the time period. 

3. Risk Adjustment 

In index number theory, it is known that uncertainty about future variables has 

no effect on contemporaneous aggregates or index numbers, if preferences are 

intertemporally separable.  Only contemporaneous risk is relevant. See, e.g., Barnett 

(1995). Prior to Barnett, Liu, and Jensen (1997)), the literature on index number 

theory assumed that contemporaneous prices are known with certainty, as is 

reasonable for consumer goods. But Poterba and Rotemberg (1987) observed that 

contemporaneous user cost prices of monetary assets are not known with certainty, 

since interest rates are not paid in advance.  As a result, the need existed to extend 

the field of index number theory to the case of contemporaneous risk. 

For example, the derivation of the Divisia monetary index in Barnett (1980) uses 

the perfect certainty first-order conditions for expenditure constrained 

maximization of utility, in a manner similar to Francois Divisia’s (1925,1926) 

derivation of the Divisia index for consumer goods. But if the contemporaneous user 

costs are not known with certainty, those first order conditions become Euler 

equations. This observation motivated Barnett, Liu, and Jensen (1997)) to repeat 

the steps in the Barnett (1980) with the first order conditions replaced by Euler 

equations. In this section, we analogously derive an extended augmented Divisia 

index using the Euler equations that apply under risk, with utility assumed to be 

intertemporally strongly separable. The result is a Divisia index with the user costs 

adjusted for risk in a manner consistent with the CCAPM (consumption capital asset 

price model).6 

The approach to our derivation of the extended index closely parallels that in 

Barnett, Liu, and Jensen (1997), Barnett and Serletis (2000, ch. 12), and Barnett 

6 Regarding CCAPM, see Lucas (1978), Breeden (1979), and Cochrane (2000). 
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(2012, Appendix D) for monetary assets alone.  But our results, including credit card 

services, are likely to result in substantially higher risk adjustments than the earlier 

results for monetary assets alone, since interest rates on credit card debt are much 

higher and much more volatile than on monetary assets.  

3.1 The Decision 

Define 𝑌 to be the consumer’s survival set, assumed to be compact.  The decision 

problem in this section will differ from the one in Barnett, Chauvet, Leiva-Leon, and 

Su (2016) not only by introducing risk, but also by adopting an infinite planning 

horizon. The consumption possibility set, 𝑆(𝑠), for period 𝑠 is the set of survivable 

points, (𝐦𝑠, 𝐜𝑠, 𝐱𝑠, 𝐴𝑠) satisfying equation (2). 

The benchmark asset 𝐴𝑠 provides no services other than its yield, 𝑅𝑠. As a result, 

the benchmark asset does not enter the consumer’s contemporaneous utility 

function. The asset is held only as a means of accumulating wealth. The consumer’s 

subjective rate of time preference, 𝜉, is assumed to be constant. The single-period 

utility function, 𝑢(𝐦𝑡, 𝐜𝑡, 𝐱𝑡), is assumed to be increasing and strictly quasi-concave. 

The consumer’s decision problem is the following. 

Problem 1. Choose the deterministic point (𝐦𝑡, 𝐜𝑡, 𝐱𝑡, 𝐴𝑡) and the stochastic process 

(𝐦𝑠, 𝐜𝑠, 𝐱𝑠, 𝐴𝑠), 𝑠 = 𝑡 + 1, … , ∞, to maximize 

∞ 𝑠−𝑡 1 
𝑢(𝐦𝑡, 𝐜𝑡, 𝐱𝑡) + 𝐸𝑡[ ∑ ( ) 𝑢( 𝐦𝑠, 𝐜𝑠, 𝐱𝑠)],       (5) 

1 + 𝜉 
𝑠=𝑡+1 

subject to (𝐦𝑠, 𝐜𝑠, 𝐱𝑠, 𝐴𝑠) ∈ 𝑆(𝑠) for 𝑠 = 𝑡, t+1, … , , and also subject to the 

transversality condition 

𝑠−𝑡 1 
lim 𝐸𝑡 ( ) 𝐴𝑠 = 0.     (6) 
𝑠→∞ 1 + 𝜉 
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3.2 Existence of an Augmented Monetary Aggregate for the Consumer 

We assume that the utility function, 𝑢, is blockwise weakly separable in (𝐦𝑠, 𝐜𝑠) 

and in 𝒙𝑠.7 Hence, there exists an augmented monetary aggregator function, ℳ, 

consumer goods aggregator function, 𝑋, and utility functions, 𝐹 and 𝐻, such that 

𝑢(𝐦𝑠, 𝐜𝑠, 𝐱𝑠) = 𝐹[ℳ(𝐦𝑠, 𝐜𝑠), 𝑋(𝐱𝑠)]. (7) 

We define the utility function 𝑉 by 𝑉(𝐦𝑠, 𝐜𝑠, 𝑋𝑠) = 𝐹[ℳ(𝐦𝑠, 𝐜𝑠), 𝑋𝑠], where 

aggregate consumption of goods is defined by 𝑋𝑠 = 𝑋(𝒙𝑠). It follows that the exact 

augmented monetary aggregate is 

= ℳ(𝐦𝑠, 𝐜𝑠). (8) ℳ𝑠 

The fact that blockwise weak separability is a necessary condition for exact 

aggregation is well known in the perfect-certainty case. If the resulting aggregator 

function also is linearly homogeneous, two-stage budgeting can be used to prove 

that the consumer behaves as if the exact aggregate were an elementary good. 

