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Finger pointing is a natural human behavior frequently used to draw attention to specific parts of sensory 
input. Since this pointing behavior is likely preceded and/or accompanied by the deployment of attention 
by the pointing person, we hypothesize that pointing can be used as a natural means of providing self-
reports of attention and, in the case of visual input, visual salience. We here introduce a new method 
for assessing attentional choice by asking subjects to point to and tap the first place they look at on an 
image appearing on an electronic tablet screen. Our findings show that the tap data are well-
correlated with other measures of attention, including eye fixations and selections of interesting image 
points, as well as with predictions of a saliency map model. We also develop an analysis method for com-
paring attentional maps (including fixations, reported points of interest, finger pointing, and computed 
salience) that takes into account the error in estimating those maps from a finite number of data points. 
This analysis strengthens our original findings by showing that the measured correlation between atten-
tional maps drawn from identical underlying processes is systematically underestimated. The underesti-
mation is strongest when the number of samples is small but it is always present. Our analysis method is 
not limited to data from attentional paradigms but, instead, it is broadly applicable to measures of sim-
ilarity made between counts of multinomial data or probability distributions. 

� 2017 Elsevier Ltd. All rights reserved. 
1. Introduction 

Factors influencing selective attention can notionally be sepa-
rated into top-down and bottom-up influences. Top-down influ-
ences depend on the internal state of the observer, including his 
or her goals (e.g. Yarbus, 1967; DeAngelus & Pelz, 2009). Bottom-
up influences are factors that draw attention independently of 
any task and past experience with particular stimuli (e.g. 
Anderson, Laurent, & Yantis, 2011). For example, a bright flash in 
an otherwise still scene will usually attract attention (Yantis & 
Jonides, 1984). The ability of parts of a visual scene to attract atten-
tion in a bottom-up fashion has been called the salience of this 
region (Koch & Ullman, 1985), a definition we adopt here. 
�

�

�

While the definitions of top-down and bottom-up attention are 
clear, it is in practice difficult to dis-entangle their effects. For 
instance, observers who repeatedly perform tasks designed to 
measure bottom-up attentional effects may form expectations of 
what the next trial may be. These expectations will change their 
internal state and therefore add a top-down component to their 
responses. One of the goals of this study is to reduce such effects. 
Specifically, our goals are to: 

Introduce open ended self reports as a new experimental assay 
for selective attention and show that it can be measured effi-
ciently using a pointing/tapping paradigm. 
Develop a new experimental design in which each participant 
views only a small numbers of scenes. This reduces the contam-
ination of bottom-up attentional effects by top-down expecta-
tions due to participants viewing similar stimuli many times. 
Compare the results of this experiment with three other mea-
sures of attention and salience: fixations, interest points, and 
computed saliency. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.visres.2017.04.001&domain=pdf
http://dx.doi.org/10.1016/j.visres.2017.04.001
mailto:danny.jeck@gmail.com
http://dx.doi.org/10.1016/j.visres.2017.04.001
http://www.sciencedirect.com/science/journal/00426989
http://www.elsevier.com/locate/visres
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� Analyze the effects of sample size on estimating correlation 
between maps. The small number of samples from the point-
ing/tapping paradigm results in a statistical effect that causes 
the correlation between different maps to be systematically 
underestimated. We will clarify the influence of finite numbers 
of samples on the correlation between maps. 

1.1. Determining bottom-up saliency from human behavior 

There are several methods that allow researchers to character-
ize items or regions that observers direct their attention to. One 
very influential approach has been visual search. Search for targets 
that differ from distractors by one of several low-level features (e.g. 
luminance, color, orientation contrast) takes a (generally short) 
time that is nearly independent of the number of distractors in 
the display (Egeth, Jonides, & Wall, 1972; Treisman & Gelade, 
1980). In contrast, targets that could be distinguished from distrac-
tors only by combinations of such features require search times 
that increased roughly linearly with the number of distractors 
(Egeth, Virzi, & Garbart, 1984; Treisman & Gelade, 1980). These 
and related results were fundamental in the construction of com-
putational models for visual search (Wolfe, 1994, 2007; Wolfe, 
Cave, & Franzel, 1989) and for saliency determination and atten-
tional selection (Niebur & Koch, 1996; Itti, Koch, & Niebur, 1998; 
Itti & Koch, 2001). 

Given past success in utilizing features that promote efficient 
search, it is tempting to continue using visual search as a way to 
test models of visual salience. However, search tasks are limited 
in their applicability to measuring salience because participants 
are typically informed about the types of images they are about 
to see (e.g. ‘‘an image in which there is a single target and many 
distractors”), and the target and distractors are often described 
before the task begins. This information generates top-down influ-
ences that are likely to interact with bottom-up selection mecha-
nisms. Even when participants are only told to look for a unique 
target, without being informed how it will differ from other objects 
(‘‘odd-man out” tasks), they are still being informed about the 
structure of the image. It is then difficult to decide whether the 
participants find the target due to its bottom-up saliency features, 
or because of its uniqueness (Bacon & Egeth, 1994). Results there-
fore may reflect a mixture of bottom-up (saliency) and top-down 
components of unknown composition. 

This concern applies also to measurements of salience where 
participants give their subjective assessment of which of two stim-
uli is more salient (e.g. Nothdurft, 2000). These experiments 
require that participants know that a stimulus will appear made 
up of oriented bars where two of them (one to the left and one 
to the right of fixation) will differ from the rest. As with search 
tasks, this information potentially biases the response of the par-
ticipant. Indeed Nothdurft refers to needing additional concentra-
tion (clearly a top down process) to make difficult salience 
assessments. Furthermore, even if participants are not informed 
explicitly about the nature of the visual scene they are observing, 
the process of performing a task many times will likely give them 
information about what to expect. 

