
Translational Research in Aphasia: From
Neuroscience to Neurorehabilitation

SUPPLEMENT

Purpose: In this article, the authors encapsulate discussions of the Language Work
Group that took place as part of the Workshop in Plasticity/NeuroRehabilitation
Research at the University of Florida in April 2005.
Method: In this narrative review, they define neuroplasticity and review studies that
demonstrate neural changes associated with aphasia recovery and treatment. The
authors then summarize basic science evidence from animals, human cognition, and
computational neuroscience that is relevant to aphasia treatment research. They then
turn to the aphasia treatment literature in which evidence exists to support several
of the neuroscience principles.
Conclusion: Despite the extant aphasia treatment literature, many questions remain
regarding how neuroscience principles can be manipulated to maximize aphasia
recovery and treatment. They propose a framework, incorporating some of these
principles, that may serve as a potential roadmap for future investigations of aphasia
treatment and recovery. In addition to translational investigations from basic to
clinical science, the authors propose several areas in which translation can occur
from clinical to basic science to contribute to the fundamental knowledge base of
neurorehabilitation. This article is intended to reinvigorate interest in delineating the
factors influencing successful recovery from aphasia through basic, translational,
and clinical research.
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T he empirical study of aphasia treatment has a short history, span-
ning only the past several decades. To date, the primary focus of this
research has been to determine the therapeutic value of behav-

ioral intervention in the recovery of language impairment due to acquired
brain damage. Early studies typically examined the value of language
stimulation procedures that were intended to improve overall language
performance in individuals with aphasia (e.g., Basso, Capitani, & Vignolo,
1979; Shewan & Kertesz, 1984; Wertz et al., 1981). The primary question
of interest was whether aphasia treatment improves language ability.
More recently, aphasia treatment studies have investigated the effects of
specific treatments for certain language deficits. These include studies
that involve between-groups and/or within-group comparisons, as well
as studies using single-participant controlled experimental designs. For
example, researchers have investigated the effects of treatments guided
by psycholinguistic, cognitive neuropsychological, and other models of
language for oral and written naming (Beeson & Hillis, 2001; Nickels,
2002; Raymer & Rothi, 2001; Rose, Douglas, & Matyas, 2002), sentence
production and comprehension (Marshall, 2002; Mitchum&Berndt, 2001;
Thompson & Shapiro, 2005), and other language impairments. Studies
have examined the use of computer technology to improve language be-
haviors (Petheram, 2004; van de Sandt-Koenderman 2004; Weinrich,
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Boser, McCall, & Bishop, 2001; Wertz & Katz, 2004).
Other studies have beendirected toward the use of alter-
native communication strategies, such as gesture, draw-
ing (Lyon, 1995), supported conversationmethods (Kagan,
Black, Duchan, Simmons-Mackie, &Square, 2001), and the
pragmatics of communication (Holland & Hinckley, 2002),
investigating their effects on functional communication
abilities. Additionally, studies have examined effects of
treatment provided in a group setting (Elman&Bernstein-
Ellis, 1999; Wertz et al., 1981). In addition to behavioral
studies, researchers have undertaken studies examin-
ing the effects of various pharmacological agents to pro-
mote recovery from aphasia (Shisler, Baylis, & Frank,
2000; Small, 2004; Walker-Batson et al., 2001).

A review of the literature today yields about 800 stud-
ies of aphasia treatment, albeit not all have included
the proper controls for internal validity purposes (see
Thompson & Shapiro, 2005). Qualitative reviews of the
accumulated research have led researchers to conclude
that behavioral intervention promotes language recovery
in adults with aphasia. In general, patients who receive
treatment improve their language ability to a greater ex-
tent than those who do not, and the improvement noted
is significantly greater than the effects of spontane-
ous recovery alone (e.g., Holland, Fromm, DeRuyter, &
Stein, 1996). To estimate the weight of this evidence in
a quantitative manner, meta-analyses of treatment out-
comes studies have also been completed (Robey, 1998;
Whurr, Lorch, & Nye, 1992). Such analyses are neces-
sarily restricted to those studies that provide adequate
quantitative information, which appears to be approx-
imately one fifth of published reports.Meta-analysis has
confirmed that aphasia treatment, in general, is effec-
tive compared with spontaneous recovery alone. The ex-
tent to which different types of treatment are effective
for different forms of aphasia and different language
behaviors has not been thoroughly evaluated through
meta-analysis, however.

The research foundations for the neurorehabilita-
tion of language remain only partially studied, however.
Most previous research has been in the form of prelim-
inary Phase 1 clinical trials examining the influence of
particular treatments for impaired language behaviors
as measured by performance on various language tests
(for reviews see LaPointe, 2005; Murray & Clark, 2006).
Less well investigated is the effect of aphasia treatment
for functional use of communication. Also less thoroughly
examined is whether behavioral treatments may be en-
hanced by pharmacologic intervention.

Neurorehabilitation research, including aphasia treat-
ment research, has been influenced by several bodies
of basic research in the neurosciences and cognitive
sciences. One line of research uses animal models to
study rehabilitation following brain injury (for a review,

see the accompanying article by Kleim & Jones, 2008).
Neurorehabilitation methods also have begun to reflect
findings pertaining to the principles of learning and
memory generated by studies that incorporate computer
simulations and examine performance of healthy indi-
viduals.What is too oftenmissing, however, is the bridge
between basic and clinical research perspectives. Rec-
ognizing the importance and need for translational re-
search frombasic science to clinical science, theNational
Institutes of Health, as part of its Roadmap initiative,
has instituted efforts to support translational research
that encourages greater interaction between basic and
applied rehabilitation scientists. In a recent forum of
neuroscience and clinical speech pathology researchers
sponsored by the Department of Veterans Affairs Brain
Rehabilitation Research Center, Gainesville, Florida,
and the University of Florida Department of Communi-
cation Sciences andDisorders (BRRC/UF), presentations
and discussion focused on the potential for greater inter-
action between basic and applied rehabilitation scien-
tists. The purpose of this article is to summarize those
discussions and to promote renewed efforts at research
along the continuum from basic science to translational
studies to applied clinical trials in aphasia rehabilita-
tion. We start with a description of neuroplasticity and
evidence for neural changes associated with aphasia re-
covery and treatment. We then highlight a subset of the
principles set forth in the companion article by Kleim
and Jones (2008) that have particular relevance to
aphasia treatment. We review literature from animals,
human cognition, and computer simulations that serveas
a background to an ensuing discussion of aphasia treat-
ment research addressing several principles of neuroreha-
bilitation. Ultimately, we propose a framework that might
potentially guide future research efforts in neurorehabil-
itation and promote translational research initiatives in
aphasia rehabilitation.

Neuroplasticity and Aphasia Recovery
A fundamental principle underlying the research

discussed in this review is that the brain, regardless of
age, is flexible and capable of change; that is, it has the
capacity for structural and functional plasticity through-
out the human life span. Plasticity underlies normal
processes such as development, learning, and maintain-
ing performancewhile aging, aswell as response to brain
injury. Plastic changesmaybe adaptive, aswe expect from
therapy, ormaladaptive, aswhenan individual loses func-
tion from failure to use a skill (Kleim & Jones, 2008).
Neuroimaging technologies have advanced research that
addresses challenging questions regarding the neural
mechanisms of aphasia recovery. Neuroimaging stud-
ies have provided evidence indicating a differential
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contribution of neural mechanisms depending on the
stage of aphasia recovery. Recovery of language function
in the subacute stage following brain damage is aided by
a neurophysiological process associated with spontane-
ous recovery. Left hemisphere brain regions involved in
language function rendered temporarily dysfunctional
by brain damage (most commonly, stroke) contribute to
early recovery (Cappa et al., 1997; Heiss, Kessler, Thiel,
Ghaemi, & Karbe, 1999). This physiological restitution
may be complemented by reorganization of brain func-
tion, the more likely mechanism of change, particularly
at later stages of aphasia recovery. In general, neuro-
imaging studies provide evidence for two mechanisms
of functional reorganization of language in aphasia:
(a) recruitment of residual left hemisphere structures
that may have been premorbidly involved in language
function and (b) recruitment of right hemisphere re-
gions, typically homologous to left hemisphere language
areas (Thompson, 2004). Recruitment of residual perile-
sional left hemisphere regions for recovery has been doc-
umented in functional imaging studies in patients with
aphasia and other neurogenic communication disorders
(Pataraia et al., 2004; Price et al., 1998; Rosen et al.,
2000; Weiller et al., 1995). In addition to involvement
of spared regions within the left hemisphere language
network, a shift of language function to right hemisphere
regions has also been documented in individuals with
aphasia (Papanicolaou et al., 1988; Weiller et al., 1995).
The respective contributions of left and right hemisphere
changes are not well understood. Some researchers sug-
gest that recovery supported by the right hemisphere
may be less complete in comparison to that associated
with left perilesional areas (Belin et al., 1996; Karbe
et al., 1998; Kurland et al., 2004;Winhuisen et al., 2005),
and others suggest that right hemisphere changes may
not be responsible for long-term recovery, and may even
be maladaptive (Price & Crinion, 2005). Whether pa-
tients develop intrahemispheric left hemisphere reor-
ganization or atypical right hemisphere dominance may
be influenced by factors such as the age of lesion onset or
etiology of the lesion (Pataraia et al., 2004).

Research in neuroplasticity associatedwith aphasia
has primarily focused onnatural recovery processes, less
commonly controlling for or manipulating the effects of
behavioral treatment. Several case studies have exam-
ined changes associated with behavioral treatment.
These studies provide promising evidence that func-
tional brain reorganization underlies language improve-
ment associated with specific treatment (Adair et al.,
2000; Belin et al., 1996; Cornelissen et al., 2003; Legar
et al., 2002; Musso et al., 1999; Pulvermüller, Hauk,
Zohsel, Neininger, &Mohr, 2005; Small, Kendall Flores,
& Noll, 1998; Thompson, 2000; Vindiola & Rapp, 2005;
Weirenga et al., 2006). In addition to replicating these
initial findings, more research is needed to explore how

other stroke recovery factors (e.g., lesion size and lo-
cation, age, type of language deficit) might influence
treatment-related neural reorganization (Cramer &
Bastings, 2000). In addition to the neural correlates of
specific language changes, research is needed to explore
neural reorganization and language use during social com-
munication. Finally, with respect to evidence gleaned
from imaging studies, researchers and clinicians must
keep inmind the advice of Shih and Cohen (2004): Before
we ascribe too much significance to activation maps, we
need to answer basic questions such as the specific func-
tional role of activated regions, their contribution to task
performance or functional recovery, and their signifi-
cance in terms of the activity they reflect (i.e., excitatory,
inhibitory, both; p. 1773). For example, it has been sug-
gested that right hemisphere contributions to aphasia
recoverymay reflect recruitment of attention,memory, or
executive functions to support language recovery
rather than restoration of language functions per se
(e.g., Crosson et al., 2005).