Although two-stage budgeting theory is not applicable under risk, ℳ(𝒎𝑠, 𝒄𝑠) 

remains the exact aggregation-theoretic quantity aggregate in a well-defined sense, 

even under risk.8 

The Euler equations that will be of the most use to us below are those for 

monetary assets and credit card services. Those Euler equations are 

𝜕𝑉 𝑝𝑠
∗(𝑅𝑠 − 𝑟𝑖𝑠) 𝜕𝑉 

𝐸𝑠 [ − 𝜌 ] = 0                         (9𝑎) ∗𝜕𝑚𝑖𝑠 𝑝𝑠+1 𝜕𝑋𝑠+1 

7 A long literature exists on testing the important assumption of blockwise weak separability of 
preferences.  Recent contributions include Cherchye, Demuynck, Rock, and Hjerstrand (2015) and 
Hjertstrand, Swofford, and Whitney (2016). 
8See Barnett (1995) and the appendix in Barnett, Liu, and Jensen (1997). 
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and 

𝜕𝑉 𝑝𝑠
∗(𝑒𝑗𝑠 − 𝑅𝑠) 𝜕𝑉 

𝐸𝑠 [ − 𝜌 ] = 0       (9b) ∗𝜕𝑐𝑗𝑠 𝑝𝑠+1 𝜕𝑋𝑠+1 

for all 𝑠 ≥ 𝑡, 𝑖 = 1, … , 𝑛, and 𝑗 = 1, … , 𝑘, where 𝜌 = 1/(1 + 𝜉) and where 𝑝𝑠
∗ is the 

exact price aggregate that is dual to the consumer goods quantity aggregate 𝑋𝑠. 

Similarly, we can acquire the Euler equation for the consumer goods aggregate, 

𝑋𝑠, rather than for each of its components. The resulting Euler equation for 𝑋𝑠 is 

𝜕𝑉 𝑝𝑠
∗(1 + 𝑅𝑠) 𝜕𝑉 

𝐸𝑠 [ − 𝜌 ] = 0.  (9𝑐) ∗𝜕𝑋𝑠 𝑝𝑠+1 𝜕𝑋𝑠+1 

For the two available approaches to derivation of the Euler equations, see the 

Appendix. 

3.3 The Perfect-Certainty Case 

In the perfect-certainty case with finite planning horizon, we have already 

shown in section 2 that the contemporaneous nominal user cost of the services of 

𝑚𝑖𝑡 is equation (2) and the contemporaneous nominal user cost of credit card 

services is equation (3).  We have also shown in Barnett, Chauvet, Leiva-Leon, and 

Su (2016) that the solution value of the exact monetary aggregate, ℳ(𝐦𝑡, 𝐜𝑡) = 

ℳ(𝐦t
a), can be tracked without error in continuous time by the Divisia index. 

The flawless tracking ability of the index in the perfect-certainty case holds 

regardless of the form of the unknown aggregator function, ℳ. Aggregation 

results derived with finite planning horizon also hold in the limit with infinite 

planning horizon.  See Barnett (1987, section 2.2).  Hence those results continue 

to apply. However, under risk, the ability of the Divisia index to track ℳ(𝐦𝑡, 𝐜𝑡) is 

compromised. 
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3.4 New Generalized Augmented Divisia Index 

3.4.1 User Cost Under Risk Aversion 

We now find the formula for the user costs of monetary services and credit card 

services under risk. 

Definition 1. The contemporaneous risk-adjusted real user cost price of the services of 

𝑚𝑖𝑡
𝑎  is 𝓅𝑖𝑡

𝑎 , defined such that 

𝜕𝑉 

𝜕𝑚𝑖𝑡
𝑎 

𝓅𝑖𝑡
𝑎 = 

𝜕𝑉 , 𝑖 = 1,2, … , 𝑛 + 𝑘. 

𝜕𝑋𝑡 

The above definition for the contemporaneous user cost states that the real user 

cost price of an augmented monetary asset is the marginal rate of substitution 

between that asset and consumer goods. 

For notational convenience, we convert the nominal rates of return, 𝑟𝑖𝑡, 𝑒𝑗𝑡 and 

∗ ∗𝑅𝑡 , to real total rates, 1 + 𝑟𝑖𝑡, 1 + 𝑒𝑗𝑡 and 1 + 𝑅𝑡
∗ such that 

𝑝𝑡
∗(1 + 𝑟𝑖𝑡)

∗1 + 𝑟𝑖𝑡 =  , (10a) ∗𝑝𝑡+1 

𝑝𝑡
∗(1 + 𝑒𝑗𝑡)

∗1 + 𝑒𝑗𝑡 =  , (10b) ∗𝑝𝑡+1 

𝑝𝑡
∗(1 + 𝑅𝑡)

∗1 + 𝑅𝑡 =  , (10c) ∗𝑝𝑡+1 

∗ ∗ ∗where 𝑟𝑖𝑡 , and 𝑅𝑡 are called the real rates of excess return. Under this change of , 𝑒𝑗𝑡 

variables and observing that current-period marginal utilities are known with 

certainty, Euler equations (9a), (9b), and (9c) become 
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𝜕𝑉 𝜕𝑉 
− 𝜌𝐸𝑡 [(𝑅𝑡

∗ − 𝑟𝑖𝑡
∗ ) ] = 0,         (11) 

𝜕𝑚𝑖𝑡 𝜕𝑋𝑡+1 

𝜕𝑉 𝜕𝑉 
∗− 𝜌𝐸𝑡 [(𝑒𝑗𝑡 − 𝑅𝑡

∗) ] = 0, (12) 
𝜕𝑐𝑗𝑡 𝜕𝑋𝑡+1 

and 

𝜕𝑉 𝜕𝑉 
− 𝜌𝐸𝑡 [(1 + 𝑅𝑡

∗) ] = 0.   (13) 
𝜕𝑋𝑡 𝜕𝑋𝑡+1 

We now can provide our user cost theorem under risk. 