While top-down influences can probably never be excluded 
entirely, our goal in this project is to reduce them. One possible 
way to mitigate top-down influences is to use ‘‘overt attention” 
in a free viewing task as an indicator for covert attention. In this 
approach, introduced by Parkhurst, Law, and Niebur (2002) and 
used in many subsequent studies (for a review see Borji & Itti, 
2013), observers look at images (or videos) which can be natural 
or abstract scenes while their eye movements are tracked. Areas 
of the scene that are fixated are taken to be attended, a conclusion 
supported by findings from Deubel and Schneider (1996) that 
visual discrimination performance is enhanced at saccade targets. 
In the absence of a specific task (‘‘free viewing”), it seems reason-
able to assume that at least for the first few images, and for the first 
few fixations in these images, observers let themselves be guided 
by the visual input, rather than by some more complex strategy. 
This assumption becomes less plausible, however, the longer the 
sequence of images becomes and the longer the duration becomes 
that observers look at any given image. Indeed, Parkhurst et al. 
(2002) found that the agreement between eye fixation data and 
predictions of a purely bottom-up computational model of saliency 
decreased with viewing time/fixation number for a given image. It 
is not known whether the level of agreement depended on how 
many images had been viewed previously. 

In principle it is possible to use the eye tracking method, with 
naïve participants viewing only a small number of scenes. In prac-
tice, the overhead of setting up an eye tracker system for each par-
ticipant would make gathering fixation data for a small number of 
images per participant a very cumbersome task. We recruited 252 
participants in this study, an order of magnitude more than partic-
ipated in the latest saliency benchmark by Borji and Itti (2015), 
making eye-tracking each subject prohibitive. 

To counteract this difficulty, we developed a novel experimen-
tal paradigm with the goal of gathering data from many partici-
pants where each participant only performed a small number of 
trials. The new paradigm is centered on showing subjects a short 
sequence of images and recording the response of each subject to 
each image. Some of the images are simple displays (similar to typ-
ical visual search arrays like those used by Treisman & Gelade 
(1980)) that are designed to test a specific hypothesis about what 
features of an image affect salience. Future work will discuss the 
structure of these images and the results gathered. Alternating 
with these images are natural scenes, the focus of this report. 
The goal in presenting these scenes to participants is to determine 
the extent to which salience as measured in our new experimental 
paradigm comports with salience data from previous studies. The 
natural scenes were therefore a subset of those used in a previous 
study (Masciocchi, Mihalas, Parkhurst, & Niebur, 2009), and we 
will compare results obtained in our new paradigm with those 
from that study. 

The data being compared here are attentional maps aggregated 
over a pool of participants. Such maps have been used in the study 
of salience extensively (Borji & Itti, 2013), and because they are 
population averages we can gather data to make attentional maps 
from a similar population without needing to gather new fixation 
data from the same subjects. 

1.2. Reporting attended locations by pointing to them 

Our new experimental paradigm for fast assessment of atten-
tional selection was inspired by a study by Firestone and Scholl 
(2014) although those authors used a very different stimulus set 
and had a different motivation. The main idea is that, instead of 
recording eye movements, we ask participants to communicate 
their selections in a natural way by tapping on a screen with their 
(index) finger. Specifically, we ask the subjects to ‘‘tap the first 
place you look when the image appears.” This instruction gives 
us a quick way to communicate in a non-technical manner that 
the participant should select the first attended location on the 
image, rather than an arbitrary point as requested by Firestone 
and Scholl (2014). Even though instructions refer to where the 
participants look first, we do not attempt to determine whether 
any single individual is able to report their eye movements 
successfully. Instead, we are concerned with whether the 
population-level attentional maps we derive from the responses 
reflect previous measures of attention. We will validate our 
method by comparing these maps on when gathered for the same 
set of images. 
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We view this method of obtaining attentional maps as an alter-
native read-out of attention consisting of two (possibly interacting) 
components: self-report, and manual selection by finger tapping. 
Self reports have previously been taken as valid assessments of 
attentional selection when reporting attended locations in an 
experiment (e.g. Nothdurft, 2000). Responding by tapping allows 
participants to indicate any location on the screen, rather than a 
pre-defined set of locations via a key press, or a less easily quanti-
fied verbal report. While it has been shown that planning manual 
movements can draw attention independently of eye movements 
(Jonikaitis & Deubel, 2011) in carefully controlled experiments,it 
is much more common for eye movements to guide hand move-
ments when no experimental restrictions are in place (Fisk & 
Goodale, 1985; Neggers & Bekkering, 2000), minimizing the prob-
ability that a manual read out interferes with the self-report. Self 
reports also allow for the possibility of participants reporting the 
location of their covert attention rather than the location where 
they fixate, which may differ. 

From a practical point of view, the method we use to record 
pointing behavior makes it a very fast, intuitive and simple process 
for collecting large amounts of selection data from a large and 
diverse participant population. Images were presented on an elec-
tronic tablet, and participants were instructed to tap on the first 
location that they looked at in the image, allowing for easy and 
precise recording of tap locations. In addition to allowing us to 
gather data from a large number of participants, the process 
reduces the information the participants were likely to have about 
the nature of the stimulus. We could then compare the responses 
of these relatively uninformed subjects to previously obtained 
measures of salience. 
1.3. Limitations due to map estimation 

We will follow the approach by Masciocchi et al. (2009) for 
computing correlations between different selection responses over 
the image. In that study, participants were asked to select interest-
ing points on an image with a mouse. The distribution of selected 
points on the image was then interpreted as an estimate of the ‘‘in-
terest map” internal to the participants that generated the data. 
Similarly, the distribution of recorded fixations from a free viewing 
task was turned into an estimate of a ‘‘fixation map.” Both were 
compared with computed saliency maps. In the present study, 
we will introduce a third set of human response maps, defined 
by the pointing/tapping locations which we call ‘‘tap maps.” 
Fig. 1. Experimental procedure. The rectangles represent an approximation of what was s
tapped on either of the small black squares at the bottom. This brought up a test image w
test image at a place of their choosing which was, according to instructions, the first pla
time were collected, the initialization screen reappeared, and the cycle re-commenced. 
�

When comparing any two of these estimated maps, their mea-
sured correlation is determined by the nature of the two tasks and 
data types, as well as the amount of data collected to form the esti-
mate. As we show in Section 2.3.3, the finite amount of collected 
data biases the computed correlation between maps toward zero. 
We develop a bootstrap procedure to estimate how large the bias 
would be if the two maps were drawn from the same underlying 
distribution. This procedure gives us insight into how correlated 
the data types could be and helps determine which comparisons 
between maps may benefit from further data collection. 