In summary, a growing body of neuroimaging re-
search indicates a significant relation between neuro-
plastic changes and language recovery. Thus, it suggests
that a major purpose of rehabilitation is to maximize
neural plasticity and lead to functional communication
gains. To this end, researchers have attempted to ex-
plore conditions that maximize gains following aphasia
treatment. The aphasia literature has been influenced
by studies within the basic sciences that have dissected
the conditions and influences on rehabilitation outcomes
following neurological impairments.

Basic Science Evidence for
Experience-Dependent Plasticity

Several lines of evidence contribute to the science
of rehabilitation. Many studies incorporate animal mod-
els to explore conditions influencing recovery from brain
injury. Such studies often focus on motor and sensory
functions, though some studies examine recovery in cog-
nitive domains such as spatial memory and object recog-
nition (e.g., Dahlqvist, Ronnback, Bergstrom, Soderstrom,
& Olsson, 2004). Until the necessary translational re-
search is done, researchers can onlymake inferences that
the same principles of recovery are relevant to language
functions. Evidence from healthy individuals and com-
puter simulations also contribute to our understanding
of principles of rehabilitation, including specific exam-
ples in the language domain. From this basic science
literature, Kleim and Jones (2008) entertain several
fundamental experience-dependent training principles
that influence neural plasticity and successful recovery
from neural lesions. Extensive reviews of the neurosci-
ence literature as it applies to aphasia recovery, in
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particular, have been provided elsewhere (Keefe, 1995;
Turkstra,Holland,&Bays, 2003). In this section,wehigh-
light a subset of those principles to illustrate several basic
science applications that have been particularly relevant
to research initiatives in aphasia treatment that we ex-
plore in a later section.

Timing of Treatment Delivery
One of the most provocative findings from animal

research is that intensive intervention early after injury
may adversely affect recovery (Kleim, Jones, & Schallert,
2003; Woodlee & Schallert, 2004). Schallert, Kozlowski,
Humm, and Cocke (1997) observed that two opposing
processes occur during recovery: facilitative neural com-
pensation (e.g., via reorganization of synaptic networks)
and secondary neurodegenerative processes induced by
the injury. Both of these processes may continue for
hours or days postinjury and have been hypothesized
to influence stroke recovery (Seisjo, 1992a, 1992b). For
example, Schallert et al. explored whether compensa-
tory behavioral strategies may exacerbate secondary
injury when provided early postinjury. They found that
lesions of the rat sensorimotor cortex induced positive
changes in contralateral brain regions (e.g., increased
dendritic branching) only if the animal was free to use
both the affected and unaffected limbs. In other words,
there was reorganization of brain function as compen-
sation. However, if the animal was forced to use the
weak limb (which is akin to constraint therapy ap-
proaches in humans), lesion size actually increased, an
example of secondary neurodegenerative injury, and
more severe and persistent symptoms were observed.
Early exposure to enriched environments, particularly
whenpairedwith intensemotor training, has been found
to have detrimental effects on neuroplasticity mecha-
nismswithin both cortical andhippocampal brain regions
(Farrell, Evans, & Corbett, 2001; Kleim et al., 2003).
Importantly, this pattern of physiological response does
not persist for long after injury. Schallert and colleagues
(1997; Woodlee & Schallert, 2004) have reported no
effect of weak limb overuse that occurs after the first 7–
14 days postinsult. The timing of treatment, however,
appears to interact with other variables such as lesion
site. For example, weak limb overuse during the acute
stages of recovery did not negatively affect either lesion
size or behavioral symptoms in rats when stroke affected
subcortical versus cortical brain regions (Woodlee &
Schallert, 2004).

Froma clinical perspective, Schallert and colleagues
(1997) concluded that, in the acute stage after injury,
“behavior, including neurological assessment, might af-
fect neural eventsI [as] the behavioral tests themselves
might alter the process of recovery” (p. 236). Thus, tim-
ing of intervention apparently is critical. It remains to be

established what period should be considered “acute”
in humans to help guide clinicians regarding when they
can prescribe more aggressive treatment aimed at re-
instituting impaired functions. This is a very impor-
tant question, given that these findings are basically from
rats, whose life spans are considerably shorter than hu-
man life spans. That is, the first 7–14 days postlesion in
rats may in fact constitute a far longer time period than
that amount of time in humans. In contrast, intensive
intervention in the chronic stage is effective not only at
improving function, but also at preventing loss of func-
tion, in both animals and humans.

Use It or Lose It
Animal research has shown that the failure to par-

ticipate in rehabilitation has adverse effects on recovery.
More than 30 years ago, Taub and colleagues (see sum-
maries in Taub et al., 1994; Taub, Uswatte, & Elbert,
2002) demonstrated that nonhumanprimates learned to
avoid using an injured limb based on negative experi-
ences in the early phase after an injury, and that this
early “learned nonuse” prevented later functional re-
covery of the affected limb. Eventually, the animals per-
manently ceased to attempt to use the injured limb.
Taub et al. found, however, that if the animal was forced
to use the injured limb (typically by binding the intact
limb), the function of that limb improved over time.

Research byFeeney and colleagues (Feeney, Gonzalez,
& Law, 1982; Feeney & Sutton, 1987, 1988) yielded find-
ings that are an interesting complement to those of
Schallert et al. and Taub et al. Feeney et al. studied the
effects of physical and chemical restraints on recovery
from stroke, primarily in cats. They found that both types
of restraints retarded recovery, whereas animals that
received “rehabilitation” (beam-walking practice) had
significantly faster and better recovery of function. In
addition to supporting the benefits of intervention, this
finding raised questions about the use of chemical re-
straints such as Haldol in the acute and subacute
stages after neural injury.

Recently, social restraints have also been found to
have negative effects on neurological and behavioral
recovery. Craft and colleagues (2005) examined the ef-
fects of the presence or absence of social interaction on
lesion size, weak limb use, and stress levels (as mea-
sured by concentrations of certain hormones and protein
in blood samples) in rats with middle cerebral artery
stroke. Although the findings varied slightly depending
on the gender of the rats, rats that were housed with an
unlesioned rat demonstrated greater decreases in their
lesion size and stress levels and increases in their use of
their weak limb compared with rats that were isolated
during acute recovery from stroke.
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Generalization and Transfer
of Treatment Effects

When an animal undergoes behavioral stimulation,
many changes occur at the neuronal level (see review in
Kolb, 1995). These include increases in the number and
density of synapses, dendritic length, and synapse size.
The results of several experiments suggest that these
changes may allow animals to improve performance on
tasks that are not specifically trained. That is, improve-
ments on one taskmaygeneralize to novel, related tasks.
For example, Kolb reported that rats trained on a task
with one paw showed increased dendritic patterns in
homologous regions in both hemispheres. Moreover,
these changes were similar to the changes observed in
rats trained with two paws. Kolb and colleagues sug-
gested that experience may “prime” the brain for future
learning. This is an intriguing notion, as it suggests that
engagement in the therapy process itself might increase
the probability of gains beyond the behavior trained.

The complexity and richness of the training envi-
ronment can also influence the extent of the treatment
effects. For example, Komitova, Zhao, Gido, Johansson,
and Eriksson (2005) compared the effects of an enriched
environment (e.g., cages that include lots of objects, chains,
swings, etc. of different sizes andmaterials that are varied
over time) with that which encouraged only voluntary
running (i.e., cages that include a runningwheel only) on
the neural and behavioral poststroke recovery of adult
rats. Rats exposed to the enriched environment demon-
strated significant behavioral gains (i.e., ability to
traverse a rotating pole) and positive neural changes
in ipsi- and contralateral neural regions. In contrast,
rats in the running wheel cages showed no significant
functional improvements and less neuroplasticity change
than had been anticipated. These findings as well as
those from other studies comparing the effects of train-
ing complex/skilled behaviors versus simplemotor skills
(e.g., Ding, Clark, Diaz, & Rafols, 2003) suggest that
greater functional outcomes and enhancement of positive
neuroplastic changes aremore likely when rehabilitation
incorporates complex tasks and/or environments.

Influence of Repetition and
Intensity of Treatment

Pascual-Leone, Wassermann, Sadato, and Hallett
(1995) showed that repetition is important in maintain-
ing changes in the brain and their corresponding func-
tional benefits. They found that changes observed in the
cortical maps of blind individuals who were proficient
Braille readers and used Braille at work depended on
whether the participants had been working for a 6-hour
period or had taken the day off work. This result may be
familiar to readers who perform skilled arts or sports,

and miss a few days of practice. From a clinical per-
spective, it supports the need for long-term, consistent
use of a skill to maintain gains in therapy.

Woodlee and Schallert (2004) suggested that be-
cause early overuse of a weak limb can result in greater
deficits, and complete disuse can also slow recovery,
acute rehabilitation should be less intense and then,
over time, becomemore “aggressive.”Kleim et al. (2003)
found thatmotormap reorganization and increased syn-
apse formation occurred only after more extended train-
ing of skilled/complex reaching in adult rats. That is,
neural differences between rats that underwent skilled
versus unskilled reaching training became apparent only
after 7–10 days of training. The rats receiving training
in skilled reaching showed the most dramatic improve-
ments in skilled reaching after just 3 days of training;
after that they continued to show behavioral improve-
ments, but the rate of improvement was much slower.
Therefore, the implication of this work is that patients
may need to be trained beyond acquisition of a com-
plex behavior (e.g., any language behavior) if we hope to
induce neural changes. Without the essential transla-
tional research, however, it is unknown whether these
findings can be extended to language or even motor
abilities in humans.