Theorem 1 (a). The risk adjusted real user cost of the services of monetary asset 𝑖 

under risk is 𝓅𝑖𝑡
𝑚 = 𝜋𝑖𝑡 + 𝜓𝑖𝑡, where 

∗𝐸𝑡𝑅𝑡
∗ − 𝐸𝑡𝑟𝑖𝑡 

𝜋𝑖𝑡 = (14) 
1 + 𝐸𝑡𝑅𝑡 

and 

𝜕𝑉 𝜕𝑉 ∗ ∗𝐶𝑜𝑣 (𝑅𝑡 , ) 𝐶𝑜𝑣 (𝑟𝑖𝑡, )
𝜕𝑋𝑡+1 𝜕𝑋𝑡+1 𝜓𝑖𝑡 = 𝜌(1 − 𝜋𝑖𝑡) 

𝜕𝑉 − 𝜌 . (15) 
𝜕𝑉 

𝜕𝑋𝑡 𝜕𝑋𝑡 

(b). The risk adjusted real user cost of the services of credit card type 𝑗 under 

risk is 𝓅𝑗𝑡
𝑐 = 𝜋̃𝑗𝑡 + 𝜓̃𝑗𝑡, where 

∗ ∗− 𝐸𝑡𝑅𝑡 𝐸𝑡𝑒𝑗𝑡 
𝜋̃𝑗𝑡 = (16) 

1 + 𝐸𝑡𝑅𝑡 
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and 

𝜕𝑉 𝜕𝑉 ∗ ∗𝐶𝑜𝑣 (𝑒𝑗𝑡, ) 𝐶𝑜𝑣 (𝑅𝑡 , )
𝜕𝑋𝑡+1 𝜕𝑋𝑡+1 𝜓𝑗𝑡 = 𝜌 − 𝜌(1 + 𝜋  . (17) ̃ 

𝜕𝑉 ̃𝑗𝑡) 
𝜕𝑉 

𝜕𝑋𝑡 𝜕𝑋𝑡 

Proof. See the Appendix. ∎ 

Under risk neutrality, the covariances in (16) and (17) would all be zero, because 

the utility function would be linear in consumption. Hence, the user cost of 

monetary assets and credit card services would reduce to 𝜋𝑖,𝑡 and 𝜋̃𝑗,𝑡 respectively, 

as defined in equation (14) and (16). The following corollary is immediate. 

Corollary 1 to Theorem 1. Under risk neutrality, the user cost formulas are the 

same as equation (2) and (3) in the perfect-certainty case, but with all interest rates 

replaced by their expectations. 

3.4.2 Generalized Augmented Divisia Index Under Risk Aversion 

In the case of risk aversion, the first-order conditions are Euler equations. We 

now use those Euler equations to derive a generalized Divisia index, as follows. 

𝑎 Theorem 2. In the share equations, 𝜔𝑖𝑡 = 𝜋𝑖𝑡
𝑎 𝑚𝑖𝑡

𝑎 /𝛑𝑡
𝑎′𝐦𝑡 , we replace the user 

𝑎 𝑎 costs, 𝛑𝑡 = (𝛑 ′𝑡, 𝛑̃′
𝑡)′, defined by (2) and (3), by the risk-adjusted user costs, 𝓅𝑖𝑡, 

𝑎 / ∑𝑛+𝑘 𝑎 defined by Definition 1, to produce the risk adjusted shares, 𝓈𝑖𝑡 = 𝓅𝑖𝑡
𝑎 𝑚𝑖𝑡 𝑗=1 𝓅𝑗𝑡

𝑎 𝑚𝑗𝑡. 

Under our weak-separability assumption, 𝑉(𝐦𝑠, 𝐜𝑠, 𝑋𝑠) = 𝐹[ℳ(𝐦𝑠, 𝐜𝑠), 𝑋𝑠], and our 

assumption that the monetary aggregator function, ℳ, is linearly homogeneous, the 

following generalized augmented Divisia index is true under risk: 
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𝑛+𝑘 

𝑑𝑙𝑜𝑔 ℳ𝑡 = ∑ 𝓈𝑖𝑡𝑑𝑙𝑜𝑔 𝑚𝑖𝑡
𝑎 . (18) 

𝑖=1 

Proof. See the Appendix. ∎ 

The exact tracking of the Divisia monetary index is not compromised by risk 

̃aversion, as long as the adjusted user costs, 𝜋𝑖𝑡 + 𝜓𝑖𝑡 and 𝜋̃𝑗𝑡 + 𝜓𝑗𝑡, are used in 

computing the index. The adjusted user costs reduce to the usual user costs in the 

case of perfect certainty, and our generalized Divisia index (18) reduces to the usual 

Divisia index. Similarly, the risk-neutral case is acquired as the special case with 

̃= 𝜓 = 0, so that equations (14) and (16) serve as the user costs. In short, our 𝜓𝑖𝑡 𝑗𝑡 

generalized augmented Divisia index (18) is a true generalization, in the sense that 

the risk-neutral and perfect-certainty cases are strictly nested special cases. 

Formally, that conclusion is the following. 

Corollary 1 to Theorem 2. Under risk neutrality, the generalized Divisia index (18) 

reduces to the perfect certainty Divisia index in Barnett, Chauvet, Leiva-Leon, and Su 

(2016), where the user costs in the formula are defined by (14) and (16). 