2. Methods 

All methods were approved by the Johns Hopkins Institutional 
Review Board and carried out in accordance with the Code of Ethics 
of the World Medical Association (Declaration of Helsinki). Alpha 
for all significance tests was set to 0.05. All data and code used 
for the analysis described in this section are available at https:// 
github.com/dannyjeck/Attention-maps-comparison. 

2.1. Apparatus, participants, and procedure 

Participants were 252 passers-by on the Johns Hopkins Univer-
sity Homewood Campus (151 female; see Fig. S1 for demographic 
information). They were approached by the experimenter and 
asked if they were interested in performing a short psychology 
experiment. If they answered in the affirmative, they were given 
instructions, as follows. 

Participants were asked to give their gender (male/female) and 
age group (18–22, 23–30, 31–40, 41–50, and 51+). On a tablet com-
puter (Apple Computers, iOS 8.3 operating system, screen 9.700 with 
1024 768 resolution), participants were then shown a white 
screen with two small black squares (see Fig. 1), which we call 
the initialization screen. They were informed that tapping on either 
one of the squares would bring up a test image, and were 
instructed, ‘‘When the image appears, tap the first place you look.” 
After the participant had tapped first the initialization screen and 
then the location selected by him or her on the test image, the lat-
ter was immediately replaced by the initialization screen, and the 
cycle recommenced. This sequence of events continued until all 
images had been shown, with participants responding at their 
own pace. The position of the tap on the test image and the time 
between the taps on the initialization screen and on the test image 
were recorded. Test images strictly alternated between a natural 
hown to participants on the tablet screen. First, they saw an initialization screen and 
hich alternated between natural scenes and simple scenes. They then tapped on the 
ce they looked at when the test image had appeared. Tapping position and reaction 

https://github.com/dannyjeck/Attention-maps-comparison
https://github.com/dannyjeck/Attention-maps-comparison
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�

�

scene and a simple scene consisting of colored squares on a white 
background, see Section 2.2 and Fig. 1. Each participant saw a total 
of 12 images of which the first always was a natural scene. 

2.2. Stimuli 

The stimulus set consisted of 48 natural scenes and 30 simple 
scenes. The natural scenes were taken from a previous study by 
Masciocchi et al. (2009) in which participants performed two tasks. 
One was free-viewing the scenes while their eye movements were 
recorded. In the other task, participants clicked with a mouse on 
locations on the scenes that they considered the most interesting; 
these locations were called ‘‘interest points.” The size of the origi-
nal images was 640 480, and they were resized for our purposes 
using MATLAB’s (The MathWorks, Inc., Natick, MA) default image 
resizing function to fit the 1024 768 resolution of the tablet 
screen. Out of the four image classes in the Masciocchi et al. 
(2009) study we only used two, consisting of images of buildings 
and landscapes. Out of this set of 50 images, we randomly removed 
two to make the total number of natural scenes a multiple of six 
(the number of natural scenes each participant saw). The chosen 
48 images were then separated into eight groups of six. The natural 
scenes for each participant rotated through these groups of six, 
such that every eighth participant saw the same six natural scenes. 
These scenes were presented in randomized order and always 
alternated with the simple scenes. No participant saw the same 
image twice. 

The simple scenes consisted of a white background with ran-
domly placed colored or gray-level squares, as shown in Fig. 1. 
For the purposes of this study, they only served to interrupt the 
�
Fig. 2. Data analysis method. (A) Example image overlaid with collected fixation point
Corresponding fixation map and tap map. Both maps are binned in a 12 16 grid, with ea
fixation data used to approximate sampling error in the correlation between the fixation 
of the null hypothesis (blue) and the sampling error hypothesis (black). Means and sta
sampling error hypothesis are shown above the distributions. For this image, fixation dat
cannot be distinguished from predictions of the sampling error hypothesis (p ¼ 0:11). 
�

�

sequence of natural scenes and to decrease potential interactions 
between tapping locations on subsequent natural scenes. We note 
that the strict alternation of simple and natural scenes may allow 
participants to develop an expectation of the type of the subse-
quently presented image (simple or natural). Neither simple nor 
natural scenes are, however, predictive in any way about the con-
tents of the next presented image, therefore no information about 
salient locations in an upcoming image is predicted by the 
sequence of images. Furthermore, no prediction is possible until 
at least one repetition has occurred, i.e. the second natural scene, 
which applies to one-third of the data collected. 

2.3. Data analysis 

2.3.1. Correlations between maps 
Selections of image areas by human observers (fixations, inter-

est points, and taps) were first transformed into maps of the same 
dimension as the images. Computing the pairwise correlations 
between such maps as well as between the maps and the results 
of computational models of salience provide a measure of similar-
ity between the different data collection methods and the models 
used. We reduced the resolution of the maps by binning the data. 
The reduction in resolution mitigates the possibility that fixations, 
taps, or interest selections that are near to each other are being 
counted as entirely distinct, though this is not the case for 
responses near the edge of the selected bins. We chose a 12 16 
grid to tile the image (for an example see Fig. 2B), therefore, each 
bin covers 64 64 image pixels. We chose this level of reduction 
in resolution since it is comparable to the eye tracker error used 
in obtaining fixation data (see Masciocchi et al., 2009 for details) 
�
s (blue dots) and tap points (yellow dots), and grid lines used to bin the data. (B) 
ch bin showing the average of 64 64 pixels. (C) Surrogate maps generated from the 
and tap data, see text. (D) Comparison of the measured value (red) to the histograms 
ndard deviations of the distributions generated from the null hypothesis and the 
a and tap data correlate more than predicted by the null hypothesis (p ¼ 0:002), and 
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and also roughly matches the size of a human finger pad when col-
lecting tapping data. We also analyzed a coarser image resolution 
to examine the effects of resolution on the different correlations, 
results are shown in Fig. 5. Similar findings between these two 
bin sizes confirm that the results are robust to bin size selection. 