A large literature on memory and learning, partic-
ularly in motor learning tasks, conducted in healthy in-
dividuals provides another body of evidence relevant to
the intensity of training schedules. A meta-analysis of
63 studies by Donovan and Radosevich (1999) indicated
that with regard to retention of learning effects, the ef-
fects of practice provided in a distributed practice sched-
ule surpass those of a massed practice schedule. The
advantage reported for distributed practice was modu-
lated by the nature of the training task, as the effect was
somewhat less potent for more complex activities. This
observation has implications for the training schedule
used with patients in clinical settings.

Computer Models
in Rehabilitation Research

In addition to animal and human models of learn-
ing, memory, and rehabilitation, computer simulations
have provided a line of evidence that has influenced sub-
sequent studies of aphasia rehabilitation. Theories and
models of cognitive processes such as language were de-
veloped first on the basis of observations of human be-
haviors. In the past few decades, the understanding of
cognition has benefited further from computer simula-
tions of these theories and models. Computational in-
stantiations of theories can be used to generate and test
hypotheses about cognitive functions under both nor-
mal and impaired conditions. In the language domain,
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computational models have been used to test theories
of lexical access in word production (Dell, 1986; Harley,
1984; Levelt, Roelofs, & Meyer, 1999; McNellis &
Blumstein, 2001; Plaut&Booth, 2000), word recognition
(McLeod, Plaut, & Shallice, 2001), serial order mecha-
nisms in word production (Vousden, Brown, & Harley,
2000), and, more recently, articulatory mechanisms in
humans (Kello&Plaut, 2004). (SeeNadeau, 2000;Nadeau
&Rothi, 2004, for a detailed review.) Likewise, thesemod-
els have been instrumental in furthering researchers’
understanding of the nature of impairments to mecha-
nisms of lexical access (e.g.,Dell, Schwartz,Martin, Saffran,
& Gagnon, 1997; Gotts & Plaut, 2002; Mikkulainen,
1997; Plaut, 2002; Rapp & Goldrick, 2000; Ruml &
Caramazza, 2000) and semantic memory (e.g., Lambon-
Ralph, McClelland, Patterson, Galton, & Hodges, 2001)
subsequent tobraindamage.Computationalmodelshave
also contributed to researchers’ understanding of possi-
ble mechanisms underlying recovery of language func-
tion after damage (Martin, Dell, Saffran, & Schwartz,
1994;Martin, Saffran,&Dell, 1996; Plaut, 1996; Schwartz
& Brecher, 2000). With respect to treatment, computa-
tionalmodels have generated hypotheses about language
learning (Plaut & Kello, 2002) and the role of short-
term memory processes in word learning (Gupta &
MacWhinney, 1997). Additionally, some researchers are
beginning to use computer models to examine processes
exploited in treatment tasks such as priming (Plaut &
Booth, 2000), and others have generated predictions
about interfering and facilitating effects of priming with
semantically or phonologically related words on lexical
access (Martin, Fink, Laine, & Ayala, 2004).

Item characteristics such as concreteness and fre-
quency are known to influence normal and impaired lex-
ical access. Computational models have been used to
demonstrate these effects (Martin et al., 1996; Plaut &
Shallice, 1993) and to account for them within cognitive
theory. Moreover, computational studies have informed
researchers about how the characteristics of stimuli that
are used in training can maximize generalization to
untrained items. Plaut (1996) demonstrated in his con-
nectionist model that greater relearning of a semantic
category occurred when training included both typical
and atypical members of that category. This finding was
tested by Kiran and Thompson (2003) in their study
of word retrieval treatment in aphasia. These findings
challenge conventional wisdom with a new logic that
in hindsight makes good sense: Training more complex
members highlights an array of features associated with
the category, prototypes as well as those of atypical
members; training typical items highlights only proto-
typical features. Plaut’s computer model, then, revealed
something about a principle of learning and relearning
that may be translated directly to neurorehabilitation.

As another example, Gordon and Dell (2003) used a
computer simulation to examine the influence of syntax
and semantics in lexical production for nouns and verbs.
The computer was trained to produce sentences with
either heavy or light verbs (i.e., verbs that vary accord-
ing to the number of semantic features thatmake up the
verb; Breedin, Saffran, & Schwartz, 1998). Ultimately,
Gordon and Dell found that semantic features were more
important for learning to produce heavy verbs andnouns,
whereas syntactic features influenced production of light
verbs and functionwords.Gordon (2005) used these find-
ings to motivate a study examining contrasting treat-
ments for verbal production in a patient with aphasia.

Clinical Aphasia Evidence for Principles
of Experience-Dependent Plasticity

Within the aphasia treatment literature, studies
have addressed several of the variables discussed earlier
that are hypothesized to influence treatment outcomes.
Among these are the intensity and timing of treatment
delivery. Other work has focused on variables related
to generalization, or transfer, of treatment effects to
untrained material. As shown next, a fair amount is
known with regard to some of these influences on apha-
sia treatment outcomes. The picture is far from com-
plete, however.

Timing of Treatment Delivery
It is a long held notion in aphasia rehabilitation

that treatment should be provided as early as possible
following the aphasia-inducing event, suggesting that
treatment provided in more chronic stages of recovery is
less likely to be effective. Wertz and colleagues (1986),
however, found that a group of participants who delayed
entry to their aphasia treatment protocol by 3 months
caught up with a group that instituted treatment in the
subacute phase of aphasia recovery. In a meta-analysis,
Robey (1998) examined the magnitude of treatment ef-
fect sizes relative to the timing of treatment and found,
however, that treatment begun during the acute period
(before 3 months postonset) resulted in almost twice the
effect size of spontaneous recovery (1.15 vs. 0.63) and
that the effect size of treatment initiated during the
subacute period (between 3 and 12 months postonset)
was small, but greater than that for untreated individ-
uals (0.57 vs. 0.34). In addition, treatment initiated
during the chronic stage (after 1 year postonset) showed
an effect size similar to that during the subacute period
and was notably larger than that for untreated indi-
viduals (0.66 vs. 0.05). These data indicate that early
treatment may be maximally beneficial but that later
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treatment also impacts language ability and use. In
Robey ’s meta-analysis, the acute phase encompassed a
fairly broad 3-month time frame. Studies examining re-
covery in aphasia show that most spontaneous recovery
actually occurs within the first 2 months post–aphasia
onset (e.g., Holland, Greenhouse, Fromm, & Swindell,
1989). Although treatment effects are greatest in acute
stages of aphasia recovery, several studies have reported
remarkable gains in language abilities many years fol-
lowing aphasia onset (e.g., Kendall et al., 2006).

Use It or Lose It?
Taub and colleagues (Taub et al., 1993, 1994) repli-

cated the animal research on forced use to overcome
“learned nonuse” in studies of hemiparetic human
stroke patients. Basedupon the notion that the potential
rehabilitation of the affected limb is detrimentally in-
fluenced by the compensatory use of the unaffected limb
through a process of learned nonuse, constraint-induced
movement therapy (CIMT) has been shown to result in
improved bimanual performance in some patients with
chronic poststroke hemiplegia (Kunkel et al., 1999;
Liepert et al., 2000; Taub, Uswatte, & Pidikiti, 1999).
The key principles of CIMT are massed practice, con-
straint of the unaffected limb with forced use of the
affected limb, and behavioral shaping of the response.
These principles have been applied to the rehabilitation
of chronic aphasia aswell byPulvermüller and colleagues
(2001). Individuals with chronic aphasia received inten-
sive massed practice with oral language over a 2-week
period, restricting responses only to spoken language in
a variety of interactive communication tasks. This inten-
sive training was associated with significant improve-
ments on standard tests and other and self-ratings of
communication in daily living. The increased benefit that
constrained therapyyielded relative to conventional ther-
apy, however, was confounded by differences in the in-
tensity with which the two treatments were delivered
(i.e., constraint therapy was provided more intensively
than conventional therapy).

Maher et al. (2003) conducted a partial replication
of the Pulvermüller et al. (2001) study that attempted
to control for intensity. In the Maher et al. study, 4 par-
ticipants underwent constraint-induced language therapy
(CILT) and a comparison group of 5 participants under-
went PACE (promoting aphasics’ communicative effec-
tiveness) therapy (Davis &Wilcox, 1985) using the same
stimulus materials and treatment schedule as the CILT
group. Whereas both groups showed some change, there
were greater treatment gains observed and maintained
in verbalmeasures in theCILT group comparedwith the
PACE group. The PACE group, in contrast, increased
use of nonverbal behaviors. This suggests that the active

components of CILT cannot be attributed to the inten-
sity of the intervention alone and supports the notion of
forced use of verbal behaviors in rehabilitation. The im-
portance of continued use is suggested in a further study
by Meinzer, Djundja, Barthel, Elbert, and Rockstroh
(2005), who evaluated the effects of two forms of constraint-
induced therapy. One form was similar to that used in
previous research, and the other included writing activ-
ities and training of daily communication activities with
the assistance of family members. Positive outcomes on
standard tests and patient and family ratings were ob-
served following administration of 10 days of treatment
(total of 30 treatment hours) for both groups, and these
gains were maintained at a 6-month follow-up. More-
over, greater gains on patient and family ratings were
observed for patients who had received treatment that
involved family members who presumably continued to
promote use of the speechmodality after therapyhad been
terminated.

Generalization, or Transfer,
of Treatment Effects

Many studies in the aphasia treatment literature
have addressed generalization of treatment effects to
untrained language behaviors. Results of this work have
beenmixed.Whereas some studies have shown little gen-
eralization, others have shown positive effects of treat-
ment on the languagebehaviors tested for generalization.
One principle that has resulted from this work is that
generalization is most likely to occur to a language be-
havior that is similar to the trained language behavior.
For example, in treatment of naming impairments, train-
ing items from a particular semantic category results in
greater generalization to untrained items from the same
class than to untrained items from a different semantic
category (e.g., Kiran& Thompson, 2003; see also Nickels,
2002, for review). In the domain of sentence production
and comprehension treatment, generalization is most
likely to occur to untrained sentences that are syntac-
tically related to trained sentences (Thompson&Shapiro,
2005). These results likely reflect the organization and
processing of language in which similar processing rou-
tines and representations are utilized for similar lan-
guagebehaviors. Thompson, Shapiro,Kiran, andSobecks
(2003) showed that the complexity of language mate-
rial used in treatment also impacts generalization (i.e.,
the complexity account of treatment efficacy [CATE]).
Although counterintuitive, training complex language
material can result in improvements in less complex, un-
trained language. In contrast, training simple material
has little effect on mastery of more complex material.
Importantly, this complexity effect occurs only when the
trained and untrained material are linguistically related
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(e.g., training complex sentences that involve certain syn-
tactic constructs results in generalization only to simpler
sentences that involve the same syntactic constructs).
Furthermore, influenced by the Plaut (1996) computer
simulationmentioned earlier, Kiran andThompson (2003)
extended the complexity effect to the semantic domain
and demonstrated improved word retrieval by training
atypical members of a category (e.g., birds: ostrich) ver-
sus typical members (e.g., robin). Overall, aphasia stud-
ies reporting generalization of training effects to untrained
language behaviors complement the findings in the ani-
mal literature reporting transfer of training effects to
untrained behaviors.