3.5 CCAPM Special Case 

As a means of illustrating the nature of the risk adjustments, 𝜓𝑖,𝑡 and 𝜓̃𝑗,𝑡 , we 

consider a special case, based on the usual assumptions in CAPM theory of either 

quadratic utility or Gaussian stochastic processes. Direct empirical use of Theorems 

1 and 2, without any CAPM simplifications, would require availability of prior 

econometric estimates of the parameters of the utility function, 𝑉, and of the 

subjective rate of time discount. Under the usual CAPM assumptions, we show in 

this section that empirical use of Theorems 1 and 2 would require prior estimation 

of only one property of the utility function: the degree of risk aversion, on which a 

large body of published information is available. 
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Consider first the following case of utility that is quadratic in consumption of 

goods, conditionally on the level of monetary asset and credit card services. 

Assumption 1. Let 𝑉 have the form 

1 
2𝑉(𝐦𝑡, 𝐜𝑡, 𝑋𝑡) = 𝐹[ℳ(𝐦𝑡, 𝐜𝑡), 𝑋𝑡] = 𝐴[ℳ(𝐦𝑡, 𝐜𝑡)]𝑋𝑡 − 𝐵[ℳ(𝐦𝑡, 𝐜𝑡)]𝑋𝑡 , (19) 

2 

where 𝐴 is a positive, increasing, concave function and 𝐵 is a nonnegative, 

decreasing, convex function. 

The alternative assumption is Guassianity, as follows: 

Assumption 2. Let (𝑟𝑖𝑡
∗ , 𝑒𝑗𝑡

∗ , 𝑋𝑡+1) be a trivariate Gaussian process for each asset 𝑖 = 

1, … , 𝑛, and credit card service, 𝑗 = 1, … , 𝑘. 

We also make the following conventional CAPM assumption: 

Assumption 3. The benchmark rate process is deterministic or already risk-

adjusted, so that 𝑅𝑡
∗ is the risk-free rate. 

Under this assumption, it follows that 

𝜕𝑉 
∗𝐶𝑜𝑣 (𝑅𝑡 , ) = 0. 

𝜕𝑋𝑡+1 

We define 𝐻𝑡+1 = 𝐻(ℳ𝑡+1, 𝑋𝑡+1) to be the well-known Arrow-Pratt measure of 

absolute risk aversion, 

𝐸𝑡[𝑉′′]
𝐻(ℳ𝑡+1, 𝑋𝑡+1) = −  , (20) 

𝐸𝑡[𝑉′] 
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𝑎 𝑎 2where 𝑉′ = 𝜕𝑉(𝐦𝑡+1, 𝑋𝑡+1)/𝜕𝑋𝑡+1 and 𝑉′′ = 𝜕2𝑉(𝐦𝑡+1, 𝑋𝑡+1)/𝜕𝑋𝑡+1. In this 

definition, risk aversion is measured relative to consumption risk, conditionally 

upon the level of augmented monetary services produced by ℳ𝑡+1 = ℳ(𝐦𝑡, 𝐜𝑡). 

Under risk aversion, 𝐻𝑡+1 is positive and increasing in the degree of absolute risk 

aversion. The following lemma is central to our Theorem 3. 

Lemma 2. Under Assumption 3 and either Assumption 1 or Assumption 2, the user-

̃cost risk adjustments, 𝜓𝑖𝑡 and 𝜓𝑗𝑡,  defined by (15) and (17), reduce to 

𝜓𝑖𝑡 = 
1 

∗ 𝐻𝑡+1𝑐𝑜𝑣(𝑟𝑖𝑡
∗ , 𝑋𝑡+1)  (21a) 

1 + 𝑅𝑡 

and 

𝜓̃ = − 
1 

𝐻𝑡+1𝑐𝑜𝑣(𝑒𝑗𝑡
∗ , 𝑋𝑡+1). (21b) 𝑗𝑡 ∗1 + 𝑅𝑡 

Proof. See the Appendix. ∎ 

The following theorem identifies the effect of the risk adjustment on the 

expected own interest rates in the user cost formulas. 

Theorem 3. Let 1
ˆ

t t tH H X . Under the assumptions of Lemma 2, we have the 

following for each asset 𝑖 = 1, … , 𝑛, and credit card service, 𝑗 = 1, … , 𝑘. 

∗∗ − (𝐸𝑡𝑟𝑖𝑡 𝑚 𝐸𝑡𝑅𝑡 − 𝜙𝑖𝑡) 
= , (22) 𝓅𝑖𝑡 ∗1 + 𝐸𝑡𝑅𝑡 

where 

𝑋𝑡+1 ∗𝜙𝑖𝑡 = ˆ
tH 𝐶𝑜𝑣 (𝑟𝑖𝑡, ),     (23) 

𝑋𝑡 

and 
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∗ ∗ 
𝑐 

(𝐸𝑡𝑒𝑗𝑡 − 𝜙̃𝑗𝑡) − 𝐸𝑡𝑅𝑡 
= , (24) 𝓅𝑗𝑡 ∗1 + 𝐸𝑡𝑅𝑡 

where 

𝑋𝑡+1 ̃ ˆ
tH ∗𝜙𝑗𝑡 = 𝐶𝑜𝑣 (𝑒𝑗𝑡, 

𝑋𝑡 
). (25) 

Proof. See the Appendix. ∎ 

As defined, ˆ
tH is a time shifted Arrow-Pratt relative risk aversion measure. 

Theorem 3 shows that the risk adjustment on the own interest rate for a monetary 

asset or credit card service depends upon relative risk aversion, ˆ
tH , and the 

covariance between the consumption growth path, Xt+1/Xt, and the real rate of 

∗ excess return earned on a monetary asset, 𝑟𝑖𝑡
∗ , or paid on a credit card service, 𝑒𝑗𝑡 . 