Tap maps were generated by weighing each tap on the appro-
priate image equally and binning them as described above. Interest 
maps were generated from the data of Masciocchi et al. (2009), by  
taking each subject’s first interest selection, the most interesting 
point per the instructions in the experiment, with each subject 
weighed equally. Fixations maps were generated by weighing each 
fixation by its duration. We also compared the distributions of fix-
ations, interest points, and taps with saliency maps that were gen-
erated from the Itti et al. (1998) computational model of saliency at 
the same resolution. 

Here we analyze the relationships between four processes: the 
three unknown processes, F generating fixation data, I generating 
interest point selections, T generating taps, and the known process 
S generating computed salience. If we assume each subject 
response is independent, then for a specific image, each unknown 
process can be described by a multinomial probability distribution 
(similar to a dice roll) from which data are drawn. We indicate the 
image number by adding a subscript to the process. For instance, 
for the k-th image Ik is a distribution from which each new interest 
point selection (by a different participant) is drawn. When we 
gather data, we are able to form estimates of these processes 
bFk;bIk, and Tbk by computing the fraction of data points that fall in 
each bin for the k-th image. Since we are estimating a multinomial 
distribution using counts of the data, the resulting estimates of the 
rate of responses falling in a given bin are unbiased. However, as 
we will show in Section 2.3.3, the correlation values in comparing 
these maps are biased. Finally, as S is a known computational 
model, there is no need to form estimates of this process. 

The measured covariation between any two processes P and Q 
on the k-th image, indexed in their horizontal and vertical dimen-
sions by ði; jÞ, with M bins total is, 

X X X1 1
CðPbk; Qb 

kÞ ¼  Pbkði; jÞQb 
kði; jÞ� Pbkði; jÞ Qb 

kði; jÞM M2 
i;j i;j i;j ð1ÞX1 1 ¼ Pbkði; jÞQb 

kði; jÞ�M
i;j M2 

where the last equality holds because Pbk and Qb 
k are probability dis-

tributions and therefore sum to unity. 

The Pearson correlation coefficient R between estimates Pbk and 

Qb 
k is then computed as, 

CðPbk; Qb 
kÞRðPbk; Qb 

kÞ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð2Þ 
CðbPk; PbkÞ CðQb 

k; Qb 
kÞ 

This quantity can vary between R ¼� 1 for perfectly anticorre-
lated data and R ¼ 1 for perfectly correlated data. We compare 
its value against two hypotheses, discussed in the following two 
subsections, 2.3.2 and 2.3.3. We refer to the average correlation 
coefficient over all images by dropping the subscripts in the 
argument. 

2.3.2. Null hypothesis: correlations reflect no differences between 
images 

We consider first the (null) hypothesis that the contents of 
specific images do not affect the participants’ responses. Under this 

hypothesis, for instance RðbF i; Tb iÞ, the correlation between the fixa-
tion map from image i and the tap map from the same image is 

drawn from the same distribution as RðbF i; Tb jÞ, the correlation 
between the fixation map from image i and the tap map from 
image j, for all i and j. We can approximate this null hypothesis dis-
tribution using a bootstrap technique to compute correlations 
between two types of maps (e.g. tap maps and fixation maps) using 
permutations of the image orders. Note that under this null 
hypothesis, image contents can still exert systematic influences 
on the selections but these influences do not differ systematically 
between different images. Therefore, the hypothesis includes cor-
relations due to influences like center bias, ‘‘photographer’s bias” 
(systematically placing objects of perceived importance in specific 
locations in the image), similarities due to similar image content, 
or other spatial preferences in common between participants. 
The null hypothesis does, however, exclude correlations caused 
by salient features of specific images. 
�

� �

2.3.3. Hypothesis: correlations are limited by sampling error 
At the other extreme, even for strong influences of image con-

tents on correlations, estimating correlation from noisy estimates 
of the true processes generating the data create a bias in the mea-
sured correlation between any two types of maps. We illustrate 
this effect in a simple example. Consider two very simple one-
dimensional identical distributions Pk ¼ Qk ¼ ½0:5; 0; 0:5 . If we
draw an infinite number of samples from these (identical) distribu-
tions and use Eq. (2) to compute the correlation between the mea-

sured estimates, we obtain RðPbk; Qb 
kÞ ¼ 1, as expected. But now 

consider the case of finite numbers of samples, and in the extreme, 
that only one sample from each distribution is drawn. Then, the 
estimate of the each distribution will either be ½1; 0; 0 or ½0; 0; 1 . 

If they are the same, then RðPbk; Qb 
kÞ ¼ 1 but if they are different 

RðPbk; b 1Q kÞ ¼ �  2. Therefore, the expected correlation is 14. This bias 

towards zero will be non-zero for any finite number of samples 
drawn. 

We want to gain an intuitive understanding of the bias in corre-
lation for the unknown distributions underlying our data that is 
caused by the limited number of samples drawn. For this purpose, 
we developed a procedure in which we resample one of the maps 
with the same number of data points measured in the other to 
approximate how correlated the data could be under the hypothe-
sis that the underlying processes were identical. Let Pk and Qk be 

two processes with Pbk estimated using nP data points and Qb 
k esti-

mated using nQ data points, and let nP > nQ . First we select the type 

of map with the most data points, Pbk, and treat it as a perfect esti-
mate of its underlying process. We then draw nQ data points from 
b PeQPk (with replacement) and compute a surrogate, k . The tilde is 
used to indicate that the value is a resampling of the data from 
bPk and the superscript indicates the source of the number of data 

points used in the resampling. We then compute RðPbk; ePk
Q Þ, the cor-

relation between the surrogate data and the original map (see 
Fig. 2C). For example, if the two maps in this procedure were fixa-
tions and taps and there were more fixations than taps, we would 
draw (with replacement) a number of surrogate data points from 
the fixation data set that was the same as that of recorded taps, 
and compute R between the surrogates and the original fixation 

map, RðbFk; FeT
k Þ. For the reasons discussed in the previous para-

graph, this value will be less than unity and it provides an intuitive 
estimate for how much the sampling error biases the measured 

correlations, RðbFk; TbkÞ. This procedure of generating surrogates 
and correlating with the original data can be repeated many times 
to refine the estimate of the bias in the correlation measurement 
under this hypothesis and to build a distribution against which 
to perform a hypothesis test (Fig. 2D). We call this hypothesis 
the ‘‘sample error hypothesis,” which assumes that a non-unity 
correlation measurement is due entirely to finite sample size. We 
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note that this hypothesis is not truly an upper bound on the mea-
sured correlation (see Section 4.2 for a counterexample). We also 
note that, while this hypothesis is technically a null hypothesis 
against which we perform statistical tests, for the sake of clarity 
we will reserve the name ‘‘null hypothesis” for the hypothesis 
described in Section 2.3.2. 