Intensity of Treatment
The notion that providing intense treatment (i.e., sev-

eral hours a day or week) enhances recovery to a greater
degree than distributed practice (i.e., 1 or 2 hr a week)
was a basic tenet of Schuell et al.’s approach to treat-
ment in the 1960s (Schuell, Jenkins, & Jimenez-Pabon,
1964). This issuehas received recent attention in theapha-
sia literature, albeit few controlled studies have directly
compared intense versus distributed treatment sched-
ules. With respect to word retrieval in aphasia, Hinckley
and Craig (1998) reported that intensive training (>20 hr
per week) led to significant improvements in a standard-
izedword retrievalmeasure as comparedwith a noninten-
sive training protocol (3 hr per week). The intensity of
treatment (when reported) was examined in the extant
literature by Robey (1998). Results showed that themore
intense the treatment, the greater the change. In general,
it appears that 2 or more hr per week of treatment re-
sult in greater change than treatment delivered at a
lower intensity (≤1.5 hr per week). Bhogal, Teasell, and
Speechley (2003) reviewed 10 studies of aphasia treat-
ment meeting selection criteria and found that those
studies reporting significant treatment effects provided
on average 8.8 hr of therapy per week for 11.2 weeks. In
contrast, thosewithout significant treatment effects pro-
videdanaverageof 2hrof therapyperweek for22.9weeks.
Although the positive gains observed following constraint
therapy cannot be attributed solely to intensity (Maher
et al., 2003), these studies provide additional support
for the importance of treatment intensity as well. Indi-
viduals in the intense PACE comparison group also im-
proved, suggesting that intensitymay be an active factor
in a positive treatment response.

Other Factors Affecting
Treatment Outcomes

We have highlighted evidence associated with only
a subset of the principles of use-dependent plasticity

reviewed by Kleim and Jones (2008). Other factors in-
fluence aphasia treatment outcomes, such as the per-
sonal relevance (i.e., salience) of targeted skills and stimuli,
the type of treatment experience, participant factors such
as lesion location, cognitive status, motivation, age, over-
all health status, and the interactions among these fac-
tors. With regard to each principle, however, questions
remain to be formulated and examined to determine
optimum conditions to maximize neural plasticity and
aphasia recovery.

Conceptual Framework
An emerging literature in the basic sciences of neuro-

rehabilitation in animals, healthy humans, and computa-
tional models support several principles that play active
roles in influencing treatment outcomes. The principles
outlined by Kleim and Jones (2008) ultimately suggest
several directions for additional basic and applied treat-
ment research. In reviewing the principles of neurore-
habilitation, it is worth noting that terminology at times
tends to vary across disciplines (e.g., neuroscience vs.
speech-language pathology). Table 1 specifies terminol-
ogy and a set of working definitions that serve as a back-
drop for the following discussion. In this section, we
present a framework to facilitate the discussion of these
findings in amanner that we hope will be useful in plan-
ning future research. Central to our proposed framework
is the organization of a number of the principles and
concepts that have figured prominently in the basic
science literature into the categories of dependent and
independent variables. That is, several principles of use-
dependent plasticity can be viewed as factors that can be
manipulated as independent variables within rehabilita-
tion experiments. Other principles more directly trans-
late to outcome variables or dependent variables within
experiments. A discussion of these principles of use-
dependent plasticity in the BRRC/UF Language Work
Group led to the development of a conceptual framework
within which rehabilitation research questions might be
systematically investigated. A schema delineating the
interplay among these independent and dependent
variables is represented in Figure 1. For the sake of this
discussion,we have added a third dimension to our frame-
work representing the variety of linguistic behaviors that
may be the target of treatment for individuals partici-
pating in neurorehabilitation for language impairments.
The schema could certainly be expanded in all directions
and can be readily adapted for a multitude of target be-
haviors in cognitive, motor, and sensory realms. This
framework provides an organizational scheme for system-
atically reviewing the literature and identifying areas of
research lacking empirical support and needing further
investigation.
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Table 1. Definitions.

Definition

Independent Variable
Timing The temporal relation between insult and intervention. Timing can vary from the acute

immediate effects of neurologic disease to chronic stages of recovery.
Quantity (repetition) The total number of intervention units, which varies along a numerical continuum from few

to many opportunities for practice.
Intensity The frequency of intervention unit per time unit. Intensity is usually reported as the number

of hours of intervention provided within 1 week. Intensity can vary from intensive, massed
practice (e.g., 20 hr of treatment per week) to a distributed, less intensive schedule (e.g.,
2 hr of treatment per week).

Salience The perceived value or relevance of the experience to the participant.
Treatment variables

(experience-specific training)
Any of the behavioral and/or neural manipulations that take place during the rehabilitation

activity. Some of the techniques are intended to restore functions in a manner compatible
with normal functioning, whereas others attempt to compensate for impaired functions
in a fundamentally different way.

Neural conditions Participant characteristics (e.g., lesion site and size, participant age) that have the potential
to influence treatment outcomes. Such characteristics are often used as grouping variables
to define subsets of participants with common attributes.

Dependent Variable
Acquisition The change of behavior as a result of intervention. This is measured throughout the treatment

process and/or at the completion of training.
Generalization Response generalization is the influence of the intervention for other untrained behaviors.

The untrained behaviors may or may not have some type of systematic relation
to the untrained behavior.

Stimulus generalization is the use of the acquired behavior in contexts or conditions other
than those in which treatment occurred. Often such contexts include situations in which
the behavior is used in a meaningful way apart from the training context, discourse
sampling conditions, or functional environments.

Interference The negative impact of one behavior on the acquisition of another behavior. That is,
improvements in one behavior tend to undermine the potential for improvements
in other similar behaviors.

Maintenance The stability of an acquired behavioral change over time in the absence of continued
intervention. The term retention may also be used to refer to the same concept.

Neural effects (plasticity) The observed changes in neural activity associated with an intervention. These may include
perilesional regions or regions, often homologous, in the contralateral hemisphere.

Figure 1. Proposed conceptual framework.
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Implications for Aphasia
Treatment Research

This conceptual framework might potentially be
used to guide rehabilitation research in the area of ac-
quired aphasia. The practical implications of basic sci-
encework drive us to question some of our conventional
rehabilitation practices. These become particularly
important when we recognize that some of the more
compelling evidence from basic science is counter to
conventional intuition and general, accepted clinical
practice. For example, results from basic neuroscience
research suggest that treatment outcomes vary relative
to the timing of the intervention. In the animal model,
early intervention provided in an extremely intense
schedule (e.g., 24 hr /day) may have a negative effect
on outcome (Farrell et al., 2001; Kleim et al., 2003;
Schallert et al., 1997). However, there is evidence to in-
dicate that complete disuse may also impede recovery
(Taub et al., 1994, 2002). Furthermore, early interven-
tion might be necessary to optimize response to neuro-
trophins released following brain lesions (Cramer &
Chopp, 2000). The adult clinical evidence suggests that
aphasia treatments begun early yield larger effect sizes
than those started later (Robey, 1998). Whether it is the
timing of treatment or the intense schedule that led to
negative outcomes in some animal studies is not clear.
However, these observations bring up questions that
need to be answered about the timing of aphasia
rehabilitation. Moreover, there is some question about
unexpected interactionswith other variables at different
times in recovery.Usingnotions developed fromWoodlee
and Schallert (2004), we predict that conditions that
might optimize treatment outcomes in chronic aphasia
might actually be less optimal in acute aphasia. Thus,
specific guidelines regarding what time periods in re-
covery should be considered “acute” versus “subacute”
versus “chronic” for the adult clinical population are
needed. Furthermore, factors that have the potential to
interact with timing of treatment, including site and ex-
tent of lesion, type of treatment, and the intensity of
treatment need to be explored. The conceptual frame-
work schematized in Figure 1 may facilitate the de-
sign and systematic investigation of a specific variable,
like timing, to examine interactions between the time
of treatment, the type of treatment provided, and the
language domain affected. Research efforts are needed
to identify at what stage rehabilitation (a) is most
effective, (b) is not effective, and (c) might actually be
harmful.

Moving down the list of independent variables rep-
resented in the conceptual framework, the need to de-
termine optimal treatment intensity is certainly prompted
by basic neuroscience as well as adult clinical evidence
and is directly related to models of service delivery

and funding for rehabilitation. Not only did treatment
intensity affect skill acquisition and retention in the ani-
mal model (Kleim et al., 2004), findings reported earlier
for the effect of intensity on learning in healthy indi-
viduals emphasized the advantage of distributed over
massed training practice (Donovan&Radosevich, 1999).
Likewise, a recent study showed that a distributed form
of CIMT was effective for improving motor functions
(Dettmers et al., 2005). The aphasia treatment litera-
ture, in contrast, has reported benefits of amore intensive,
condensed treatment schedule. A possible explanation for
these differences may relate to the period of time under
study; the aphasia treatment studies tended to report re-
sults at the completion of training (acquisition), whereas
the learning literature has centered on retention of learn-
ing effects. In either case, the conventional outpatient
treatment schedule (i.e., 2–3 times per week) is chal-
lenged by these data.