3.6 Magnitude of the Adjustment 

In accordance with the large and growing literature on the equity premium 

puzzle, the CCAPM risk adjustment term is widely believed to be biased downward.9 

A promising explanation may be the customary assumption of intertemporal 

separability of utility, since response to a change in an interest rate may not be fully 

reflected in contemporaneous changes in consumption.  Hence the 

contemporaneous covariance in the CCAPM “beta” correction may not take full 

account of the effect of an interest rate change on life style.  An approach to risk 

adjustment without assumption of intertemporal separability was developed for 

monetary aggregation by Barnett and Wu (2005).  We have not yet applied that 

more complicated approach to weaken our assumptions further.  While we have 

removed the assumption of risk neutrality, we have assumed intertemporal 

separability in deriving the Euler equations on which our aggregation theory is 

9See, e.g., Campbell and Cochrane (1999), Cochrane (2000), Kocherlakota (1996), Marshall (1997), 
Mehra and Prescott (1985). 
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based. In later research, we plan to apply the approach of Barnett and Wu (2005) to 

further weaken the assumptions by removing the assumptions of intertemporal 

separability.  

4. Conclusions 

Many economists have wondered how the transactions services of credit cards 

could be included in monetary aggregates.  The conventional simple sum accounting 

approach precludes solving that problem, since accounting conventions do not 

permit adding liabilities to assets.  But economic aggregation and index number 

theory measure service flows, independently of whether from assets or liabilities.  

Barnett, Chauvet, Leiva-Leon, and Su (2016) provided the theory solving that long 

overlooked problem, but under the assumption of risk neutrality.  The Center for 

Financial Stability (CFS) is now providing the unaugmented aggregates, Mt = M(mt), 

and will soon be providing the credit-card-augmented aggregates ℳ𝑡 = ℳ(𝐦𝑡, 𝐜𝑡), 

derived under the assumption of risk neutrality.  The new aggregates will be 

provided to the public in monthly releases by the CFS and also to Bloomberg 

terminal users. 

While excluding credit card services, the currently available CFS Divisia 

monetary aggregates have been found to be reasonably robust to introduction of 

risk, variations of the benchmark rate, introduction of taxation of interest rates, and 

other such refinements.10 But such simplifications might not be the case with the 

augmented monetary aggregates, because of the high and volatile interest rates on 

credit card balances. As a result, in this paper we have extended the theory to 

CCAPM risk adjustment under risk aversion. Empirical application of this theory 

remains a topic for future research. 

An extensive literature exists on policy relevance of the Divisia monetary 

aggregates.  See, e. g., Barnett (2012), Belongia and Ireland (2014; 2015a,b; 2016), 

10 While those refinements slightly change the un-augmented Divisia monetary aggregates, those 
changes are negligible relative to the gap between the simple sum monetary aggregate path and the 
corresponding Divisia monetary aggregate path.  See, e.g., the online library of relevant research and 
the Divisia monetary aggregates databases at the Center for Financial Stability 
(www.centerforfinancialstability.org/amfm.php). 
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Barnett and Chauvet (2011a,b), Serletis and Rahman (2013), and Serletis and Gogas 

(2014).  Much of that literature could be strengthened further by use of the soon to 

be available credit-card augmented CFS Divisia monetary aggregates and perhaps 

further strengthened by removing the assumption of risk neutrality in accordance 

with the theory in this paper. 

A more demanding approach would remove the CCAPM assumption of 

intertemporal separability, in accordance with Barnett and Wu (2005).  Adapting 

that advanced approach to our augmented aggregates, including credit card 

services, remains a topic for future research. 
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APPENDICES 

(I) Derivation of Euler Equations for Credit Card Services, Equation (12): 

The following are the Euler equations provided in the paper as equations (11), 

(12), and (13): 

𝜕𝑉 𝜕𝑉 
− 𝜌𝐸𝑡 [(𝑅𝑡

∗ − 𝑟𝑖𝑡
∗ ) ] = 0,  (A. 1) 

𝜕𝑚𝑖𝑡 𝜕𝑋𝑡+1 

𝜕𝑉 𝜕𝑉 
∗− 𝜌𝐸𝑡 [(𝑒𝑗𝑡 − 𝑅𝑡

∗) ] = 0,         (A. 2) 
𝜕𝑐𝑗𝑡 𝜕𝑋𝑡+1 

𝜕𝑉 𝜕𝑉 
− 𝜌𝐸𝑡 [(1 + 𝑅𝑡

∗) ] = 0. (A. 3) 
𝜕𝑋𝑡 𝜕𝑋𝑡+1 

for all 𝑠 ≥ 𝑡, 𝑖 = 1, … , 𝑛, and 𝑗 = 1, … , 𝑘, where 𝜌 = 1/(1 + 𝜉) and where 𝑝𝑠
∗ is the 

exact price aggregate that is dual to the consumer goods quantity aggregate 𝑋𝑠. 

Equation (A.1) was derived in Barnett (1995, Sec 2.3) using Bellman’s method.  

An alternative approach to that derivation using calculus of variations was provided 

by Poterba and Rotemberg (1987).  Equation (A.2) follows by the same approach to 

derivation, using either Bellman’s method or calculus of variations. We are not 

providing the lengthy derivation of (A.2) in this appendix, since the steps in the 

Bellman method approach for this class of models are provided in detail in Barnett 

and Serletis (2000, pp. 201-204). 