All resampling procedures were repeated with 1000 surrogates 
compared against the original. 
2.3.4. Population averages 
We analyzed the mean correlations between types of maps (e.g. 

taps and fixations) across all images (see Fig. 3), which, as before, 
we denote by dropping the image number subscript. For example 

RðbF ;bIÞ is the correlation between measured fixation and interest 
data averaged over all images. Similarly the average correlation 
under the assumption that the underlying distributions are actu-
ally identical (being the distribution of the interest data, which is 
the larger data set) and sampled with the number of fixations is 

bI;eIF Þgiven by Rð . The distributions of the null hypothesis differ 
between the combinations of maps but are identical for all image 
pairs of a given combination, e.g. Fixation and Interest maps in 
Fig. 3B. Since many correlation values are averaged and we are 
measuring the difference between two mean values, hypothesis 
testing against the null becomes a two-sample Z-test. When test-
ing against the sample error hypothesis we also perform a two-
sample Z-test (see Supplementary Section S3 for validation of this 
method). Because both the final tests of significance average over 
all images and because the null and sample error hypotheses are 
relatively easy to reject (even though they are non-trivial), small 
p-values are expected. Beyond hypothesis testing, the mean corre-
lation values provided by the null and sample error hypotheses 
also give points of reference against which we can compare the 
measured correlation values. 
�

A B 

D E

Fig. 3. Aggregate results of natural scene analysis at 12 16 resolution. Each subplot sh
against the null hypothesis and sample error hypothesis. Means of each distribution are 
images used. Most error bars are smaller than the markers used. (A) Fixation and Interest
Interest and saliency maps. (D) Fixation and Tap maps. (E) Interest and Tap maps. (F) Com
hypothesis (p < 0:05). All measured averages are below the sample error hypothesis (p 
maps (p ¼ 0:08), panel F. The legend in panel B applies to all panels. 
3. Results 

We recorded 1510 taps from 252 participants (151 female; see 
Fig. S1 for demographic information). The median of the reaction 
time (RT), defined as the time from tapping on the initialization 
screen to tapping on the test image, was about 1.4 s. Reaction times 
were skewed to the right (mean 1.6 s). We did not analyze RTs in 
detail because our data collection system did not allow precise 
control of the timing of image presentation. Data collection was 
completed after seven days of full time data collection. 
� �

� �

3.1. Fixations vs. interest points 

Aggregate results of our analysis for all images are shown in 
Fig. 3. First, we re-analyzed the data from the Masciocchi et al. 
(2009) study with our methods. The analysis confirmed their result 
that interest and fixation data are correlated beyond the null 

hypothesis, RðbF ;bIÞ ¼ 0:53, Z-test p ¼ 1:3 10 73; see Fig. 3A. In 
addition, we now extend their results by showing that sufficient 
data was collected in that study so that the correlation under the 
sample error hypothesis between interest and fixations is very 

high, RðbF ; FeIÞ ¼ 0:98, indicating that the measure of correlation 

RðbF ;bIÞ ¼ 0:53 likely has very little bias. Differences between fixa-
tion and interest maps were not due to sampling error, Z-test 
p ¼ 1:5 10 74. 
� �

3.2. Fixations vs. computed saliency 

For the comparison of fixations and computed saliency from the 
Masciocchi et al. (2009) study (see Fig. 3B) we found that the mea-

sured correlation exceeded the null hypothesis, RðbI; SÞ ¼ 0:19, 
Z-test p ¼ 1:6 10 16. Correlation under the sample error hypothe-
C 

F 

ows a distribution of measured correlations between two types of maps compared 
shown above the histograms, with error bars indicating standard error given the 48 
 maps. (B) Fixation and Computed saliency maps generated from Itti et al. (1998). (C) 
puted saliency and Tap maps. All measured averages are significantly above the null 
< 0:05), with the exception of the comparison between computed saliency and tap 
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� �
sis is low for this comparison, RðS; eSIÞ ¼ 0:58, though clearly higher 
than the measured correlation, Z-test p ¼ 6:8 10 23. 
� �

� �

3.3. Interest points vs. computed saliency 

We also compared interest points and computed saliency from 
Masciocchi et al. (2009), see Fig. 3C. We found that the measured 

correlation exceeded the null hypothesis, RðbF ; SÞ ¼ 0:30, Z-test 
p ¼ 1:1 10 18. Here the correlation under the sample error 

hypothesis is much lower than unity, RðS; eSF Þ ¼ 0:55, indicating a 
potential bias in the measured correlation, though again higher 
than the measured values, Z-test p ¼ 9:5 10 67. 
� �

� �

3.4. Fixations vs. tap points 

In the remaining three panels of Fig. 3 we compare the correla-
tions between the tap data collected in the present study with 
other attentional selection quantities. Correlations between fixa-
tion and tap data are shown in Fig. 3D. The correlation level is sim-
ilar to that between fixations and interest points in the Masciocchi 

et al. (2009) study, RðbF ; TbÞ ¼ 0:45, and it is again significantly 

above the null hypothesis (p ¼ 1:0 10 39). Because fewer taps 
were collected than fixation points, the correlation under the sam-

pling error hypothesis is RðbF ; eFT Þ ¼ 0:64. This is still significantly 
16)above the measured value (p ¼ 6:5 10 but substantially 

below unity, indicating that the correlation may be substantially 
biased by the limited amount of data gathered. 