Yet to be determined is the influence of treatment
intensity across different domains of language or de-
pendent variables. Future research needs to examine
the relative effect of treatment intensities on behav-
iors that span domains of language and communication
(e.g., semantics, phonology, orthography,morphosyntax,
pragmatics/discourse/social). The conceptual framework
guides the design and systematic investigation of a spe-
cific variable, like treatment intensity, to address spe-
cific questions such as the following: What are relative
effects of differences in treatment intensity across do-
mains of language? Is there a differential effect ofmassed
versus distributed practice on the acquisition, general-
ization, or maintenance of a new language behavior?
How do variations in treatment intensity affect neural
structure and/or function? Additional studies aimed at
examining the effects of treatment intensity are cer-
tainly warranted, along with an evaluation of the effects
of language activities designed to complement treat-
ment sessions (i.e., homework).

Within rehabilitation, there will be a close interplay
between quantity (repetition) and intensity. However,
the implications from basic neuroscience and computer
models are that patients may require training beyond
the acquisition of a complex behavior (e.g., any language
behavior) for those changes to be lasting and induce neu-
ral changes (Kleim et al. 2003; Pascuale-Leone et al.,
1995). The amount of repetition required for acquisition,
maintenance, and generalization of various language
domains, as well as to yield neuroplastic changes, needs
to be explored systematically within this conceptual
framework.

A number of factors that might collectively be
referred to as treatment variables or training experi-
ences, such as the presence of an enriched environment
(Komitova et al., 2005) or the complexity of the task (Ding
et al., 2003; Thompson et al., 2003), have been shown in
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the basic neuroscience literature to have the potential
to influence neural plasticity in fundamentally different
ways. Potential sources of data on enriched contexts in
humans can be found in studies of natural communication
and conversation. For example, researchers investigating
the efficacy of group aphasia therapy demonstrated that
group “conversation” treatment was superior to unguided
“socialization” in promoting language recovery in groups
with chronic aphasia (Elman & Bernstein-Ellis, 1999).
Whereas there is some evidence that these treatment
variables influence outcomes in the adult clinical popu-
lation, very little of this has been studied systematically,
and this conceptual framework might be used to orga-
nize these investigations. For example, exactly what con-
stitutes an enriched environment for humans and how
does it impact language acquisition, generalization, and
maintenance? Are there conditions of treatment that
might actually lead to interferencewhen treatmentmoves
to other language behaviors?

Although we may accept the principle of Use It or
Lose It, what kind of use is important for yielding stable,
neuroplastic change? Is constraint to the speech modal-
ity necessary, or can it be combinedwith other nonverbal
strategies and be equally effective? How does treatment
complexity differ across the language domains? These
same questions also apply to the independent variable
of salience, which ultimately may need further refine-
ment. Salience may have several different dimensions,
including some associated with the external conditions
of the treatment (e.g., lexical context, perceptual attributes
of stimuli) and others with internal aspects of the reha-
bilitation taskas implementedwitha researchparticipant
(e.g., meaningfulness of the stimuli for that individual,
attentional status and motivation of the participant).
Through the systematic investigation of these variables,
we may be able to determine the critical factors that ac-
count for much of the currently unexplained variance in
treatment results observed in the clinic.

Feedback to Basic Science Efforts
We have proposed several areas in which principles

of experience-dependent plasticity grounded in basic
science researchmight be used to guide further research
within aphasia treatment. It should be emphasized,
however, that the interactions between basic and clini-
cal science need not evolve in one direction only. Data
emerging from aphasia research should influence re-
search questions within the basic sciences, as well. For
example, the issue of timing of treatment delivery is
of great concern in aphasia. We certainly do not want
to provide treatment in a time frame that actually re-
duces or interferes with long-term potential for recov-
ery. To address this question, we would turn to basic

neuroscience research to identify specific biological
markers (e.g., within blood samples) that indicate
excitotoxicity or that may index severity of injury. It
may be possible to identify such biomarkers of acute,
subacute, and chronic phases of recovery from brain in-
jury in animal models that then could be explored in the
human model. The ultimate goal would be to time in-
tervention during themost favorable periods and to avoid
potentially vulnerable periods.

Rehabilitation specialists are also interested in is-
sues concerning the effects of lesion characteristics on
rehabilitation outcomes, an area that also might be fur-
ther evaluated in the animal model. Questions such as
effects of lesion location might be examined. For exam-
ple, given their contributions to learning and memory,
hippocampal and basal ganglia lesions need to be ex-
plored systematically. Influences of multiple lesion sites
and extent of lesions are also important topics for inves-
tigation in animal models. Aphasiologists have identi-
fied a variety of variables within the treatment context
that influence treatment outcomes. For example, recent
aphasia treatment studies have been interested in the in-
fluence of errorful versus errorless training (Fillingham,
Sage,&LambonRalph, 2005, 2006) and spaced retrieval
training protocols (Fridriksson,Holland, &Beeson, 2005).
Such variables might be systematically manipulated in
animal models to determine the nature of any neuro-
plastic changes that are observed and that conditions
maximize neuroplastic changes.

Much of what is known about principles of neuro-
rehabilitation comes from studies of rodents with brain
lesions. The application of rodent studies to neurore-
habilitation of language is necessarily limited. Studies
examining birdsong in birds with brain lesions (Brainard
& Doupe, 2000) may bring us a step closer to studies of
language. For example, such studies might be informa-
tive about the role the auditory system plays in recovery
of speech and language functions (Bolhuis &Gahr, 2006).

While animal models cannot answer questions that
are specific to aspects of language, computational mod-
els of cognition and language can play an important role
in future efforts to translate from animal to humanmod-
els of language recovery and rehabilitation. One of the
more intriguing characteristics of computational models
is their ability to learn based on experience, and once
that learning has been established, to be “lesioned”
systematically and “rehabilitated” (Nadeau, 2000). The
output of this process can then be compared with be-
havioral data to generate and test hypotheses related to
rehabilitation. In this way, studies can examine funda-
mental principles of learning common to both animals
and humans to behaviors shared by both populations,
but not identically manifested (e.g., swallowing beha-
viors, memory skills), to language behaviors unique to
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humans, such as spoken andwritten language processing.
Data from aphasia treatment studies could be used to
develop and implement computer simulations thatmight
provide more explanatory power for the bases of rehabil-
itation effects.

From animal models to date, it seems clear that
learning and relearning any behavior will likely vary
depending on the timing of intervention as well as the
intensity and duration of treatment. What researchers
cannot learn from animal research is how such princi-
ples will interact with the content and social use of lan-
guage behavior that they aim to rehabilitate in humans.
Recent empirical studies (e.g., Martin, Fink, & Laine,
2004) of treatment for anomia suggest that responses to
such treatment vary depending on the content of treat-
ment (semantic vs. phonological) and source of naming
impairment (semantic, phonological, or both), and that
these two variables may interact with each other. Ani-
mal models cannot answer questions about aspects of
language that are impaired and how they interact with
recovery and relearning. Nor can they answer questions
about possible interactions between intensity of treat-
ment, stimulus type (e.g., semantic or phonological), and
type of impairment (e.g., semantic or phonological). We
note, however, that those sorts of questions might be ad-
dressed with computer simulations.

Recent research in errorless versus “errorful” learn-
ing provides an example of approaches to learning that
might vary in their effectiveness depending on the be-
havior to which they are applied. Errorless learning
techniques that minimize opportunities for error dur-
ing the learning process have been successful in treat-
ing memory impairments (Wilson, Baddeley, Evans, &
Shiel, 1994). In treatment of word retrieval and sentence
production disorders, this approach has fared as well as
errorful learning approaches (Fillingham et al., 2005,
2006; Maher et al., 2002). In fact, error-reducing tech-
niques for word retrieval such as repetition priming have
been found to be less effective when access to semantics
is impaired (Martin et al., 2004a). Likewise, recent inves-
tigations in memory treatment suggest that the type of
material to be learned can influence the relative advan-
tage of errorless over errorful learning (Evans et al.,
2000). Studies such as these indicate that researchers
have much more to learn about the contexts in which
errorful versus errorless learning approaches are most
effective. It may be, for example, that rehabilitation of
lexical–semantic processing impairment requires more
errorful learningapproaches, as in semantic feature anal-
ysis treatments (e.g., Boyle, 2004), which encourage the
learner to generate semantic associations to a concept
and, thus, stimulate deeper processing and discrimina-
tion of many features of concepts. Questions about error-
less versus errorful learning can be answered in animal

models with respect to some behaviors shared with
humans (e.g., motor learning). However, translation of
those findingsdirectly to thedomainof languagemight be
implemented with a computational model that can test
these principles in a simulation that represents lan-
guage behavior. The role of computer models in transla-
tional rehabilitation research can be one of a bridge
between the fundamental principles of learning that are
common to both animals and humans and the manifes-
tation of those principles in the domain of spoken and
written language.

Finally, efforts also need to progress to determine
links between what is known about neuroplasticity and
to use this knowledge to researchers’ advantage when
planning patient intervention. Initial work in this direc-
tion can be seen in studies examining relations between
electrophysiological measures and aphasia assessment
(e.g., Marchand, D’Arcy, & Connolly, 2002). Repetitive
transcranial magnetic stimulation (rTMS) has a role to
play in this regard as well. In healthy individuals, the
extent to which rTMS, when applied to the left hemi-
sphere, disrupted language functions correlated with
the degree of language lateralization as determined on
functional magnetic resonance imaging (Knecht et al.,
2002). Functional neuroimaging studies of aphasia re-
covery often show right hemisphere activation that some
have argued is less suited to effective aphasia recovery
(Price&Crinion, 2005;Winhuisen et al., 2005).As ameans
to promote aphasia recovery, Naeser, Martin, Nicholas,
Baker,Seekins,Helm-Estabrooks, et al. (2005) andNaeser,
Martin, Nicholas, Baker, Seekins, Kobayashi, et al.
(2005) have applied rTMS to the right inferior frontal
cortex of individuals with nonfluent aphasia and have
shown improved naming abilities that have lasted sev-
eralmonths.Questions that arise from interventionmay
lead back to basic studies in neuroimaging and neuro-
physiology to determinemarkers for successful recovery
and rehabilitation potential.