(II) Proof of Theorem 1 

Theorem 1 (a). The risk adjusted real user cost of the services of monetary asset 𝑖 

under risk is 𝓅𝑖𝑡
𝑚 = 𝜋𝑖𝑡 + 𝜓𝑖𝑡, where 

∗𝐸𝑡𝑅𝑡
∗ − 𝐸𝑡𝑟𝑖𝑡 

𝜋𝑖𝑡 = (A. 4) ∗1 + 𝐸𝑡𝑅𝑡 
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and 

𝜕𝑉 𝜕𝑉 ∗ ∗𝐶𝑜𝑣 (𝑅𝑡 , ) 𝐶𝑜𝑣 (𝑟𝑖𝑡, )
𝜕𝑋𝑡+1 𝜕𝑋𝑡+1 𝜓𝑖𝑡 = 𝜌(1 − 𝜋𝑖𝑡) − 𝜌 . (A. 5) 

𝜕𝑉 𝜕𝑉 

𝜕𝑋𝑡 𝜕𝑋𝑡 

(b). The risk adjusted real user cost of the services of credit card type 𝑗 under 

̃risk is 𝑐 = 𝜋̃𝑗𝑡 + 𝜓𝑗𝑡, where 
𝑗𝑡 

∗ ∗− 𝐸𝑡𝑅𝑡 𝐸𝑡𝑒𝑗𝑡 
𝜋 = (A. 6) ̃𝑗𝑡 ∗1 + 𝐸𝑡𝑅𝑡 

and 

𝜕𝑉 𝜕𝑉 ∗ ∗𝐶𝑜𝑣 (𝑒𝑗𝑡, ) 𝐶𝑜𝑣 (𝑅𝑡 , )
𝜕𝑋𝑡+1 𝜕𝑋𝑡+1 𝜓̃𝑗𝑡 = 𝜌 − 𝜌(1 + 𝜋̃𝑗𝑡) 

𝜕𝑉
 . (A. 7) 

𝜕𝑉 

𝜕𝑋𝑡 𝜕𝑋𝑡 

Proof. For the analogous proof in the case of monetary assets only, relevant to part 

(a), see Barnett, Liu, and Jensen (1997), Barnett and Serletis (2000, ch. 12), or 

Barnett (2012, Appendix D).  We provide the proof of part (b) for the extended case 

including credit.   There are two approaches to proving this important theorem, the 

direct approach and the indirect approach.  We provide both approaches, beginning 

with the indirect approach. 

By definition (1) in the paper, we have for the credit card services user cost 

price 

j
jt
c

t

t

V
c

V
X










 . (A.8) 
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Defining jt to be jt jt jt
c    , it follows that 

( )jt
jt

jt
t

VV
c X

 


 


 
. 

Substituting equations (A.2) and (A.3) into this equation, we get 

   * * *

1 1

( ) 1t jt t jt jt t t
t t

V VE e R E R
X X

   
 

    
      

    
. 

Using the expectation of the product of correlated random variables, we have 

 

 

* * * *

1 1

* *
* *

*
1 1

1 , .
1

,t jt t t jt t
t t

t jt t t
jt t t t t

t t t t

V VE e R E Cov e R
X X

E e E R V VE R E Cov R
E R X X



 

 

    
     

    

           
         

            

Multiplying  *1 t tE R through on both sides of the equation, we get: 

     

     

* * * * * *

1 1

* * * * *

1 1

1 1

1 1 ,

,

.

t t t jt t t t t jt t
t t

t jt t t t jt t t t t
t t

V VE R E e R E E R Cov e R
X X

V VE e R E R E R E Cov R
X X



 

 

    
       

    

                       


Manipulating the algebra, we have 

     

 

     

* * * * * * *

1 1 1

* * *

1

* * * * *

1 1 1

1

,

,

,t jt t t t t t jt t t jt t
t t t

t t jt t
t

t jt t t t jt t t t t t
t t t

V V VE e R E E R E e R E Cov e R
X X X

VE R Cov e R
X

V V VE e R E R E E R E Cov R
X X X



  



  

       
         

       

 
  

 

                          


 
,




  
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and hence 

     

 

      

* * * * * * *

1 1 1

* * *

1

* * * * * * * *

1 1

,

,

,

t jt t t t t t jt t t jt t
t t t

t t jt t
t

t jt t t t jt t t t t t jt t t
t t

V V VE e R E E R E e R E Cov e R
X X X

VE R Cov e R
X

V V VE e R E E e R E R E E e R Cov R
X X X

  



 

       
         

       

 
  

 

      
                

   

1

* * *

1 1 1

1 , .

t

t t jt t t t t t
t t t

V V VE R E E R E Cov R
X X X





  

 
 
 

          
                     

Notice that by equation (A.3), 

 

 

*

1

* *

1 1 1

1

, .

t t
t t

t t t t t
t t t

V VE R
X X

V V VE E R E Cov R
X X X







  

  
  

  

          
                    

Substituting this back into the prior equation, we have 

     

 

      

* * * * * * *

1 1 1

* * *

1

* * * * * * * *

1 1

,

,

,

t jt t t t t t jt t t jt t
t t t

t t jt t
t

t jt t t t jt t t t t t jt t t
t t

V V VE e R E E R E e R E Cov e R
X X X

VE R Cov e R
X

V V VE e R E E e R E R E E e R Cov R
X X X

  



 

       
         

       

 
  

 

      
                

 

1

*1 1 .

t

t t jt
t

VE R
X






 
 
 


 



 
 
 

Simplifying the equation, we get 
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 

   

* * * * *

1 1

* * * *

1

,

1

,

1, .

jt t t t jt t
t t

t jt t t t t jt
t t

V VCov e R E R Cov e R
X X

V VE e R Cov R E R
X X




 



    
     

    

  
    



 


  



Recall that by equation (A.6), 

∗ ∗− 𝐸𝑡𝑅𝑡 𝐸𝑡𝑒𝑗𝑡 
𝜋 = .̃𝑗𝑡 ∗1 + 𝐸𝑡𝑅𝑡 

Substituting this equation back into the prior equation, we have 

 

   

* * * * *

1 1

* * *

1

,

1 .1

,

1 ,

jt t t t jt t
t t

jt t t t t t jt
t t

V VCov e R E R Cov e R
X X

V VE R Cov R E R
X X

 


 



    
     

    

  
    



 
 
   

Rearranging the equation, we have 

     * * * * * *

1 1

1 1, 1, ,1t t jt t jt t t t t t jt
t t t

V V VE R Cov e R E R Cov R E R
X X X

 
 

     
        

  



   


 
 

so that 

* * *

1 1

1,,jt t jt t jt
t t t

V V VCov e R Cov R
X X X

 
 

     
     

   

 
 
  

. 