It is unclear whether gathering more data would cause the mea-
sured correlation to increase or not. It may be that the ‘‘true” tap 
map T (which would be obtained if unlimited amounts of data 

were collected) is less diffuse than the measured fixation map bF , 
in which case the measured tap map Tb is a good estimate of the 

T map and the measured RðbF ; TbÞ value is close to RðF; TÞ. Alterna-
tively, the T map could be much more correlated with fixations 
than our measured map, in which case gathering more data will 
increase the correlation. We can say with high confidence that 
RðF; TÞ is less than unity and greater than 0:41 (two standard errors 

below RðbF ; TbÞ ¼ 0:45). 
We investigated the relationship between RðF; TÞ and RðF; IÞ fur-

ther by computing RðbF ; TbÞ and RðbF ;bIÞ with subsets of the data col-

lected for Tb and bI . We did this by drawing a number of data points 
without replacement from the tap data and interest data, and 
forming new estimates of the tap and interest maps. These were 
Fig. 4. Comparison of RðbF ;bIÞ and RðbF ; TbÞ when using only a portion of the interest 
points and tap points. All fixation data was used to generate bF for all simulations. 
100 Simulations were performed for each number of data points. Standard error is 
less than line width. 
�

� �

� �

� �

�

then correlated with bF to qualitatively see whether the correlations 

RðbF ; TbÞ and RðbF ;bIÞ are converging as data is collected and to com-
pare the two measures when equal numbers of data points are 
gathered. Results for various sizes of subsamples (up to the num-
ber of taps and interest points gathered per image) are shown in 

Fig. 4. It is seen that for equal numbers of data points, RðbF ; TbÞ 
and RðbF ;bIÞ track each other closely, with both correlations increas-
ing approximately logarithmically (about linearly in the semi-
logarithmic plot) with the number of data points. For example, 

RðbF ; TbÞ ¼ 0:44 and RðFb;bIÞ ¼ 0:46 when 29 interest points/taps are 
used per image. This is the largest number of taps available for 
all images. The number of data points available for fixations is lar-
ger than for taps and it can be seen that for much larger numbers 

(above 100), RðFb;bIÞ starts to plateau. The observation that RðFb;bIÞ 
plateaus agrees with our previous analysis that RðbF ;bIÞ has very lit-

tle bias since RðbF ; eF IÞ is nearly 1 and the asymptotic value in Fig. 4 

approaches the mean of RðbF ;bIÞ shown in Fig. 3B, about 0.53. 

3.5. Interest points vs. tap points 

Tap data was also found to be significantly correlated with 
bI; binterest point data beyond the null hypothesis, Rð T Þ ¼ 0:50, 

p ¼ 1:2 10 58, and correlation under the sample error hypothesis 
was significantly higher than the measured value, 

RðbI;eIT Þ ¼ 0:85; p ¼ 1:3 10 34, Fig. 3E. The difference between 
bI;e F ; eRð IT Þ and Rðb FT Þ indicates that there is some difference between 

interest points and fixations that can not be explained by the smal-
ler number of tap data. Despite drawing the same amount of data 
(the number of tap points) from the interest maps as we did from 
the fixation maps, the correlation under the sample error hypoth-
esis is higher for interest maps because they are more focused than 
fixation maps (i.e. participants selected interest points in tighter 
clusters than was found in their fixations). Therefore, these clusters 
can be estimated more accurately with a smaller amount of tap 
data than for the more diffuse fixation maps. 

3.6. Tap points vs. computed saliency 

Finally, saliency maps computed from the Itti et al. (1998) 
model were compared against the tap data and found to correlate 

beyond the null hypothesis, RðS; TbÞ ¼ 0:21; p ¼ 4:3 10 15, though 
not significantly below the sample error hypothesis, 

RðS; eST Þ ¼ 0:25; p ¼ 0:075. This relatively low value of RðS; eST Þ is 
obtained because the computed saliency maps were relatively 
diffuse. 

3.7. Coarse scale analysis 

We also repeated the above analysis using fixation, interest, tap 
and salience maps at a coarser 3 4 resolution (the coarsest reso-
lution possible with square bins). Results are shown in Fig. 5. At  
this resolution all measured R values and resampled R values were 
higher, with measured R always falling between the null hypothe-
sis and the sample error hypothesis (all p < 0:05). The level of mea-
sured correlation is thus dependent on the resolution used but the 
main results for the finer resolution hold. Because the measured 
correlations are still above the null hypothesis we can conclude 
that even for a very coarse grid, the image content is still informa-
tive beyond center bias, photographer’s bias, or other structures 
common to a large fraction of images. 

In summary, we found that tapping locations are correlated 
with the locations selected by each of the three measures 



�
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Fig. 5. Aggregate results of correlation analysis at coarse resolution, when images were divided in a 3 4 grid. Symbols as in Fig. 3. 
considered previously: fixations, interest, and computed saliency 
(Masciocchi et al., 2009). The null hypotheses of lack of correlation 
between tap locations and these three measures could all be 
rejected with high significance. Furthermore, we identified an 
important source of systematic downward shift (bias) of correla-
tions between maps which is due to the finite numbers of selection 
points. 
4. Discussion 

4.1. A new experimental paradigm for quantitative characterization of 
attentional selection 

We have developed a new experimental paradigm to evaluate 
what parts of an image attract the attention of observers. We do 
so by asking the study participants to report where they look 
and read out that report with a finger tap on the selected location. 
As far as we are aware, this is the first study in which open ended 
self-reports of attended locations are gathered. Unlike previous 
methods, this paradigm is particularly well suited to collecting 
data from participants who are not informed about the nature of 
what will be presented, mitigating top down effects related to 
expecting certain stimulus types. We therefore interpret this new 
paradigm as a supplement to existing paradigms (free viewing, 
visual search, etc.) that can used to reduce top-down expectations 
that might bias participants’ performance. Due to the simplicity of 
the experimental design, we were able to gather data from 252 
subjects in seven days of data collection. 