The Future of Translational Research
Researchers in clinical aphasiology have always been

appreciative of and sensitive to the principles of neuro-
rehabilitation that emerge from the basic science liter-
ature as it applies to research in aphasia treatment and
recovery. Further progress in research requires much
interaction in how researchers move along a continuum
from basic science developments to translational studies
in humans to clinical trials. Studies in animal models of
neurorehabilitation, computational simulations of aphasia,
and the cognitive science work that focuses on the ac-
quisition of complex behaviors (i.e., skill acquisition theo-
ries and approaches) are all rich sources of translational
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interest to aphasiologists. Questions, concerns, and prob-
lems encountered in human clinical interactions should
then lead back to motivate further basic science investi-
gations. A productive basic science and clinical science
research process, then, is interactive, integrated, and
complementary. More and more researchers are re-
cognizing this critical need for increased cooperation
and integration of research endeavors. With renewed
emphasis on this perspective that has been encompassed
in theNIHRoadmap initiative, the future of translational
research is indeed promising. Neurorehabilitation re-
searchers, including aphasiologists, need to continue to
build bridges among basic and clinical disciplines to pro-
mote a research agenda in which all researchers’ treat-
ment initiatives flourish.

Acknowledgments
This article is an outgrowth of the Workshop in Plasticity/

NeuroRehabilitation Research sponsored and supported by
the VA Brain Rehabilitation Research Center of Excellence,
Gainesville, FL, and the University of Florida Department of
Communication Sciences and Disorders. This work was done
under the auspices of the Language Work Group, led by
Anastasia M. Raymer.

Special thanks to Leslie Gonzalez Rothi, Jay Rosenbek,
Chris Sapienza, and Nan Musson, organizers of the event.
Thanks also to several individuals who contributed to the
Language Work Group discussions including Malcolm McNeil,
Theresa Jones, Randall Robey, Alex Johnson, Jacquelyn
Hinckley, Michael De Riesthal, Charles Ellis, and Susan Leon.

References
Adair, J. C., Nadeau, S. E., Conway, T. W., Gonzalez-
Rothi, L. J., Heilman, P. C., Green, I. A., & Heilman,
K. M. (2000). Alterations in the functional anatomy of
reading induced by rehabilitation of an alexic patient.
Neuropsychiatry, Neuropsychology, and Behavioral
Neurology, 13, 303–311.

Basso, A., Capitani, E., & Vignolo, L. A. (1979). Influence
of rehabilitation on language skills in aphasic patients.
Archives of Neurology, 36, 190–196.

Beeson, P. M., & Hillis, A. E. (2001). Comprehension and
production of written words. In R. Chapey (Ed.), Language
intervention strategies in aphasia and related neurogenic
communication disorders (4th ed., pp. 574–604). Philadelphia:
Lippincott, Williams, & Wilkins.

Belin, P., Van Eeckhout, P., Zilbovicius, M., Remy, P.,
Francois, C., Guillaume, S., et al. (1996). Recovery from
nonfluent aphasia after melodic intonation therapy: A PET
study. Neurology, 47, 1504–1511.

Bhogal, S. K., Teasell, M. D., & Speechley, M. (2003).
Intensity of aphasia therapy, impact on recovery. Stroke, 34,
987–993.

Bolhuis, J. J., & Gahr, M. (2006). Neural mechanisms of
birdsong memory. Nature Reviews in Neuroscience, 7,
347–357.

Boyle, M. (2004). Semantic feature analysis treatment for
anomia in two fluent aphasia syndromes. American Journal
of Speech-Language Pathology, 13, 236–249.

Brainard, M. S., & Doupe, A. J. (2000, April 13). Interrup-
tion of a basal ganglia–forebrain circuit prevents plasticity
of learned vocalizations. Nature, 404, 762–766.

Breedin, S. D., Saffran, E. M., & Schwartz, M. F. (1998).
Semantic factors in verb retrieval: An effect of complexity.
Brain and Language, 63, 1–31.

Cappa, S. F., Perani, D., Grassi, F., Bressi, S., Alberoni,
M., Franceschi, M., et al. (1997). A PET follow-up study
of recovery after stroke in acute aphasics. Brain and
Language, 56, 55–67.

Cornelissen, K., Laine, M., Tarkiainen, A., Jarvensivu,
T., Martin, N., & Salmelin, R. (2003). Adult brain plas-
ticity elicited by anomia treatment. Journal of Cognitive
Neuroscience, 15, 444–461.

Craft, T., Glasper, E., McCullough, L., Zhang, N., Sugo,
N., Otsuka, T., et al. (2005). Social interaction improves
experimental stroke outcome. Stroke, 36, 2006–2011.

Cramer, S. C., & Bastings, E. P. (2000). Mapping clinically
relevant plasticity after stroke. Neuropharmacology, 39,
842–851.

Cramer, S. C., & Chopp, M. (2000). Recovery recapitulates
ontogeny. Trends in Neurosciences, 23, 265–271.

Crosson, B., Moore, A. B., Gopinath, K., White, K. D.,
Wierenga, C. E., Gaiefsky, M. E., Fabrizio, K. R., et al.
(2005). Role of the right and left hemispheres in recovery of
function during treatment of intention in aphasia. Journal
of Cognitive Neuroscience, 17, 392–406.

Dahlqvist, P., Ronnback,A., Bergstrom,S.A., Soderstrom,
I., & Olsson, T. (2004). Environmental enrichment reverses
learning impairment in the Morris water maze after focal
cerebral ischemia in rats. European Journal of Neurosciences,
19, 2288–2298.

Davis, G. A., & Wilcox, M. J. (1985). Adult aphasia reha-
bilitation: Applied pragmatics. San Diego, CA: Singular.

Dell, G. S. (1986). A spreading activation theory of retrieval in
sentence production. Psychological Review, 93, 283–321.

Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., &
Gagnon, D. A. (1997). Lexical access in aphasic and non-
aphasic speakers. Psychological Review, 104, 801–838.

Dettmers, C., Teske, U., Hamzei, F., Uswatte, G., Taub, E.,
&Weiller, C. (2005). Distributed form of constraint-induced
movement therapy improves functional outcome and quality
of life after stroke. Archives of Physical Medicine and
Rehabilitation, 86, 204–209.

Ding, Y., Li, J., Clark, J., Diaz, F., & Rafols, J. (2003).
Synaptic plasticity in thalamic nuclei enhanced by motor
skill training in rat with transient middle cerebral artery
occlusion. Neurological Research, 25, 189–194.

Donovan, J. J., & Radosevich, D. J. (1999). A meta-analytic
review of the distribution of practice effect: Now you see it,
now you don’t. Journal of Applied Psychology, 84, 795–805.

Elman, R., & Bernstein-Ellis, E. (1999). The efficacy of
group communication treatment in adults with chronic
aphasia. Journal of Speech, Language, andHearing Research,
42, 411–419.

Evans, J. J., Wilson, B. A., Schuri, Y., Andrade, J.,
Baddeley, A. D., Bruna, O., et al. (2000). A comparison

Raymer et al. (Language Work Group): Translational Research in Aphasia S271



of “errorless” and “trial-and-error” learning methods for
teaching individuals with acquired memory deficits. Neuro-
psychological Rehabilitation, 10, 67–101.

Farrell, R., Evans, S., & Corbett, D. (2001). Environmental
enrichment enhances recovery of function but exacerbates
ischemic cell death. Neuroscience, 107, 585–592.

Feeney, D.M., Gonzalez, A., &Law,W. A. (1982, August 27).
Amphetamine, haloperidol, and experience interact to affect
rate of recovery after motor cortex injury. Science, 217,
855–857.

Feeney, D. M., & Sutton, R. L. (1987). Pharmacotherapy for
recovery of function after brain injury. Critical Reviews in
Neurobiology, 3, 135–197.

Feeney, D. M., & Sutton, R. L. (1988). Catecholamines and
recovery of function after brain injury. In D. Stein & B. Sabel
(Eds.), Pharmacological approaches to the treatment of
brain and spinal cord injury (pp. 121–142). New York:
Plenum Press.

Fillingham, J. K., Sage, K., & LambonRalph, M. A. (2005).
Further explorations and an overview of errorless and
errorful therapy for aphasic word-finding difficulties: The
number of naming attempts in therapy affects outcomes.
Aphasiology, 19, 597–614.

Fillingham, J. K., Sage, K., & LambonRalph, M. A. (2006).
The treatment of anomia using errorless learning. Neuro-
psychological Rehabilitation, 16, 129–154.

Fridriksson, J., Holland, A. L., & Beeson, P. (2005). Spaced
retrieval treatment of anomia. Aphasiology, 19, 99–109.

Gordon, J. K. (2005). Associations and dissociations: An
investigation of lexical access deficits in agrammatism and
anomia. Perspectives in Neurophysiology and Neurogenic
Speech and Language Disorders, 15(4), 19–23.

Gordon, J. K., & Dell, G. S. (2003). Learning to divide the
labor: An account of deficits in light and heavy verb pro-
duction. Cognitive Science, 27, 1–40.

Gotts, S. J., & Plaut, D. C. (2002). The impact of synaptic
depression following brain damage: A connectionist account
of “access/refractory” and “degraded-store” semantic im-
pairments. Cognitive, Affective, and Behavioral Neuroscience,
2, 187–213.

Gupta, P., &MacWhinney, B. (1997). Vocabulary acquisition
and verbal short-term memory: Computational and neural
bases. Brain and Language, 59, 267–333.

Harley, T. A. (1984). A critique of top-down independent
levels models of speech production: Evidence from non-plan
internal speech errors. Cognitive Science, 8, 191–219.

Heiss, W. D., Kessler, J., Thiel, A., Ghaemi, M., & Karbe,
H. (1999). Differential capacity of left and right hemispheric
areas for compensation of poststroke aphasia. Annals of
Neurology, 45, 430–438.

Hinckley, J. J., & Craig, H. K. (1998). Influence of rate of
treatment on the naming abilities of adults with chronic
aphasia. Aphasiology, 12, 989–1006.

Holland, A., Greenhouse, J., Fromm, D., & Swindell, C.
(1989). Predictors of language restitution following stroke:
A multivariate analysis. Journal of Speech and Hearing
Research, 32, 232–238.

Holland, A. L., & Hinckley, J. J. (2002). Assessment and
treatment of pragmatic aspects of communication in

aphasia. In A. E. Hillis (Ed.), The handbook of adult lan-
guage disorders: Integrating cognitive neuropsychology,
neurology, and rehabilitation (pp. 413–427). New York:
Psychology Press.

Holland, A. L., Fromm, D. S., DeRuyter, F., & Stein, M.
(1996). Treatment efficacy: Aphasia. Journal of Speech and
Hearing Research, 39, S27–S36.