Hence, it follows that 
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 

* * *

1 1

* * *

1 1 1

*

1

,  ,

,  ,  ,

,  
1

jt t t
t t

jt jt

t t

jt t t
t t t

jt

t t t

jt
t

jt

t

V VCov e R Cov R
X X

V V
X X

V V VCov e Cov R Cov R
X X X

V V V
X X X

VCov e Cov
X

V
X

  

  

  

 

  



    
   

     
 

 

       
     

         
  

  

 
 

   






*

1

,
.

t
t

t

VR
X

V
X



 
 

 




The alternative direct approach to proof is the following. 

By equation (A.3), we have 

 

 

*

1

* *

1 1

1

1 , .

t t
t t

t t t t
t t

V VE R
X X

V VE R E Cov R
X X



 



 

  
  

  

     
            

Rearranging, we get 

 * *

1 1

1 , ,t t t t
t t t

V V VE R E Cov R
X X X

 
 

      
             

and hence 

*
*

1 1

1 , .
1t t

t t t t t

V V VE Cov R
X E R X X

 
 

      
     

       
(A.9) 

But from (A.12), we have 
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 * *

1 1 1

, , .t jt t t jt t
jt t t t

V V V VE e R E Cov e Cov R
c X X X

  
  

       
      

    


 



 

 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 *

1

.t jt t
jt t

V VE e R
c X




  
  

  

From the expectation of the correlated product, we then have 

   * *

1 1

, ,t jt t t jt t
jt t t

V V VE e R E Cov e R
c X X

 
 

     
     

    

so that 

(A.10) 

Now substitute equation (A.9) into equation (A.10), to acquire 

 *
* *

*
1 1 1

* *

1 1 1

, , ,
1

, , , .

t jt t
t jt t

jt t t t t t t

jt t jt t
t t t t

E e RV V V V VCov R Cov e Cov R
c E R X X X X

V V V VCov R Cov e Cov R
X X X X

  

   

  

  

           
         

           

         
         

         

Multiplying and dividing the right side by 
t

V
X



, we get 
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 

* *

1 1 1

*

1 1

, , ,

, ,
1 .

t jt t
t t t

jt jt
jt t

t t t

jt t
t t

jt jt
t

t t

V V VCov R Cov e Cov R
X X XV V

V V Vc X
X X X

V VCov e Cov R
X XV

V VX
X X

   

   

  

 

        
      

              
     
   

 

     
    

          
   
  

 

Define jt by 

Then we have 

 

*

1 1

, ,
1

jt t
t t

jt jt

t t

V VCov e Cov R
X X

V V
X X

    

    
   

     
 

 

. 

,jt
jt jt

t

V
c
V
X

 




 





so that 

 ̃𝑐 = 𝜋̃𝑗𝑡 + 𝜓 ∎𝑗𝑡. 
𝑗𝑡 

(III) Proof of Lemma 2: 

Assumption 1. Let 𝑉 have the form 
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1 
2𝑉(𝐦𝑡, 𝐜𝑡, 𝑋𝑡) = 𝐹[ℳ(𝐦𝑡, 𝐜𝑡), 𝑋𝑡] = 𝐴[ℳ(𝐦𝑡, 𝐜𝑡)]𝑋𝑡 − 𝐵[ℳ(𝐦𝑡, 𝐜𝑡)]𝑋𝑡 , (A. 11) 

2 

Where 𝐴 is a positive, increasing, concave function and 𝐵 is a nonnegative, 

decreasing, convex function. 

Assumption 2. Let (𝑟𝑖𝑡
∗ , 𝑒𝑗𝑡

∗ , 𝑋𝑡+1) be a trivariate Gaussian process for each asset 𝑖 = 

1, … , 𝑛, and credit card service, 𝑗 = 1, … , 𝑘. 

Assumption 3. The benchmark rate process is deterministic or already risk-

adjusted, so that 𝑅𝑡
∗ is the risk-free rate. 

Under this assumption, it follows that 

𝜕𝑉 
∗𝐶𝑜𝑣 (𝑅𝑡 , ) = 0. 

𝜕𝑋𝑡+1 

Define 𝐻𝑡+1 = 𝐻(ℳ𝑡+1, 𝑋𝑡+1) to be the well-known Arrow-Pratt measure of 

absolute risk aversion, 

𝐸𝑡[𝑉′′]
𝐻(ℳ𝑡+1, 𝑋𝑡+1) = −  , (A. 12) 

𝐸𝑡[𝑉′] 

𝑎 𝑎 2Where 𝑉′ = 𝜕𝑉(𝒎𝑡+1, 𝑋𝑡+1)/𝜕𝑋𝑡+1 and 𝑉′′ = 𝜕2𝑉(𝒎𝑡+1, 𝑋𝑡+1)/𝜕𝑋𝑡+1. 

Lemma 2. Under Assumption 3 and either Assumption 1 or Assumption 2, the user-

̃cost risk adjustments, 𝜓𝑖𝑡and 𝜓 defined by (A.5) and (A.7), reduce to 𝑗𝑡, 

𝜓𝑖𝑡 = 
1 

∗ 𝐻𝑡+1𝑐𝑜𝑣(𝑟𝑖𝑡
∗ , 𝑋𝑡+1) (A. 13) 

1 + 𝑅𝑡 
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and 

𝜓̃ = − 
1 

𝐻𝑡+1𝑐𝑜𝑣(𝑒𝑗𝑡
∗ , 𝑋𝑡+1).     (A. 14) 𝑗𝑡 ∗1 + 𝑅𝑡 

Proof. For the analogous proof in the case of monetary assets only, see Barnett, Liu, 

and Jensen (1997), Barnett and Serletis (2000, ch. 12), or Barnett (2012, Appendix 

D).  We provide the proof of equation (A.14) for the extended case including credit.  