Pointing with a finger (similar to tapping a location) is a very 
natural and universal human behavior (Kita, 2003) which already 
appears during infancy, at about one year of age (Leavens, 
Hopkins, & Bard, 2005; Tomasello, Carpenter, & Liszkowski, 
2007). The purpose of finger pointing is typically to direct attention 
(either that of the tapping person or more commonly that of 
another person) towards a specific part of the world. This behavior 
is thus often a direct, voluntary expression of attentional selection. 
It is more closely related to guiding the attentional direction of 
others than eye movements, although eye movements can also 
be used for directing attention in certain situations. While the term 
‘‘overt attention” is traditionally used for eye movements (because 
they make the outcome of the covert attention process visible to 
the outside), pointing can therefore be seen as another form of 
overt attention, one that makes the outcome of the agent’s atten-
tional selection process explicit and instructs the observer to gen-
erate a ‘‘joint attentional frame” (Tomasello & Carpenter, 2007). 
This strong connection with attentional selection makes this pro-
cess not only attractive by itself, for the purpose of deducing the 
outcome of the covert selection process, but also for comparison 
with other correlates of attention, like eye movements and con-
scious selection of interesting parts of a scene. It thus complements 
the classical eye tracking method (Yarbus, 1967; Parkhurst et al., 
2002) and the selection of interest points (Masciocchi et al., 2009). 

The high levels of correlation between the four measures used 
in this study (fixations, interest points, taps and computed sal-
ience; see Fig. 3) support the conclusion that the tapping paradigm 
is a valid measure of salience. For instance, the high correlation 

between taps and fixations (RðbF ; TbÞ ¼ 0:45) indicates that the taps 
are capturing an aspect of salience seen in previous fixation stud-

ies. In fact, the value of RðbF ; TbÞ is likely biased downwards by the 
limited sample size,like all the correlations between maps. We 
have shown that if the fixations and taps were perfectly correlated, 
given the available number of data points the sampling error 
would still only result in a correlation coefficient of 

RðbF ; eFT Þ ¼ 0:64. See Section 4.2 for further discussion of the sample 
error hypothesis. 

There are further factors that are expected to reduce the correla-
tion of the measurements between taps and fixations, bolstering 
our result. The set of participants, screen, image resolution, and 
viewing conditions all varied between paradigms, and the outdoor 
conditions of the tap experiment allowed for multiple sources of 
possible distractions, including other passers-by. The fact that we 
find significant correlations in the presence of all of these confound-
ing variables indicates that the responses given by participants are 
robust to a variety of low-level manipulations even though the 
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measured correlations are likely decreased by these effects. Our 
finding suggests that attention is deployed based on invariant rep-
resentations that are shared by the various participants and invari-
ant to changes in viewing conditions. 

Another difference between paradigms was the duration of 
presentation. While the tapping paradigm may be considered 
deliberative, the fixation data we used (from Parkhurst et al. 
(2002) and Masciocchi et al. (2009)) were gathered over a five sec-
ond viewing period for each subject, more than three times the 
median reaction time during the tapping experiment (1.4 s). Free 
viewing periods of five second duration are in common use also 
for fixation datasets such as the widely used CAT2000 dataset 
(Borji & Itti, 2015). Note that for the tapping study, the reaction 
time includes the time after the subject has decided where to 
tap, the movement of the hand, as well as the (relatively short) 
delay between the tap on the initialization screen and the presen-
tation of the image. We therefore estimate that the majority of 
subjects performed three or fewer saccades before deciding where 
to tap. In principle, one could compare the tapping locations with 
only the first fixations from the studies that presented the same 
images Parkhurst et al. (2002) and Masciocchi et al. (2009). How-
ever, given the small number of participants in those studies, this 
analysis would not provide a meaningful map of fixated locations 
to compare against taps. 

Finally, the process of making a hand movement may modify by 
itself the deployment of a participant’s visual attention (Baldauf & 
Deubel, 2008; Jonikaitis & Deubel, 2011) thereby possibly changing 
the selected location. However, previous studies (Baldauf & Deubel, 
2008; Deubel & Schneider, 1996, 2003; Jonikaitis & Deubel, 2011) 
all study conditions in which the reaching movements and sac-
cades are planned in response to a cued location rather than indi-
cating a salient stimulus. While more controlled research would be 
required to properly elucidate the interaction between manual 
selection and attention, we find it highly likely that the partici-
pant’s selection is driven by their initial response to the image 
before the hand movement. If this were not the case, we would 
expect our measured correlations to be substantially lower. 

In comparing the interest points and tap points (Fig. 3 B-D), the 
results indicate that the correlation between our tap data and fix-
ation data is approximately as strong as the correlation between 

fixations and interest points (RðFb; TbÞ ¼ 0:45 vs. RðbF ;bIÞ ¼ 0:53). 
The correlation between interest and fixations is not subject to 
sample size bias to the same extent described above because the 

correlation under the sampling error hypothesis (RðbF ; eFIÞ ¼ 0:98) 
is so close to unity. Given these results, we speculate that the 
responses for the tap experiment lie somewhere in between the 
more involuntary fixation responses and the more deliberative 
responses given in the interest points task. 

The level of correlation between taps and computed salience 

(RðS; TbÞ ¼ 0:21) in the natural scenes was lower than previous find-
ings indicated for other correlates of attentional selection. 
Masciocchi et al. (2009) found the correlation coefficients between 
fixations and computed salience to be R ¼ 0:32, and between inter-
est and computed salience to be R ¼ 0:37 using slightly different 
methods. The results of Masciocchi et al. (2009) are in closer agree-

ment with our low-resolution analysis, which found RðS; TbÞ ¼ 0:38 

and RðS; eST Þ ¼ 0:53. These results indicate that the salience model 
from Itti et al. (1998) which was used in both the previous study 
and this one captures a substantial aspect of the bottom up pro-
cesses that influence attention. However given the low correlation 
value, it is likely that other aspects of those processes are not being 
captured. 