Kagan, A., Black, S., Duchan, J. F., Simmons-Mackie, N.,
& Square, P. (2001). Training volunteers as conversation
partners using “Supported conversation for adults with
aphasia”: A controlled trial. Journal of Speech, Language,
and Hearing Research, 44, 624–638.

Karbe, H., Thiel, A., Weber-Luxenburger, G., Herholz, K.,
Kessler, J., & Heiss, W.-D. (1998). Brain plasticity in
poststroke aphasia: What is the contribution of the right
hemisphere? Brain and Language, 64, 215–230.

Keefe, K. A. (1995). Applying basic neuroscience to aphasia
therapy: What the animals are telling us. American Journal
of Speech-Language Pathology, 4, 88–93.

Kello, C. T., & Plaut, D. C. (2004). A neural network model of
the articulatory–acoustic forward mapping trained on re-
cordings of articulatory parameters. Journal of the Acoustical
Society of America, 116, 2354–2364.

Kendall, D., Nadeau, S., Conway, T., Fuller, R., Riestra,
A., & Rothi, L. J. G. (2006). Treatability of different
components of aphasia: Insights from a case study. Journal
of Rehabilitation Research and Development, 43, 323–336.

Kiran, S., & Thompson, C. K. (2003). The role of semantic
complexity in treatment of naming deficits: Training se-
mantic categories in fluent aphasia by controlling exemplar
typicality. Journal of Speech, Language, and Hearing Re-
search, 46, 608–622.

Kleim, J. A., & Jones, T. A. (2008). Principles of experience-
dependent neural plasticity: Implications for rehabilitation
after brain damage. Journal of Speech, Language, and
Hearing Research, 51, S225–S239.

Kleim, J. A., Jones, T. A., & Schallert, T. (2003). Motor
enrichment and the induction of plasticity before or after
brain injury. Neurochemistry Research, 28, 1757–1769.

Knecht, S., Floel, A., Drager, B., Breitenstin, C., Sommer,
J., Henningsen, H., et al. (2002). Degree of language
lateralization determines susceptibility to unilateral brain
lesions. Nature Neuroscience, 5, 695–699.

Kolb, B. (1995). Brain plasticity and behavior. Hillsdale, NJ:
Erlbaum.

Komitova, M., Zhao, L., Gido, G., Johansson, B., &
Eriksson, P. (2005). Postischemic exercise attenuates
whereas enriched environment has certain enhancing effects
on lesion-induced subventricular zone activation in the adult
rat. European Journal of Neuroscience, 21, 2397–2405.

Kunkel, A., Kopp, B., Muller, G., Villringer, K., Villringer,
A., Taub, E., & Flor, H. (1999). Constraint-induced move-
ment therapy for motor recovery in chronic stroke patients.
Archives of Physical Medicine and Rehabilitation, 80,
624–628.

Kurland, J., Naeser, M. A., Baker, E. H., Doron, K.,
Martin, P. I., Seekins, H. E., et al. (2004). Test–retest
reliability of fMRI during nonverbal semantic decisions in
moderate–severe nonfluent aphasia patients. Behavioral
Neurology, 15, 87–97.

S272 Journal of Speech, Language, and Hearing Research • Vol. 51 • S259–S275 • February 2008



Lambon-Ralph, M. A., McClelland, J. L., Patterson, K.,
Galton, C. J., & Hodges, J. R. (2001). No right to speak?
The relationship between object naming and semantic im-
pairment: Neuropsychological evidence and a computational
model. Journal of Cognitive Neuroscience, 13, 341–356.

LaPointe, L. L. (2005).Aphasia and related disorders (3rd ed.).
New York: Thieme.

Legar, A., Demonet, J.-F., Ruff, S., Aithamon, B., Touyeras,
B., Puel, M., et al. (2002). Neural substrates of spoken
language rehabilitation in an aphasic patient: An fMRI
study. NeuroImage, 17, 174–183.

Levelt, W. J. M., Roelofs, A., &Meyer, A. S. (1999). A theory
of lexical access in speech production. Behavioral and Brain
Sciences, 22, 1–38.

Liepert, J., Bauder, H., Wolfgang, H. R., Miltner, W. H.,
Taub, E., & Weiller, C. (2000). Treatment-induced corti-
cal reorganization after stroke in humans. Stroke, 31,
1210–1216.

Lyon, J. G. (1995). Drawing: Its value as a communication aid
for adults with aphasia. Aphasiology, 9, 33–50.

Maher, L., Singletary, F., Swearingen, M. C., Moore, A.,
Wierenga, C., Crosson, B., et al. (2002, February). An
errorless learning approach to sentence generation in
aphasia. Proceedings. Rehabilitation Research for the 21st
Century: The New Challenges. Washington, DC: Department
of Veterans Affairs.

Maher, L. M., Kendall, D., Swearengin, J. A., Pingle, K.,
Holland, A., & Rothi, L. J. G. (2003). Constraint induced
language therapy for chronic aphasia: Preliminary find-
ings. Journal of the International Neuropsychological
Society, 9, 192.

Marchand, Y., D’Arcy, R. C. N., & Connolly, J. F. (2002).
Linking neurophysiological and neuropsychological measures
for aphasia assessment. Clinical Neurophysiology, 113,
1715–1722.

Marshall, J. (2002). Assessment and treatment of sentence
processing disorders: A review of the literature. In A. E.
Hillis (Ed.), The handbook of adult language disorders:
Integrating cognitive neuropsychology, neurology, and reha-
bilitation (pp. 351–372). New York: Psychology Press.

Martin, N., Dell, G. S., Saffran, E. M., & Schwartz, M. F.
(1994). Origins of paraphasias in deep dysphasia: Testing
the consequences of a decay impairment to an interactive
spreading activation model of lexical retrieval. Brain and
Language, 47, 609–660.

Martin, N., Fink, R., & Laine, M. (2004). Treatment of word
retrieval with contextual priming.Aphasiology, 18, 457–471.

Martin, N., Fink, R., Laine, M., & Ayala, J. (2004). Imme-
diate and short-term effects of contextual priming on word
retrieval. Aphasiology, 18, 867–898.

Martin, N., Saffran, E., & Dell, G. S. (1996). Recovery in
deep dysphasia: Evidence for a relation between auditory–
verbal STM capacity and lexical errors in repetition. Brain
and Language, 52, 83–113.

McLeod, P., Plaut, D., & Shallice, T. (2001). Connectionist
modeling of word recognition. Synthese, 129, 173–183.

McNellis, M. G., & Blumstein, S. (2001). Self-organizing
dynamics of lexical access in normal and aphasics. Journal
of Cognitive Neuroscience, 13, 151–170.

Meinzer, M., Djundja, D., Barthel, G., Elbert, T., &
Rockstroh, B. (2005). Long-term stability of improved lan-
guage functions in chronic aphasia after constraint-induced
aphasia therapy. Stroke, 36, 1462.

Mikkulainen, R. (1997). Dyslexic and category-specific
aphasic impairments in a self-organizing feature map of the
lexicon. Brain and Language, 59, 334–366.

Mitchum, C. C., & Berndt, R. S. (2001). Cognitive neuro-
psychological approaches to diagnosing and treating lan-
guage disorders: Production and comprehension of sentences.
In R. Chapey (Ed.), Language intervention strategies in
aphasia and related neurogenic communication disorders
(4th ed., pp. 551–571). Philadelphia: Lippincott, Williams,
& Wilkins.

Murray, L. L., & Clark, H. M. (2006). Neurogenic disorders
of language: Theory driven clinical practice. Clifton Park,
NY: Thomson Delmar Learning.

Musso, M., Weiller, C., Kiebel, S., Muller, S., Bulau, P., &
Rijintjes, M. (1999). Training-induced brain plasticity in
aphasia. Brain, 122, 1781–1790.

Nadeau, S. E. (2000). Connectionist models and language. In
S. E. Nadeau, L. J. G. Rothi, & B. Crosson (Eds.), Aphasia
and language: Theory to practice (pp. 299–347). New York:
Guilford Press.

Nadeau, S. E., & Rothi, L. J. G. (2004). Rehabilitation of
language disorders. In J. Ponsford (Ed.), Cognitive and
behavioral rehabilitation: From neurobiology to clinical
practice (pp. 129–174). New York: Guilford Press.

Naeser, M. A., Martin, P. I., Nicholas, M., Baker, E. H.,
Seekins, H., Helm-Estabrooks, N., et al. (2005). Im-
proved naming after TMS treatments in a chronic, global
aphasia patient—Case report. Neurocase, 11, 182–193.

Naeser, M. A., Martin, P. I., Nicholas, M., Baker, E. H.,
Seekins, H., Kobayashi, M., et al. (2005). Improved pic-
ture naming in chronic aphasia after TMS to part of right
Broca’s area: An open-protocol study. Brain and Language,
93, 95–105.

Nickels, L. (2002). Therapy for naming disorders. Revisiting,
revising, and reviewing. Aphasiology, 16, 935–979.

Papanicolaou, A., Moore, B., Deutsch, G., Levin, H., &
Eisenberg, M. (1988). Evidence for right-hemisphere in-
volvement in recovery from aphasia. Archives of Neurology,
45, 1025–1029.

Pascuale-Leone, A., Wassermann, E. M., Sadato, N., &
Hallett, M. (1995). The role of reading activity on the mod-
ulation of motor cortical outputs to the reading hand in
Braille readers. Annals of Neurology, 38, 910–915.

Pataraia, E., Simos, P. G., Castillo, E. M., Billingsley-
Marshall, R. L., McGregor, A. L., Breier, J. I., et al.
(2004). Reorganization of language-specific cortex in patients
with lesions or mesial temporal epilepsy. Neurology, 63,
1825–1832.

Petheram, B. (2004).Computers and aphasia. Hove, England:
Psychology Press.

Plaut, D. C. (1996). Relearning after damage in connectionist
networks: Toward a theory of rehabilitation. Brain and
Language, 52, 25–82.

Plaut, D. C. (2002). Graded modality specific specialization
in semantics: A computational account of optic aphasia.
Cognitive Neuropsychology, 19, 603–639.