Under Assumption 3, the benchmark asset is risk-free, so that 

*

1

, 0t
t

VCov R
X 

 
 

 
. 

By equation (A.7), 

 

* *

1 1

*

1

,  ,
1

,  
.

jt t
t t

jt jt

t t

jt
t

t

V VCov e Cov R
X X

V V
X X

VCov e
X

V
X

   



 



    
   

      
 

 

 
 

 




But by equation (A.3), 

 *

1

1t t
t t

V VE R
X X




  
  

  
, 

So 

 

*

1

*

1

,  

1

jt
t

jt

t t
t

VCov e
X

VR E
X

 







 
 

 
 

  
 
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    (A.15) 

 

*

1

*

1

,  
.

1

jt
t

t t
t

VCov e
X

VR E
X





 
 

 
 

  
 

Under Assumption 1,  

Hence, 

   , , t t t t
t

t
V
X

A B X   


    m c m cM M . 

 
2

2 , 
t

t t
V

X
B

  
 m cM . 

Shifting one period forward, those two equations become 

1
1

t
t

V V A BX
X 




  



and 

2

2
t

V V B
X


  


. 

Substituting into equation (A.15), we get 

 

 

 
 

 
 

 

 

*
1

*

1

*
1

*

*
1*

*
1 1*

,  

1

,  
1

1 ,  
1

1 ,  .
1

jt t
jt

t t
t

jt t

t t

jt t
t t

t jt t
t

Cov e A BX

VR E
X

Cov e XB
R E V

E V
Cov e X

R E V

H Cov e X
R










 




 
  

 











 

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Alternatively, consider Assumption 2.  We then can use Stein’s lemma, which 

says the following.11 Suppose (X,Y) are multivariate normal.  Then 

( ( ), ) ( ( )) ( , ).Cov g X Y E g X Cov X Y

In that formula, let Then from Stein’s lemma, 
1

( )
t

Vg X
X 





, 1tX X  , and 
* .jtY e

we have 

 
2

* *
12

1 1

,  ,jt t t jt
t t

V VCov e E Cov X e
X X 

 

   
         

. 

Substituting into (A.15), we get 

 

 

2

*
12

1

*

1

,
.

1

t t jt
t

jt

t t
t

VE Cov X e
X

VR E
X









 
   

 
  

 

Using the definitions of V  , V  , and 1tH  , we have 

 *
1 1*

1 ,  .
1jt t jt t

t

H Cov e X
R

   


∎ 

(IV) Proof of Theorem 3: 

Theorem 3. Let 1
ˆ

t t tH H X . Under the assumptions of Lemma 2, we have the 

following for each asset 𝑖 = 1, … , 𝑛, and credit card service, 𝑗 = 1, … , 𝑘, 

∗


𝐸𝑡𝑅𝑡

∗ − (𝐸𝑡𝑟𝑖𝑡 − 𝜙𝑖𝑡)𝑚 = , (A. 16) ∗ 𝑖𝑡 1 + 𝐸𝑡𝑅𝑡 

11 For Stein’s lemma, see Stein (1973), Ingersoll (1987, p. 13, eq. 62) or Rubinstein (1976). 
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where 

𝑋𝑡+1 ∗𝜙𝑖𝑡 = ˆ
tH 𝐶𝑜𝑣 (𝑟𝑖𝑡, ), (A. 17) 

𝑋𝑡 

and 

∗ ∗


− 𝜙𝑗𝑡) − 𝐸𝑡𝑅𝑡 𝑐 (𝐸𝑡𝑒𝑗𝑡 

̃ 
= , (A. 18) ∗ 𝑗𝑡 1 + 𝐸𝑡𝑅𝑡 

where 

𝑋𝑡+1 ∗𝜙̃𝑗𝑡 = ˆ
tH 𝐶𝑜𝑣 (𝑒𝑗𝑡, ). (A. 19) 

𝑋𝑡 

Proof. For the proof in the case of monetary assets only, relevant to equations 

(A.16) and (A.17), see Barnett, Liu, and Jensen (1997), Barnett and Serletis (2000, 

ch. 12), or Barnett (2012, Appendix D).  We here provide the proof of equations 

(A.18) and (A.19) for the extended case including credit. 

From part b of Theorem 1, 

**

1
t j t t

jt
t

j
t

t
c

t

E RE e
E R




  


. 

Letting 1ˆ .t t tH H X and using Lemma 2, we get 
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 **
1 1

*

* 1
1*

*

* 1
*

*

*

*

*
ˆ

,  
1

,  

1

,  
.

1

1

11

t

t jt tt t
jt

t t

t
t t jt

t t t

t t

t
jt

t

t t t

t t

jtc

t t

t jt

t t

t jt

t t

H

H Cov e XE R
E R

XH X Cov e
E R X

E R

XCov e

E e
E R

E e
E R

E e
E R

E R X
E R

 








 
 
 



 
 


  








 





Define * 1
,

ˆ ,  t
t

j t jt
t

H
XCov e
X

 
 

  
 

to get 

*

*

* *

*

*

1

( )

1

.
1

t t jt
jt

t t

t jt jt t t

t

tc

t

t

jt

t

E e
E R

E R
E R

E e E R
E R








 





 


∎ 
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