Overall, our results show highly significant correlations 
between attentional selections executed by the oculomotor system 
(Parkhurst et al., 2002, and many other more recent studies; for a 
review see Borji and Itti, 2013) and by the skeletomuscular system. 
For the latter, this is the case both when conscious deliberation is 
encouraged (Masciocchi et al., 2009) and when it is discouraged 
(this study). Remarkably, these measures also correlate well with 
predictions of a very simple computational model of bottom-up 
attention (Itti et al., 1998). Without doubt, this simple model has 
limitations, e.g. in the representation of objects (Einhäuser, Spain, 
& Perona, 2008, but see Borji, Sihite, and Itti, 2013) even though 
they can be overcome at least partially by more sophisticated 
proto-object based models (Mihalas, Dong, von der Heydt, & 
Niebur, 2011; Russell, Mihalas, von der Heydt, Niebur, & Etienne-
Cummings, 2014). However, the fact that even a very basic model 
captures human behavior over such a large range of tasks illus-
trates the fundamental role of attentional selection for behavior. 
4.2. Effects of sampling error on correlations 

Another contribution of this study is a new way of analyzing 
correlations between maps of different types, such as fixations or 
taps, although our method should apply to many other kinds of 
maps. These maps are generated by accumulating many individual 
measurements into a ‘‘heat map,” which can be interpreted as an 
estimate of the probability distribution of the data. The measured 

correlation between the maps (e.g. RðbF ; TbÞ) and the estimates of 

those probability distributions (here bF and Tb) will depend on both 
the underlying distributions (F and T) and the quality of the esti-
mates. The differences between the true distributions are of scien-
tific interest. For the case of the maps considered in this study, 
these differences may be useful in determining what aspects of a 
scene draw attention, and their correlation is useful in determining 
the validity of the tap experiment as a measure of salience. 

Estimates of the true distributions based on finite amounts of 
data will, however, bias our estimate of the correlation. With an 
infinite number of data points, the true distributions could be mea-
sured to perfect accuracy. Given a fixed limited sample size, 
increasing the resolution of the maps increases the number of 
parameters in the distribution to be estimated and therefore 
decreases the accuracy. Similarly, if the true distribution is spread 
widely across the image, the accuracy of the estimate will be 
reduced much in the same way that, everything else being equal, 
the standard error of the mean for a distribution with high variance 
is greater than the standard error of the mean for one with low 
variance. 

This source of bias in correlation measurements differs from the 
reduction (‘‘attenuation”) in correlation described by Spearman 
(1904) when measuring the correlation between two signals in 
noise. While both effects bias the observed correlation towards 
zero, the underlying mechanisms are quite different between our 
effect and Spearman’s, making his method for correcting the bias 
inappropriate in our case. Spearman observed that the correlation 
between two processes is attenuated if noise is added to one or 
both of them, and in his 1904 study he developed a method to cor-
rect for the bias found in correlating noisy measurements. In con-
trast, in the effect described in the present study, no noise is added. 
The bias in the correlation here is due to the finite number of 
observations of the underlying distributions (for tap, fixation, and 
interest selection). In the example in Section 2.3.3 of the two sim-
ple distributions, the correlation is biased because we only sample 
from a small number of points (in the extreme case discussed, just 
one), but there is no noise in the samples. The two effects are inde-
pendent, one could have one or the other or both, and each con-
tributes its own bias to the total decrease of the correlation. For 
instance, while the bias due to the limited sample size described 
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in Section 2.3.3 disappears if the sample size goes to infinity, this is 
not the case for the noise-induced attenuation effect discovered by 
Spearman (1904). 

One may still be tempted to apply the method from Spearman 
(1904) to correct for the bias found in correlating noisy measure-
ments of probability distributions. After all, the estimates of prob-
abilities can be thought of as a measurement of the true 
distributions plus noise. However, the noise characteristics are 
entirely different in the present case. Spearman (1904) assumes 
independent identically distributed additive noise, while the esti-
mation error resulting from drawing a finite number of samples 
from a multinomial distribution is dependent on the value mea-
sured and exhibits covariation between bins (since the error must 
sum to zero) Spearman’s method is therefore not a valid solution to 
this problem. 

Given the potential sources of error in estimating correlation, 
we have developed a simulation-based method (Section 2.3 and 
Fig. 2) to compute the correlation between maps assuming that 
the true maps are perfectly correlated. Note that, although one 
might think that the correlation of a map with itself is an upper 
bound on the correlation of the map with other maps, even for 
finite numbers of samples, this is not the case. For a counter exam-

ple, if Pb ¼ ½0; 1; 0 is measured with one sample, and 

Qb ¼ ½0:3; 0:4; 0:3 is measured with (infinitely) many samples, then 

RðbP; Qb Þ ¼ 1, but the expected value of RðQb ; Qe PÞ is 0:1 because there 
is a probability of 0:6 that the single sample drawn from Q will be 

from either the first or last bin. In this case, the correlation is 1
2 

because the peak in one distribution aligns with one of the two 
equal troughs in the second. 

The use of Pearson correlation (R) is useful in gaining a qualita-
tive measure of the similarity between the distributions. Overlap-
ping peaks and troughs in distributions will result in positive R 
values. However, R is invariant to linear scaling. If one distribution 
is relatively uniform while another has high peaks and troughs, the 
R function may find them to be highly correlated so long as their 
peaks and troughs align. As such, the correlations measured in this 
study show that interest points, taps, and fixations all seem to fall 
on similar locations, though the distributions may have substantial 
differences under another metric. 

The method of estimating the sampling error effect that we 
introduce is applicable to any correlation computation between 
estimates of a true distribution. In fact, the method can be 
extended to any metric of similarity between distributions or 
maps. For example, if Kullback–Leibler divergence (KLD) is 
believed to be a more appropriate metric of similarity, the sample 
error hypothesis can be used to generate surrogate data under the 
hypothesis that the two types of data are drawn from the same dis-
tribution. Then the KLD between the surrogate data and the origi-
nal map can be used to determine the size of the sampling error 
effects. 

We also note that there may be methods to reduce the bias in 
the measured correlation using a Jackknife procedure (Efron, 
1982), though it is unknown to what extent such a procedure 
would introduce unwanted variance into the estimation procedure. 
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