Raymer et al. (Language Work Group): Translational Research in Aphasia S273



Plaut, D. C., & Booth, J. R. (2000). Individual and develop-
mental differences in semantic priming: Empirical and
computational support for a single-mechanism account of
lexical processing. Psychological Review, 107, 786–823.

Plaut, D. C., & Kello, C. T. (2002). The emergence of phonol-
ogy from the interplay of speech comprehension and produc-
tion: A distributed connectionist approach. InB.MacWhinney
(Ed.), The emergence of language (pp. 381–415). Mahwah,
NJ: Erlbaum.

Plaut, D. C., & Shallice, T. (1993). Deep dyslexia: A case
study of connectionist neuropsychology. Cognitive Neuro-
psychology, 10, 377–500.

Price, C. J., & Crinion, J. (2005). The latest on functional
imaging studies of aphasic stroke. Current Opinion in
Neurology, 18, 429–434.

Price, C., Howard, D., Patterson, K., Warburton, E. A.,
Friston, K. J., & Frackowiak, R. S. J. (1998). A functional
neuroimaging description of deep dyslexic patients. Journal
of Cognitive Neuroscience, 10, 303–315.

Pulvermüller, F., Hauk, O., Zohsel, K., Neininger, B., &
Mohr, B. (2005). Therapy-related reorganization of lan-
guage in both hemispheres of patients with chronic aphasia.
NeuroImage, 28, 481–489.

Pulvermüller, F., Neininger, B., Elbert, T., Mohr, B.,
Rockstroh, B., Koebbel, P., &Taub, E. (2001). Constraint-
induced therapy of chronic aphasia after stroke. Stroke, 32,
1621–1626.

Rapp, B., & Goldrick, M. (2000). Discreteness and inter-
activity in spoken word production. Psychological Review,
107, 460–499.

Raymer, A. M., & Rothi, L. J. G. (2001). Cognitive neuro-
psychological approaches to assessment and treatment: Im-
pairments of lexical comprehension and production. In R.
Chapey (Ed.), Language intervention strategies in adult
aphasia (4th ed., pp. 524–550). Philadelphia: Lippincott,
Williams, & Wilkins.

Robey, R. R. (1998). A meta-analysis of clinical outcomes in
the treatment of aphasia. Journal of Speech, Language, and
Hearing Research, 41, 172–187.

Rose, M., Douglas, J., &Matyas, T. (2002). The comparative
effectiveness of gesture and verbal treatments for a specific
phonological naming impairment.Aphasiology, 16, 1001–1030.

Rosen, H. J., Petersen, S. E., Linenweber, M. R., Snyder,
A. Z., White, D. A., Chapman, L., et al. (2000). Neural
correlates of recovery from aphasia after damage to left
inferior frontal cortex. Neurology, 55, 1883–1894.

Ruml, W., & Caramazza, A. (2000). An evaluation of a com-
putational model of lexical access: Comments on Dell et al.
(1997). Psychological Review, 107, 609–634.

Schallert, T., Kozlowski, D. A., Humm, J. L., & Cocke,
R. R. (1997). Use-dependent structural events in recovery
of function. Advances in Neurology, 73, 229–238.

Schuell, H., Jenkins, J. J., & Jimenez-Pabon, E. (1964).
Aphasia in adults. New York: Harper & Row.

Schwartz, M. F., & Brecher, A. (2000). A model-driven anal-
ysis of severity, response characteristics, and partial recovery
in aphasics’ picture naming. Brain and Language, 73, 62–91.

Seisjo, B. K. (1992a). Pathophysiology and treatment of focal
cerebral ischemia. Part I: Pathophysiology. Journal of
Neurosurgery, 77, 169–184.

Seisjo, B. K. (1992b). Pathophysiology and treatment of focal
cerebral ischemia. Part II: Mechanisms of damage and
treatment. Journal of Neurosurgery, 77, 337–354.

Shewan, C. M., & Kertesz, A. (1984). Effects of speech
language treatment in recovery from aphasia. Brain and
Language, 23, 272–299.

Shih, J. J., & Cohen, L. G. (2004). Cortical reorganization in
the human brain: How the old dog learns depends on the
trick. Neurology, 63, 1772–1773.

Shisler, R. J., Baylis, G. C., & Frank, E. M. (2000). Review:
Pharmacological approaches to the treatment and preven-
tion of aphasia. Aphasiology, 14, 1163–1186.

Small, S. (2004). A biological model of aphasia rehabilitation:
Pharmacological perspectives. Aphasiology, 18, 473–492.

Small, S., Kendall Flores, D., & Noll, D. C. (1998). Differ-
ent neural circuits subserve reading before and after
therapy for acquired dyslexia. Brain and Language, 62,
298–308.

Taub, E., Crago, J. E., Burgio, L. D., Groomes, T. E., Cook,
E. W., DeLuca, S. C., & Miller, N. E. (1994). An operant
approach to rehabilitation medicine: Overcoming learned
nonuse by shaping. Journal of Experimental Analysis of
Behavior, 61, 281–293.

Taub, E., Miller, N. E., Novack, T. A., Cook, E. W.,
Fleming, W. C., Nepomuceno, C. S., et al. (1993). Tech-
nique to improve chronic motor deficit after stroke. Archives
of Physical Medicine and Rehabilitation, 74, 347–354.

Taub, E., Uswatte, G., & Elbert, T. (2002). New treatments
in rehabilitation founded on basic research.Nature Reviews:
Neuroscience, 3, 228–236.

Taub, E., Uswatte, G., & Pidikiti, R. (1999). Constraint-
induced movement therapy: A new family of techniques with
broad application to physical rehabilitation—A clinical re-
view. Journal of Rehabilitation Research and Development,
36, 237–251.

Thompson, C. K. (2000). Neuroplasticity: Evidence from
aphasia. Journal of Communication Disorders, 33,
357–366.

Thompson, C. K. (2004). Neuroimaging: Applications for
studying aphasia. In L. L. LaPointe (Ed.), Aphasia and
related disorders (pp. 19–38). New York: Thieme.

Thompson, C. K., & Shapiro, L. (2005). A linguistic ap-
proach to treatment of agrammatic aphasia. Aphasiology,
19, 1021–1036.

Thompson, C. K., Shapiro, L., Kiran, S., & Sobecks, J.
(2003). The role of syntactic complexity in treatment of sen-
tence deficits in agrammatic aphasia: The complexity account
of treatment efficacy (CATE). Journal of Speech, Language,
and Hearing Research, 42, 690–707.

Turkstra, L., Holland, A., & Bays, G. A. (2003). The neuro-
science of recovery and rehabilitation:What have we learned
from animal research? Archives of Physical Medicine and
Rehabilitation, 84, 604–612.

van de Sandt-Koenderman, M. (2004). High-tech AAC and
aphasia. Widening horizons? Aphasiology, 18, 245–263.

Vindiola, M., & Rapp, B. (2005). The neural consequences of
behavioral intervention in dysgraphia.Brain and Language,
95, 237–238.

S274 Journal of Speech, Language, and Hearing Research • Vol. 51 • S259–S275 • February 2008



Vousden, J. I., Brown, G. D. A., & Harley, T. A. (2000).
Serial control of phonology in speech production: A hierar-
chical model. Cognitive Psychology, 41, 101–175.

Walker-Batson, D., Curtis, S., Natarajan, R., Ford, J.,
Dronkers, N., Slameron, E., et al. (2001). A double-blind,
placebo-controlled study of the use of amphetamine in the
treatment of aphasia. Stroke, 32, 2093–2098.

Weiller, C., Isensee, C., Rijntjes, R., Huber, W., Muller, S.,
Bier, D., et al. (1995). Recovery from Wernicke’s aphasia:
A positron emission tomographic study.Annals of Neurology,
37, 723–732.

Weinrich, M., Boser, K. I., McCall, D., & Bishop, V. (2001).
Training agrammatic subjects on passive sentences: Impli-
cations for syntactic deficit theories. Brain and Language,
76, 45–61.

Wertz, R. T., & Katz, R. C. (2004). Outcomes of computer-
provided treatment for aphasia. Aphasiology, 18, 229–244.

Wertz, R. T., Collins, M. J., Weiss, D., Kurtzke, J. F.,
Friden, T., Brookshire, R. H., et al. (1981). Veterans
Administration cooperative study on aphasia: A comparison
of individual and group treatment. Journal of Speech and
Hearing Research, 24, 580–594.

Wertz, R. T., Weiss, D. G., Aten, J. L., Brookshire, R. H.,
Garcia-Bunuel, L., Holland, A. L., et al. (1986). Compar-
ison of clinic, home, and deferred language treatment for
aphasia: AVeterans Administration cooperative study.
Archives of Neurology, 43, 653–658.

Whurr, R., Lorch, M., & Nye, C. (1992). A meta-analysis of
studies carried out between 1946 and 1988 concerned with
the efficacy of speech and language therapy treatment for
aphasic patients. European Journal of Disorders of Com-
munication, 27, 1–17.

Wierenga, C. E., Maher, L. M., Moore, A. B., Swearengin,
J., Soltysik, D. A., Peck, K., et al. (2006). Neural sub-
strates of syntactic mapping treatment: An fMRI study of
two cases. Journal of the International Neuropsychological
Society, 12, 132–146.

Wilson, B. A., Baddeley, A. D., Evans, J., & Shiel, A. (1994).
Errorless learning in the rehabilitation of memory impaired
people. Neuropsychological Rehabilitation, 4, 307–326.

Winhuisen, L., Thiel, A., Schumacher, B., Kessler, J.,
Rudolf, J., Haupt, W. F., & Heiss, W. D. (2005). Role of the
contralateral inferior frontal gyrus in recovery of language
function in poststroke aphasia: A combined repetitive
transcranial magnetic stimulation and positron emission
tomography study. Stroke, 36, 1759–1763.

Woodlee,M.T.,&Schallert, T. (2004). The interplay between
behavior and neurodegeneration in rat models of Parkinson’s
disease and stroke. Restorative Neurology and Neuroscience,
22, 153–161.

Received February 9, 2006

Accepted September 22, 2007

DOI: 10.1044/1092-4388(2008/020)

Contact author: Anastasia M. Raymer, 110 Child Study
Center, Old Dominion University, Norfolk, VA 23529-0136.
E-mail: sraymer@odu.edu.

Raymer et al. (Language Work Group): Translational Research in Aphasia S275




